
CHI-in-a-Box: Reducing Operational Costs of Research Testbeds
Kate Keahey

keahey@mcs.anl.gov
Argonne National Laboratory

Lemont, Illinois, USA

Jason Anderson
Michael Sherman

jasonanderson@uchicago.edu
shermanm@uchicago.edu
University of Chicago
Chicago, Illinois, USA

Cody Hammock
hammock@tacc.utexas.edu

Texas Advanced Computing Center
Austin, Texas, USA

Zhuo Zhen
zhenz@uchicago.edu
University of Chicago
Chicago, Illinois, USA

Jenett Tillotson
jtillots@ucar.edu

National Center for Atmospheric
Research

Boulder, Colorado, USA

Timothy Bargo
Lance Long

tim@timbargo.com
llong4@uic.edu

University of Illinois Chicago
Chicago, Illinois, USA

Taimoor Ul Islam
Sarath Babu

Hongwei Zhang
tislam@iastate.edu
sarath4@iastate.edu
hongwei@iastate.edu
Iowa State University
Ames, Iowa, USA

François Halbach
fhalbach@tacc.utexas.edu

Texas Advanced Computing Center
Austin, Texas, USA

ABSTRACT
Making scienti�c instruments for computer science research avail-
able and open to all is more important than ever given the constantly
increasing pace of opportunity and innovation– yet, such instru-
ments are expensive to build and operate given their complexity
and need for rapid evolution to keep pace with the advancing fron-
tier of science. This paper describes how we can lower the cost of
computer science testbeds by making them easier to deploy and
operate. We present CHI-in-a-Box, a packaging of CHameleon In-
frastructure (CHI) underlying the Chameleon testbed, describe the
practices that went into its design and implementation, and present
three case studies of its use.

CCS CONCEPTS
• Computer systems organization! Cloud computing.

KEYWORDS
cloud computing, testbeds, maintainability

ACM Reference Format:
Kate Keahey, Jason Anderson, Michael Sherman, Cody Hammock, Zhuo
Zhen, Jenett Tillotson, Timothy Bargo, Lance Long, Taimoor Ul Islam, Sarath

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or a�liate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
PEARC ’22, July 10–14, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9161-0/22/07.
https://doi.org/10.1145/3491418.3530768

Babu, Hongwei Zhang, and François Halbach. 2022. CHI-in-a-Box: Reducing
Operational Costs of Research Testbeds. In Practice and Experience in Ad-
vanced Research Computing (PEARC ’22), July 10–14, 2022, Boston, MA, USA.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3491418.3530768

1 INTRODUCTION
Scienti�c instruments for computer science research are notoriously
hard to build and operate. To provide a platform for research on
topics such as power management, operating system design, or
networking they must operate very close to the hardware, support
a deep level of recon�gurability, and give their users a high level of
privilege. With all this, they also need to constantly, and sometimes
rapidly, evolve as the science evolves to provide a viable instrument
for answering new questions – and they must do so securely. The
complexity of this undertaking and the rapid evolution rate of
testbeds makes them expensive to deploy and operate—and thus
poses a barrier to their widespread adoption and deployment which
in practice limits resources available for computer science research.

At the same time, widespread access to instruments for computer
science research is more important than ever. Opportunities and
technological innovations are increasing at a faster rate than they
have ever done before, including topics in composable hardware,
programmable networking, and machine learning to name just a
few. It is important that we keep pace in addressing them by bring-
ing to bear the full collective talent and experience of the research
community —and this entails access to experimental platforms that
are not only broad in their capabilities but also broadly accessible.
General access to a shared experimental platform can also encour-
age the development and sharing of community digital artifacts

https://doi.org/10.1145/3491418.3530768
https://doi.org/10.1145/3491418.3530768


PEARC ’22, July 10–14, 2022, Boston, MA, USA Anderson, Keahey, and Sherman, et al.

such as e.g., electronic teaching materials, and encourage repeating
or reproducing experiments by removing the resource availabil-
ity barrier [18]. This raises the following questions: Can we make
computer science research testbeds more available by lowering
their cost? Can we capture the advanced capabilities, challenging
operations, and steep evolution curve of such testbeds in a way
comparable to a mainstream, “shrinkwrapped” infrastructure? How
close can we get to this rough goal and what are the strategies that
allow us to do so in a cost-e�ective manner?

This paper describes a research testbed infrastructure distri-
bution based on our experience of operating Chameleon [20], a
primarily bare metal recon�gurable research testbed for edge to
cloud experimentation. Since its public availability in July 2015,
Chameleon has supported 6,000+ users working on 800+ projects
giving us runway and scale to understand and address the chal-
lenges connected to operating research infrastructure sites. The
resulting insight, expressed as the CHI-in-a-Box testbed distribution
created to facilitate and streamline the deployment and operation
of Chameleon sites, employs a number of strategies including hub
and spoke management, containerization, and automated inventory
management to enable Bring Your Own Device (BYOD) composable
infrastructure pattern, to combat complexity, minimize risk, and
streamline e�ort involved in research infrastructure deployment
and operation. We articulate the sources of complexity and cost
in deploying and operating a research testbed, present the CHI-
in-a-Box design, and describe three case studies or CHI-in-a-Box
deployments ranging from a supercomputing center to smaller-
scale university labs, evaluated by personnel with broad experience
level ranging from a senior systems engineer with many years of
experience to an undergraduate student.

2 CHAMELEON INFRASTRUCUTRE (CHI):
WHAT’S IN THE BOX?

Chameleon is an NSF-funded distributed testbed that supports com-
puter science research, education, and emergent applications [9].
Our users’ projects range from research on power management, op-
erating systems and networking, to data science, machine learning,
and security. To cover the broadest possible range of experimental
requirements, most Chameleon resources are presented as a recon-
�gurable bare-metal cloud, giving users full control of the software
stack including root privileges, the ability to customize the kernel,
or experiment with software de�ned networking. A small part of the
system is con�gured as a virtualized KVM cloud to balance the cost
of strong isolation essential for some projects, with �ner-grained
sharing provided by virtualization su�cient for others [20]. Most
recently, to support experimentation on edge devices, Chameleon
added an edge testbed, CHI@Edge [19], with recon�guration based
on container deployment. The system thus supports multiple �a-
vors: bare metal recon�guration, VM deployment, and container
deployment (for edge); although not all features are available in
each �avor, all support API interfaces that allows them to connect
to the same central services.

