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ABSTRACT
Mapping and localization are the key components in mobile spatial
computing to facilitate interactions between users and the digital
model of the physical world. To enable localization, mobile devices
keep capturing images of the real-world surroundings and upload-
ing them to a server with spatial maps for localization. This leads to
privacy concerns on the potential leakage of sensitive information
in both spatial maps and localization images (e.g., when used in
confidential industrial settings or our homes). Motivated by the
above issues, we present a holistic research agenda in this paper
for designing principled approaches to preserve privacy in spatial
mapping and localization. We introduce our ongoing research, in-
cluding learning-assisted noise generation to shield spatial maps,
distributed architecture with intelligent aggregation to protect lo-
calization images, and end-to-end privacy preservation with fully
homomorphic encryption. We also discuss the technical challenges,
our preliminary results, and open research problems in those areas.

CCS CONCEPTS
•Computingmethodologies→Computer vision;Mixed / aug-
mented reality; •Human-centered computing→Mobile com-
puting; • Security and privacy → Privacy protections.
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1 INTRODUCTION
Mobile spatial computing is an emerging computing paradigm that
takes users’ physical actions (e.g., head and body movements, ges-
tures, and speech) as input and their visual cortex as the display
to interact with their perceived 3D space. It advances the original
concept that was defined as “human interaction with a machine in
which the machine retains and manipulates referents to real objects
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Figure 1: Reconstruction of original scene from a spatial
map (top) and localization image from its visual features
(bottom). Three columns show the visual features (left), re-
construction results (middle), and the ground truth (right).

and spaces” [13] with augmented and mixed reality (AR/MR) head-
sets such as Microsoft HoloLens and Magic Leap One, by moving
beyond the confines of 2D screens [20, 22] More broadly, it refers
to “computing in spatial, temporal, spatiotemporal spaces across both
geographic and non-geographic domains” [34].

To better support AR/MR applications, spatial computing re-
lies on innovations in vision-based spatial mapping and 6DoF (six
degrees of freedom) localization. Take Facebook/Meta’s Project
Aria [8] as an example. It utilizes LiveMaps, a spatial map that
consists of sparse 3D points (i.e., a point cloud) with visual feature
descriptors, to store explicit geometric information and semantic
knowledge of the surrounding environment in volumetric views.
Widely-used methods for spatial mapping include structure from
motion (SfM) [1, 33] and visual SLAM (simultaneous localization
and mapping) [11, 41], which processes images that capture the
physical world. During localization, a mobile device uploads its
camera-view image to a server that extracts 2D features from the
image and matches them with the 3D features in the spatial map
to estimate the device’s 6DoF pose. This method is referred to as
image-based localization [30]. To preserve privacy in localization
images, a straightforward method is to let the mobile device extract
features and upload them to the server for localization, instead of
directly uploading localization images.

However, both the spatial maps and visual features extracted
from localization images may still contain sensitive information
about users’ surrounding environment, leading to enormous pri-
vacy concerns. For instance, as shown in Figure 1, once attackers
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or malicious users get access to the visual data, they can recon-
struct the original images/scenes with good quality (i.e., a high
degree of accuracy) [5, 21, 25, 39]. Thus, this may result in secu-
rity attacks when AR/MR applications get more popular and are
used in life-critical situations (e.g., on a battlefield or in a surgi-
cal operating room). Moreover, an adversary can even modify the
spatial maps and/or the uploaded features (e.g., man-in-the-middle
attacks) and make the localization result significantly deviate from
the ground truth. The above issues call for robust mechanisms to
shield countless malicious attacks and protect user privacy. Hence,
our long-term research goal is to design principled approaches to
simultaneously preserve privacy and defend against security attacks
for spatial mapping and localization in mobile spatial computing.

