Migrating towards Single Sign-On and Federated Identity

Jason Anderson
University of Chicago
Chicago, USA
jasonanderson@uchicago.edu

ABSTRACT

This paper describes a two-tier architecture and implementation for
single sign-on (SSO) federated identity support in Chameleon and
the rationale that shaped it. We also describe how we migrated our
users to a new account management system in privacy-preserving
ways, a community that numbered in several thousand users and
had created hundreds of thousands of digital artifacts.

CCS CONCEPTS

« Computer systems organization — Cloud computing.

KEYWORDS

cloud computing, authentication, access control, federation

ACM Reference Format:

Jason Anderson and Kate Keahey. 2022. Migrating towards Single Sign-On
and Federated Identity. In Practice and Experience in Advanced Research
Computing (PEARC °22), July 10-14, 2022, Boston, MA, USA. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3491418.3530770

1 INTRODUCTION

Chameleon [10] is a scientific instrument supporting projects in
computer science systems research, education, and emergent ap-
plications [24]. Support for research on topics ranging from power
management, operating systems, and networking to data science in
all its flavors requires deep reconfigurability allowing users to boot
from custom kernel, use high level of privilege, and access serial
console. Chameleon provides those capabilities by supporting bare
metal reconfiguration, layer-2 network reconfigurability and strong
support for security on top of the complexity concomitant with
cloud infrastructures. Thus, when in 2014 the team was faced with
developing a system of this complexity from scratch—and in a very
short time to maximize community use of an expensive system in
its original 3 year duration—the project adopted the strategy of
putting core capabilities of the system in the hands of the users as
quickly as possible, at the cost of usability and convenience. Con-
sistent with this strategy, the project adopted the use of the TACC
Administration System (TAS) for identity and access management,
given direct access to expertise (TACC being one of Chameleon’s
partners) and support for development and integration of its user
and allocation management features.

While this decision allowed us to move fast in terms of system
and community development, as the project expanded, integrating

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PEARC °22, July 10-14, 2022, Boston, MA, USA

© 2022 Copyright held by the owner/author(s).
https://doi.org/10.1145/3491418.3530770

Kate Keahey
Argonne National Laboratory
Lemont, USA
keahey@mcs.anl.gov

new applications/interfaces and sites, the lack of single sign-on
(SSO) was proving increasingly onerous for users and operators
alike and ultimately posed a barrier to project growth. Further, lack
of support for federated identity prevented us from offering users
easy integration with testbeds like GENI [7], making experiments
over multiple testbeds challenging to orchestrate effectively. While
several partial solutions were tried or considered—and allowed us to
learn—none of them worked well enough to provide a satisfactory
level of service to our users. Given the rapidly growing system and
community, we were forced to revisit our approach.

In this paper, we describe a two-tier architecture and implemen-
tation for single sign-on federated identity support in Chameleon
and the rationale that shaped it. We also describe how this ar-
chitecture can be used to support continuous migration to a new
account management system by a community that by that point in
time numbered in several thousand and had created hundreds of
thousands of owned digital artifacts (such as images, data objects,
notebooks, keypairs, experimental traces, etc.), all of which had to
be correctly migrated in privacy-preserving ways. In many ways,
the engineering and logistical effort was tantamount to rebuilding
the foundation under a skyscraper with thousands of inhabitants.
We share implementation insights, our lessons learned, and recom-
mendations for migration strategies for handling authentication
and authorization in similar systems as well as a migration architec-
ture for systems in heavy use. In summary, we make the following
contributions:

e We describe an architecture and implementation of a two-tier
federated identity system based on open source Keycloak
[34] and Globus Auth [35] systems and extensible to any
federated identity provider.

e We describe the pros and cons of this system as well as
lessons learned in its implementation and its use for migra-
tion of a large community to federated identity, or any new
identity management system.

This paper is organized as follows. We first describe the
Chameleon project and relevant parts of its implementation, the
problems posed by lack of support for SSO and federated identity,
and discuss partial solutions that were tried but failed to solve those
problems. We then explain the architecture we designed to solve
them, its implementation, and migration strategies put in place to
make the transition seamless for our community. Finally, we share
our lessons learned from both the implementation and migration.

2 BACKGROUND

2.1 Chameleon

Chameleon is an NSF-funded distributed cloud system supporting
computer science research, education, and work on emergent ap-
plications [10] [24] [25]. Since announcing its public availability

https://doi.org/10.1145/3491418.3530770
https://doi.org/10.1145/3491418.3530770

PEARC °22, July 10-14, 2022, Boston, MA, USA

in July 2015, the testbed has supported 6,000+ users working on
800+ projects. To cover the broadest possible range of experiments,
Chameleon supports bare-metal reconfiguration giving users full
control of the software stack including root privileges, kernel cus-
tomization, console access, as well as the ability to experiment with
software defined networking. A small part of the system is config-
ured as a virtualized KVM cloud, and the system recently added an
edge testbed, CHI@Edge [23], giving users access to a variety of
edge devices via container-based reconfiguration.

The original deployment of the system was across two sites,
the University of Chicago (UC) and Texas Advanced Computing
Center (TACC); these were recently joined by smaller associate
sites [8] [11] operating resources on a volunteer basis based on a
packaged deployment of CHameleon Infrastructure (CHI), called
CHI-in-a-Box [22]. In addition to operating resources, Chameleon
provides centrally-operated high-level applications including re-
source discovery services, a user portal, a JupyterHub [20] deploy-
ment, as well as several internal services; these centralized services
integrate with all the participating sites and, along with an Open-
Stack Horizon GUI [16] at each deployment, provide interface to
the testbed.

