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Abstract

Recent evidence supports a role for corefer-

ence processing in guiding human expecta-

tions about upcoming words during reading,

based on covariation between reading times

and word surprisal estimated by a coreference-

aware semantic processing model (Jaffe et al.,

2020). The present study reproduces and elab-

orates on this finding by (1) enabling the parser

to process subword information that might bet-

ter approximate human morphological knowl-

edge, and (2) extending evaluation of coref-

erence effects from self-paced reading to hu-

man brain imaging data. Results show that an

expectation-based processing effect of corefer-

ence is still evident even in the presence of the

stronger psycholinguistic baseline provided by

the subword model, and that the coreference

effect is observed in both self-paced reading

and fMRI data, providing evidence of the ef-

fect’s robustness.

1 Introduction

Coreference resolution is a core component of lan-

guage that enables comprehenders to construct

a detailed representation of referents throughout

a discourse. Extensive prior work has explored

various conditions related to coreference resolu-

tion that affect language processing (Greene et al.,

1992; Grosz et al., 1995; Gordon and Hendrick,

1998; Almor, 1999; Ariel, 2001; Cunnings et al.,

2014) and have often relied on constructed stim-

uli to manipulate variables of interest. Comple-

mentary studies using broad-coverage, naturalistic

stimuli have observed coreference effects in self-

paced reading in two instantiations: (1) as a mem-

ory effect based on the count of times an entity

has been previously mentioned (Jaffe et al., 2018)

and (2) as an expectation-based effect, operational-

ized by surprisal estimates from a coreference-

aware incremental parser (Jaffe et al., 2020). While

expectation-based effects have been previously

shown for naturalistic stimuli in self-paced reading

(SPR) and functional magnetic resonance imag-

ing (fMRI) (Smith and Levy, 2013; Shain et al.,

2020), the current study extends these findings by

arguing that coreference resolution contributes to

predicting human behavioral data over previous im-

plementations (e.g., surprisal) that do not model

coreference.

The current study elaborates on Jaffe et al. (2020)

by re-examining the expectation-based effect of

coreference information using an improved base-

line provided by an extension of the coreference-

aware incremental parser. First, the probabilities

of coreference decisions are modeled using a mul-

tilayer perceptron (MLP) model, leading to im-

proved generalizability over the previous system

based on maximum-entropy. Additionally, the in-

cremental parser incorporates a character-based

word generation model (Oh et al., 2021), which

has been shown to yield surprisal estimates that

predict human reading times more accurately than

surprisal calculated from high-capacity neural lan-

guage models. Linguistic task accuracy for coref-

erence resolution shows improvements from the

extended incremental parser, further motivating its

use for psycholinguistic evaluation.

Regression analyses are conducted using sur-

prisal estimates from the parser to determine

whether coreference awareness helps explain mea-

sures of human sentence comprehension from SPR.

In addition, we further evaluate whether these ef-

fects generalize to data from fMRI. Results from

self-paced reading replicate Jaffe et al. (2020) by

showing both (1) that coreference awareness im-

proves the parser’s approximation of human sub-

jective surprisal and (2) that this improvement does

not fully explain a previously reported facilitation

effect from repeated mentions, which is plausi-

bly driven by ease of memory retrieval. Results

from fMRI support a contribution of coreference-

awareness to human surprisal estimation, but fail

to support a dissociable memory effect. Results
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from both modalities thus converge in favor of the

hypothesis that human linguistic expectations are

sensitive to coreferential cues, with possible addi-

tional influences of memory retrieval.

2 Background

Jaffe et al. (2018) introduced MentionCount as

a coreference-related predictor that measures the

number of previous mentions for any entity. In

this measure, singletons, non-entity mentions, and

first mentions have a value of zero, while anaphors

are assigned the number of times that entity was

previously mentioned. For example, the sentence

“Elon Reeve Musk is a business magnate, industrial

designer and engineer. He is the founder...” would

have MentionCounts of zero at “Musk” and one at

“He”. As such, more central and repeated entities

receive higher values for MentionCount.

Jaffe et al. (2018) showed improved fit to self-

paced reading times driven by MentionCount over

surprisal and n-gram baselines, arguing that Men-

tionCount could reflect a memory effect that re-

peated entities are easier to recall and process.