In this paper, we present a holistic research agenda to make an
initial step towards the above ambitious goal by exploring privacy-
preserving schemes to protect spatial maps and visual features
for localization. We aim to prevent the recovery of scene/image
details by answering the following three questions. (1). How to
preserve sensitive information in spatial maps? (2). How to protect
user privacy in localization images/features? (3). How to provide
practical end-to-end protection for spatial mapping and localization
with some advanced encryption techniques?

We face several unique challenges when investigating the above
three research problems. First, privacy-preserving schemes should
not (remarkably) affect localization performance (e.g., localization
accuracy and time). Second, when involving mobile devices, those
schemes should be lightweight and balance the tradeoff between
computation/communication overhead and localization performance.
Finally, it is far from trivial to integrate the proposed solutions into
existing AR/MR systems and make them practical by scaling to
thousands of users.

Towards tackling the above technical challenges, we make the
following contributions in this paper.
•We propose to judiciously add perturbation noises to spatial maps
for preventing the recreation of original scenes. Our initial explo-
ration reveals the tradeoff between the degree of privacy-preserving
for spatial mapping and the increased localization time, which moti-
vates the adoption of adversarial examples [35] that jointly consider
those factors in the design of loss function. Although similar tech-
niques have been utilized in robust object classification [3, 24, 40],
our problem is more challenging due to the balance of localization
time, localization accuracy, and privacy preservation.
• To protect sensitive information in localization images, we pro-
pose a distributed architecture that splits the extracted visual fea-
tures and sends them to multiple randomly selected and indepen-
dent servers for localization. This approach is based on the observa-
tion that reducing the number of available features will drastically
degrade the quality of reconstructed images. However, doing this
will reduce the localization accuracy. We will study efficient algo-
rithms to minimize the loss of localization accuracy by effectively
aggregating results from distributed servers.
• We propose to take advantage of fully homomorphic encryption
(FHE) [12] to offer end-to-end protection of sensitive data from
privacy leakage and malicious attacks. By enabling operations on
encrypted data, FHE can efficaciously preserve user privacy through
the encryption of both spatial maps and visual features for local-
ization. We present an initial design and our preliminary results

for integrating FHE into existing spatial mapping and localization
pipelines, and identify a few key challenges including the reduction
of localization error and computation latency caused by FHE.

2 BACKGROUND
Spatial Map Construction. SfM is a widely-used technique for
building spatial maps, by utilizing a set of unstructured 2D images
to create the 3Dmodel of a scene or an object. The SfM pipeline first
extracts features from the images and determines which images are
overlapped with each other using those features. An extracted fea-
ture has its location in the image (i.e., 𝑥 and𝑦 pixel coordinates) and
a feature descriptor (e.g., a vector with 128 dimensions for SIFT [18]).
With corresponding features in pairs of overlapped images, SfM
then uses triangulation to calculate the 3D coordinates of those
features and the relative pose of those images. Finally, it employs
bundle adjustment to refine image poses and 3D point coordinates
since pose estimation errors may arise from noisy matches and
imprecise calibration. As a result, a feature in a spatial map consists
of its 3D position and a feature descriptor extracted from the images.
Image-based Localization.There are two key steps in 6DoF image-
based localization. It first finds the best matching 3D features from
the spatial map of the 2D features extracted from a localization
image with the distance of the feature descriptors. It then performs
the 6DoF localization of the target image using the P𝑛P (Perspective-
𝑛-Point) method [10] with the set of 2D positions of 𝑛 localization
features and the 3D locations of their matched features in the map.
Using the camera’s intrinsic matrix that is included in the EXIF
(exchangeable image file format) metadata of the images, it finally
calculates the camera’s 6DoF pose (i.e., extrinsic parameters) based
on the perspective projection model [36]. P𝑛P is usually applied
with RANSAC (random sample consensus) [10] to make the local-
ization result robust to outliers in the matched feature pairs.
Sensitive Information Leakage. When mobile applications that
involve spatial mapping and localization are used in places such
as homes or confidential workspace, they raise significant privacy
concerns due to the sensitive visual information that can be revealed
from images for map construction, the maps themselves, and visual
features in localization images, especially for the mapping process
that usually works in the background (i.e., users may not be fully
aware of it). It is already known that one can reconstruct the original
image fairly well from its visual features, no matter whether they
are hand-crafted or generated by deep learning models [5, 21, 39].
Moreover, recent work demonstrated that it is feasible to recover
scene details even from the sparse point cloud in a spatial map [25].
Our proposed work is motivated by sensitive information leakage
in spatial mapping and localization of mobile spatial computing.
Privacy & Security for Vision-based Applications. Privacy, se-
curity, and safety issues have always been a key concern for vision-
based applications such as AR/MR [16, 17, 27, 28] and video analyt-
ics [2, 26, 38]. For example, Recognizer [16] is an OS abstraction that
offers fine-grained access control to AR applications (e.g., exposing
a skeleton, instead of raw sensor data). Sabelman and Lam [28]
explored potential hazards that could be caused by head-mounted
displays such as Google Glass andMicrosoft HoloLens. PECAM [38]
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is a system that can not only preserve the privacy of video ana-
lytics but also offer a transformation that is securely-reversible.
The privacy-enhanced videos can be fully reversed in the case of
forensics usage, without requiring any auxiliary data. Privid [2]
provides duration-based privacy for video analytics by defining
a new notion of differential privacy for this task, which protects
sensitive information for a particular duration. Instead, we focus on
preserving privacy and defending security attacks in vision-based
mapping and localization for mobile spatial computing.