2.2 Testbed Access and TACC Administration
System (TAS)

Testbed access is structured such that any user with valid creden-
tials can log into the system—however, in order to actually use
the system resources, users need to belong to a Chameleon project,
associated with a valid allocation. Allocations represent a “budget”,
expressed in Services Units (SUs) (one SU represents one hour of wall
clock time on one of our baseline servers) available to the project
over a fixed amount of time. To request an allocation, users are
first certified for PI eligibility according to infrastructure-specific
policies [9] and can then propose a project. Once awarded an allo-
cation, a project PI can add multiple users to their project, which
gives them access to the system resources. One Chameleon user can
potentially be a member of multiple projects at any given time and
switch between them depending on their work. Both projects and
users can be disabled, e.g., if the project’s allocation expires or the
project/user demonstrates irresponsible use or abuse of resources.

Chameleon initially provided access to the system via TAS, which
performs Identity Access Management (IAM) as well as manages
allocations. It is up to the infrastructure to determine how to charge
system tenants for allocation use; typically this is derived from
compute hours spent on the system. TAS exposes a LDAP read
interface and an administrative GUI [31] and REST API that allow
operators and automated systems to manipulate state. Chameleon’s
access model of users, PIs, projects and allocations is inherited from
the design of TAS.

2.3 OpenStack and Keystone

Chameleon’s implementation is based on OpenStack, a mainstream
open-source cloud implementation. In an OpenStack deployment,
IAM is provided by a service aptly named Keystone, authenticating
local users and issuing tokens to allow them to interact with cloud
services configured within the deployment. User accounts can have
memberships in multiple projects, where a project is effectively a

Jason Anderson and Kate Keahey

single tenant in the cloud; memberships are modeled as role assign-
ments granted to a user; adding a user to a project is equivalent to
assigning the user a “member” role on that project.

As more resources and users join the cloud, operators often
transition to multiple OpenStack deployments to facilitate scaling
and/or to optimize a given cloud’s configuration for a target use
case. In such cases, the OpenStack architecture’s dependency on
Keystone introduces the problem of how to continue to provide
a single login experience for end-users: because each Keystone
deployment has its own database of users, projects, and role as-
signments, accounting is now decentralized with users effectively
managing one account per deployment. To make matters worse,
role assignments can differ across sites, leading to confusion about
why a user is a member of a project on one site but not another.

Operators typically solve this problem in one of three ways:
by clustering the various Keystone backing databases under the
hood such that they are consistent; by running automation to sync
the state of users, projects, and roles at each site via Keystone’s
administrative APIs; or by implementing account federation, where
Keystone delegates authentication to an external entity [28].

3 PARTIAL SOLUTIONS

In a system composed of multiple sites and potentially multiple
applications (such as the user portal) the central challenge is how
to provide a single sign on experience for users, such that a user
can access all the applications and sites throughout the system with
a single set of credentials, and that by logging into the system once,
they establish a session valid across all site resources [13].

In the early days of the system, all Chameleon users registered
for an account and obtained association with a project via the user
portal, which effectively served as a front-end for TAS. Account
information from the TAS database was then propagated to Key-
stone databases on any participating sites, allowing users to log
in with their TAS username and password, either via a GUI login
or in authentication parameters sent with CLI requests. From the
user’s perspective, it appeared that they had a single Chameleon
account, even though they still needed to log in once per indi-
vidual application or site. This illusion was however often under-
mined by the time of propagation between the TAS database and
individual sites as well as the occasional brittleness of the sys-
tem that led to inconsistent state between the user databases at
different sites.

To mitigate the unreliability and latency of offline sync across
multiple sites, we configured the Keystone databases at both sites
as a geographically-distributed MariaDB cluster, with the site at
TACC replicating to the UC site. We then only needed to sync TAS
state to the TACC Keystone DB, which was more manageable, but
resulted in other downsides. First, any network partition between
sites would cause data at the replica to become stale, resulting in
inconsistent state (i.e., users who created an account or joined a
project after the partition could not access the replica site). Second,
it introduced strong coupling between the sites, because any schema
changes now had to be coordinated to avoid breaking Keystone.
Finally, any erroneous writes to the replica DB would not only break
the replication, but also necessitate a complex recovery process
that involved data copy and close coordination between all sites.

Migrating towards Single Sign-On and Federated Identity

A common approach that avoids offline syncing is to configure
Keystone to delegate to some LDAP server for authentication [28].
TAS supported LDAP, but we did not pursue this path because of
lack of support in Keystone for mapping LDAP groups to projects:
Keystone could delegate identity to LDAP and use it to log in the
user, but assignment of a user to projects was assumed to be man-
aged separately on each site via Keystone’s API Keystone is open
source and therefore we could have adapted its internal engine
to support this, but users would still have to sign in to each site
independently (i.e., no SSO.)

As more Chameleon sites came online, the prior solutions did
not scale either from an operations or user experience perspective.
Hoping to kill two birds with one stone, we implemented a cus-
tom authentication mechanism to provide SSO while side-stepping
the complex DB setup. With this arrangement, web application
logins would redirect to the user portal, whereupon if the user
had an active session, the system would sync project assignments
to the target application before completing the login action. Ul-
timately this was insufficient for two reasons. First, it required
deep development in each application; JupyterHub for example
was never integrated properly for this reason. Secondly, users of
CLI or Python clients could technically still authenticate with their
username and password, but such events would not trigger the
live-syncing of assignments specific to the web client. Effectively,
after a user was added to a project, they would have to use the web
client at least once in order to “update” their account before pro-
ceeding to utilize API clients like the CLI; this was understandably
quite confusing.