The core components of CHI (pronounced as “chee”) have been
described in detail in [22]. Brie�y, users can allocate resources
either on-demand or by making an advance reservation using a
combination of OpenStack [14] Nova and Blazar services, the latter

developed with signi�cant contributions from the Chameleon team.
The allocated resources can range across nodes, networks, and IP
addresses [21] and are treated as non-fungible entities since many
of our users want to allocate a speci�c resource in order to con-
trol for variability [20]. Once resources are allocated, bare-metal
recon�guration allows users to deploy their experiments as close
as possible to physical con�guration using OpenStack Ironic; users
can use one of the bare metal images supported by the Chameleon
team, or con�gure their own and snapshot it using a Chameleon-
provided tool. Users can also con�gure network slices using the
ExoGENI [4] libraries (to be subsumed by FABRIC [3] integration
soon) integrated with Chameleon, or Bring Your Own Controller
(BYOC) [8] functionality to experiment with software-de�ned net-
working. Con�guration of complex experiment topologies such
as virtual clusters or distributed networking experiments is sup-
ported through programmable interfaces: OpenStack Heat, or by
the python-chi library [30] available via JupyterHub [1] integrated
with the testbed.

Similar to many other projects, Chameleon provides central user
services. They include authentication via federated identity using
Globus Auth [2, 33]; the user portal which provides a central man-
agement interface for a user’s pro�le information; resource discovery
via a browseable catalogue aggregating �ne-grained information
about hardware available on individual sites; availability calendar,
where users can see the availability of speci�c hardware at di�erent
times and locations. In addition, we provide a shared Jupyter envi-
ronment that facilitates testbed access and can be used to package
repeatable experiments [1], Trovi [32], a central repository of exper-
iment notebooks and accompanying data and scripts where users
can share and discover packaged experiments, and the Chameleon
Daypass [26] that provides short-term access to the testbed for
reproducibility purposes.

Unlike traditional research testbeds, Chameleon builds on amain-
stream open source cloud system (OpenStack) rather than a custom
implementation. This has a range of practical bene�ts including
familiar interfaces for both users and operators, workforce devel-
opment opportunity, compatibility with mainstream tools which
facilitates portability to other clouds [27], the ability to leverage
contributions of a large development community—as well as multi-
plying our impact by contributing to a widely used infrastructure
ourselves. At the same time, OpenStack does not fully support
our use case, necessitating reliance on tools developed by others—
speci�cally, Grid5000 [5], ExoGENI [4], and the Jupyter projects –
and development of our own. Among our own contributions, most
notable are bare metal snapshotting (not available from the main
OpenStack installation), the ability to authenticate via federated
identity to all OpenStack services, more powerful instance cus-
tomization (e.g., provisioning multiple SSH keys, also not available
upstream), user-con�gurable OpenFlow Corsa switching for SDN
(to be expanded to include P4), integration with Jupyter, and re-
source discovery services. We also made many modi�cations to
OpenStack components themselves, in particular, Blazar, i.e., the
service for making and managing advance reservations, Keystone,
Horizon, Zun and Neutron. At present, we estimate that CHI is
comprised of roughly 50% OpenStack and 50% of other systems and
our adaptations.



CHI-in-a-Box: Reducing Operational Costs of Research Testbeds PEARC ’22, July 10–14, 2022, Boston, MA, USA

Figure 1: CHI-in-a-Box services and relationships. The items in green denote additional services contributed by Chameleon, or
services with signi�cant capabilities not available upstream.

3 COMPLEXITY AND COST
In its original implementation, Chameleon was deployed across
two sites: the University of Chicago (UC) and the Texas Advanced
Computing Center (TACC).While we wanted it to scale across more
sites, this was not easy due to the complexity—and thus cost—that
operating a testbed of this kind entails. One example of this com-
plexity is networking: to deploy a user instance (bare metal node,
VM, or container) the infrastructure has to dynamically connect
it to potentially multiple networks; this relies on a range of fea-
tures from physical network con�guration to reliable infrastructure
implementation to work in concert. Another is the correct manage-
ment of security in a system where users get root permissions to
instances they con�gure themselves; this means a large attack sur-
face to protect and many attack types to defend against. Supporting
bare-metal recon�guration speci�cally increases the complexity
even more as system operators cannot rely on an additional layer of
abstraction that facilitates sandboxing and monitoring user actions.
And while much of this complexity is inherent in any cloud infras-
tructure, a research cloud faces the additional challenge of rapid
evolution, typically across the stack. Research clouds are thus op-
erationally complex because they solve a complex problem; below
we tease apart and describe in detail the dynamics of this complex-
ity so that we may later illustrate how they are addressed by our
packaging.

Operational complexity. Research testbeds entail managing many
interconnected systems and services. For example, a control node
of CHI typically hosts around 60 di�erent services providing func-
tions around network realization (DHCP, DNS, IPAM, NAT, VLAN
provisioning), bare metal recon�guration (iPXE, boot/power man-
agement, serial console proxy), and lifecycle management for all
user-facing domains such as instances, security groups, subnets,
SSH keys, disk images, etc., not to mention storage cluster systems
to support user data persistence. Each of these services logs in a

di�erent way, has their own set of con�guration options, and may
need to be upgraded on a di�erent schedule with con�icting depen-
dencies between upgrades. Manually keeping track of it all across
this many services requires broad knowledge, high quali�cations,
and makes understanding the state of the system at any given time
di�cult.