Jaffe et al. (2020) incorporated a coreference

decision into a generative, incremental left-corner

parser to augment its surprisal estimation with in-

formation about discourse-level entities. At its

core, this model can generate prefix probabilities by

marginalizing over parser states qt and preterminal

decisions p1..t:

P(w1..t) =
∑

p1..t,qt

P(w1..t p1..t qt) (1)

A transition model captures how these distributions

are related over timesteps:

P(w1..t p1..t qt)
def
=

∑

qt−1

P(wt pt qt | w1..t−1 p1..t−1 qt−1) ·

P(w1..t−1 p1..t−1 qt−1) (2)

At a given timestep, the full generative process for

the parser includes a lexical decision ℓt, preterminal

decision pt, word wt, grammatical decision gt and

parser state qt:

P(wt pt qt | w1..t−1 p1..t−1 qt−1) =∑

ℓt,gt

P(ℓt | w1..t−1 p1..t−1 qt−1) ·

P(pt | w1..t−1 p1..t−1 qt−1 ℓt) ·

P(wt | w1..t−1 p1..t−1 qt−1 ℓt pt) ·

P(gt | w1..t−1 p1..t−1 qt−1 ℓt pt wt) ·

P(qt | w1..t−1 p1..t−1 qt−1 ℓt pt wt gt) (3)

The parser also makes a coreference index deci-

sion that chooses an antecedent in a fixed window

prior to the current word, or a special null index,

which indicates no antecedent. This coreference de-

cision is conditioned on the preterminal sequence

up to the current timestep p1..t, which includes syn-

tactic category cpℓ1..t and predicate context hpℓ1..t
decisions from earlier timesteps. Syntactic cate-

gory and predicate context are generated as part

of the lexical decision ℓt during inference, and

are derived from a generalized categorial gram-

mar reannotation (Nguyen et al., 2012) of the Wall

Street Journal section of OntoNotes (Weischedel

et al., 2012) for training. Predicate contexts consist

of a lemmatized predicate name and an argument

number, such as POUR_1, indicating the first par-

ticipant in a pouring predication. Together, the

parser decisions generate word-by-word surprisal

estimates that incorporate syntactic structure as

well as propositional co-occurrences from the train-

ing data.

Recently, Oh et al. (2021) showed improved fit to

self-paced reading and eye-tracking data by incor-

porating a character-based word generation model.

Their word generation model is adopted in the cur-

rent work for an improved surprisal baseline for

examining coreference effects. Formally, the word

probability from Equation 3 decomposes into prob-

abilities for the lemma xt, morphological rule rt,

and word wt with the following conditioned-on

variables:

P(wt | w1..t−1 p1..t−1 qt−1 ℓt pt) =∑

xt,rt

P(xt | qt−1 ℓt pt) ·

P(rt | qt−1 ℓt pt xt) ·

P(wt | qt−1 ℓt pt xt rt) (4)

Morphological rules that are part of the generalized

categorial grammar reannotation scheme1 (Nguyen

et al., 2012) are used to generate a list of 〈xt, rt〉
pairs that deterministically generate the observed

word wt. The probability of the lemma xt is mod-

eled as the probability of generating its character se-

quence one-by-one from a recurrent neural network

(RNN) that conditions on the syntactic category

and predicate context from the lexical decision, as

well as the previous character. Similarly, the prob-

ability of the morphological rule rt is calculated

by a softmax classifier that takes as input the last

1These rules mostly model affixation through string substi-
tution.
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hidden state of a separate RNN that receives the

entire character sequence of the lemma, as well as

the syntactic category and predicate context from

the lexical decision. By allowing the model to posit

the word’s underlying structure, the parser is better

able to handle out-of-vocabulary words.

3 Methods

The current work attempts to replicate Jaffe et al.

(2020) but reimplements portions of their model

using a multilayer perceptron for the coreference

decision and a character-based word generation

model for a stronger surprisal baseline. Further-

more, in addition to the SPR data analyzed in Jaffe

et al. (2020), the influence of coreference infor-

mation is also evaluated on fMRI data.2 For SPR

experiments, this work uses linear mixed-effects re-

gression (LMER; Bates et al., 2015) with spillover

predictors (Erlich and Rayner, 1983) and likeli-

hood ratio tests between full and ablated models,

following prior work for comparability.

fMRI studies of naturalistic language compre-

hension must contend with a slow hemodynamic

response function (HRF) that causes effects on the

response to spread out over several seconds (Boyn-

ton et al., 1996). This low temporal resolution of

response data must be reconciled with relatively

faster word-level predictors in our models. To ac-

complish this, the current study follows Shain et al.

