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Abstract

Generalized gamma distributions arise as limits in many settings involving random graphs, walks,
trees, and branching processes. Pekoz et al. (2016) exploited characterizing distributional fixed point
equations to obtain uniform error bounds for generalized gamma approximations using Stein’s method.
Here we show how monotone couplings arising with these fixed point equations can be used to
obtain sharper tail bounds that, in many cases, outperform competing moment-based bounds and the
uniform bounds obtainable with Stein’s method. Applications are given to concentration inequalities for
preferential attachment random graphs, branching processes, random walk local time statistics and the
size of random subtrees of uniformly random binary rooted plane trees.
© 2022 Elsevier B.V. All rights reserved.

MSC: 60E15; 60J80; 05C80

Keywords: Concentration inequality; Tail bound; Stein’s method; Preferential attachment graph; Galton—watson process

1. Introduction

Stein’s method is used to obtain distributional approximation error bounds in a wide variety
of settings in applied probability where normal, Poisson, gamma and other limits arise. The
method was introduced by Stein for normal approximation [35]. Chen adapted it for Poisson
approximation [13], and since then it has been developed in many directions. Introductions to
Stein’s method can be found in [6,14,36]; we also refer to the surveys [5,12,32].

One variant of the approach (see [22,30] and the references therein) starts with a distri-
butional fixed point equation that the limit distribution satisfies and obtains error bounds in
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terms of how closely both sides of the fixed point equation can be coupled together, i.e., their
Wasserstein distance. The fixed point equation often has a probabilistic interpretation that
can be leveraged to achieve a close coupling. To illustrate, we define a generalization of the
size-bias transform for a random variable.

Definition 1. If X is a nonnegative random variable with 0 < E[X?] < oo, we say that X#
is the f—power bias transform of X if

E[X”IE[f(X")] = E[X” f(X)]
holds for all for bounded measurable f.

If X* £ XU, the familiar size-bias transform of X, it can be shown that X satisfies the
distributional fixed-point equation X £ x5 —1ifand only if X follows a Poisson distribution.
Stein’s method can be used to make an approximate version of this statement: the total variation
distance between the law of X and a Poisson distribution can be bounded by the Wasserstein
distance between X and X* — 1 [32, Theorem 4.13]. Similarly, the exponential distribution is
characterized by the fixed-point equation X £ UX* for an independent Uniform(0, 1) variable
U. Under the assumption that X has a finite second moment, Stein’s method can be used to
show that the Wasserstein distance between X and an exponential distribution is at most twice
the Wasserstein distance between X and U X* [29, Theorem 2.1].

The bounds above allow for accurate approximations of the law of X in the bulk of the
distribution. Tail bounds can also be obtained when the two sides of the distributional fixed-
point equation can be coupled together with some sort of monotonicity. This is carried out for
the Poisson distribution in [1,21]. For example, if there exists a coupling of X* with X so that
X* —1 < X a.s., then X satisfies a Poisson-like tail bound. [15] loosened this monotonicity
condition to P[X* — 1 < X | X* > x] > p and applied the results to bounding the second
largest eigenvalue of the adjacency matrix of a random regular graph.

The monotonicity condition we study in the current article involves the following definition
from [30].

Definition 2. For a nonnegative random variable X and «, 8 > 0, the variable X* is the
(o, B)-generalized equilibrium distribution of X if

x* £y, x®,
where V,, has density ax*~!dx on [0, 1] and is independent of X®.

Throughout the paper, we use the notation X* to mean a random variable with the
(o, B)-generalized equilibrium distribution of X, with o and B specified as necessary. The
familiar equilibrium distribution X°¢ of X from renewal theory is the case where « = 8 = 1.
It is well known that the fixed points of the equilibrium transform, i.e., the distributions
satisfying X*¢ 4 x , are the exponential distributions. Generalizing this fact, for any o, 8 > 0
let GG(a, B) denote the (o, B)-generalized gamma distribution, which has density function
,ff)c"‘_le"“i /I'(e/B)dx for x > 0. The fixed points of the generalized equilibrium transform

are the generalized gamma distributions, up to scaling. That is, for any choice of «, 8 > 0,
the random variable X satisfies X* < X if and only if X < cZ where Z ~ GG(«, B)
[26, Theorem 5.1].
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The main result of [30] is a bound on the Kolmogorov distance between a properly rescaled
version of X and Z ~ GG(w, ) when X and X* are not identical but are close in the Lévy—
Prokhorov metric. This yields a bound on |P[cX > ¢] — P[Z > ¢]| that can be used to estimate
probabilities in the bulk of the distribution of X. But since this bound is uniform in ¢, it is too
large to be useful for small tail probabilities in applications. This is the launching point for the
current article.

Let X < Y denote that X is stochastically dominated by Y in the usual stochastic order.
We introduce two stochastic orders as follows. For a constant p € (0, 1], we write X <5 Y
to denote that P[X > ] < P[Y > ¢]/p for all t € R. Similarly, X =<, Y denotes that
P[X <t] = pP[Y < t]forall t € R. In the p = 1 case, both orders are the usual one.
For p < 1, they represent two different relaxations of the usual order and have alternate
characterizations given in Lemma 8.

Our two main result are that stochastic domination of X* by X in these orders leads to
upper and lower tail probability bounds:

Theorem 3. Suppose that X* <5 X for some p € (0,1] and o, B > 0. Let p = (gEXﬁ)l/ﬂ.
If a # B, then for any t > 1,

P[X > ur] < 12> 7"
If « = B, then for all t > 0,

P[X > ut] < el

Theorem 4. Suppose X* <, X for some p € (0,1] and a, B > 0. Let p = (gEXﬂ)I/ﬁ. Then

PLX < uf] (a>la/ﬂ e (1)
<utl< (=2 S

so long as t* < pa/B. If o = B, an improved bound holds for all t > 0:

o

P[X < ut] < t—. 2)
V4

The factor u used to rescale X in these theorems is equal to 1 when X has the GG(«, 8)
distribution.

We mention that the case « = 8§ = p = 1 case of Theorem 3 was already proven by Mark
Brown [10, Theorem 3.2]; see Section 2.2.

As an application of these concentration theorems, we prove several results for graphs,
walks, trees and branching processes. We next define several quantities from such models and
show that the above inequalities apply.

Preferential attachment random graphs. Consider a preferential attachment random graph
model (see [4,30]) that starts with an initial “seed graph” consisting of one node, or a collection
of nodes grouped together, having total weight w. Additional nodes are added sequentially and
when a node is added it attaches [ edges, one at a time, directed from it to either itself or to
nodes in the existing graph according to the following rule: each edge attaches to a potential
node with chance proportional to that node’s weight right before the moment of attachment,
where incoming edges contribute weight one to a node and each node other than the initial
node when added has initial weight one. The case where ! = 1 is the usual Barabasi—Albert
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tree with loops but started from a node with initial weight w. Let W be the total weight of the
initial “seed graph” after an additional n edges have been added to the graph.

Random binary rooted plane trees. Let U be the number of vertices in the minimal
spanning tree spanned by the root and £ randomly chosen distinct leaves of a uniformly chosen
binary, rooted plane tree with 2n — 1 nodes, that is, with n leaves and n — 1 internal nodes.

Random walk local times. Consider the one-dimensional simple symmetric random
walk S, = (S5,(0), ..., S,(n)) of length n starting at the origin. Define

Ly =) 1{Su(i) = 0)
i=0
to be the number of times the random walk visits the origin by time n. Let
L3, ~ [Lay | $20(0) = S2(2n) = 0]

be the local time of a random walk bridge. Here we use the notation [X | E] to denote the
distribution of a random variable X conditional on an event E with nonzero probability.
The next result shows that the above concentration inequalities hold for these quantities.

Theorem 5. With the above definitions,

(a) W< Wwitha=w,B8=1+1

(b) U* < U witha =2k, =2

(c) (L))" XL, witha=1,=2

(d) (L5 ) < L5 witha =2,8=2
and the conditions and conclusions of Theorems 3 and 4 hold for W, V, L,, and le’n with
p = 1 and the corresponding values in (a)—(d) for o, B.

We also give two tail bounds for Galton—Watson branching processes. See Section 4.5 for
a review of previous bounds.

Theorem 6. Let Z, be the size of the nth generation of a Galton—Watson process, and let
w = EZ,, the mean of its child distribution. Consider Z; with a = B = 1. If Z{ <X Z,, then
Zy < Z, for all n, and

P(Z, > "] < €', 3)
and

P(Z, =tu"] <t 4)
forallt > 0.