3 RESEARCH AGENDA
In this section, we first present our target threat models. We then in-
troduce two complementary methods to prevent the reconstruction
of sensitive information in spatial maps and localization images, re-
spectively. Finally, we propose an end-to-end privacy preservation
and security protection framework using FHE.

3.1 Threat Models
The spatial mapping and localization service involves two parties,
the client and the server, and the communication between them.
Thus, any part of this service could be subject to attacks and/or
information leakage. In the first (and least threatening) model, we
assume that the localization server is trustworthy but curious. At
the same time, we assume the communication between the client
and the server is reliable and trustworthy. Our first line of proposed
research that strategically adds perturbation noises and distributes
visual features to multiple randomly selected and independent lo-
calization servers targets this model.

We further consider a stronger threat model, where the server
could be compromised and actively probe the information supplied
by users, and the information communicated between the clients
and the server could be subject to eavesdropping or other attacks
(e.g., a man-in-the-middle attack). Our second line of proposed
research that utilizes the FHE for end-to-end protection targets this
stronger model.

3.2 Preserving Privacy for Spatial Maps
Background. Existing work [25] recovers scene details from a spa-
tial map in three steps, visibility estimation of features, coarse scene
reconstruction, and refinement of visual quality. More specifically,
it renders the spatial map from a specific viewpoint into a 2D image,
feeds the rendered image into a series of neural networks, and out-
puts a color image of the to-be-recovered scene. To properly render
the image, it needs to estimate which 3D features in the spatial map
are visible from the given viewpoint and should be projected onto
the rendered image. This image is then fed into an image synthesis
network for coarse scene reconstruction. The visual quality of the
recreated scene is further refined by an adversarial framework. The
good quality of the reconstructed scene, as shown in Figure 1 (top),
can potentially lead to privacy leakage. The capability of scene re-
construction from spatial maps motivates us to study the following
research problem of privacy-preserving spatial mapping.
Problem: How can we preserve sensitive information in spatial maps
without affecting localization performance?

Figure 2: An example of a recovered scene from the origi-
nal spatial map (left) and the same recreated scenes from
the maps with 10% added noisy features (middle) and 100%
added noisy features (right), compared to the size of the orig-
inal map.