(2020) by using continuous-time deconvolutional

regression (CDR; Shain and Schuler, 2018, 2021)

to identify the HRF from fMRI data.

CDR models individual predictor response func-

tions and convolves them to generate a continuous

prediction of blood oxygenation level-dependent

(BOLD) signals as the combination of previous

events. Since the effect of a predictor on the re-

sponse variable is modeled as an impulse function,

predictors can have varying amplitude and decay

over time. This approach therefore allows predictor

and response variables to have different temporal

granularity. For model details, see Appendix A.

For each fMRI experiment, two models are fit

which differ minimally by the addition of a fixed

effect for the predictor of interest (all models in-

clude by-subject random effects for all predictors),

and correlation coefficients are calculated between

each model’s predictions and the fMRI observa-

tions. The difference between correlation coeffi-

2All code used in this work is available at: github.com/
modelblocks/modelblocks-release

cients across models provides the test statistic that

is probed for significance by running a permutation

test, where 10,000 permuted runs are generated to

find the likelihood of the differences being at least

as extreme as the observed difference.

3.1 Response Data

SPR data comes from the Natural Stories corpus

(Futrell et al., 2018) and consists of reading times

from 181 participants that read 10 short narratives

on Amazon’s Mechanical Turk platform. Filtering

observations of <100ms and >3000ms, sentence-

initial and sentence-final words, and participants

who answered fewer than four comprehension ques-

tions correctly resulted in 768,584 observations,

which were split into fit and held-out partitions

(50/50). Because likelihood ratio tests with LMER

(Bates et al., 2015) require the same data for fitting

and evaluation, this work fits a single regression

model on the held-out partition for all SPR results.

The fMRI analyses use publicly available data

from Shain et al. (2020), consisting of mean

responses in the most language-responsive vox-

els of six individually-localized regions of a left-

hemisphere fronto-temporal language network, se-

lected for analysis in light of prior evidence that

this network is selective for language processing

(Fedorenko et al., 2010).

This data contains BOLD measures from 78 sub-

jects recruited from the Boston area who listened

to the Natural Stories narratives for an average of

13.5 minutes during a passive comprehension task.

The audio narratives consist of two audio record-

ings (one male, one female) presented at a normal

speaking rate. This data is also split into fit and

held-out partitions (50/50) by assigning alternate

60-second intervals for each subject into the two

partitions. All fMRI results are fit using the ‘fit’

partition and evaluated on the held-out partition.

fMRI and reading time responses could be cor-

related based on other results using these corpora

(Shain et al., 2020), but evidence also exists that

they can be capturing different aspects of language

processing (Oh et al., 2021).

3.2 Predictors

As in Jaffe et al. (2020), coreference-aware and

coreference-unaware surprisal predictors are gen-

erated from an incremental left-corner parser de-

scribed in Section 2 trained on the coreference-

annotated OntoNotes corpus (Weischedel et al.,
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Coreference Model Pro P/R/F1 Pro Acc All P/R/F1 All Acc Weighted Acc

MaxEnt (Jaffe et al., 2020) 87.5/80.8/84.1 41.8 72.0/34.1/46.3 36.2 1676.1609

MLP (this work) 87.7/86.3/87.0 53.1 70.4/46.0/55.6 41.0 2279.8963

Table 1: Reimplementing the coreference decision with dense feature embeddings in an MLP, together with the

character-based word generation model, slightly improves coreference performance. Precision, recall, and F1 is

shown for mention detection for both pronouns and all mention types. Linking accuracy is reported as the correct

antecedent choice within correctly recalled mentions. Weighted linking accuracy is the product of mention F1 and

mention linking accuracy. Evaluation data is the dev sections of the Wall Street Journal portion of OntoNotes.

Paradigm Main Effect Baseline BaselineLogLik FullLogLik p-value

SPR ∆coref-5gramsurp 5gramsurp -2431803 -2431760 1.33e-20∗∗∗

SPR ∆coref-nocorefsurp nocorefsurp -2431843 -2431822 1.48e-10∗∗∗

SPR MentionCount corefsurp -340579 -340559 1.51e-10∗∗∗

fMRI ∆coref-5gramsurp 5gramsurp -249797 -249763 10.00e-05∗∗∗

fMRI ∆coref-nocorefsurp nocorefsurp -249781 -249770 3.00e-04∗∗∗

fMRI MentionCount corefsurp -249761 -249757 1

Table 2: Individual model fits and significance of main effects as measured by full vs. baseline model comparisons

using likelihood ratio tests for LMER (SPR) and permutation of correlation coefficients for CDR (fMRI). Baseline

predictors in SPR include word length for all models; in fMRI, they are end-of-sentence, pause duration, and rate.