Theorem 6 requires the child distribution to be supported on {1, 2, ...}, since the condition
Z] = Z, fails if P[Z; = 0] > 0. The next result relaxes this requirement and allows us to
consider Galton—Watson trees with a nonzero extinction probability, with our concentration
result applying conditional on nonextinction. We impose a condition on the child distribution
that comes from reliability theory. For a random variable X taking values in the positive
integers, we say that X is D-IFR (which stands for discrete increasing failure rate) if P[X =
k| X > k] is increasing in k for k > 1. As we will discuss in Section 4.1, if X is D-IFR then
X* <X witha=8=1.

In the following theorem and onward, for a random variable X we use X~ to denote a
random variable with distribution [X | X > 0].

4
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Theorem 7. Let Z, be the size of the nth generation of a Galton—Watson tree, and suppose
that Z7 is D-IFR. Then Z; < Z; with a = B =1, and with m(n) = E[Z, | Z, > 0],

P(Z, > tm(n) | Z, > 0] < '™, ®)
and

P[Z, <tm(n)| Z, > 0] <t (6)
forall t > 0.

This theorem holds in subcritical, critical, and supercritical cases alike. The difference comes
only in the mean m(n), which grows exponentially for a supercritical tree, grows linearly for
a critical tree, and remains bounded for a subcritical tree.

Theorems 5-7 apply the p = 1 cases of Theorems 3 and 4 with the usual stochastic order.
We use the p < 1 case in this paper only in Remark 28 to sketch a way to simplify the proof
of Theorem 5 at the cost of a weaker concentration inequality. Nonetheless, we expect that
the p < 1 case will prove useful. For the analogous concentration bound in [15] based on the
Poisson distributional fixed point X* Lx + 1, the p < 1 case is essential to applications on
random regular graphs (see [15, Proposition 2.3] and [40, Theorem 4.1]) and on interacting
particle systems [24, Proposition 5.17].

The tail bounds we produce in this paper are sharp in many circumstances. The results of
Theorems 3 and 4 in the @ = B case are sharp, which was known already in the previously
proven case @ = 8 = p = 1 for the upper tail [11]. When o # 8, we expect that the factor #*
in the upper tail bound is not sharp. We discuss this further in Section 2.4. The applications of
Theorems 3 and 4 given in Theorem 5 with @ = B seem likely to be sharp (see Remark 18),
and our results on Galton—Watson processes are sharp as well (see Section 4.4).

Our main concentration results, Theorems 3 and 4, are proven in Section 2. In Section 3,
we consider an urn model and prove that its counts N satisfy N* < N with o« and 8
depending on the model’s parameters. The random variables W, U, L,, and L’z’n are expressed
in terms of this urn model in [30], and Theorem 5 follows. One part of the proof, a regularity
property for the urn model similar to log-concavity, is shown by a very technical argument
in Appendix A. Section 4 gives the proofs of Theorems 6 and 7 on Galton—Watson trees.
After some background material on reliability theory and on forming the equilibrium transform,
Theorem 6 is easy to prove (and in fact is essentially proven in [39]). The proof of Theorem 7
is more difficult and requires us to establish some delicate properties of the D-IFR class of
distributions. In Appendix B, we give some proofs that are well known in reliability theory but
hard to find in the literature.

2. Proof of concentration theorems

Recall that X <5 Y and X =<, Y denote that P[X > ¢] < P[Y > t]/p and P[X < ] >
pP[Y < t], respectively, for all r € R. We start by characterizing these orders in terms of
couplings, along the same lines as the standard fact that X < Y if and only if there exists
a coupling of X and Y so that X < Y a.s. We have not seen these stochastic orders defined
before, but they are used in form (ii) in [15,16].

5
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Lemma 8. The following statements are equivalent:

(i) there exists a coupling (X, Y) for which P[X <Y | X] > p a.s.;
(ii) there exists a coupling (X, Y) for which P[X <Y | X > t] > p for all t € R where the
conditional probability is defined;
(iii) X <5 Y;
as are the following statements:

(i) there exists a coupling (X,Y) for which P[X <Y | Y] > p a.s.;
(ii) there exists a coupling (X,Y) for which P[X <Y | Y <t] > p for all t € R where the
conditional probability is defined;
(iii) X <, Y.

Proof. It is clear that (i) implies (ii) in both sets of statements. To go from (ii) to (iii) in the
first set of statements, observe that for any s € R,

PlY>s] >P[X <Y and X > 5] > pP[X > 5],

applying (ii) in the second inequality. Now let s approach ¢t downward to prove (iii). A similar
argument proves that (ii) implies (iii) for the second set of statements.

Now we show that (iii) = (i) for the first set of statements. Let B ~ Bernoulli(p) be
independent of X, and define a random variable X’ taking values in [—oc0, 00) by

X if B=1,
—oo if B=0.

X =

Then
P(X' >t] = pP[X > t] <P[Y > t]

by (iii). Thus X’ is stochastically dominated by Y in the standard sense, and therefore there
exists a coupling of X’ and Y such that X’ < Y a.s. (The standard fact that P[U > ¢t] < P[V >
t] for all ¢ is equivalent to the existence of a coupling for which U < V a.s. holds when
U and V take values in [—00, 00), and in fact under considerably more general conditions
[37, Theorem 11].) Under this coupling, given X, it holds with probability at least p that
X = X', in which case X < Y. Thus X <5 Y implies (i).

To show that (iii) = (i) for the second set of statements, we use the same idea but define
Y’ to be equal to Y with probability p and equal to co with probability 1 — p. Then X < Y/,
yielding a coupling of X and Y’ such that X < Y’ a.s., and under this coupling given Y we
have Y = Y’ > X with probability at least p. [

Before we get started with our concentration estimates, we make an observation that allows
us to rescale o and S.

Lemma 9. Let o, 8, and y be positive real numbers. If X* has the (o, B)-generalized
equilibrium distribution of X, then (X*)V has the (%, g)—genemlized equilibrium distribution
of X7.

Proof. For a > 0, let V, denote a random variable with density ax®'dx, and recall that
x* L v, X® Now observe that V| < w/y and (XB)r L xn e, 0O
6
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2.1. Upper tail bounds for o # B
We start with a technical lemma.

Lemma 10. Suppose that X* <5 X and EX? =«a/B. Let G(t) =P[X > t]. Forall t > 0,

G

prrd ™)

1
/ PGt fu)du < ——
0

Proof. Since X* <5 X,
G(t) > pP[V,XP > 1] = pfolau“P[x<ﬂ> > t/uldu.
By definition of the B-power bias,
p/()lau‘“P[Xw) > t/uldu = p,B/OI u“’lE[Xﬂl{XN/u}]du
> pﬁrﬂfol u*PIPIX > t/u)du

1
:pﬂtﬂ/ PGt uydu. O
0

Next, we apply this lemma to deduce bounds on E[X | X > ¢] in the 8 — o = 1 case and
on E[X~!'| X > t]in the 8 —a = —1 case.

Lemma 11. Suppose that X* <5 X and EX? = a/B. For all t > 0 such that P[X > t] > 0,

E[X—t|X>1]< ﬂlta ifp—a=1, ®)

and

Ex'—t"|X>1]>- ifp—a=—1 )

1
pBte
Proof. Let G(r) = P[X > t]. When 8 — « = 1, we apply Lemma 10 and then switch the
order of integration to obtain

Gt :
@) / _ZG(t/u) du = E/ M_zl{X>t/u}du
0

pp1P =
1
=E|:1{X>,}/ uzdu]
t/X

= E[ 1 (X/1 = 1)] = GO (r"E[X | X > 1] - 1).
Cancelling the G(¢) factors and rearranging terms gives (8). When f — o« = —1, the same
approach yields
G(@)
pBtF =
proving (9). O

/0 G(t/uydu = E[ 1y (1 = 1/X) | = G0(1 = E[x " | X = 1]),
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To give a sense of the purpose of the preceding lemma, the mean residual life of a random
variable X is the function mx(t) = E[X —¢ | X > t], with mx(¢) defined as O if P[X > ¢t] = 0.
In general, the distribution of a random variable can be recovered from its mean residual life
function [25, Lemma 2]. In Lemma 11, we bound the mean residual life of X when 8 —a =1
or of —X~! when B —a = —1. (A similar approach would bound the mean residual life of
log X when 8 = «, but a different technique used in Section 2.2 gives better results in that
case.) To prove Theorem 3 when o # B, we will first use Lemma 9 to rescale « and 8 so that
o — B = %1, and then we apply the bounds on mean residual life from Lemma 11 to derive
tail bounds on X.

