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Abstract

Unsupervised PCFG induction models, which

build syntactic structures from raw text, can

be used to evaluate the extent to which syn-

tactic knowledge can be acquired from distri-

butional information alone. However, many

state-of-the-art PCFG induction models are

word-based, meaning that they cannot directly

inspect functional affixes, which may provide

crucial information for syntactic acquisition in

child learners. This work first introduces a

neural PCFG induction model that allows a

clean ablation of the influence of subword in-

formation in grammar induction. Experiments

on child-directed speech demonstrate first that

the incorporation of subword information re-

sults in more accurate grammars with cate-

gories that word-based induction models have

difficulty finding, and second that this effect is

amplified in morphologically richer languages

that rely on functional affixes to express gram-

matical relations. A subsequent evaluation on

multilingual treebanks shows that the model

with subword information achieves state-of-

the-art results on many languages, further sup-

porting a distributional model of syntactic ac-

quisition.

1 Introduction

Unsupervised PCFG induction models (Johnson

et al., 2007; Jin et al., 2018b) induce grammars

from raw text and use those induced grammars to

build linguistically meaningful hierarchical struc-

tures for sentences. Recent work on PCFG induc-

tion has adopted Bayesian or neural word-based

PCFG models (Jin et al., 2018b; Kim et al., 2019;

Zhu et al., 2020), which have proven to be accurate

at discovering syntactic structures solely from word

sequences. These results indicate that a human-like

grammar can be learned from distributional data

(Harris, 1954; Saffran et al., 1996; Aslin and New-

port, 2014), providing some evidence against the

poverty of the stimulus argument (Chomsky, 1965,

1980) in language acquisition.

However, despite their high performance, these

word-based PCFG induction models are not fully

suitable as computational-level models of syntac-

tic acquisition. Specifically, they treat words as

symbols and do not have direct access to subword

information. In contrast, child language learners

are known to be sensitive to word-internal func-

tional affixes from a very young age (Mintz, 2013;

Haryu and Kajikawa, 2016), which may provide

crucial information for syntactic acquisition (Dye

et al., 2019). This would presumably make word-

based PCFG induction models less appropriate for

modeling the acquisition of morphologically rich

languages, in which most information about syntac-

tic units and relations is expressed at the subword

level (Tsarfaty et al., 2010).

In order to address this issue, this work first de-

fines a character-based model and a minimally-

manipulated word-based counterpart for neural

PCFG induction.1 This formulation allows a clean

ablation of subword information, and therefore

allows its influence on grammar induction to be

studied. Experiments using child-directed speech

demonstrate that the incorporation of subword in-

formation results in more accurate grammars with

coherent syntactic categories that the word-based

induction model has difficulty finding. Addition-

ally, this effect is found to be amplified in morpho-

logically richer languages that rely on functional

affixes to express grammatical relations. Finally,

an evaluation on multilingual treebanks shows that

the model with subword information achieves state-

of-the-art induction results on many languages, pro-

viding further evidence for a distributional model

of syntactic acquisition.

2 Related Work

Early work in unsupervised PCFG induction from

raw text (Johnson et al., 2007; Liang et al., 2009;

1Code used in this work is available at https://

github.com/lifengjin/charInduction.
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Tu, 2012) was not as successful as models of unsu-

pervised constituency parsing (Seginer, 2007; Pon-

vert et al., 2011). However, recent work from un-

supervised parsing (Shen et al., 2019; Wang et al.,

2019; Drozdov et al., 2019, 2020) and grammar

induction (Jin et al., 2018a, 2019; Kim et al., 2019;

Zhu et al., 2020; Jin and Schuler, 2020; Li et al.,

2020) shows much improvement over previous re-

sults with grammars learned solely from raw text,

indicating that statistical regularities relevant to

syntactic acquisition can be found in word collo-

cations. For example, Kim et al. (2019) propose

a word-based neural compound PCFG induction

model for accurate grammar induction on English.

Zhu et al. (2020) further extend this compound

PCFG induction model to jointly induce lexical

dependencies using a lexicalized PCFG. Jin et al.

(2019) augment a PCFG induction model to use

contextualized word embeddings with subword in-

formation to allow morphological cues to influence

induction. Unfortunately, the ELMo embeddings

(Peters et al., 2018) used in that work are trained

with a large number of tokens, which limits the

value of this approach for investigating child-like

syntactic acquisition.