Our Solution.We propose to judiciously introduce perturbation
noises to a spatial map for impeding the reconstruction of original
scenes. We duplicate part of the initial visual features according
to the noise level (e.g., 10%), and then add Gaussian noises to their
positions, RGB values, and feature descriptors. Note that we do not
change the original visual features in the spatial map. The rationale
behind this method is that the quality of recovered scenes heavily
depends on the first step that estimates the visibility of features. If
the added noises could be retained during this visibility estimation
step and contribute to the reconstruction, they will inevitably create
artifacts and degrade the visual quality of recovered scenes. It would
even be better if they could occlude some important visible features
in the spatial map and hide the scene details, further decreasing the
visual quality of the reconstructed scene. We emphasize that our
proposed solution has a different threat model compared to noise
addition in differential privacy [6, 7]. We aim to shield the sensitive
information in the spatial maps in case they may be revealed to
malicious users, and we do not seek to protect the localization
results in this study. On the other hand, differential privacy aims
to shield the confidential information of individuals that could be
inferred from queries made by malicious users (i.e., differential
privacy protects the query result).

While this method sounds straightforward, there are three key
challenges to making it effective. First, the localization accuracy
should not be affected by the introduced perturbation noises. Sec-
ond, while adding more noises could further reduce the visual
quality of reconstructed scenes (as shown in Figure 2), we should
minimize the number of introduced noisy features. The reason is
that after being part of the spatial map, they will increase the num-
ber of matches that need to be performed against the features in
the localization image and thus prolong the localization time. Third,
the denoise of the added perturbations should be non-trivial.

Note that different from robust object classification [3, 24, 40], we
seek to add a small amount of noises into the spatial map that will
affect the reconstruction conducted by deep neural networks [25]
as much as possible and thus reduce the quality of reconstructed
scenes for protecting the privacy information. On the other hand,
existing adversarial attacks mainly focus on creating false classifica-
tion results of deep neural networks, where adding small adversarial
perturbations into the input leads to misclassification. However,
the difference between the original input and the adversarial input
is undetectable by a human.
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Figure 3: Normalized localization time and errors (top) and
visual quality of reconstructed scenes (bottom) caused by
different amounts of added noises.

Preliminary Results. To explore the tradeoff between the penalty
of injecting noises (e.g., increased localization time and degraded
localization accuracy) and the effectiveness of privacy preservation,
we conduct a pilot study that adds Gaussian noises to spatial maps.
We use the COLMAP [33] SfM pipeline to generate a spatial map
with its “South Building” dataset that contains 128 images taken
from different angles of a building at UNC-Chapel Hill. We use the
pre-trained InvSfM model [25] for scene recreation, and evaluate
the performance of our proposed solution on the same dataset.

We measure the impact on localization accuracy and the qual-
ity of recreated scenes after adding noisy features into the spatial
map as follows. We calculate the position error 𝑃𝑒 as the Euclidean
distance between an image’s estimated position and the ground
truth. The orientation error 𝑂𝑒 is defined as the minimum rota-
tion angle required to align the estimated rotation and the ground
truth [14]. After adding Gaussian noises to the spatial map, we
calculate again the position and orientation errors, 𝑃𝑛 and 𝑂𝑛 . We
report the normalized errors, 𝑃𝑛/𝑃𝑒 and𝑂𝑛/𝑂𝑒 , to demonstrate the
impact of adding noises on localization accuracy. We use SSIM [37],
the structural similarity metric, to measure the visual quality of
recovered scenes from the spatial map with added noises, using
the reconstructed ones from the original map as the reference. In
this paper, we resize the resolution of localization images to be
1024 × 768, as the highest resolution that our GPU can support for
scene recreation is 1024 × 1024.