Proof of Theorem 3 for « < f. First, we prove the theorem under the assumption that © = 1
(i.e., EX? = «/B) and that 8 —a = 1. Let fy = (o/pB)"/?, and let Z be the random variable
supported on the interval (#p, co) with

o/p
P[Z > 1] = <ﬂ> %’ (10)
o

We now compute the mean residual life function of Z. First, by Fubini’s theorem,

%} a/B
E[(Z - D1l(zoy] = / P(Z > u]ldu = i(”—’%) e (11)
o

t pB

Hence, for ¢t > 1y,

E[Z—-t]|Z>1t]= .
pBre
By Lemma 11, we have E[X — ¢ | X > t] < E[Z —t | Z > t] for all + where P[X > 7] > 0.
By [34, Theorem 4.A.26], we have Ep(X) < Ep(Z) for any increasing convex function ¢(x).
Now, we apply this statement with the right choice of ¢(x) to obtain information about the
tail of X. Fix t > 0 and define ¢(x) = max(O, x—t+y)/ y) for y to be chosen later satisfying
0 < y <t. Then ¢ is an increasing convex function, and hence E¢(X) < E¢(Z). Observing
that 1j;>5) < @(x),

P[X > 1] < E¢(X) < E¢(Z)
— 1 _ 1 pBe o/ —p(t—y)P
=VY E[(Z - (t - V))I{Z>t7y}:| - Vpﬂ( o ) e Y

by (11), assuming that t — y > f,. Since B > 1, the function x” is convex and its graph
lies above its tangent lines. Hence x? > t# 4 (x — t)Bt#~!, and setting x = t — y we have
(t—y)? > tP —yBt*. Using this inequality and then minimizing by setting y = 1/ppt¥ yields

a/p
o= L (P)
o

/B
— <&)a PPl
o

so long as t — 1/pBt* > t,. To make this bound simpler, first observe that —xlogx <1 —x
for all x > 0, since —x log x is concave and 1 — x is its tangent line at x = 1. Exponentiating
both sides of this inequality, setting x = «/Bp, and raising both sides to the pth power gives

a/B
<ﬁ> < e[’—ﬂl/ﬂ’ (12)

o
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from which we obtain

P[X > 1] < 12eP~P"+1 < o p2-r1P (13)
still assuming

t —1/pBt* > 1. (14)

Now, we show that either (14) is satisfied or the right-hand side of (13) exceeds 1. Suppose
12> 7" < 1. Since we are assuming ¢ > 1, we have t# > 2/p. Thus our goal is to
show that (14) holds when t# > 2/p. Since the left-hand side of (14) is increasing in ¢, it
suffices to prove that (14) holds when ¢ = (2/p)!/#. To obtain this, start with the inequality
log(1 — x/2) > —(log2)x for x € (0, 1), which holds since log(l1 — x/2) is concave and
equals —(log2)x at x = 0, 1. Setting x = 1/8 for § > 1 and exponentiating, we obtain
1-1/28 > 2-1/B, Rearranging terms, 21/’3(1 — 1/2,3) > 1. Hence,

(1= 1) = ()"
28) —\B

since the right-hand side is smaller than 1. Multiplying both sides of this inequality by p~!'/#
and substituting 1 = (2/p)"/?,

t o 17k
t——=>—=) .
2B _<pﬁ)

And this is exactly (14), since 1/28 = 1/ppt® for t = (2/p)"/# and « = B — 1. This completes
the proof assuming EX? =/ and f —a = 1.

Now, we drop the assumption EX? = «/8 and relax the assumption f—a = 1to f—a > 0.
Let Y = (X/w)?~* and let YT = (X*/u)#~*, and observe that (X/u)* is given by X*/u. By
Lemma 9, the random variable YT has the (o, 8')-generalized equilibrium distribution of Y,
where o/ = /(B — &) and B/ = B/(B — ). Now B’ —a’' = 1 and EYF' = E(X/n)? = a/B.
We now apply the special case of the theorem already proven to obtain

PIX > ut] = P[Y > 1F~] < (B~ 2=p P8 _ a2 pif
foranyr>1. O

The proof when o > B follows the same structure, differing only in some analytical details.

Proof of Theorem 3 for « > B. As in the ¢ < B case, it suffices to prove the theorem under
the assumptions p = 1 (or equivalently EX? =a/f)and a —f = 1. Let 1, = (a/pﬂ)% and Z
be the random variable supported on (#p, co) defined by (10). The mean residual life function
of Z computed in (11) does not hold in the « — B = 1 case, since the computation of the
integral in (11) relies on B — « = 1, but we can instead observe that

o\ /B .
Pz <1]= <ﬁ) e "
o
for 0 <t <ty ! and then compute

! 1 a/p _
El:(Z_1 — t)l[Z*1<;]] = —/(; P[Z <uldu = —E<%> e P! ﬁ‘

9
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Hence,

o

E[z7'—¢|z27 ' <t] = ——.
[ |27 <1] p

We then have
E[X'—t|X ' <t]=E[X 't | X" <t]=E[Zz7" =1 Z7" <]

by Lemma 11. By [34, Theorem 4.A.27], it holds for all decreasing convex functions ¢(x) that
E(p(X’l) < E(p(Z’l). Taking ¢(x) = max(l + @ —x)/y, 0) for y > 0 to be chosen later and
observing that ¢(x) > 1{x < t}, we obtain

P[X~' <t] <Ep(Xx")
1
SEp(z7") = —E[(y+1-2" )z <y +1]]
14
= L(%)awe—p(yﬁ)ﬂ
pBy \ «
assuming y + ¢ < t,'. Applying the inequality (y + )~ > =% — By+=#~1 which holds by

convexity of x~# and then optimizing by setting y = 1%/ pB,

a/B
P[X*1 <t] < %(&) o PUPHpyi™)
ppy \ «

_ (Pﬂ€>a/ﬁt%1pt—ﬁ

o

Thus, under the assumption

1/pBt* + 17" < (pBja)'?, (15)
we obtain
pBe\*’ p B p
P[X > t] — P[X—l < t_l] < (_) totel—]’t < tOleP-H—]?f < toteZ—I’t , (16)
o

applying (12) in the last step.

Finally, we show that either (15) holds or the right-hand side of (16) exceeds 1. Let
f@t) = 2 — ptP + (B + 1)logt, so that the right-hand side of (16) is equal to e/®. Let
g(t) = 1/pBtP+t! 4+ 7!, the left-hand side of (15). Our goal is to show that for all r > 1
that if f(¢) < 0, then g(t) < (pB/(B + VA Tt is easy to check that for + > 1, the function
f(¢t) increases and then decreases, with f(1) > 0. Since g(¢) is decreasing, it suffices to find
a value s > 1 so that f(s) > 0 and g(s) < (pB/(B + 1))"/#. We claim that this holds for

S_(%ﬂ+n)w
~\ B '

To confirm this, we compute

B+1 26+ 1) B+1 2+ 1)
=24+ —-11 — =2 24+ —|1 — ) =2]).
J&) =245 (%( B > )Z 5 (%( 5 ) )

A bit of calculus shows that the right-hand side of this inequality is minimized when (8 +
1)/B = e/2 and is equal to 2 — e/2 > 0 in this case. Finally, we must confirm that

10
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g(s) < (pB/(B + 1))'/f. We compute

B \'"Pr28+3
o= (s85) " (55)
B+1) 28 +2

Cancelling a factor of (8/(8 + 1))'/#, we must show that

2 3
p-up( 243 <1 (17)
2842
Using the inequality log(x 4+ 1) —logx < 1/x,
1 1 log2

log(2B8 +3) —log(28 +2) <

S S K
284+2 7 28 B
and exponentiating both sides of this inequality confirms (17). [

2.2. Upper tail bounds for o = B

As we mentioned in the introduction, Theorem 3 in the case « = 8 = p = 1 was first proven
in [10]. The general &« = B case with p = 1 then follows by an application of Lemma 9, and
it is not difficult to modify Brown’s argument to allow p < 1. To save the reader the effort of
going back and forth between Brown’s paper and this one, and to highlight his elegant proof,
we present the full argument here.

Let Z(u) be a random variable with the distribution [X®#~% | X®#~9 > 4. If U ~ p is a
random variable, let Z(U) denote a random variable whose distribution is the mixture governed
by u, i.e.,

P[Z(U) € B] = /P[X(ﬁ‘“) € B| X% > u] u(du).