4 GOALS

While the approaches described above did not provide the desired
solution, their different trade-offs helped us clarify the list of goals
for our system as follows:

Single sign-on user experience, which allows users to access all the
sites via all the applications/interfaces throughout the system with
a single set of credentials, such that logging into the system once
establishes a session valid across the site resources. The solution
should scale with the number of sites and applications, provide
robustness, and provide low operational cost.

Use of existing/federated credentials to manage any Chameleon
session. Many of our users already have accounts managed by their
host institutions or general-purpose identity provider (IdP) such as
Google or ORCID [17]. Reusing those credentials not only removes
an unnecessary barrier to testbed use but also has the potential to
extend the benefits of single sign-on across multiple testbeds as
demonstrated in e.g. [29].

Support for multiple identity providers allows us to continue sup-
porting TAS users (essential for implementing continuous migra-
tion), but more importantly gives us the flexibility to extend the
system to support, e.g., institutions not yet part of InCommon or
lacking resources for joining such a federation, international col-
laborations, or future identity providers.

Flexible, centralized authorization policies, independent of con-
straints that may be introduced by any one identity provider, and
may differ across applications (e.g., without an allocation a user
should be able to log into a portal but not JupyterHub). Central

PEARC °22, July 10-14, 2022, Boston, MA, USA

policy enforcement additionally provides an important "kill-switch"
when malicious users or projects must be expunged.

As an implementation concern, we also wanted to avoid storing—
or sharing—sensitive information (such as passwords) about our
users.

5 DESIGN, IMPLEMENTATION, AND
MIGRATION

Considering these goals in the context of our existing implementa-
tion left us with a conundrum. While it would have been possible
to provide SSO with TAS providing authentication, we wanted to
support federated identity credentials. Supporting other IdPs in
addition to TAS would solve this problem, yet violates a core TAS
implementation assumption, that only TAS users can be associ-
ated with TAS allocations. Hence, the stark realization that entirely
migrating off of TAS was ultimately necessary for SSO with fed-
erated identity. This added significant complexity, as we not only
had to swap out our authentication layer, but now also had to find
replacements for the myriad authorization responsibilities TAS had
for project management, user roles (e.g., PI status), and allocation
tracking and approval.

5.1 Architecture

For the final architecture, we settled on two separate systems: one
for accounts (IAM), and one for allocations. The allocation sys-
tem stores mappings of projects to the budget remaining in their
allocation, and also tracks usage of that allocation over time. The ac-
count system provides [AM, i.e., integrates authentication providers,
maintains assignments between users and projects (including roles)
and also provides a central access management point. Having both
systems under our purview provides a leverage point to introduce
"human in the loop" validation to important workflows such as PI
and allocation approval.

From the point of view of existing applications, the account
system provides central authentication and session management,
allowing us to deliver a true SSO experience; if a user logs in once,
they can use any client application in the Chameleon ecosystem.
However, the account system does not perform authentication
directly. Rather, authentication is delegated to any one of several
external identity providers. Not only does this allow us to support
multiple authentication methods, but it also opens the possibility
for integrating non-authenticating identities into the system, e.g.,
users can associate their GitHub account to their Chameleon profile
to allow invoking GitHub’s API on their behalf.

Thus, the functions performed by the account system include
mapping external identities (e.g., InCommon, Google, TAS) to
Chameleon user accounts, organizing groupings of users into ten-
ants on the system, and providing login and session management
for Chameleon’s applications, which range from a JupyterHub in-
stallation, multiple OpenStack cloud deployments, and the user
portal.

We chose to split the allocations system from the account system
as they have different access patterns and store different amounts
and shapes of data. The allocations system, for example, is involved
on every request for resources on the testbed and stores an im-
mutable history of all of a project’s charges (e.g., leasing multiple

PEARC °22, July 10-14, 2022, Boston, MA, USA

Request /__>

i View ----"""77"77
allocation)
,-allocation
’ Publish
A 4 usage info
User Portal
& | ‘
—d—>
S o
OpenStack sites ~ €---- Q(\O‘ <
W
Scientist
JupyterHub (

Jason Anderson and Kate Keahey

Chameleon
Allocations System

Approve
allocation

Chameleon
Grant Pl status ~ Operator
Update project
members
Chameleon

Account System

Figure 1: The federated identity architecture; external IdPs authenticate the user, then the account system applies policies

which authorize the end-user on a number of applications.

bare metal nodes for a week), while the account system is only
involved when a user creates or extends a session, and stores a
mutable record of user accounts, which users self-manage. Splitting
the systems additionally gives us the ability to vary their imple-
mentations with greater ease, e.g., we could change the underlying
database for the allocations system without affecting the accounts
database.

5.2 Implementation

To implement the account system we selected Keycloak [34], an
open source and highly configurable IAM system from Red Hat. It
supports integrating with multiple identity provider sources via
LDAP/OpenID/SAML, group and user management, customizable
per-client enrollment and login workflows, and central session
management. Keycloak can act as an OpenID Connect Provider,
a common authentication standard compatible with our existing
applications. We configured Keycloak to delegate authentication
to one of two external identity providers: Globus Auth and TAS.
Globus Auth builds on CILogon [5], which allows end-users to au-
thenticate with any host institution in the InCommon federation as
well as general-purpose identity providers such as Google Auth and
ORCIiD [17]. TAS is not part of the InCommon federation and as
such could be supported by Globus Auth alone. We selected Globus
instead of CILogon for two reasons. First, Globus requires that users
self-manage the process of linking their various identities under a
canonical account; CILogon requires that operators manually rec-
oncile or configure additional automation. Secondly, we anticipated
possible future integration with Globus, so having understanding
of Globus identities ahead of time could bear fruit in the future.