We plot the normalized localization time and errors and the SSIM
of recreated scenes in Figure 3. In the two sub-figures, the x-axis
shows the percentage of added noises, compared to the size of the
original spatial map. As shown in the top sub-figure, while adding
noises has a limited impact on localization accuracy, the localization
time linearly increases with the number of noisy features as they
are used to match against localization features. We plot only the
normalized position errors. The orientation errors show a similar
trend (i.e., not impacted by the noisy features). The bottom sub-
figure indicates that introducing more noises into the spatial map

can indeed reduce the visual quality of recovered scenes. The SSIM
value drops with more added noisy features. Hence, it is challenging
to determine the optimal percentage of added noise by balancing
the localization time and the quality of reconstructed scenes.
Discussion. We use the Gaussian noises to explore the research
challenges faced by our proposed solution. In practice, we should
deliberately add noisy features that cannot be easily denoised. Given
the success of adversarial examples [35], we plan to train an ad-
versarial model that can judiciously add perturbation noises to
effectively hide sensitive visual information in a spatial map during
the reconstruction. A key requirement here is to impede the scene
reconstruction by adding as few noisy features as possible, with the
goal of limiting its impact on localization time. Moreover, we should
consider the potential denoising that could be performed by attack-
ers and add perturbation noises that are difficult to remove. Thus,
when building the adversarial model, we should jointly consider
the denoising overhead and multiple factors in the loss function,
including the localization time and accuracy and the visual quality
of recovered scenes.

There are several open challenges to our proposed solution. First,
there should be a widely-accepted definition of privacy leakage in
spatial maps. Different users may have different perceptions of pri-
vacy leakage. The sensitive level of a piece of information may differ
for different applications and under different scenarios. Second, we
should have a well-defined metric to quantify the effectiveness
of privacy-preserving schemes. The SSIM metric is applied to the
entire image. In reality, users may care more about the prevention
of reconstructing points of interest that can be used to identify a
location. Third, while most existing spatial mapping and localiza-
tion systems leverage SfM frameworks that utilize hand-crafted
features (e.g., SIFT) [33], recent proposals such as hloc [29] benefit
from features extracted by deep-learning models. We will explore
the feasibility of applying our proposed scheme to learning-based
spatial map construction.

3.3 Privacy-preserving Localization
Background. Besides preserving privacy in spatial maps, we also
need to prevent the leakage of sensitive information in localization
images. The state-of-the-art [5, 21, 39] inverts 2D visual features
extracted from an image into the original image through various
methods such as convolution networks and deep generative models.
Although adding noises to the features may decrease the visual
quality of reconstructed images, applying this method to localiza-
tion features is more challenging than doing this to the features in
a spatial map. The reason is that adding these noises will not only
unavoidably reduce localization accuracy but also increase com-
munication overhead. Furthermore, the noises should be added on
mobile devices before sending the features for real-time localization,
making it infeasible to utilize the above method that benefits from
adversarial models due to its high computation overhead. Thus,
we will investigate the following research problem for privacy-
preserving localization.
Problem: How can we preserve sensitive information in localization
images with mobile-friendly methods?
Our Solution. We explore a systems approach for preserving sen-
sitive visual data by splitting the extracted features into 𝑁 groups,
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Figure 4: An example of a reconstructed image from its fea-
tures (left) and the same reconstructed image from 50% of
its features (middle) and 10% of its features (right).

distributing them to 𝑁 out of𝑀 (𝑁 ≪ 𝑀) randomly selected and
independent servers for simultaneous localization, and intelligently
aggregating the outputs to get the final localization result. For ex-
ample, if we randomly and uniformly divide the features into 5
groups of roughly the same size, each group will contain about
20% of the features. In this case, the localization servers have only
partial information of the original image (e.g., 20% feature), making
the reconstruction difficult or even infeasible. We emphasize that
we assume these servers are independent and thus do not have
the incentive to collude and merge the received visual features for
reconstructing the localization image.
Preliminary Results. This approach is motivated by the observation
that the visual quality of the reconstructed image will dramatically
degrade when reducing the number of available features. We train
the SIFT-Reconstruction model [39] with 64 images of the “South
Building” dataset (Section 3.2) and 3,583 images of the large Aachen
dataset [31, 32] that contains 4,479 images to address the potential
overfitting issue. We show an example of a reconstructed image
with this model in Figure 4 (left). The middle and right sub-figures
in Figure 4 are the reconstructed images using 50% and 10% features,
respectively. As we can see from this figure, if a server has only 10%
features extracted from the localization image, the reconstructed
image is blurred with a low visual quality. When using the ground
truth image as the reference to measure the visual quality, the
calculated SSIM value is only 0.28 for the right sub-figure that is
recreated with 10% features.