Proposition 12. Let i be the law of X, and define (U, W) as the random variables with joint
density

a—1, B—a
1{0<u =< w}% dudm(w).
Then
(a) U= X*;
(b) WL X®);

(c) for any Borel set B C R,
PlU e B|W]=P[V,W € B| W] a.s.,

where V, has density ax®~" on [0, 1] and is independent of W
(d) for any Borel set B C R,

P[W € B| U] =P[Z(U) € B| U] as.,
(e) Z(X*) L xP,

Proof. The density of W is (w?/EX?)dm (w), proving (b). Looking at the conditional density
of U given W = w, we see that (c) holds. Taking expectations in (c), we have U < V,W, and

11
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together with (b) this implies (a). Fact (d) is proven by observing that the conditional density
of W given U = u is
wh—
Hw > M}E[Xﬁ*”I{X Y dm(w),
which is the density of Z(u), the (8 — a)-power bias transform of [X | X > u]. Finally, taking
expectations in (d) gives W < Z(U), and then (a) and (b) prove (e). U

Lemma 13. For any p € (0, 1],
X* <5 X = X <4 2(X),
and

X =, X = x¥ <, 2(X).

Proof. First, we observe that Z(u) is stochastically increasing in u. Thus we can couple the
random variables (Z(u)),>¢ so that Z(u) < Z(v) whenever u < v (for example, by coupling all
Z(u) to the same Uniform(0, 1) random variable by the inverse probability transform). Under
such a coupling, X* < X implies that Z(X*) < Z(X).

Now, suppose X* =<5 X. By Lemma 8, there exists a coupling (X, X*) under which
P[X* < X | X*] > p a.s. Hence,

PIZ(X") = Z(X) | X*] = P[X* = X | X*] = p as.

Thus P[Z(X*) < Z(X) | Z(X*)] > p a.s. as well. Since Z(X*) L x® by Proposition 12(e),
this proves the lemma when X* <5 X. The proof when X* <, X is identical except we take
conditional expectations given X rather than X*. [J B

The next lemma will be used to prove a tail estimate for Z(X) when o = .

Lemma 14. Let u be a probability measure on [0, 00). Then for any t > 0,

1
/[0 : ﬁ pldx) < —log ult, 00).

Proof. Assume without loss of generality w[f,00) > 0. For some partition 0 = xo <
- < x, = t, let ¢(x) be the step function taking value 1/u[x;, c0) on interval [x;, X;y1)
fori =0,...,n—1. Then

-1

wlxi, xit1) Mlxiy1, 00)
@(x) u(dx) = < ) —log—————— = —loguft, o), (18)
/[O,z) [2(; nlxi, 00) ; mlxi, 00)
with the inequality holding because x < —log(l — x) for x € [0, 1).
Now, consider any sequence ¢,(x) of such step functions where each partition refines the
last and the mesh size of the partition goes to zero. Then ¢, (x) converges upward to 1/u[x, 00)
for all x € [0, t), and

1
/ @ (x) (dx) — ——— u(dx)
[0.0) (0,0 H[x, 00)
by the monotone convergence theorem. This proves the lemma by (18). O

12
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Lemma 15. For o = 8 and any random variable X,

P[Z(X) = t] <P[X >1](1 —logP[X > 1]).

Proof. Let G(t) = P[X > t]. For any u > 0,

(o)
PIZ0) 2 11 = u = 0} + i < 1) o,
Hence,
PIZ(X) = 1] = G(t) + G(;)E[M],
= GX)

and by Lemma 14 we have

P[Z(X) > 1] < G1t) + G(t)(—log G(1)). O

Proof of Theorem 3 for « = 8. As in the o # f cases, it suffices to prove the theorem under
the assumption p = 1, or equivalently EX? = «/8 = 1. From the definition of X,

ptPP[X > 1] < pE[X’1{X > t}] = pP[XP >1].
By Lemma 13 followed by Lemma 15,
pP[XP > 1] <P[Z(X) = 1] < P[X > 1](1 — log P[X > 1]).

‘We have now shown that pt’SP[X >t] < P[X > t](1—logP[X > t]). Assuming P[X > t] > O,
we can divide to obtain pt’3 <1 —1logP[X > t], demonstrating that P[X > ¢] < P

2.3. Lower tail bounds

Proof of Theorem 4. As in the proof of Theorem 3, by rescaling it suffices to prove the
theorem when u =1, i.e., EXf = o/B. From the definition of =p

1
pP[X <t] <P[X*<t] = / au""P[XP < t/u]du
0

1
= EE f au® ' XP1{X gz/u}du]
0

o

/3 min(r/ X, 1)
=—E Xﬂ/ au“ldui|
o 0

_ é [ B i o
= ZE[ X/ min((t/X)". 1)]
_ gE XX > 1)+ XPUX < t}].

If « = B, then the expectation is bounded by ¢*, proving (2). Otherwise, we bound the two
terms in the expectation separately to get

pP[X <1] < é(t“EXf“"‘ +1PP[X < z]).
o

By Jensen’s inequality, EXf~* < (EX#)#—®/F = (a/B)'~%/F. Applying this bound and
rearranging terms yields (1). [

13
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2.4. Sharpness of bounds

Theorems 3 and 4 are nearly optimal when o = 8 but seem to be missing a factor of 1 =#
when o # B. First, let us assume that p = 1. In [11], it is proven that Theorem 3 is sharp
when p = o = 8 = 1, including the constant factor of e. By Lemma 9, the theorem is sharp
whenever o = . For the reader’s convenience, we present a family of examples demonstrating
that Theorem 3 cannot be improved in this case; it is a discrete counterpart to the example given
in [11]. Choose integers 1 and n and let p = 1/u, and let X have a capped version of the
geometric distribution with success probability p as follows:

(1—=p*tp ifl <k<n,
PIX =k]=1(1 — p) ifk=n+pu,
0 otherwise.

Then X* < X with « = 8 = 1 (easy to check with Proposition 19(b)), and EX = . Now, set
n = (t — 1)u for some integer r > 2, and we have

P[X > Mt] = P[X >n +/-’L] — (1 _ M_])(I_I)M.

This converges to e~ as m — oo, confirming that there exist examples in which P[X > ut]
comes arbitrarily close to ¢!,

When o # B, one would hope for a upper tail bound of O(t*~# e’”’ﬁ) rather than the
O(t"‘e"”ﬁ) achieved in Theorem 3, which would match the tail of the generalized gamma
distribution. But the best tail bound via moments for the generalized gamma distribution loses a
factor of 1~#/2 (the calculation is similar to the one carried out in Remark 18), and the Chernoff
approach of bounding the moment generating function used in the proof of Theorem 3 in the
o # B case is always inferior to the moment bound [31]. Thus a new approach would be
needed for the proof if the optimal tail bound is to be achieved. Perhaps Brown’s proof for the
o = B case could be adapted when « # B, though we are not sure what the replacement for
Lemma 15 would be.

As for lower tail bounds, if X has the (¢, 8)-generalized gamma distribution, then Theorem 4
applies to X with u = p = 1. Up to constants, the O(#*) bound for P[X < t] shown in
Theorem 4 matches the true tail behavior of X as t — 0.

Now, we show that the dependence on p in the theorem is nearly optimal. Suppose that
X* < X for some «, 8 > 0, and define
X with probability p,

Y =
0  with probability 1 — p,

for some 0 < p < 1. Then

YL x* <, 7.
Let ux = (gEX’S)l//3 and puy = (gEYﬁ)l/ﬂ = p'/Pux. For any t > 1, applying the p = 1
case of Theorem 3 to X,

1+a//3tot 27ptﬁ if
P[Y > puyt] = pP[X > pPrux] < ﬁ . ’.“#&
el P, if a = B.

Meanwhile the bound from applying Theorem 3 to Y is

t"‘ez_’”ﬁ, if @ # B,
P[Y > puyt] <
[ —“Y]—{e'—wﬁ ifoa=p.

14
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Thus, the bound on Y is equally sharp as the bound on X provided by the p = 1 case of
Theorem 3, besides losing a factor of p'*%/# when o # B.

For an example showing optimal dependence on p in the lower tail bound, for the sake of
simplicity take « = 8 = 1. Choose some b < 1 < a, and define X as the mixture

Exp(a) with probability “1=2),

Exp(b) with probability “ @ 1>”

and observe that EX = 1. We can compute directly that

P[X <t] =

i b(a(l —b)(1—e )+ (a—Db(1—e ")) = (@a+b—ab)t — 0@?). (19)

The equilibrium transform of a mixture is the mixture of the equilibrium transforms, with
the new mixture governed by the old governor reweighted by expectation (see Lemma 21).
Together with the fact exponential distributions are fixed points of the equilibrium transform,
this yields

1—

S

[l

Exp(a) with probability
Exp(b) with probability

Q9
—_—

Sl

b
With a bit of work, one can show that X* =p X with p = 1/(a + b — ab). Thus Theorem 4
yields

PIX <t]<(a+b—ab),
matching (19).