2012). However, this work differs in that the coref-

erence decision is implemented with a two-layer

MLP, in contrast to the maximum-entropy model

used originally. The MLP uses dense embeddings

for the syntactic category and predicate-context fea-

tures that contribute to the coreference decision, but

otherwise follows the original model. As seen in

Table 1, the character-based word model and coref-

erence MLP implementation demonstrate some im-

provement in coreference resolution, primarily in

the recall of pronominal anaphors. While improved

coreference resolution may indicate more human-

like processing, it remains to be seen whether the

surprisal estimates from the model will better pre-

dict SPR and fMRI data during language process-

ing.

In order to avoid collinearity, this study uses

the difference between the surprisals from the

coreference-aware and coreference-unaware ver-

sions of the same parser (∆coref-nocorefsurp) as

a predictor that captures the contribution of coref-

erence information. 5-gram surprisal is estimated

using KenLM (Heafield et al., 2013) on the same

training sections of OntoNotes as for the parser-

based surprisal estimates. Word length is measured

in characters.

CDR models (fMRI only) include the deconvo-

lutional intercept rate, which estimates the base

response of the system to a stimulus (Shain and

Schuler, 2021). Wrap-up effects are controlled us-

ing an indicator for end-of-sentence, and prosodic

effects are controlled using pause duration, the

time elapsed (in ms) for any pauses in speech dur-

ing the audio recording. To avoid wrap-up effects

at the end of the scanning session, all images fol-

lowing the end of the audio stimulus are dropped.

4 Results

4.1 Self-paced Reading Data

The results in Table 2 show that ∆coref-

nocorefsurp significantly improves fit to SPR data

over a coreference-unaware surprisal baseline by

a likelihood ratio test (p < .0001). Additionally,

the delta predictor between coreference-aware sur-

prisal and 5-gram surprisal (∆coref-5gramsurp)

significantly improves fit to SPR data over the 5-

gram surprisal baseline by a likelihood ratio test

(p < .0001). MentionCount significantly improves

fit to SPR data over the coreference-aware surprisal

baseline by likelihood ratio test (p < .0001). These

results on SPR data are consistent with prior results

reported by Jaffe et al. (2020).

4.2 fMRI Data

As with SPR data, ∆coref-nocorefsurp signifi-

cantly improves fit to fMRI data over a coreference-

unaware surprisal baseline by a paired permutation

test evaluating the improvement in correlation be-

tween the predicted and true responses on the held-

out partition (p < .0001). ∆coref-5gramsurp also
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significantly improves fit to fMRI data over the 5-

gram surprisal baseline by the same permutation

test (p < .0001). However, MentionCount does not

significantly improve fit over a coreference-aware

surprisal baseline predictor (p = 1).

Taken together, coreference-aware surprisal is

robustly attested in both SPR and fMRI as a strong

predictor of psycholinguistic data. The mixed re-

sults showing an effect of MentionCount in SPR but

not in fMRI suggest that memory might be variably

recruited in SPR vs. passive listening tasks, where

SPR requires more memory resources. Similarly,

it may be that fMRI as a dependent variable with

language-specific localization is tracking different

language processes than those evident in reading

time latencies (Oh et al., 2021).

5 Conclusion

This study reproduces previously reported coref-

erence effects in self-paced reading using an im-

proved surprisal estimator baseline, finding evi-

dence for a coreference-driven expectation effect

during naturalistic reading. Additionally, a new

analysis using fMRI data shows that coreference-

aware surprisal contributes to significantly bet-

ter fit, further supporting the overall claim that

expectation-based language processing utilizes

coreferential cues. However, a memory retrieval

effect for coreference is observed in SPR but not

in fMRI, highlighting the complex nature of hu-

man coreference processing and offering potential

future directions for investigation.
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A CDR Implementation

Following Shain et al. (2020), CDR models used in

this study tie the parameters of the HRF across

predictors, thereby allowing predictors to vary

only the the scale of their influence on the re-

sponse. Models include random HRF estimates

by fROI and random intercepts by subject, and are

fitted with black box variational inference using

default priors as described in Shain and Schuler

(2021). The CDR codebase is available at https:

//github.com/coryshain/cdr, and com-

plete model configuration files are available

at https://github.com/modelblocks/

modelblocks-release.