While Globus has a Groups feature, which can manage autho-
rization policies and assignments of users, we wanted to keep this
logic independent of any identity implementation, both to support
identities external to Globus (e.g., TAS), and to have more direct
control over policy implementation.

5.2.1 Authenticating Across Applications. Each application was
adapted to accept authentication via Keycloak as the account system.
The user portal is implemented as a Django web application and as

such could utilize open-source plugins like mozilla-django-oidc to
provide translation from federated users to Django users. Before,
when users made changes to their accounts, e.g., updated their host
institution or invited a new user to a project they serve as PI for,
a privileged system account would ultimately perform the update
against TAS as the backing system; we did not significantly change
this model except to use a Keycloak system user and publish changes
via the Keycloak Admin REST API instead, though Keycloak’s fine-
grained authorization services could allow us to remove reliance
on such a privileged system account in the future.

For the OpenStack sites, we configured Keystone federation [14],
where Keystone delegates authentication to an OpenID or SAML
1dP and then maps user “claims” returned by the IdP (which include,
e.g., the user’s full name, host institution, and in what groups they
have membership) to users and projects in Keystone. Unlike the
limited LDAP integration we discussed earlier, this federation capa-
bility can dynamically create projects and user assignments in the
Keystone backend at login time. This transforms the task of identity
management in Keystone from one of ongoing maintenance to a
one-time configuration: all that must be set up is the mapping from
the IdP (in our case, Keycloak) to Keystone entities. While much
of this worked off-the-shelf, we nonetheless hit several limitations
that required additional development work: Keystone only allowed
mapping a user to a single project (our users could be in several
simultaneously), did not remove project memberships when a user
left a project in the IdP (no offboarding), and the mapping engine,
which uses a declarative configuration describing how to perform
the translation from IdP to Keystone, had missing or inconsistent
behavior with some of the more advanced options that we needed
(like regex filtering.) We resolved each issue with patches against
Keystone, some of which have already been accepted upstream [2]
[3].

JupyterHub is also implemented in Python and supports au-
thentication plugins; we integrated one such, OAuthenticator [21],
which supports OpenID Connect. However, this is not the whole
story. In the past, users of Chameleon’s JupyterHub environment
took advantage of its ability to transparently provide authentication

Migrating towards Single Sign-On and Federated Identity

passthrough to the various OpenStack clouds: when users logged
in, JupyterHub would re-use the user’s submitted password to ob-
tain Keystone access tokens, which were then passed to the user’s
Jupyter server as environment variables. From there, they could
be used by, e.g., Python libraries to access OpenStack cloud APIs,
allowing users to orchestrate experiments entirely within Jupyter
[4]. In a federated login scenario, this is no longer possible as we
are never in possession of the user’s credentials directly, yet we
were able to configure the Keycloak account system to allow access
tokens for the Jupyter application to additionally be used against
the Keystone applications (via the “aud” OpenID Audience claim)
[3]. Functionally this is equivalent, as we have a way to pivot a
user’s JupyterHub session into an OpenStack session.

5.2.2 Adapting User Workflows. Chameleon has several policies
that we must enforce at user enrollment, such as requiring accep-
tance of Terms of Service, ensuring that we capture information
about the user’s declared host institution, country of residence and
citizenship, and tracking the user’s join date. Prior, this information
was collected and stored in TAS. CILogon’s COmanage product
supports rich configuration of user enrollment workflows; fortu-
nately, Keycloak is similarly customizable via external Java plugins.
We implemented several such plugins [33] to add additional actions
a user must complete to enable their account. We also extended
Keycloak’s default theme with Chameleon branding to unify the
login experience across our products. Keycloak is customizable
enough that we could implement application-specific policies, such
as requiring some additional steps when using a given application
for the first time, but we ultimately did not require this.

To address the CLI and remote API use case, where users are not
using an interactive login flow, we enabled login via CLI password:
this is similar to “application passwords” or dedicated credential
generation that other systems (e.g., GMail, GitHub) use to accom-
modate the introduction of MFA or other steps in login that require
user interactivity. This was equivalent to allowing OpenID Con-
nect’s Resource Owner Password Credentials grant type in Keycloak
for the OpenlID clients handling authentication for the OpenStack
clouds. Users can only use this authentication method when using
CLI or e.g., Python clients and they must already have registered
to configure this method of access. JupyterHub users do not need
to additionally configure such access, as they can transparently
authenticate onwards to OpenStack once logged in to Jupyter, as
described previously.

5.2.3 Managing Allocations. To implement the allocations system,
which needed to replace equivalent functionality in TAS, we built
a new API for reporting charges accrued on the testbed (via, e.g.,
resource reservations) and integrated it into the existing user portal,
which already manages much of the allocation lifecycle. We had
maintained custom patches in Blazar [15], the OpenStack reser-
vation system, to verify lease requests against a central Redis DB,
which held the current allocation balances, to ensure users did not
request resources above their budget. We decided to formalize this
pattern and wrote a Blazar design specification for a system to gate
lease requests and renewals pending according to operator-defined
policy rules, including the capability of delegating a policy decision
to an external API [1]. This was approved and subsequently devel-
oped by the Chameleon team and deployed to the OpenStack sites,

PEARC °22, July 10-14, 2022, Boston, MA, USA

which now request approval for all leases and log any changes to
the lease to the allocations API. Each lease is modeled as an on-
going charge in a backing database; as a bonus, this allowed us to
implement a feature where project members can open a history of
all charges from within the user portal to better understand their
usage over time; in the past this was challenging to implement due
to how allocations were modeled under the old system. The user
portal already had workflows that operators used to approve PI
status and allocations; these had to be adapted to integrate with
the new account system and the new local allocations database, but
otherwise remained the same.