3. Concentration for urns, graphs, walks, and trees

Each of random variables W, U, L,, and Lgn in Theorem 5 can be expressed in terms of an
urn model that we describe now. An urn starts with black and white balls and draws are made
sequentially. After a ball is drawn, it is replaced and another ball of the same color is added to
the urn. Also, after every /th draw an additional black ball is added to the urn for some / > 1.
As defined in Section 1.2 of [30], let P,f(b, w) denote the distribution of the number of white
balls in the urn after n draws have been made when the urn starts with » > 0 black balls and
w > 0 white balls, and let N,(b, w) ~ P,f(b, w).

Let N,'l’](b, w) be a rising factorial biased version of N,(b, w), as defined in Lemma 4.2 of
[30], so that

r—1

P[NI (b, w) =k] = <c [+ i))P[N,,(b, w) = k]
i=0

for some c. There it is shown that N,E’](b, w) +r 4 N, (b, w + r). We will use this fact to
prove concentration for N, (1, w), but first we relate the rising factorial bias to the power bias
N(l+l)(b w)

n ’ .

Lemma 16. For all 1 <1 < n we have N1 (b, w) +1 > ND(b, w).

n—l

Proof. We will show that P[NUHJ(b w)+1[ = k]/P[N(lH)(b w) = k] is increasing in k on
the union of the support of NUH](b w)+1 and N(l“)(b w), which is {w, w+1, , W+ n}.

15
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We have
PN b, w)+1=k]  Ck—1D)- kP[N,y(bw) =k — ]
[ ’(ll+1)(b7 w) = k] - K+1P[N, (b, w) = k]

)

where C is a value that does not depend on k. The expression (k —[)---k/k!*! is increasing
in k, as is

n—1

P[N,_(b,w)=k—1] _ P[N;(b, w) = j —n + k]
PIN,b.wy=kl 21 PINjyi(bw)=j—n+k+1]

for w <k <w+n, since it is 0 for w < k < w 4 [ and each factor on the right-hand side in
the product is increasing in k by Lemma 25 for w +/ < k < w + n (in this range of k, the
denominators of the fractions in the product are all nonzero). This proves the desired stochastic
domination by [34, Theorem 1.C.1]. O

Proposition 17. For alll,w,n > 1,
Ny(1, w) < N, (1, w),
where N (1, w) is the (w, [ + 1)-generalized equilibrium transform of N,(1, w).
Proof. Let Q,(n) have the distribution of the number of white balls in a regular Polya urn

after n draws starting with 1 black and w white balls. For now, assume that [ < n. We argue
that

Na(1, w) £ Q. (Ny (0, w + 1) —w — 1)

L 0wWNo(L,w+14+0)—w—1)
L QNI wy+1+1—w—1)
= (NN, wy + 1)V, (20)

where V,, has density wx”~'dx on [0, 1] and is independent of N U+”(1 w). The first line is
Lemma 4.5 from [30]. In the second line, we use the trivial relation

Ny, w+1) LN, (1, w+1410).
In the third line, we use
N,(1,w +7r) 4 N,Er](l, w)+r,

which is the statement of Lemma 4.2 of [30]. The final line uses

Oyn) = (n+w)V,, (21)
which follows from the fact, taken from the proof of Lemma 4.4 of [30], that for independent
and identically distributed Uniform(0, 1) variables Uy, Uy, ..., U,_; we can write

Qu(m) £ _ max i+ [(n+w—)U/)

.....

and this implies

Ou(n) = max 71(n +w)U; = (n + w)V,,.

,,,,,,
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We now apply Lemma 16 to (20) to obtain
Na(l,w) = Vi NO(1L w) £ N (1, w)

when [ < n.

When [ > n, the quantity N, (1, w) is the number of white balls in a regular Polya urn after
n draws starting with 1 black and w white balls. Using (21) and observing that the maximum
of N,(1, w) is n + w,

Na(L, w) £ Q,,(n) = (n + w)Vy = NI, w)V,, £ N* (1, w). O

Proof of Theorem 5. We have W ~ P!(1,w), U ~ P}, ,(1,2k), and Ly, ~ P)(1,1)
respectively from Remark 1.3, Proposition 2.1, and Proposition 3.4 in [30]. From Proposi-
tion 3.2 in [30], we have Lgn ~ Pnl(O, 1), and Pnl(O, 1) is the same distribution as P,Ll(l, 2).
The result then follows from Proposition 17 and then noting that the conditions of Theorems 3
and 4 hold. O

Remark 18. The rising factorial moments of N,(1,w) are explicitly computed in
[30, Lemma 4.1]. When w = [ 4 1, the concentration bound given in Theorem 5 is better
than the one obtained from these moments via Markov’s inequality. For the sake of simplicity,
we illustrate with the case / = 1, w = 2. The result of Part (a) of Theorem 5 along with
Theorem 3 shows that

PN, (1, w) > y,t] <", (22)

where ynz = EN,(1, w)?. From [30, Theorem 1.2], we know that Yo ~ 24/1.
Now, we compute the concentration inequality given by the rising factorial moments of
N,(1, w). Using the notation x"! = x(x +1)---(x +7n — 1), from [30, Lemma 4.1] we have

2n+21+3
E(Nn(l’ )[zm] 2[2m]n(1+21+3> [2'”]1_[ 2i +3

The bound given by applying Markov’s inequality to this is

[2 m] 2m m-l )
P[Nn(l, w) > )/nf] - E(Nn(l, w)) _ 2 2n+2i+3
= = ()/nt)[2 m] (ynt)[2 m] i1 2 +3
m—1

-T1 (2i +2)(2n + 2i + 3) @3
L Gl 20t 20+ 1)

Let m* be the minimizing choice of m in (23). Some algebra shows that the multiplicand in
this expression is bounded by 1 if and only if
V;”ztz +lyp—4-¢

L= 8 4ynt .
- S _ Z¥nl
4+n n

Take ¢ to be fixed with respect to n. From the asymptotics for y,,, the right-hand side of this
inequality converges to 1> — 1 as n — oo. Hence either m* = [t*] — 1 or m* = [t?] when n
is sufficiently large. The optimal tail bound obtained from the rising factorial moments is then

ml Qi+ 2)(2 + 2R

i=0 (ft+f><yf”t+2‘}l>

17
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which converges as n — o0 to

m*—1
2i+2)2)  (m")! 2
1_[ 412 - (tz)’"* = (e™),

i=0
applying Stirling’s approximation to obtain the last estimate. Thus this bound is worse than
(22) by a factor of ¢, when n and ¢ are large.

A more involved calculation for the general case w = «, [ = 8 —1 shows that the tail bound
from moments is on the order of t*—#/ 2e"5. Outside of the « = B case, our bound is on the
order of %¢~"" and is outperformed by the moment bound.

4. Concentration for Galton—Watson processes

We adopt the terminology from reliability theory that a random variable satisfying X* < X
with « = B = 1 is NBUE, which stands for “new better than used in expectation” (see
Proposition 19(b) for the source of this name). Since we will often be applying the equilibrium
transform to discrete random variables (e.g., the child distribution of a Galton—Watson tree),
we will use the notation X¢ to denote the discrete version of the « = B = 1 equilibrium
transform, which we can define by setting X¢ = [X*] with X* the standard « = 8 = 1
equilibrium transform. Equivalently, we can define X¢ to be chosen uniformly at random from
{1,2,..., X"}, where X* is the size-bias transform of X. Observe that for a random variable
X taking values in the nonnegative integers, it is a consequence of the coupling interpretation
of stochastic dominance that X° < X if and only if X* < X.

4.1. Some concepts from reliability theory

We consider three classes of discrete probability distributions; we will state the relationship
between the three classes and give some characterizations of them. All are standard in the
reliability theory literature, sometimes with varying notation.

To define the first class, the log-concave distributions, we first define a sequence fy, f1, . ..
as log-concave if

@) t,% > ty_1ty4 for all n > 1, and
(ii) to, t1, ... has no internal zeroes (i.e., if ; > 0 and # > O for some i < k, then ¢; > 0
foralli < j < k).

For X taking nonnegative integer values, we say that X is log-concave if the sequence P[X = k]
for k > 0 is log-concave.

Next, we recall the class of distributions on the positive integers with the D-IFR property,
which stands for discrete increasing failure rate. As we defined in the introduction, the
distribution of a positive integer-valued random variable X is in this class if P[X =k | X > k]
is increasing for £ > 1, and in that case we say that X is D-IFR. Sometimes in the literature,
such random variables are just said to be IFR, with it understood to use the above definition
rather than the continuous version when considering a discrete distribution. Sometimes the
notation DS-IFR is used to refer to a random variable X on the nonnegative integers for which
P[X =k | X > k] is increasing for k > 0; see for example [27].