Mapping to a variety of site con�gurations. Since CHI operates as
close as possible to physical con�guration, the task of packaging
and operating it on a variety of sites is challenging, as their physical
con�gurations di�er and are generally not designed with support-
ing computer science research in mind. In particular, not all sites
can be con�gured to support all the features CHI provides: lack
of specialized hardware (e.g., Corsa switches) and constraints on
site network con�gurations are the most signi�cant examples. This
calls for packaging that not only supports a broad range of con�gu-
rations and hardware, but can also allow operators to cleanly (i.e.,
without impacting other system components) “opt out” of support-
ing various CHI features. Further, site di�erences also have to be
taken into account in operations so that con�gurations across sites
can be consistent in some (project-wide) aspects, but divergent in
others.

End-User artifacts and support. In most academic systems, ad-
ministrators maintain one con�guration, and users port their ap-
plications to run on this con�guration. This situation is inverted
in the cloud world: while in principle users want to manage their
own con�gurations, they also expect providers to create and main-
tain a range of “base” images supporting specialized hardware (e.g.,
CUDA images for GPU), or orchestration/pro�les for complex de-
ployments. For example, Chameleon maintains 20 base images and
3 complex appliances (images + orchestration templates), many
of them across di�erent CHI �avors. In addition, the operations
team needs to constantly bridge the gap between what a typical
user needs to know about system administration and what they



PEARC ’22, July 10–14, 2022, Boston, MA, USA Anderson, Keahey, and Sherman, et al.

actually know; this results in increased time for operations (e.g.,
preventing security incidents), support (�elding user questions),
and user education.

Maturity. Having existed far less time, cloud computing is a less
mature paradigm than e.g., HPC systems. Rapid rate of development
implies less complete functionality at any given time and thus need
for frequent upgrades (e.g., Ironic was not a part of OpenStack
when Chameleon started), less stability in the system, and the
need to frequently step in and �x or develop features our users
need. Since the beginning of the project the UC team has spent
440 person-days contributing and reviewing OpenStack patches,
246 for Blazar alone [15] (this does not include e�ort that goes
into features not contributed due to the niche scope of our system).
Added to that is the challenge of managing OpenStack upgrades,
a task that involves reading changelogs for 10+ separate projects,
understanding what breaking changes or new assumptions may
exist, researching migration paths for deprecated con�gurations,
backporting unavoidable custom patches, and updating default
con�gurations. Thus, while basing Chameleon on a mainstream
system saved us much e�ort, general lack of maturity in cloud
systems still resulted in additional operational cost.

Evolution. Scienti�c instruments need to evolve as the science
they support evolves [12]; thus, the last and largest challenge of is
the keeping up with the rapid rate of feature evolution needed by
our community. Over the lifetime of the project, we had to adapt the
system to add support for new hardware types, new user-requested
features, new types of experiments (e.g., in networking [8]), and a
whole new experimental domain in edge computing [19]. Discover-
ing, designing, and implementing these adaptations and extensions
requires not only deep and broad expertise and signi�cant develop-
ment e�ort; integrating them into the system such that its stability
is preserved requires additional operational e�ort and processes.
Even then, instabilities can manifest themselves due to the rate of
evolution: one example is a bug in a third-party networking tool
triggered by a routine and innocuous con�guration change that
resulted in a signi�cant system instability and took a week of highly
quali�ed e�ort to �x.

4 CHI-IN-A-BOX DESIGN
These challenges meant that operating CHI became costly early in
the project: even routine operations like OpenStack upgrades would
require signi�cant e�ort and high level of expertise including skills
in security, networking, and development. This made the system
particularly vulnerable to personnel rotation, adding another risk
factor to an already challenging operation. Further, despite the
best e�orts of the team, the con�guration on the two operating
sites was constantly diverging; it was thus impossible to replicate
problems across sites and meant that each site had to solve the same
problems from �rst principles, e�ectively doubling our operational
costs. Since this would of course limit our potential to scale to more
sites, we adopted what initially was simply an internal packaging of
OpenStack – and eventually grew into CHI-in-a-Box, i.e., packaging
of all of site-speci�c CHI components (whether OpenStack or not)
as well as its operations model. Ultimately, the objective of the
system became to bring the cost of installing and operating the
testbed to a lower bound of a non-experimental “shrinkwrapped

system” (such as e.g., Ceph), i.e., make the operational burden of
individual sites comparable to that of a stable technology.

With this basic CHI-in-a-Box shape in mind, we de�ned the
following target use cases:

(1) Chameleon associate sites, that join the Chameleon testbed,
i.e., make their resources available to Chameleon users full
time and leverage the central services and user support pro-
vided by the project.

(2) Chameleon part-time associate sites, that are associate sites
with inventory that can only be committed on a part-time ba-
sis by de�ning up-front availability windows. This requires
support for adding and removing resources dynamically and
programmatically via Bring Your Own Device (BYOD), a criti-
cal requirement for composable infrastructures.

(3) Independent testbeds, that con�gure new testbeds similar to
Chameleon but unconnected to the project; they provide
their own central user services and user support.

The most signi�cant step in managing the challenges of an ex-
perimental testbed, was the adoption of a hub and spoke model in
which one hub team (University of Chicago, in our case) takes on
the responsibility for creating an internal release: integrates and
tests OpenStack upgrades; develops, integrates, and tests any new
experimental features; and then publishes them, along with docu-
mentation, site con�gurations, and relevant operational tools to a
central location [10] – the spoke sites then independently download
and install the software. This approach gives site administrators
full autonomy in administering their own site, while relieving them
of the burden of much of the complexity associated with rapidly
developing research infrastructure.

We take this principle one step further and apply it to site con�g-
uration management: we express a site con�guration as code (called
"site con�g") and manage it via version control system (VCS); this
con�guration is e�ectively an overlay that adapts the core CHI con-
�guration to a site’s speci�c requirements, preserving the mapping
of CHI to the site as new features and upgrades are released. Site
con�gs contain an association of hostnames to the roles they will
play in the deployment, and a set of con�guration options and tog-
gles expressed as YAML, which override default values used when
invoking the provisioning tooling to, e.g., deploy or recon�gure a
given service. For example, the site’s hostname and public and pri-
vate IP addresses would be contained in this �le, as that is di�erent
for each site. Secrets such as TLS certi�cate keys and passwords
are securely stored within the site con�g in a separate YAML �le
encrypted with a per-site key; this allows those to be committed
and stored under VCS as well, useful in disaster recovery scenarios.
Site con�gs reduce the integration surface area signi�cantly as they
allow site operators to express their instantiation of CHI as suc-
cinctly as possible: this makes rollbacks easier, adds an audit trail
to identify when a possible regression emerged, limits the amount
of work necessary to adopt future releases and upgrades – yet pro-
vides �exibility when it is needed to accommodate idiosyncrasies
in the host environment.