Finally, we updated or implemented new forms of reporting to
track the total number of users and allocations across all Chameleon
systems; this was largely a matter of adapting our existing reports
to pull data from Keycloak via the Admin REST API rather than
querying TAS, which used to be the source of record.

5.3 Migration

One of the benefits of the architecture described above is that it
provides a viable foundation for continuous user migration through
its support for multiple IdPs. To leverage it, we first considered the
migration needs of our community.

Chameleon’s community is naturally volatile: of the thousands
of users who accessed the system over the years, most use the sys-
tem intensively for a relatively short time (on the order of several
months) while they work on their research project or participate in
a class, after which they might not use the system for a long period
of time or may even move on entirely (e.g., graduate, change jobs,
etc.). We estimate that only 5-10% of our overall community might
log into the system in any given month. Users returning to the sys-
tem, however, even after a long absence, still expect to have access
to the digital artifacts they created which include SSH keypairs,
images, notebooks, data, etc. Our migration strategy was thus based
on the recognition that (1) the volume of users who will migrate
during the rollout period will be relatively high, (2) the volatile
community access pattern will lead to a long tail of migration oper-
ations as users return to the testbed, and (3) support staff may have
to support migration-related tickets for years. Given this dynamic,
we based our migration strategy on user self-migration that could
be supported during the rollout as well as afterwards. Accordingly,
we developed a self-migration tool; this took roughly an additional
one FTE week to develop as compared to roughly 10 FTE months
of design and development of the architecture described above.

This self-service data migration tool would prompt the user to
log in to the target cloud with both the legacy and federated lo-
gin method; then, it would systematically copy, share, or transfer
ownership of the user’s stored SSH keys, disk images, and server in-
stances and leases, respectively, from their legacy to their federated
account. Keystone’s implementation of federation unfortunately
necessitates such action. Internally, Keystone stores password users
and federated users as separate records. This means that users of
Chameleon now have multiple accounts in the OpenStack deploy-
ments. Projects function the same way: internally, projects created
as part of mapping IdP groups to Keystone projects are stored sepa-
rately to legacy local projects. Consequently, depending on which
method a user used to login to the cloud, they would see that they

PEARC °22, July 10-14, 2022, Boston, MA, USA

have access to the same set of projects (at least, when referenced
by name), yet the saved data, e.g., server instances, leases, and
disk images, would be entirely different! The migration tool effec-
tively syncs the user’s legacy account to their federated account,
collapsing these two universes.

We implemented a staged rollout: beginning in October 2020, the
new federated login experience was available on an opt-in basis for
existing users via the self-migration tool. For some time leading up
to launch day, we periodically ran scripts to sync users and project
assignments from TAS to Keycloak to ensure the new system re-
mained consistent with user changes. At launch, we also started
requiring that new users enroll with federated identity to avoid
dealing with more legacy users. One month after initial release, we
switched federated identity from opt-in to opt-out; it was at this
point that most existing active users created a federated account
and performed their data migration. We supported the legacy login
for existing users for another month, at which point it was entirely
disabled. Over a three-month period, we had 267 users migrate
their legacy accounts over, and 60 new users joined the system
via federated enrollment; since the migration period, a total of 389
users have performed migration, following the predicted long-tail
trend, with the first months of 2021 averaging 15 migrations per
month, then leveling off, currently at a rate of 1-3 per month. The
migration tool is still deployed to assist users returning after the
initial migration window. Developing an on-demand, self-service
migration tool reduced support load significantly: while some users
required our help to merge their accounts, most were able to com-
plete this alone. The development cost of FTE week was therefore
more than offset by the reduction in support volume: staff handled
only 25 migration-related tickets during the 2-month window. To
increase visibility of the feature, we wrote a dedicated section in our
documentation [32] to educate existing users about the change and
guide them towards the migration tool and added informational
banners that pointed to this documentation, both in the user portal
and in the OpenStack GUISs, visible only for legacy users.

6 LESSONS LEARNED

Overall, the approach described here met all our goals (Section
4)—unlike the cheaper but ineffective alternatives we tried before
(Section 3). A tiered system allowed us to “have our cake and eat
it too” in that we were able to base our SSO implementation on
an open source system with widespread mainstream adoption that
ultimately provided the flexibility we sought—while the second tier
supported the use of existing federated credentials and multiple
identity providers needed to implement continuous migration in
the short term, and offered the potential for integrating other IdPs
in the long term. In particular, using an open source SSO implemen-
tation means that we have the freedom of extending it to support
needs that cut across our various applications. For example, includ-
ing human-friendly display names wherever a user’s allocation
ID is rendered, customizing the login page for greater usability
(especially during a potentially confusing migration period), or
providing context about whether a user’s allocation is for research
or education purposes (possibly influencing their default UL) Fur-
ther, Keycloak allows us to associate non-authenticating identities
to user’s accounts; this allows for future functionality leveraging

Jason Anderson and Kate Keahey

integration with a user’s private GitHub or GitLab repositories, or
any other useful OAuth 2.0 services. Finally, using a managed IAM
(e.g., COmanage’s subscription tier) incurs an annual cost that our
approach does not, though of course this is offset by the cost of
implementing and operating our own IAM service.