As we mentioned in the introduction, a nonnegative random variable X is said to be NBUE
if X* < X with « = 8 = 1. In the reliability theory literature, a random variable X taking
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positive integer values is sometimes said to be D-NBUE if
1 o0
EX P(X >n+k] <P[X > n] forallm €{0,1,2,...}. (24)
k=0
But since the left-hand side of (24) is equal to P[X¢ > n] (see (39)), Eq. (24) is equivalent to
the assertion that X¢ < X, which holds for X taking positive integer values if and only if X
is NBUE.

Proposition 19. For a positive integer—valued random variable X :

(a) X is D-IFR if and only if the distributions [X —k | X > k] are stochastically decreasing
for integers k > 0;

(b) X is NBUE if and only if E[X — k | X > k] < EX for all integers k > 1; and

(c) X Xislog — concave — X XisD —IFR — X XisNBUE.

These properties are often stated in the reliability theory literature (see [27, Fig. 2] and
[33, Lemma 2]). Since we have had trouble digging up proofs of some of them, we have
provided them in Appendix B.

Now, we introduce a class of distributions on the nonnegative integers that we call NBUEZT,
with ZT standing for zero-truncated. For X taking nonnegative integer values, we say that X
is NBUEZT if X~ is NBUE, or equivalently if X¢ < X~ (recall from the introduction that X~
denotes a random variable with the distribution [X | X > 0].

In the language defined here, Theorem 6 states that if the child distribution of a Galton—
Watson process is NBUE, then all generations are NBUE. This is a simple consequence of
the statement that a random sum of NBUE-many i.i.d. NBUE summands is NBUE, which
was proven in [39, Corollary 2.2] (though we provide a more conceptual proof). Theorem 7
states that with L the child distribution, if L~ is D-IFR then all generations of the process
are NBUEZT. This raises a number of questions — for example, if L is only assumed to be
NBUEZT, then are successive generations NBUEZT? — that we address in Section 4.4.

4.2. Forming the equilibrium transform

First, we give a recipe for forming the equilibrium transform of a sum:

Lemma 20. Let Xy, ..., X, be i.i.d. nonnegative random variables, and let S = X+ - -+ X,,.
Then
-1
S* LY X+ X, (25)
k=1
where I is chosen uniformly at random from {1, ..., n}, independent of all else, and X* denotes
the « = B =1 equilibrium transform of X. If Xy, ..., X, are integer-valued, then
-1
ge L > X+ X5 (26)

k=1

Proof. Eq. (25) is the special case of [28, Theorem 4.1] in which X, ..., X,, are ii.d.
When X, ..., X,, are integer-valued, applying the ceiling function to both sides of (25) gives
(20). O
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Next, we consider the equilibrium transform of a mixture. To give notation for a mixture,
let h be a probability measure on the real numbers. Suppose that for each b in the support of
h, we have a random variable X, with distribution v, and mean m; € [0, 00). Also assume
that b — u, is measurable. The random variable X is the mixture of (Xp) governed by h if
for all bounded measurable functions g,

Eg(X) = /Eg(Xb)dh(b).

The basic recipe for the equilibrium transform X° is that it is a mixture of the equilibrium
transforms X}, governed by a biased version of h. The analogous recipe works for forming the
size-bias transform of a mixture, and this result follows from that.

Lemma 21. Let X be the mixture of (Xp) governed by h as described above, and assume
that EX < o0. Define the measure h* by its Radon—Nikodym derivative:

dh’(b) _ m(b)
dh EX '
Then the distribution of X¢ is the mixture of (XZ) governed by h*.

Proof. By [2, Lemma 2.4], the size-bias transform X* is distributed as the mixture of X}
governed by A*. With U ~ Uniform(0, 1) independent of all else, the equilibrium transform
[UX*7 is thus the mixture of [UX}] governed by A°. [J

4.3. Proofs of the concentration theorems for galton—watson trees

Theorem 6 is a simple consequence of the following statement that an NBUE quantity of
ii.d. NBUE summands is NBUE. This fact was previously proven in [27, Corollary 2.2]. We
include our proof here, as it takes a very different approach from theirs.

Proposition 22. Ler X, X, X3, ... be i.i.d. nonnegative random variables, and let L be a
positive integer—valued random variable independent of all else. Suppose that X and L are
NBUE. Then the random sum S = ZkL:I Xy is NBUE as well.

Proof. We construct §* using Lemmas 20 and 21, as was done in [29, Theorem 3.1]. Let
Sy = p_ Xk, so that S = S, and let T < Sy. By Lemma 20,

T LX)+ + Xgot + X3,

where [; is chosen uniformly at random from {1, ..., k}.
By Lemma 21, the equilibrium transform of S is a mixture of 7 governed by a distribution
whose Radon—-Nikodym derivative with respect to L is

ES.  KEX  k
ok =—, keN,
ES ELEX EL

which is exactly the Radon—Nikodym distribution of L® with respect to L. Hence,

S*E T =X+ Xppyo + X,
X1+ + X1+ Xig,
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with the second line following because X is NBUE. Since ;s is a uniform selection from
{1,..., L*}, it is the discrete equilibrium transform of L. Hence I;s < L, and

S <X 4+--+X, =8 0O

Proof of Theorem 6. Let L be a random variable whose distribution is the child distribution
of the tree. Each generation of the Galton—Watson process is the sum of L independent copies
of the previous generation, i.e.,

L

Zn+1 i Z Z,(lj)»

j=1
where Z,ﬁj ) for j > 1 denote independent copies of Z, and L is independent of (Z,(Ij ), j=1.
Observing that Zi’ JE AT NBUE, we can apply Proposition 22 inductively to conclude that
Z, is NBUE for all n. The concentration inequalities (3) and (4) then follow from Theorems 3
and 4 witha=p=1. O

For Theorem 7, it would be nice to argue that an NBUEZT quantity of NBUEZT summands
remain NBUEZT, but we have not been able to prove or disprove this (see Section 4.4). But we
can show the following weaker statement. For a random variable X taking nonnegative integer
values, we write Bin(X, p) to denote the distribution obtained by thinning X by p (i.e., the
sum of X independent Bernoulli(p) random variables).

Proposition 23. Let Xy, X», ... be i.id. and NBUEZT. Let p = P[X; > 1], and let L be
a random variable taking nonnegative integer values, independent of Xy, X», ..., such that
Bin(L, p) is NBUEZT. Then X, + - --+ X, is NBUEZT.

Proof. Let S = X; +---+ X;, and let M be the number of the random variables X1, ..., X
that are nonzero. Then

M
SEY X7, Q7
k=1

where M ~ Bin(L, p) is independent of (X );>;. Since S is then a sum of M many strictly
positive random variables, it is positive if and only if M is positive. Hence

”>
$7£Y X
k=1
Since M and X; are NBUEZT, their conditioned versions M~ and X7 are NBUE. Thus S~ is
NBUE by Proposition 22, and hence S is NBUEZT. [

To apply Proposition 23, the NBUEZT property for L must be preserved under thinning.
We now show that this holds when L~ is D-IFR.

Lemma 24. Let L be a random variable taking nonnegative integer values. If L~ is D-IFR,
then Bin(L, p)~ is D-IFR for all 0 < p < 1.

Proof. Let (By)i>1 be i.i.d.-Bernoulli(p) for arbitrary p € (0, 1), and let M = B; +--- + By,
so that M ~ Bin(L, p). Our goal is to show that P[M = n | M > n] is increasing for n > 1.
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Define

o) =E[0—-p)" " |L=1],

which is the conditional probability that B, = --- = By = 0 given that L > ¢. Let T, be the

smallest index ¢ such that B; + --- + B, = n. We make the following claims:

(i) PIM =n | M = n] =E[p(T,) | L = T,];
(i1) the function ¢(¢) is increasing for integers ¢ > 1;
(iii) the distributions [T}, | L > T,] are stochastically increasing in 7.

To prove (i), we start by observing that M = n holds if and only L > T, and Br, 41, ...

are all zero. Thus,

P(M =n]=P[B;, | =---=B,=0and L > T,]
=ZP[Tn=t,L=Z, Biyi == B, = 0]1{¢ > 1}
1,0

=) PLi=1. L=00-p) '{e=1)
t,e
=Y P[T,=1]) P[L=1¢](1-p)1{t>1)
t 12
=) _PIT, =E[1 - p)" UL = 1}] = Y PIT, = tlp()PL = 1].