While adopting the hub and spoke approach does not in itself
solve the complexity, maturity, and evolution challenges, it largely
compartmentalizes them to one team at the cost of moderate ad-
ditional e�ort of packaging; that cost is paid once and leveraged



CHI-in-a-Box: Reducing Operational Costs of Research Testbeds PEARC ’22, July 10–14, 2022, Boston, MA, USA

across many sites. To illustrate: it takes roughly one person month
(assuming medium level of OpenStack experience) of core team
development time to address all the challenges related to Open-
Stack upgrade described in Section 3 and create a new CHI-in-a-Box
distribution; applying it on a sites usually takes only roughly one
day of time and requires only enough experience to ensure the
process completed smoothly (i.e., understand how to �nd and read
logs), assuming support provided by the hub team. The fact that
UC both packages and installs/operates CHI-in-a-Box avoids the
"ivory tower" problem, giving us insights into pain points and al-
lowing us to test proposed changes for regressions in performance
or reliability.

4.1 Packaging and Installation
To address the challenge of mapping to di�erent site con�gurations,
we designed most CHI capabilities to be optional. For example,
stitching [8] is only possible if the host environment has logical
access to L2 stitchports, and isolated L2 networking can only be
accomplished if CHI can manage switches on the network fabric:
if either of these assumptions cannot be satis�ed, these features
are simply not available to users of the site. Each �avor of CHI
deployment similarly has requirements on the underlying host
infrastructure: for example, bare metal provisioning at minimum re-
quires an out-of-band network due to reliance on IPMI/BMC while
VM provisioning works best with some shared storage infrastruc-
ture (e.g., Ceph, NFS) and a stable number of nodes dedicated to
running hypervisors.

To make navigating the intricacies of all of these combinations
capable of clean separation, we took a two-pronged approach: �rst,
we attempt to group functionality under coarse-grained con�gura-
tion �ags (e.g., "enable bare metal"), which then in�uences many
other con�guration options; secondly, we documented how to en-
able and con�gure each testbed capability separately, describing
what the capability is, how it works, what its requirements are,
how to enable it, and what further options for customization are
available if desired. Combined, the two strategies give operators an
"easy button" that can help get them started, and a springboard to
more �ne-tuning later.

4.2 Managing Inventory
Managing inventory tends to be overlooked in mainstream clouds
because it is seen as an infrequent operation; resources are seen as
fungible so that inaccuracies in inventory management carry less
penalty. In research testbeds on the other hand, resources are not
only non-fungible [20] but also versioned for reproducibility pur-
poses so it is essential that resource information is up to date and
consistent across all relevant infrastructure services including user-
facing resource discovery and availability calendar. Small changes
to the resources (e.g., disk or memory upgrades) need to be tracked
and surfaced; failure to ensure this could lead our users to draw
misleading conclusions when repeating experiments. Achieving
a high level of accuracy and detail manually can be error-prone
and onerous: it requires producing correct and detailed resource
descriptions and consistently registering them with all the rele-
vant infrastructure services, each requiring a di�erent format. A
reverse process takes place when retiring a node, not to mention

the complexities of ensuring all services agree that a node is in
maintenance (and thus not reservable/not in service) while an oper-
ator is �xing an issue. Finally, the requirement for BYOD support in
our part-time associate site use case implies a composable system;
this means support for making resources available or unavailable
dynamically and potentially frequently.

To automate collection of hardware properties during enrollment
or after changing some aspect of the hardware we use a modi�ed
form of Grid5000’s g5k-checks [24] utility, which leverages ohai to
introspect and collect a summary of hardware details (itself utilizing
Linux utilities like lsblk, ethtool, and procfs), before transforming
the output into a JSON description following a set schema. These
JSON �les are then checked into a Git repository, all of which is
served via a g5k-api instance, which transforms the repository into
a versioned HTTP API, consumable by remote clients.

To support adding and removing hardware to the testbed dynam-
ically we developed an internal service called Doni [11]; it presents
a single view of site hardware to operators, allowing them to add
the hardware once and have the event reliably cascade through the
relevant services. Doni implements the part-time associate testbed
use case by managing dynamic inventory changes: once hardware
is added, operators can de�ne windows of availability that are com-
municated to users through the availability calendar. In addition,
Doni helps simplify operational tasks: for example, when adminis-
trative changes are prevented by the system because the hardware
is in use, Doni allows operators to queue up changes so that they
can "set it and forget it", as opposed to setting alarms or reminders
to perform updates when the hardware is no longer being used.

4.3 Operations
One of the most signi�cant sources of complexity in operating
a system with many services are inter-library dependencies and
con�icts between them; this often prevents agile upgrades to select
services or can lead to surprises during rollout that prolong planned
maintenance windows. A general solution in this space is to con-
tainerize the services by isolating them in VMs or containers: this
eliminates any dependencies or con�icts via �le system isolation
and allows the services to be managed independently – as well as
greatly facilitates porting the services to new systems. Here, we
were able to leverage the bene�ts of a mainstream implementation
base by building on Kolla, an OpenStack project that provides a set
of Docker build recipes and tooling that makes it simpler to assem-
ble and customize the container images for each of the numerous
OpenStack services our project uses.