These trade-offs may play out differently in different situations.
A self-operated IAM incurs normal costs of secure and reliable oper-
ation (e.g., backups, upgrades, security patches, network firewalls,
etc.), but also is a single point of failure and thus requires careful
planning for high availability and disaster recovery; in our case,
those costs are amortized given that we already operate a number
of centralized services for the system. While working with open
source implementation provides the potential for implementing
extensions important to us, it of course also implies the need for
such extensions and ability to implement them. Lastly, from the
perspective of migration, an alternative might have been to operate
TAS and federated identity system side by side for a while; this
would have been difficult because of the variety of applications we
support (Section 2.1), each biased towards a single login mechanism
and thus requiring paying implementation costs many times over.

During migration, the most common pain point users encoun-
tered was when they changed which identity served as their pri-
mary Globus ID. In Globus, primary identities uniquely identify
separate Globus accounts; i.e., changing the primary ID effectively
creates a new account (users can subsequently re-link prior identi-
ties under this primary to allow multiple authentication methods.)
In our case, our Keycloak IdP would similarly understand the user
to be novel, and may trigger an error due to a collision on the user’s
primary email address, on which we enforce uniqueness. This was
primarily an issue with users who belonged to institutions that
supported both Google Auth and InCommon authentication for
their domain, though there were other edge cases. In such events,
Chameleon support staff manually reconciled accounts through
a separate process we designed to prevent the risk of an account
takeover attack. Globus provides all of a user’s linked identities
as part of their identity set at login time; in hindsight, we could
have implemented more robust detection of this edge case. In prac-
tice, this happened infrequently enough that the support load was
manageable, as we encountered roughly 10 such cases in total.

Crafting a login experience that was intuitive and non-invasive
(fewer clicks and fewer surprises) took longer than we anticipated,
and required several patches to Keystone and also the Horizon GUI;
the default configuration for federated login, in particular the Web-
SSO flow used by Horizon, introduced several unnecessary steps,
such as showing an interstitial form asking the user to confirm their
choice to use the federated login method. Supporting multiple login
methods (legacy and federated) for the initial months of the rollout
also increased development complexity significantly. As we were
optimizing for ease of use for a research community numbering in
the thousands, these costs felt justified.

One consequence of supporting more identity methods and
streamlining user enrollment was that we started to see more spu-
rious accounts in our accounting system. These typically belonged
to students or researchers who were interested in learning more
about Chameleon but did not proceed to be added to an allocation
or request PI status. While the security of the testbed was never
threatened because these users by design could not access testbed

Migrating towards Single Sign-On and Federated Identity

resources or interfere with other users, we nonetheless had to re-
consider the definition of an “active user” and make changes to
our reporting to understand usage, as well as periodically normal-
ize our user corpus to address, e.g., users signing in with Google
Auth method and entering their host institution information in a
free-text field, often in different forms (this could not be automati-
cally discerned via the user’s Google account, as opposed to, e.g.,
InCommon).

7 RELATED WORK

To our knowledge, this paper presents the first description of con-
tinuously migrating a large-scale existing cloud deployment and
community from a legacy username/password login to federated
identity.

Several scientific high-performance computing (HPC) systems
have added support for federated identity in addition to local login
[6] [26] [30], including support for multiple IdPs and linking identi-
ties, yet these leverage existing in-house authorization services (i.e.,
not mainstream open-source) and did not require a transition to
federated identity or describe a migration. One example of a com-
plete federated identity and SSO solution leveraging the CILogon
platform for both authentication and authorization is described in
[27], but does not address the CLI use case or discuss strategies
for moving to a federated identity system. None of the aforemen-
tioned discuss how to integrate applications such as OpenStack and
challenges posed.

One frequently-deployed architecture for IAM in cyberinfras-
tructures is CILogon and COmanage, the former handling authen-
tication and SSO, the latter handling user enrollment and autho-
rization policies [12]. We evaluated COmanage for our two-tiered
approach and opted for Keycloak as a cost-effective alternative
with a simpler operations footprint; while a self-hosted COmanage
deployment requires a number of services ranging from LDAP, a
registry server, DB, and potentially other services for group man-
agement or identity linking [18], Keycloak consists of a single server
and DB, with all configuration and data exportable as simple JSON
records. Keycloak overall has a similar feature set, but a larger user
and contributor base [19], and thus more experience to draw from
with regards to ongoing maintenance and lessons learned, and also
more opportunity for leveraging future contributions. At the same
time, COmanage is likely to offer better support for research cyber-
infrastructure use-cases in its default configuration, and the paid
subscription service will offset operational costs.

8 CONCLUSIONS

We presented a two-tier architecture for a single sign-on system
with federated identity, implemented with commodity open-source
software, which has allowed us to combine the benefits of authen-
tication via federated identity with the need to retain flexibility
within the domain of the Chameleon testbed. This flexibility is re-
quired to provide fine-grained authorization policies for our users
based on such considerations as usage, temporary access (e.g., for
artifact evaluation), or host institution requirements. This archi-
tecture also allows us to support multiple identity providers, a
capability that was key to implementing continuous migration
strategy for our community given its volatile usage pattern.

PEARC °22, July 10-14, 2022, Boston, MA, USA

We found this approach to be successful in that it enabled us
to achieve our goals of moving the system to federated identity
while retaining efficient control over system-specific authorization,
and accomplish continuous migration of a large community, with
hundreds of thousands of digital artifacts in the care of our system,
in a way that was relatively painless for both users and operators.
The trade-offs of this approach include primarily identity collisions
stemming from one entity using different federated identity ac-
counts; these were both relatively few and easily fixed by a manual
reconciliation based on a carefully designed process. Otherwise, our
lessons learned were focused primarily on the effects of adoption
of federated identity, in particular less reliable information about
our users (who may e.g., be using Google accounts without listing
their institutional affiliation) and increased proportion of users log-
ging into the system without actually using it in the absence of the
additional barrier of creating an account. Both are unavoidable and
a result of greater benefits, i.e., more ubiquitous and easier access.