Since L and T, are independent, we obtain

PM =n]=) PIT, =1, L>1lp@)

=) PIT, =1, L =t > 1} = E[p(T)I{L > T,}].
t,l

,Br

Observing that the events {M > n} and {L > T,} are the same and dividing both sides of the

above equation by its probability yields (i).

Now we prove (ii). Since L is D-IFR, the distributions [L — ¢ | L > t] are stochastically
decreasing by Proposition 19(a). Thus ¢(f) is obtained by taking the expectation of the

decreasing function x — (1 — p)* under a stochastically decreasing sequence of distributions,

showing that ¢(¢) is increasing in .
To prove (iii), it suffices (see [34, Theorem 1.C.1]) to show that
P[Tn+l =k | L> Tn+1]
PIT, =k|L =T,

is increasing in k for k > n.

Thus we consider
P[T, 1 =k|L>Ty] PlTyi=k L>kl  P[L>T,]
PIT, =k|L>T,]  PL>T4l  Pll,=k L=k
PT,. =kl P[L>T,]
T P, =k PIL>T]
22
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with the second line following from the independence of 7, and 7,4, from L. The final bit is
to compute probabilities for the negative binomial distribution:

P(T,. =k (5)p A —pf"  k—n)p
PIT, =k (Z)prd—py—  nll=p)
This is increasing in k for k > n, which proves (28).

Now, statements (i)—(iii) combine to prove the lemma: the quantity E[¢(7,) | L > T,] is
increasing in n by (ii) and (iii), and hence M~ is D-IFR by (i). O

Proof of Theorem 7. Let L be the child distribution of the tree. By Proposition 19(c) and
Lemma 24, all thinnings of L are NBUEZT. Hence Proposition 23 applies and shows that

L
>x
k=1

is NBUEZT whenever (Xy); > 1 are an i.i.d. family of NBUEZT random variables. Applying
this inductively to each generation Z, of the Galton—Watson process shows that Z,, is NBUEZT
for all n. Therefore Theorems 3 and 4 apply to Z, and prove (5) and (6). O

4.4. On the sharpness and optimality of these results

Consider a Galton—Watson process whose child distribution is geometric with success
probability p on {1, 2, ...}, which is NBUE. The size of the nth generation is geometric with
success probability p”. Then Z,/u™ — Exp(1) in law as n — oo. Hence both upper and lower
bounds in Theorem 6 are sharp, besides the extra factor of e in the upper bound.

If Z, is the nth generation of a critical Galton—Watson tree with m(n) = E[Z, | Z, > 0],
then Z,/m(n) — Exp(l) in law as n — oo [3, Theorem 1.9.2]. Thus Theorem 7 provides
optimal bounds in this case, again besides the extra factor of e in the upper bound.

We can also ask whether the conditions of Theorems 6 and 7 could be weakened and
more broadly what properties of the child distribution are preserved for all generations.
Theorem 6 states that if the child distribution of a Galton—Watson process is NBUE, then all
its generations are NBUE. Log-concave and D-IFR distributions are not preserved in this way.
For a counterexample, consider a child distribution placing probability 1/8 on 1, probability
49/64 on 2, and probability 7/64 on 3. This distribution is log-concave and D-IFR, but the
size of the second generation is neither.

Lemma 24 states that if L~ is D-IFR, then Bin(L, p)~ is D-IFR. The NBUEZT property is
not preserved under thinning in this way. Let

1 with probability 89/100,
2 with probability 109/1000,
L = {3 with probability 9/10000,
4 with probability 1/11250,
with probability 1/90000.
We leave it as an exercise that this distribution is NBUEZT (in fact, NBUE) but that all of its
thinnings fail to be NBUEZT.

It seems more natural (and would be a weaker condition) to assume only that the child
distribution L is NBUEZT in Theorem 7, rather than that L~ is D-IFR. But since the NBUEZT

23
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property is not preserved by thinning, our proof of Theorem 7 does not go through with this
change. In fact, we are truly unsure the theorem holds with the weaker condition.

4.5. Previous concentration results for Galton—Watson processes

Let Z, be the nth generation of a Galton—Watson process whose child distribution has mean
@ > 1. Let W be the almost sure limit of Z,/u”, which exists and is nondegenerate when
E[Z,1logZ|] < co. In Theorems 6 and 7, properties of the child distribution continue to hold
for Z,/p at all generations. This is in a similar spirit to many results linking properties of
the child distribution to those of W. For example, for o > 1 it holds that EZ{ is finite if and
only if EW¢ is finite [9]. Similarly, Z; has a regularly varying distribution with index o > 1
if and only if W does [17].

One line of results is on the right tail when the child distribution is bounded. Let d be its
maximum value, and let y = logd/logu > 1. Biggins and Bingham [8] used a classic result
of Harris [23] to show that

—1ogP[W > x] = x"/Y"DN(x) + o(x"/77V), (29)

where N(x) is a continuous, multiplicatively periodic function. Hence, in the limit the tail of
Z, /L, decays faster than exponentially. Fleischmann and Wachtel give a more precise version
of this result [20, Remark 3], showing that the tail of W decays as

Na)x 727D exp(—x7 1Y DN () ), (30)

where N(x) and N,(x) are continuous, multiplicatively periodic function. Biggins and Bingham
give a version of their result that applies directly to Z, rather than its limit, and more detailed
results on the right tail of Z, in this situation can also be obtained from combinatorial results
of Flajolet and Odlyzko [19, Theorem 1].

Results on the right tail are also available when the child distribution is heavy-tailed. When
Z, satisfies

P(Z, > x/2]
SUp ———— <
x Pl[Z; > x]
the tails of Z,, satisfy

ciP[Z) > x] < P[Z, > u"x] < coP[Z; > x]

for constants ¢; > 0 and ¢, < oo independent of x and n [38, Theorem 1]. This result applies,
for instance, when the tail of Z; has polynomial decay. A similar result [38, Theorem 3] holds
when the tail of Z; behaves like e for0<a < 1.

For the left tail of Z,, the behavior depends on the weight that the child distribution places
on 0 and 1. It is known as the Schrdder case when positive weight is placed on those values
and as the Bottcher case when it is not. Roughly speaking, the left tail in the Schroder case
behaves similarly to the right tail in the heavy-tailed case, while the left tail in the Bottcher
case behaves similarly to the right tail in the bounded child distribution case. For example,
suppose that the child distribution places no weight on 0 and weight p; on 1. In the Schroder
case, where p; > 0, let « = —log p;/log . Then P[W < x] behaves like x* as x — 0 [18].
Note that « = 1 for a geometric child distribution, coinciding with the lower tail bound we
prove in Theorem 6. For the Bottcher case, where p; = 0, let d > 2 be the minimum value
taken by child distribution, and let 8 = logd/logu € (0, 1). Then —logP[W < x] behaves
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like x=#/0=A) A result like (29) is shown in [8, Theorem 3], and finer asymptotics along the
lines of (30) are given in [20, Theorem 1].

Our results apply best to distributions that are unbounded but have exponential tails, a case
that seems poorly covered by the existing literature. Our bound is also more explicit than any
we have encountered, with no limits or unspecified constants.
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Appendix A

Recall that P,i(b, w) is the distribution of the number of white balls after n draws in the
urn model defined in Section 3, and let N, (b, w) ~ P,f (b, w). This appendix is dedicated to
proving the following result, which is used in Lemma 16 to compare the rising factorial bias
transform of these distributions to their power bias transforms. The property proven in the
following lemma is something like log-concavity of the sequence P[N, (b, w) = k] for fixed
n (which is proven along the way, in Lemma 26), but it involves varying both k and n. We
cannot give much intuition for the proof; it seems to us to be a technical fact that happens to
be true and can be proven by pushing symbols around in the right way.