In addition, CHI-in-a-Box also leverages the related Kolla An-
sible project that implements Ansible automation around instal-
lation, recon�guration, and upgrades of an OpenStack-based de-
ployment and additionally makes implicit dependencies between
service con�gurations more explicit. For example, if an additional
networking service should be deployed when the bare metal re-
con�guration service is enabled, this relationship is modeled in
code; all the site operator needs to specify is whether to enable
the capability and all required services are deployed and con�g-
ured accordingly. Besides managing the OpenStack services, Kolla
Ansible can also deploy helpful operations infrastructure such as
centralized logging (all control nodes report logs for each service



PEARC ’22, July 10–14, 2022, Boston, MA, USA Anderson, Keahey, and Sherman, et al.

to a central searchable Elasticsearch index) and �ne-grained mon-
itoring (Prometheus) along with user-friendly visualization GUIs
for each (Kibana, Grafana). CHI-in-a-Box inherits any functionality
provided by the Kolla Ansible project (included in CHI).

4.4 Monitoring, Detection, and Remediation
To further assist site operators, CHI-in-a-Box includes operational
tools that assist with system monitoring, anomaly detection, and
provide a variety of remediation routes. Speci�cally, we maintain a
set of scripts called “hammers” [31] that work by testing proposi-
tions about the state of testbed and issue a few sharp hits in the right
places to bring things back into order. For example, a hammer might
ensures that nodes no longer reserved by any user are returned to
the freepool, i.e., set of nodes available for reservation (this involves
multiple steps and can potentially be interrupted.) Hammers are
typically run as periodic Cron jobs or systemd timers, but can also
be run ad-hoc by operators as needed. As most systems, we main-
tain a set of "smoke tests" that exercise various typical user �ows on
the system; since they are typically run outside of the system, they
are not packaged as part of CHI-in-a-Box, but are open source and
can be independently deployed; we run them periodically against
CHI@UC and CHI@TACC via a Jenkins executor.

In cases where automatic action is not su�cient or possible, we
extended Prometheus monitoring, adding alerts on certain signal
metrics, which can be con�gured to log to Slack along with a hyper-
link to a runbook hosted on our documentation portal describing
the problem in more detail, and giving ideas on how to diagnose
further and �x the root cause. Because runbooks are also stored in
our source code repository, we can accept outside contributions and
update information as the packaging changes over time, allowing
Chameleon site operators to contribute to the body of knowledge
about system operations.

4.5 End-User Services
In addition to the central services (Section 2), we maintain a set
of user artifacts including images, orchestration templates, and
notebooks that can be used on any site. CHI supports a variety of
disk formats (e.g., raw, qcow2, AWS AMI) and we publish a set of
default images in qcow2 format (which can be used in either KVMor
for bare metal provisioning) based on the latest two stable releases
for the CentOS and Ubuntu Linux distributions, and additional
derived images that add various types of tools and utilities. We use
OpenStack’s diskimagebuilder to generate each tree of images and
store the build con�guration for each in a separate VCS repository to
track changes over time; additionally, we have automated the build
process via Jenkins, which we can not only trigger manually when
releasing changes, but also will automatically trigger new builds
when a new distribution version is released upstream. Initially disk
images are published to a central public location; CHI-in-a-Box
includes an operator tool that can sync a local site’s default images
to this central repository, updating the local site’s image registry
accordingly. These measures ensure that we can provide and port
a relatively large number of centrally-supported images to many
sites, giving users a range of artifacts to choose from and lessening
the temptation to use insecure images.

Orchestration templates and notebooks, which users can extend
and customize, can be used in conjunction with disk images to
express a complex experiment topology. We package notebooks
together with supporting example data and scripts in Trovi [32], the
central Chameleon experiment saving/sharing repository. Both or-
chestration templates and notebooks can be ported across CHI sites,
but each may need small updates to re�ect the di�erent hardware
options available at a target site. Lastly, we provide centralized user
support via a virtual helpdesk, with user support responsibilities
shared between UC and TACC, and leveraged by all Chameleon
associate sites.

5 CASE STUDIES
We describe below insights from CHI-in-a-Box deployments at two
Associate Sites and one Independent Site.

5.1 Associate Site: NCAR
The National Center for Atmospheric Research (NCAR) is an NSF
funded research center for university climate scientists from across
the United States; our Computational and Information Systems Lab
(CISL) maintains supercomputing resources to support this research
and is home to the Cheyenne supercomputer, a 5.3PF HPE/SGI ICE
cluster which provides themajority of computational power utilized
by our community. As part of the procurement process at NCAR, we
evaluated the ARM ThunderX2 processors as possible candidates
for our next computational system, after which we wanted to make
them available to other researchers for experimentation and we
felt Chameleon provided a good avenue to do that. One of CISL’s
senior systems engineers, having many years of experience with
various cluster managing software but no direct experience with
OpenStack, performed the installation.

Chameleon sta� were required to make a few adaptations to
CHI-in-a-Box due to our site-speci�c network con�guration and
the unique hardware, including �at network support to accommo-
date our use of the side-band interface for BMC connectivity and
expanding support to include ARM64 architectures and UEFI boot
modes on the bare metal nodes. Two hardware issues had to be
resolved by modifying the default con�guration: secure erase was
disabled, as the disks erroneously reported support for this feature,
but would lock up during deployment; and power state monitoring
was disabled, as the BMCs frequently reported transient error states.
Both of these are likely due to the developmental and cutting-edge
nature of these machines. Overall, Chameleon was no more di�cult
to install or con�gure than any other method used to setup these
nodes before. The main di�culty came from the uniqueness of the
hardware and the di�erences between the network con�guration
of the machines and what Chameleon expected. We plan for the
ARM cluster to eventually be operated by student workers. It would
be an excellent opportunity for a junior systems engineer to gain
experience with the technologies used by Chameleon and learn
how to support a semi-production environment.