ACKNOWLEDGMENTS

Results presented in this paper were obtained using the Chameleon
testbed supported by the National Science Foundation. This material
is based upon work supported by the U.S. Department of Energy,
Office of Science, under contract number DE-AC02-06CH11357.

REFERENCES

[1] Jason Anderson. 2020. Blazar Specs: Flexible reservation usage enforcement.
https://review.opendev.org/c/openstack/blazar-specs/+/707042

[2] Jason Anderson. 2021. Keystone federation++. https://diurnal.st/2021/07/17/
openstack-keystone-federation-part- 1.html

[3] Jason Anderson. 2022. Migrating towards Single Sign-On and Federated Identity
(PEARC’22): Notes and Sample Configurations. https://doi.org/10.5281/zenodo.
6582389

[4] Jason Anderson and Kate Keahey. 2019. A Case for Integrating Experimen-
tal Containers with Notebooks. In 2019 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE, Sydney, NSW, Australia,
151-158. https://doi.org/10.1109/CloudCom.2019.00032

[5] Jim Basney, Terry Fleury, and Jeff Gaynor. 2014. CILogon: A federated X. 509 cer-
tification authority for cyberinfrastructure logon. Concurrency and Computation:
Practice and Experience 26, 13 (2014), 2225-2239.

[6] Jim Basney, Terry Fleury, and Von Welch. 2010. Federated Login to TeraGrid. In
Proceedings of the 9th Symposium on Identity and Trust on the Internet (Gaithers-
burg, Maryland, USA) (IDTRUST ’10). Association for Computing Machinery,
New York, NY, USA, 1-11. https://doi.org/10.1145/1750389.1750391

[7] Mark Berman, Jeffrey S. Chase, Lawrence Landweber, Akihiro Nakao, Max Ott,
Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. 2014. GENI: A federated
testbed for innovative network experiments. Computer Networks 61 (3 2014),
5-23. https://doi.org/10.1016/J.BJP.2013.12.037

[8] Chameleon. 2021. Setting Up an Associate Site: An Interview With Northwestern

University. https://www.chameleoncloud.org/blog/2021/02/19/setting-associate-

site-interview-northwestern-university/

Chameleon. 2022. Chameleon Cloud Documentation: PI Eligibility. https:

//chameleoncloud.readthedocs.io/en/latest/user/pi_eligibility.html

Chameleon. 2022. Chameleon Main Page. https://chameleoncloud.org/

Chameleon. 2022. CHI@NCAR: An Interview with the Newest Associate

Site. https://www.chameleoncloud.org/blog/2022/02/28/chincar-an-interview-

with-the-newest-associate-site/

[12] Jeffrey S. Chase and Ilya Baldin. 2021. Federated Authorization for Managed Data
Sharing: Experiences from the InPACT Project. In 2021 International Conference
on Computer Communications and Networks (ICCCN). 1-10. https://doi.org/10.
1109/ICCCN52240.2021.9522208

[13] Jan De Clercq. 2002. Single sign-on architectures. In International Conference on
Infrastructure Security. Springer, 40-58.

[14] Marek Denis, Jose Castro Leon, Emmanuel Ormancey, and Paolo Tedesco. 2015.

Identity federation in OpenStack-an introduction to hybrid clouds. In Journal of

Physics: Conference Series, Vol. 664. IOP Publishing, 022015.

Openlnfra Foundation. 2022. OpenStack Blazar. https://docs.openstack.org/

blazar/latest/

[

— =
_ o

[15

https://review.opendev.org/c/openstack/blazar-specs/+/707042
https://diurnal.st/2021/07/17/openstack-keystone-federation-part-1.html
https://diurnal.st/2021/07/17/openstack-keystone-federation-part-1.html
https://doi.org/10.5281/zenodo.6582389
https://doi.org/10.5281/zenodo.6582389
https://doi.org/10.1109/CloudCom.2019.00032
https://doi.org/10.1145/1750389.1750391
https://doi.org/10.1016/J.BJP.2013.12.037
https://www.chameleoncloud.org/blog/2021/02/19/setting-associate-site-interview-northwestern-university/
https://www.chameleoncloud.org/blog/2021/02/19/setting-associate-site-interview-northwestern-university/
https://chameleoncloud.readthedocs.io/en/latest/user/pi_eligibility.html
https://chameleoncloud.readthedocs.io/en/latest/user/pi_eligibility.html
https://chameleoncloud.org/
https://www.chameleoncloud.org/blog/2022/02/28/chincar-an-interview-with-the-newest-associate-site/
https://www.chameleoncloud.org/blog/2022/02/28/chincar-an-interview-with-the-newest-associate-site/
https://doi.org/10.1109/ICCCN52240.2021.9522208
https://doi.org/10.1109/ICCCN52240.2021.9522208
https://docs.openstack.org/blazar/latest/
https://docs.openstack.org/blazar/latest/

PEARC °22, July 10-14, 2022, Boston, MA, USA

Openlnfra Foundation. 2022. OpenStack Horizon. https://docs.openstack.org/
horizon/latest/

Laurel L Haak, Martin Fenner, Laura Paglione, Ed Pentz, and Howard Ratner.
2012. ORCID: a system to uniquely identify researchers. Learned publishing 25, 4
(2012), 259-264.