While the distributed scheme above can protect sensitive infor-
mation in localization images, using few features reduces local-
ization accuracy. In Figure 5, we plot the normalized localization
errors of distributing the extracted features to 10 and 20 servers,
respectively, compared to the approach that uses all features. For
50% of cases, the normalized position error and the normalized
orientation error are higher than 2.2 when using 10 servers. The
results are even worse with 20 servers. Thus, the key challenge
for this research problem is to design an intelligent aggregation
algorithm that can improve localization accuracy. We evaluate the
performance of a simple scheme that averages the localization re-
sults from individual servers. Although this scheme can improve
the localization accuracy for most cases, there are still 10% of local-
ization with normalized errors higher than 1.3. We will study more
effective aggregation algorithms that can further boost localization
accuracy of our proposed scheme.
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Figure 5: CDF of normalized localization errors using 5% and
10% features, compared to using all available features.

Discussion. Similar to the problem of preserving privacy in spatial
maps, there are a few open challenges to protect sensitive infor-
mation in localization images, such as the definition of privacy
leakage, the metrics to quantitatively measure the effectiveness of
the proposed privacy-preservation schemes, and the extension to
learning-based features. In addition, we will explore how to de-
termine the proper number of groups 𝑁 that the extracted visual
features should be divided into. If 𝑁 is too small, the reconstructed
localization image may still bear a high degree of accuracy (e.g.,mid-
dle sub-figure in Figure 4 for 𝑁 = 2). On the other hand, if 𝑁 is too
large, the localization accuracy on individual servers will drastically
degrade, as shown in Figure 5, making the aggregation difficult.
Another open problem is how to effectively break the localization
features into groups. We will examine the importance of different
features in terms of their contribution to localization accuracy and
the recreation of the original image. If there are features that pro-
vide more value to localization but less value to reconstruction, we
can repeat them in different groups.

3.4 End-to-End Protection with FHE
Background.Weexplore fully homomorphic encryption (FHE) [12]
to shield spatial mapping and localization from privacy leakage
and security attacks. By enabling additions and multiplications on
encrypted data, FHE is able to defend potential attacks while pre-
serving privacy in spatial maps and localization features. However,
there are a number of challenges to adopting FHE for this purpose.
First, it is non-trivial to integrate FHE into existing spatial map-
ping and localization systems, given their complex operations in
the pipeline and different types of data to deal with. For example,
it may not be practical to encrypt all involved data sources. Sec-
ond, the current generation of FHE algorithms still cannot handle
some of the non-polynomial operations that are required for spa-
tial mapping and localization. Such operations should be replaced
with approximation. Moreover, some of the schemes in FHE create
only approximate results [4]. This inevitably leads to a decrease in
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localization accuracy. Third, FHE is well-known for its poor run-
time performance and the inflated size of encrypted data, despite
continuous improvements. Enhancing its efficiency and making it
feasible to execute on mobile devices and deliver encrypted data
over mobile networks is still an unsolved problem. Thus, we will
examine the following research problem for utilizing FHE to protect
mobile spatial computing.
Problem: How can we provide practical end-to-end protection for
spatial mapping and localization using FHE?