5.2 Associate Site: EVL
The Electronic Visualization Laboratory (EVL) at the University of
Illinois Chicago (UIC) is an interdisciplinary research laboratory
in the Computer Science department that specializes in visual data



CHI-in-a-Box: Reducing Operational Costs of Research Testbeds PEARC ’22, July 10–14, 2022, Boston, MA, USA

science and advanced cyberinfrastructure. EVL con�gured a CHI-
in-a-Box bare metal site using Chameleon’s phase 1 hardware (22
Haswell nodes) donated as part of the Chameleon legacy program;
the deployment supports a full complement of bare metal features
with the exception of stitching and BYOC (due to logistical com-
plexity of con�guring layer 2 connectivity via campus networking).
CHI@EVL was deployed by an undergraduate student who has
experience working on several EVL compute clusters, and most
recently deployed EVL’s NSF-funded COMPaaS system [7, 23], a
24-node Composable Infrastructure using Kubernetes and Metal as
a Service (MaaS) provisioning service. The team’s OpenStack expe-
rience was limited to understanding the fundamental vocabulary
of the platform.

In installation, we encountered problems with an incompatible
default setting (confounded by insu�cient error propagation in
OpenStack) and the inherent complexity of multi-tenant bare metal
networking. At the same time, the CHI-in-a-Box network is signif-
icantly simpler to understand when compared to our experience
with Kubernetes, which creates many more virtual interfaces and
opaque networks. More meaningful error messages and expanded
documentation, including a operations veri�cation checklist, will
help mitigate this type of issue going forward. In addition, device
removal and re-enrollment exposed a propagation bug in the Doni
service. Chameleon’s team helped debug and �x this issue, but this
particular experience was less seamless than Kubernetes, which can
adapt to most changes in cluster state without manual intervention.
All in all, we found the deployment of CHI-in-a-Box seamless and
impressive in its scope, providing overall a more robust cluster
infrastructure system than our experience with Kubernetes and
MaaS. Based on our experience, we believe that once the above-
mentioned issues are resolved, the deployment process will be faster
and more hands-free when compared to other “shrink wrapped”
infrastructures.

5.3 Independent Site: ARA
As a part of the NSF Platforms for Advanced Wireless Research
(PAWR) program, ARA [17] is a wireless testbed being deployed
in central Iowa to support research, education, and innovation in
advanced wireless and applications in domains such as precision
agriculture and rural education. ARA decided to adopt CHI-in-a-Box
as a baseline testbed implementation because it already has mature
support for edge-to-cloud provisioning of compute, storage, and
network fabrics, and provides end-to-end experiment control and
user services. Further, since CHI-in-a-Box is based on a mainstream
open-source platform, we could extend its resource management ca-
pabilities to support management of wireless resources (e.g., SDRs
with related attributes such as frequency, transmission power, and
gain), wireless BYOD, wireless virtualization, and experiment moni-
toring and interference control. The deployment was performed by
a �rst-year Ph.D. student with extensive networking background
but no prior experience with OpenStack.

During deployment, the ARA team encountered issues due to
hardware and con�guration di�erences; in particular, di�erences
in networking hardware required modi�cation of Neutron plugins
and drivers, and the con�guration of interface bridges required
di�erent handling. These are hard to address for operators with no

prior OpenStack experience and required support and collaboration
from the Chameleon team. We contributed comments that resulted
in general improvements to the documentation and inclusion of a
baseline deployment diagram that will make this easier going for-
ward. An important �nding was that CHI does not provide all the
capabilities our testbed requires, in particular support for wireless
experiments and greater �exibility in management of network re-
sources. It represents a good starting point – that we plan to extend
to integrate �eld-deployed wireless resources with edge and cloud
resources – and contribute these features back to CHI-in-a-Box.

6 RELATEDWORK
Some research testbeds such as GENI [6] and ORBIT [16] have
provided packaging of their infrastructure though it was generally
targeted to a �xed hardware con�guration, usually shipped to each
new site. Emulab/CloudLab [13, 34] packaging is the closest to our
approach, but to our knowledge does not abstract site con�guration
from packaging, or employ containerization or BYOD techniques
described here. Further, as an in-house implementation it does not
leverage the advantages that mainstream implementation brings
(e.g., we were able to add the UEFI image implementation required
by NCAR very quickly because of existing OpenStack implementa-
tion).

Research clouds such as Jetstream [29] and the Massachusetts
Open Cloud [25] operate OpenStack clouds with some features for
science but do not develop their own packaging. StackHPC pro-
vides a commercial OpenStack distribution focused on research
[28] but it targets mainly virtualized clouds operated for domain
sciences rather than bare metal recon�gurable experimental com-
puter science systems testbed that is our focus. Finally, there are
multiple OpenStack projects that support or facilitate various as-
pects of packaging like the Kolla-Ansible projects described earlier;
we leverage them in our packaging as appropriate.

7 CONCLUSIONS
When building distributed research infrastructure on top of a main-
stream system it is tempting to use a public distribution and have
each site apply the relevant adaptations. We found that where there
is a high level of research-speci�c customization creating an inter-
nal distribution (CHI-in-a-Box) results in signi�cantly lesser cost
of testbed operation. In this paper we explain why, and share the
strategies of hub and spoke management, containerization, and
BYOD inventory management that make our approach feasible. We
also show how the use of mainstream infrastructure lowers the
cost of not only building and using research infrastructure but also
operating it through support for containerization, image manage-
ment tools, or access to a broad range of capabilities against future
needs.

The three presented use cases illustrate di�erent motivations
and deployment scenarios for this type of research infrastructure
and provide an evaluation of our approach. Working with them,
we revisit many of issues contributing to complexity and therefore
the cost of operating research testbeds: the need to adapt the sys-
tem to new hardware, mapping to a variety of site con�gurations,
and demand for mature and re�ned tooling. Despite those chal-
lenges however in all cases institutions were able to provide a new



PEARC ’22, July 10–14, 2022, Boston, MA, USA Anderson, Keahey, and Sherman, et al.

research capability quickly, with relatively little e�ort, and given
little previous experience with similar systems. Most importantly,
in all cases, the contributions inherent in a new installation became
part of common development further helping to mitigate the cost
of research infrastructure.

ACKNOWLEDGMENTS
Results presented in this paper were obtained using the Chameleon
testbed supported by theNational Science Foundation. Thismaterial
is based upon work supported by the U.S. Department of Energy,
O�ce of Science, under contract number DE-AC02-06CH11357 as
well as by the NSF award 2130889 and NIFA award 2021-67021-
33775.