Internet2. 2022. COmanage Registry Deployment Guide. https://spaces.at.
internet2.edu/display/COmanage/COmanage+Registry+Deployment+Guide
Internet2. 2022. COmanage registry GitHub. https://github.com/Internet2/
comanage-registry

Project Jupyter. 2022. JupyterHub: A multi-user version of the notebook designed
for companies, classrooms and research labs. https://jupyter.org/hub

Project Jupyter. 2022. OAuth + JupyterHub Authenticator = OAuthenticator.
https://github.com/jupyterhub/oauthenticator

Kate Keahey, Jason Anderson, and Michael Sherman. 2022. CHI-in-a-Box: Re-
ducing Operational Cost of Research Testbeds. In Proceedings of the Practice and
Experience in Advanced Research Computing (Boston, MA, USA) (PEARC ’22).
Association for Computing Machinery.

Kate Keahey, Jason Anderson, Michael Sherman, Zhuo Zhen, Mark Powers, Isabel
Brunkan, and Adam Cooper. 2021. Chameleon@Edge Community Workshop
Report. https://doi.org/10.5281/zenodo.5777344

Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione,
Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mam-
bretti, Alexander Barnes, Francois Halbah, Alex Rocha, and Joe Stubbs. 2020.
Lessons Learned from the Chameleon Testbed. In 2020 USENIX Annual Techni-
cal Conference (USENIX ATC 20). USENIX Association, online, 219-233. https:
//www.usenix.org/conference/atc20/presentation/keahey

Kate Keahey, Pierre Riteau, Dan Stanzione, Tim Cockerill, Joe Mambretti, Paul
Rad, and Paul Ruth. 2019. Chameleon: A Scalable Production Testbed for Com-
puter Science Research. In Contemporary High Performance Computing. CRC,
Boca Raton, 123-148. https://doi.org/10.1201/9781351036863-5

Jason Anderson and Kate Keahey

Lee Liming, Ian Foster, and Steven Tuecke. 2015. Building Bridges from the
Campus to XSEDE. In 2015 IEEE International Conference on Cluster Computing.
IEEE, 865-868.

Shawn McKee, Benjeman Meekhof, Ezra Kissel, Andrew Keen, Kenneth M Merz,
and Micheal Thompson. 2020. OSiRIS: A Distributed Storage and Networking
Project Update. In EPJ Web of Conferences, Vol. 245. EDP Sciences, 04012.
OpenStack. 2022. Keystone Edge Architectures. https://wiki.openstack.org/
wiki/Keystone_edge_architectures

Paul Ruth, Kate Keahey, Mert Cevik, Zhuo Zhen, Cong Wang, and Jason An-
derson. 2021. Overcast: Running Controlled Experiments Spanning Research
and Commercial Clouds. In IEEE INFOCOM 2021-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE.

Craig A Stewart, Timothy M Cockerill, Ian Foster, David Hancock, Nirav Mer-
chant, Edwin Skidmore, Daniel Stanzione, James Taylor, Steven Tuecke, George
Turner, et al. 2015. Jetstream: a self-provisioned, scalable science and engineer-
ing cloud environment. In Proceedings of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastructure. 1-8.

TACC. 2022. TACC User Portal. https://portal.tacc.utexas.edu/

Chameleon Team. 2022. Chameleon Cloud Documentation: Migrating to Feder-
ated Identity. https://chameleoncloud.readthedocs.io/en/latest/user/federation/
federation_migration.html

Chameleon Team. 2022. Keycloak plugins for Chameleon IdP deployment
(GitHub). https://github.com/ChameleonCloud/keycloak-chameleon
Keycloak Team. 2022. Keycloak: Open Source Identity and Access Management.
https://www.keycloak.org/

Steven Tuecke, Rachana Ananthakrishnan, Kyle Chard, Mattias Lidman, Brendan
McCollam, Stephen Rosen, and Ian Foster. 2016. Globus auth: A research identity
and access management platform. In 2016 IEEE 12th International Conference on
e-Science (e-Science). IEEE, Baltimore, MD, USA, 203-212. https://doi.org/10.1109/
eScience.2016.7870901

https://docs.openstack.org/horizon/latest/
https://docs.openstack.org/horizon/latest/
https://spaces.at.internet2.edu/display/COmanage/COmanage+Registry+Deployment+Guide
https://spaces.at.internet2.edu/display/COmanage/COmanage+Registry+Deployment+Guide
https://github.com/Internet2/comanage-registry
https://github.com/Internet2/comanage-registry
https://jupyter.org/hub
https://github.com/jupyterhub/oauthenticator
https://doi.org/10.5281/zenodo.5777344
https://www.usenix.org/conference/atc20/presentation/keahey
https://www.usenix.org/conference/atc20/presentation/keahey
https://doi.org/10.1201/9781351036863-5
https://wiki.openstack.org/wiki/Keystone_edge_architectures
https://wiki.openstack.org/wiki/Keystone_edge_architectures
https://portal.tacc.utexas.edu/
https://chameleoncloud.readthedocs.io/en/latest/user/federation/federation_migration.html
https://chameleoncloud.readthedocs.io/en/latest/user/federation/federation_migration.html
https://github.com/ChameleonCloud/keycloak-chameleon
https://www.keycloak.org/
https://doi.org/10.1109/eScience.2016.7870901
https://doi.org/10.1109/eScience.2016.7870901

	Abstract
	1 Introduction
	2 Background
	2.1 Chameleon
	2.2 Testbed Access and TACC Administration System (TAS)
	2.3 OpenStack and Keystone

	3 Partial Solutions
	4 Goals
	5 Design, implementation, and migration
	5.1 Architecture
	5.2 Implementation
	5.3 Migration

	6 Lessons Learned
	7 Related Work
	8 Conclusions
	Acknowledgments
	References