Our Solution. We present our initial solutions to some of the
aforementioned challenges. We first investigate what data should
be encrypted with FHE. Ideally, we should encrypt both the 2D/3D
positions and the feature descriptors extracted from localization
images and those in spatial maps. However, doing this brings about
two issues. First, when finding the matching features in the spatial
map for localization features, we should compare the distances
of different pairs of feature descriptors and select the best match.
While recent proposals such as Pegasus [19] can support the com-
parison operation, its computation overhead is prohibitively high.
Second, the size of FHE-encrypted data is much larger than the
original data, as we will show next. By considering the fact that the
size of a feature descriptor is much larger than that of the 2D/3D co-
ordinates, we encrypt only the 2D/3D positions of the features and
leave their descriptors as plain-text to make feature-matching fea-
sible and practical. This will significantly reduce the visual quality
of recreated images from the extracted features [39].

We next study the technical challenges of estimating the 6DoF
pose with FHE-encrypted data. As mentioned in Section 2, pose
estimation is essentially the P𝑛P problem. P3P is a common method
for solving P𝑛P, which involves the calculation of 𝑐𝑜𝑠𝑖𝑛𝑒 values for
a few angles formed by the projection center of the camera and
three selected 3D points and several non-polynomial operations
(e.g., square root and cube root). Since the 𝑐𝑜𝑠𝑖𝑛𝑒 function and the
required non-polynomial operations are not supported by FHE,
one possible solution is to resort to alternative approaches such as
direct linear transformation (DLT) [15] for solving P𝑛P.
Preliminary Results. To better understand the issues of integrat-
ing FHE into spatial mapping and localization, we conduct a pilot
study using the SEAL [23] homomorphic encryption library re-
leased by Microsoft. It includes two different schemes BFV [9] and
CKKS [4]. The BFV scheme allows modular arithmetic operations
on encrypted integers and is the only choice when exact values
are required. While the CKKS scheme, on the other hand, supports
addition and multiplication operations on encrypted real numbers,
it generates only approximate results. Since the features include
real numbers, we have to choose the CKKS scheme.

We first evaluate the computation overhead and the inflation
of encrypted data caused by FHE. When calculating the pair-wise
distance between localization features and those in the spatial map,
it takes 18 ms on average with FHE-encrypted data. In comparison,
it takes only 0.0076 ms without FHE. The size of a feature descriptor
extracted by SIFT is 128 bytes. In contrast, the size of an encrypted
feature using the CKKS scheme is 393,321 bytes. The above results
show that it is not practical to encrypt feature descriptors with FHE.
We next evaluate the localization error introduced by estimating the
6DoF pose using DLT, instead of P3P. We apply RANSAC to remove

10 15 20 25 303.8
Normalized Position Error

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

10 15 20 25 303.8
Normalized Orientation Error

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Figure 6: CDF of normalized localization errors when solv-
ing P𝑛P using DLT, compared to P3P.

the outliers for both approaches. Figure 6 shows the normalized
localization errors of DLT using the results of P3P as the baseline.
Compared to P3P, for 50% of cases, the normalized localization error
of DLT is higher than 3.8 for position and orientation, respectively.
Discussion. Our preliminary results demonstrate that there are still
several open issues when utilizing FHE for spatial mapping and
localization. First, FHE cannot support accurate 6DoF pose estima-
tion methods such as P𝑛P with RANSAC. The alternative solutions
that can operate on FHE-encrypted data lead to high localization
errors, which demands more investigation. Second, the computa-
tion latency of operations on FHE-protected data is around 3000×
higher than that of plain-text data. We will explore the applicability
of recent acceleration proposals such as Pegasus [19] for spatial
mapping and localization. Third, FHE results in the size inflation
of encrypted data and thus increases the required network band-
width and storage overhead, which calls for attention from the
cryptography community.

4 CONCLUSION
In this paper, we proposed a holistic research agenda to preserve
privacy in the emerging mobile spatial computing paradigm, by
protecting sensitive information in both spatial maps and localiza-
tion images. The presented research leverages principled interdis-
ciplinary approaches that benefit from deep learning, distributed
computing, and cryptography, and demonstrates the synergy of
those areas in privacy-preserving mobile spatial computing. We
hope our work can shed light on more research efforts to further
investigate this critical problem.
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