Lemma 25. Forall n,k >0,
P[N,(b, w) =k —1]1P[N,41(b, w) = k+1] < P[N,(b, w) = k] P[N,4.1(b, w) = k]. (31)

We will in fact prove Lemma 25 for a slightly generalized version of the urn process. As
with that process, start with » > 1 black balls and w > 1 white balls, and after each draw add
an extra ball with the same color as the ball drawn. Instead of adding an additional black ball
after every /th draw, we allow black balls to be added at arbitrary but predetermined times. Thus
the number of balls in the urn after n draws, denoted by B,, is an arbitrary but deterministic
strictly increasing sequence with By = b 4+ w. Let N, be the number of white balls in the urn
after n draws. Let t,E") = P[N,, = k]. The dynamics of the urn process gives

n k—1 n k n
D = <B_>r,§>1 + <1 - B—)r,ﬁ ). (32)

First, we show that t,E") is log-concave in k for each fixed n:
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Lemma 26. For all n > 0 and all k,

(tlgn))z > 1”5t (33)
Proof. We prove this by induction. For the base case, we have t,fo) = 1{k = w}, and hence
the right-hand side of (33) is always zero when n = 0. Now, we expand (1"*")? — "Dy "4D
using (32) as (A + A, + A;)/B,% for

Ay = (k— 1)}, — (k — Dktr ot (34)

Ay = (B, = k)1 = (By —k + 1)(By — k — Dix_iti41, (35)

Az =2k — 1)(By — k)1t — (k — 2)(By — k — Dig—atir1 — k(B — k + D11, (36)
where we have simplified notation by writing #; for t,E")
(34) and (35) gives

. Applying the inductive hypothesis to

A > ((k 1 — (k- 2)k)t,§,1 =2,
and
Ay > ((B,, —k)? — (By — k + 1)(By — k — 1)):,3 =2

To bound Aj, we note that the inductive hypothesis implies #;_»#+1 < tx—1tx, Which together
with (36) gives

A = (20 = D(By = ) = (k = 2(B, —k = 1) = k(By —k + 1)) i1t = =211
Hence

A+ A+ Ay >t} +tf -2 1t =t — 1) >0,
thus extending the induction. [

Next, we establish a variant of log-concavity with a similar but more complicated proof.

Lemma 27. Forall n > 0 and all k,

(B, — (") = By — k — D™ 1, — 1 1 = 0. (37)
Proof. We proceed by induction. Let E,E") be the left-hand side of (37). Since t,EO) = 1{k = w}
and By = w+ b, we have E,({O) = b1{k = w}, demonstrating (37) when n = 0. Now we assume
E,ﬁ") > 0 for all k, and we show E,E"H) > 0 for all k. It suffices to prove E,i"H) > 0 under the

assumption that B,+; = B, + 1, because B, is at least this large, and we can see that E,E"H)
is increasing in B,y by writing it as

+1 +1))2 +1) (n+1) +1))2 +1) (n+1
B = B k= D[ =] ) -

and applying Lemma 26.
For the sake of readability, we write #, for t,i") and B for B, in this proof. We apply (32)
to obtain

1
(t,f”“))2 = —2((k — D% 4+ 20k — 1)(B — k)ty_1t; + (B — k)zt,f),

B0 = 25 (G = Dkteats + (= 2)(B — k = Dicaten
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+K(B = k+ Dyt + (B = k = D(B =k + Dt 11241,
n n 1
(0 = =5 (= 20 = Dicatios + (k= 2)(B = Dot

(k= DB —k+ 12, +(B—k)\(B—k+ 1)rk,1tk).

Now, under the assumption that B, y; = B+ 1, we expand E,({"H) as (A1 + A, ~|—A3)/Bz, where

Al =k —=2)((B—k+ Dtk — Dt — (k+ 1)(B — Oity_aty — (k — ])tkfztkfl)
= (k= 2)((k = DE, = 2(B = bt = =2(k = 2(B — K)te_ati,
and
Ay =(B—k+D(B = k(B =K = (B =k =itz
=B —k+1)B-k(E” + tk_ltk) > (B —k+ 1)(B — )ty_11z,
and

A3 =(B —k+ 1)(B —k)k =31ty — (k —2)(B — k)(B — k — Dty_2ly41
=(B - k)((k ~2)[(B—k+ D1ty — (B —k — Digati ] — (B —k + 1)tk_1rk)
E;E")tk—z + E](cn_)llk
=(B — k)((k — 2)|:t— + 2fk2lk] —(B—k+ l)lkll‘k>
k—1

= (B = K)(20 = 2t 2t + (B =k + D1t )
where we have applied the inductive hypothesis in each final step. Combining these bounds,
(B — k)
B2

EMY > (—Z(k — Dty oty + (B —k + D1t

+2(k — Dty oty — (B — k + 1)tk_|l‘k>
=0. O

Proof of Lemma 25. First, we dispense with the case that any of t,i"_)l, tliﬁl), t,i"), or t,E"'H)

are equal to zero. If either of t,E"jl or t,i’:;]) equals zero, then the left-hand side of (31) is zero

and the inequality holds. If 7" or £""" equals 0 then t,gf{l) = 0, since the support of 7" is
{w, ..., w+ n}; in this case both sides of (31) are zero. Thus we assume from now on that

these four terms are all nonzero.

Now, proving the lemma is equivalent to showing 7" " /7" — ¢ /1

it > (0. We compute

(n+1) W) 1)

(n+1) (n) t

tk 3 tkfl _ k tlf'n) k+1
(n+1) n (n+1)

it I s

R Sl WORNY SR WO
l‘]Enng) Bn k=t Bn k
+

Tk w (k) m
tlgn) B, )k B, )kl

1

_ (n) ,(n) ()2 (n) ,(n)

= — <—tk1tk + (B, —k)(1")" — (By —k — 1);,(1;”1),
Bty 1

27



T. Johnson and E. Pekoz Stochastic Processes and their Applications 152 (2022) 1-31

which is nonnegative by Lemma 27. [

Remark 28. It is possible to avoid all the work of this appendix, at the cost of a slightly

inferior concentration bound for N,(1, w). The result of this appendix (Lemma 25) is used to

prove that Nyfl”(b, w)+1 > N,(,’“)(b, w) (Lemma 16), which is then applied in the proof of

Proposition 17. An alternate path is to invoke the following stochastic inequality between the
factorial and power bias transformations, which holds for any nonnegative random variable:

XD <o x U, (38)
where
EXx/+!
PEEXX+ DX +D]
Modifying the derivation in Proposition 17 slightly, we get

No(l, w) £ Qu(Ny (L w+1+1) —w — 1)
> QuwN,(L,w+1+1)—1—w-—1),

with the second line holding since at most / white balls can be added from steps n — [ to n.
Then following the same steps as in Proposition 17,

No(1, w) = Qu (NI, w) — w) = V, NI, w).
Finally, invoking (38), we have
Na(1, w) =5 Vu N1, w) £ N1 w).

The concentration bounds obtained from this are worse because of the factor of p in the
exponent, but it does illustrate how the p < 1 versions of our concentration bounds can be
used.

Appendix B

In this appendix, we prove Proposition 19 for the convenience of the reader. See also
[7, Chapters 4 and 6] for more background material.

Proof of Proposition 19(a). Suppose that X is D-IFR and let p, = P[X =n | X > n]. To
show that [X —k | X > k] is stochastically decreasing in k, construct a random variable 7" by
the following procedure: Fix some k > 0. Start at 1 and halt with probability p;y;; otherwise
advance to 2 and halt with probability p»; otherwise advance to 3, and continue like this,
letting T be the value where we halt. It is evident that T ~ [X — k | X > k]. Since p, is
increasing, we are more likely to halt at each step when k is increased. By a simple coupling,
this demonstrates that [X — k | X > k] is stochastically decreasing in k.
Conversely, suppose that [X — k | X > k] is stochastically decreasing in k. Then

PX—k+1=<1|X>k—-1]<P[X—-k=<1]|X>k]
by the definition of stochastic dominance, which proves that

PIX=k|X>kl<PX=k+1|X>k+1]. O
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Proof of Proposition 19(b). From the definition of the discrete equilibrium transform,

P[Xe—n]—i]P[X‘—k]— ! P[X =k] = 1 P[X > n]
o _k:nk o _k:nEX T EX -
Hence
1 o0
P[X€>k]=ﬁ §1P[in] (39)

1 E[X —k| X > k]
= —E|/(X-bl{X > k}|=P[X >k .
Ex ELX —OUX > K] =PIX > K] X
Therefore P[X¢ > k] < P[X > k] holds for all k > 1 if and only if E[X —k | X > k] < EX

forall k> 1. 0O

Proof of Proposition 19(c). Suppose X takes values in the positive integers and is log-concave.
Let p, = P[X = n], and let N be the highest value such that py > 0, with N = oo a possibility.
From the definition of log-concave,

Pn—1 < DPn
Pn DPn+1
for all 1 <n < N. This implies that for any fixed k, the ratio
PIX—k=n|X > k] Pnax P[X > k+1]

PIX—k—1l=n|X>k+1]1 puir  P[X > k]

is increasing in n, and this condition implies that [X — k | X > k] stochastically dominates
[X —k—1|X > k+ 1] (see [34, Theorem 1.C.1]). Hence X is D-IFR by Proposition 19(a).

Now, suppose that X is D-IFR. It follows from Proposition 19(a) that E[X — k | X > k] is
decreasing in k for integers k > 0, proving that

E[X-k| X >k]<E[X-0| X >0]=EX.
By Proposition 19(b), this shows that X is NBUE. [
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