REFERENCES
[1] Jason Anderson and Kate Keahey. 2019. A Case for Integrating Experimen-

tal Containers with Notebooks. In 2019 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE, Sydney, NSW, Australia,
151–158. https://doi.org/10.1109/CloudCom.2019.00032

[2] Jason Anderson and Kate Keahey. 2022. Migrating towards Single Sign-On and
Federated Identity. In Proceedings of the Practice and Experience in Advanced
Research Computing (Boston, MA, USA) (PEARC ’22). Association for Computing
Machinery.

[3] Ilya Baldin, Anita Nikolich, James Gri�oen, Indermohan Inder S. Monga,
Kuang ChingWang, Tom Lehman, Paul Ruth, and Ewa Deelman. 2019. FABRIC: A
National-Scale Programmable Experimental Network Infrastructure. IEEE Internet
Computing 23 (2019), 38–47. Issue 6. https://doi.org/10.1109/MIC.2019.2958545

[4] Ilia Baldine, Yufeng Xin, Anirban Mandal, Paul Ruth, Chris Heerman, and Je�
Chase. 2012. ExoGENI: A multi-domain infrastructure-as-a-service testbed. Lec-
ture Notes of the Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering 44 LNICST (2012), 97–113. https://doi.org/10.1007/978-
3-642-35576-9_12

[5] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez,
Emmanuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David Margery, Nicolas
Niclausse, Lucas Nussbaum, Olivier Richard, Christian Perez, Flavien Quesnel,
Cyril Rohr, and Luc Sarzyniec. 2012. Adding Virtualization Capabilities to the
Grid’5000 Testbed. Communications in Computer and Information Science 367
CCIS (2012), 3–20. https://doi.org/10.1007/978-3-319-04519-1_1

[6] Mark Berman, Je�rey S. Chase, Lawrence Landweber, Akihiro Nakao, Max Ott,
Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. 2014. GENI: A federated
testbed for innovative network experiments. Computer Networks 61 (3 2014),
5–23. https://doi.org/10.1016/J.BJP.2013.12.037

[7] Maxine Brown, Luc Renambot, Lance Long, Timothy Bargo, and Andrew E.
Johnson. 2019. COMPaaS DLV: Composable Infrastructure for Deep Learning in
an Academic Research Environment. In 2019 IEEE 27th International Conference
on Network Protocols (ICNP). IEEE, Chicago, IL, USA, 1–2. https://doi.org/10.
1109/ICNP.2019.8888070

[8] Mert Cevik, Paul Ruth, Kate Keahey, and Pierre Riteau. 2019. Wide-area Software
De�ned Networking Experiments using Chameleon. In IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).
IEEE, Paris, France, 811–816. https://doi.org/10.1109/INFCOMW.2019.8845093

[9] Chameleon. 2022. Chameleon main page. Retrieved Feb 16, 2022 from https:
//chameleoncloud.org/

[10] Chameleon. 2022. CHI-in-a-Box source repository. https://github.com/
ChameleonCloud/chi-in-a-box

[11] Chameleon. 2022. Doni: OpenStack Inventory Service. https://github.com/
ChameleonCloud/doni

[12] Peter Couvares, Kate Keahey, and Frédérique Marion. 2021. Finding the Gravita-
tional Wave: A History of Discovery Written in Software. SoftwareX 15 (2021),
100715. https://doi.org/10.1016/j.softx.2021.100715

[13] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The De-
sign and Operation of CloudLab. In Proceedings of the USENIX Annual Technical
Conference (ATC). USENIX Association, Renton, WA, 1–14. https://www.�ux.
utah.edu/paper/duplyakin-atc19

[14] OpenInfra Foundation. 2022. OpenStack Components. https://www.openstack.
org/software/project-navigator

[15] OpenInfra Foundation. 2022. Stackalytics. https://www.stackalytics.io/?release=
all&company=universityofchicago&metric=person-day

[16] Abhimanyu Gosain and Ivan Seskar. 2017. GENI wireless testbed: An open edge
ecosystem for ubiquitous computing applications. In 2017 IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops). IEEE, Kona, HI, USA, 54–56. https://doi.org/10.1109/PERCOMW.
2017.7917520

[17] Hongwei Zhang et al. 2021. ARA: A Wireless Living Lab Vision for Smart and
Connected Rural Communities. In WiNTECH. ACM, New Orleans, LA, USA,
9–16.

[18] Kate Keahey. 2020. The Silver Lining. IEEE Internet Computing 24, 4 (2020), 55–59.
https://doi.org/10.1109/MIC.2020.3013361

[19] Kate Keahey, Jason Anderson, Michael Sherman, Zhuo Zhen, Mark Powers, Isabel
Brunkan, and Adam Cooper. 2021. Chameleon@Edge Community Workshop
Report. https://doi.org/10.5281/zenodo.5777344

[20] Kate Keahey, JasonAnderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mam-
bretti, Alexander Barnes, François Halbah, Alex Rocha, and Joe Stubbs. 2020.
Lessons Learned from the Chameleon Testbed. In 2020 USENIX Annual Techni-
cal Conference (USENIX ATC 20). USENIX Association, online, 219–233. https:
//www.usenix.org/conference/atc20/presentation/keahey

[21] Kate Keahey, Pierre Riteau, Jason Anderson, and Zhuo Zhen. 2019. Managing Allo-
catable Resources. In 2019 IEEE 12th International Conference on Cloud Computing
(CLOUD). IEEE, Milan, Italy, 41–49. https://doi.org/10.1109/CLOUD.2019.00019

[22] Kate Keahey, Pierre Riteau, Dan Stanzione, Tim Cockerill, Joe Mambretti, Paul
Rad, and Paul Ruth. 2019. Chameleon: A Scalable Production Testbed for Com-
puter Science Research. In Contemporary High Performance Computing. CRC,
Boca Raton, 123–148. https://doi.org/10.1201/9781351036863-5

[23] Lance Long, Tim Bargo, Luc Renambot, Maxine Brown, and Andrew Johnson.
2022. Composable Infrastructures for an Academic Research Environment:
Lessons Learned. (3 June 2022). submitted.

[24] David Margery, Emile Morel, Lucas Nussbaum, Olivier Richard, and Cyril Rohr.
2014. Resources Description, Selection, Reservation and Veri�cation on a Large-
Scale Testbed. In Testbeds and Research Infrastructure: Development of Networks
and Communities, Victor C.M. Leung, Min Chen, Jiafu Wan, and Yin Zhang (Eds.).
Springer International Publishing, Cham, 239–247.

[25] MOC. 2022. Mass Open Cloud – An Open Cloud Exchange Public Cloud. https:
//massopen.cloud/

[26] Mark Powers. 2022. Interactive Science Made Easy with Chameleon Day-
pass. https://www.chameleoncloud.org/blog/2022/01/24/interactive-science-
made-easy-with-chameleon-daypass/

[27] Paul Ruth, Kate Keahey, Mert Cevik, Zhuo Zhen, Cong Wang, and Jason An-
derson. 2021. Overcast: Running Controlled Experiments Spanning Research
and Commercial Clouds. In IEEE INFOCOM 2021-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE.

[28] StackHPC. 2022. Kayobe: An Introduction. https://www.stackhpc.com/pages/
kayobe.html

[29] Craig A. Stewart, Timothy M. Cockerill, Ian Foster, David Hancock, Nirav
Merchant, Edwin Skidmore, Daniel Stanzione, James Taylor, Steven Tuecke,
George Turner, Matthew Vaughn, and Niall I. Ga�ney. 2015. Jetstream: a
self-provisioned, scalable science and engineering cloud environment. In Pro-
ceedings of the 2015 XSEDE Conference: Scienti�c Advancements Enabled by
Enhanced Cyberinfrastructure (XSEDE ’15). ACM, New York, NY, USA, 1–8.
https://doi.org/10.1145/2792745.2792774

[30] Chameleon Team. 2022. Chameleon Cloud Python API. https://python-chi.
readthedocs.io/en/latest/

[31] Chameleon Team. 2022. Hammers: Percussive Maintenance.
https://chameleoncloud.gitbook.io/chi-in-a-box/operations/chameleon-
tools/hammers

[32] Chameleon Team. 2022. Trovi: Practical Open Reproducibility. https:
//chameleoncloud.gitbook.io/trovi/

[33] Steven Tuecke, Rachana Ananthakrishnan, Kyle Chard, Mattias Lidman, Brendan
McCollam, Stephen Rosen, and Ian Foster. 2016. Globus auth: A research identity
and access management platform. In 2016 IEEE 12th International Conference on
e-Science (e-Science). IEEE, Baltimore, MD, USA, 203–212. https://doi.org/10.1109/
eScience.2016.7870901

[34] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac
Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar. 2002. An Integrated
Experimental Environment for Distributed Systems and Networks. In Proc. of
the Fifth Symposium on Operating Systems Design and Implementation. USENIX
Association, ACM, Boston, MA, 255–270.

https://doi.org/10.1109/CloudCom.2019.00032
https://doi.org/10.1109/MIC.2019.2958545
https://doi.org/10.1007/978-3-642-35576-9_12
https://doi.org/10.1007/978-3-642-35576-9_12
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1016/J.BJP.2013.12.037
https://doi.org/10.1109/ICNP.2019.8888070
https://doi.org/10.1109/ICNP.2019.8888070
https://doi.org/10.1109/INFCOMW.2019.8845093
https://chameleoncloud.org/
https://chameleoncloud.org/
https://github.com/ChameleonCloud/chi-in-a-box
https://github.com/ChameleonCloud/chi-in-a-box
https://github.com/ChameleonCloud/doni
https://github.com/ChameleonCloud/doni
https://doi.org/10.1016/j.softx.2021.100715
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.flux.utah.edu/paper/duplyakin-atc19
https://www.openstack.org/software/project-navigator
https://www.openstack.org/software/project-navigator
https://www.stackalytics.io/?release=all&company=universityofchicago&metric=person-day
https://www.stackalytics.io/?release=all&company=universityofchicago&metric=person-day
https://doi.org/10.1109/PERCOMW.2017.7917520
https://doi.org/10.1109/PERCOMW.2017.7917520
https://doi.org/10.1109/MIC.2020.3013361
https://doi.org/10.5281/zenodo.5777344
https://www.usenix.org/conference/atc20/presentation/keahey
https://www.usenix.org/conference/atc20/presentation/keahey
https://doi.org/10.1109/CLOUD.2019.00019
https://doi.org/10.1201/9781351036863-5
https://massopen.cloud/
https://massopen.cloud/
https://www.chameleoncloud.org/blog/2022/01/24/interactive-science-made-easy-with-chameleon-daypass/
https://www.chameleoncloud.org/blog/2022/01/24/interactive-science-made-easy-with-chameleon-daypass/
https://www.stackhpc.com/pages/kayobe.html
https://www.stackhpc.com/pages/kayobe.html
https://doi.org/10.1145/2792745.2792774
https://python-chi.readthedocs.io/en/latest/
https://python-chi.readthedocs.io/en/latest/
https://chameleoncloud.gitbook.io/chi-in-a-box/operations/chameleon-tools/hammers
https://chameleoncloud.gitbook.io/chi-in-a-box/operations/chameleon-tools/hammers
https://chameleoncloud.gitbook.io/trovi/
https://chameleoncloud.gitbook.io/trovi/
https://doi.org/10.1109/eScience.2016.7870901
https://doi.org/10.1109/eScience.2016.7870901

	Abstract
	1 Introduction
	2 CHameleon Infrastrucutre (CHI): What's in the Box?
	3 Complexity and Cost
	4 CHI-in-a-Box Design
	4.1 Packaging and Installation
	4.2 Managing Inventory
	4.3 Operations
	4.4 Monitoring, Detection, and Remediation
	4.5 End-User Services

	5 Case Studies
	5.1 Associate Site: NCAR
	5.2 Associate Site: EVL
	5.3 Independent Site: ARA

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