In an attempt to answer a similar question,

there has also been recent interest in evaluating

whether recurrent neural networks like LSTMs can

learn grammar-like representations from word se-

quence alone. Although some initial results seemed

promising (Linzen et al., 2016; Gulordava et al.,

2018), later studies have shown that some of these

results may not necessarily generalize to languages

other than English (Ravfogel et al., 2018; Davis

and van Schijndel, 2020), yielding an inconsis-

tent picture. Moreover, studies in this line of re-

search try to model specific syntactic phenomena

such as subject-verb agreement, filler-gap depen-

dencies, and auxiliary inversion, and therefore have

a slightly different focus from grammar induction.

Complementary to this approach are studies that

aim to reconstruct syntactic representations from

contextualized word representations (Tenney et al.,

2019; Hewitt and Manning, 2019). Again, however,

the use of neural language models assumes access

to much more data than the input available to the

typical child (Hart and Risley, 1995).

3 Models

Experiments described in this paper use two vari-

ants of a neural PCFG induction model, which

differ minimally in how terminal expansion is mod-

eled. A Chomsky normal form PCFG with C non-

terminal categories is first factored into two sep-

arate parts: binary-branching nonterminal expan-

sion rule2 probabilities, and unary-branching termi-

nal expansion rule probabilities (Jin et al., 2019).

Given a tree as a set τ of nodes η undergoing nonter-

minal expansions cη → cη1 cη2 (where η ∈ {1, 2}∗

is a Gorn address specifying a path of left or right

branches from the root), and a set τ′ of nodes η

undergoing terminal expansions cη → wη (where

wη is the word at node η), the marginal probability

of a sentence σ can be computed as:

P(σ) =
∑

τ,τ′

∏

η∈τ

P(cη → cη1 cη2) ·
∏

η∈τ′

P(cη → wη),

(1)

which is also the objective function to maximize

for all proposed models in this work.

To allow the terminal expansion model to be

separated out from the rest of the grammar in-

duction model and make the character- and word-

based models differ only by the terminal expansion

model, we first define a set of Bernoulli distribu-

tions that distribute probability mass between these

two sets of rules:

P(Term | cη) = softmax
{0,1}

(N(E δcη)), (2)

where cη is a nonterminal category, δcη is a Kro-

necker delta function – a vector with value one at

index cη and zeros everywhere else – and E δcη is a

category vector input for the Bernoulli distribution

of cη with E ∈ Rd×C , a matrix of nonterminal cate-

gory embeddings of size d. N is an arbitrary neural

network, which in our implementation is a multi-

layered residual network (Kim et al., 2019). The

residual network consists of B architecturally iden-

tical residual blocks. For an input vector xb−1,cη

each residual block b performs the following com-

putation:

xb,cη = ReLU(W′
b ReLU(Wb xb−1,cη + bb)

+ b′b) + xb−1,cη . (3)

There are two fully connected layers before and

after the residual blocks:

x0,cη = ReLU(W0 E δcη + b0), (4)

scη = ReLU(Wsoft xB,cη + bsoft). (5)

2These rules include the expansion rules generating the
top node in the tree.
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All W’s and b’s are model parameters, and scη are

the logits for the final softmax in Equation 2. B is

set to 2 in all models (Kim et al., 2019). This for-

mulation naturally allows the model to learn from

the input data how to allocate preterminal and other

nonterminal categories, thereby making it more

appropriate for multilingual settings (e.g. aggluti-

native languages that have many word types may

need more preterminal categories in comparison to

other nonterminal categories).

Binary-branching nonterminal expansion rule

probabilities for a nonterminal category cη are de-

fined as:

P(cη → cη1 cη2) = P(Term=0 | cη) ·

P(cη → cη1 cη2 | cη,Term=0). (6)

The binary-branching nonterminal expansion dis-

tribution is defined for all models as:

P(cη → cη1 cη2 | cη,Term=0) =

softmax
cη1,cη2

(Wnont E δcη + bnont), (7)

where Wnont ∈ R
C2×d and bnont ∈ R

C2

are parame-

ters of the model, and E is the embedding matrix

for all hypothesized nonterminal categories.

The lexical unary-expansion rule probabilities

for a preterminal category cη are defined as:

P(cη → wη) = P(Term=1 | cη)·

P(cη → wη | cη,Term=1), (8)

where wη is the generated word token at node η.

The representation of the word wη is usually sym-

bolic in PCFG induction models. In order to probe

the effect of character-based models in incorpo-

rating subword information to grammar induction,

models in this work differ in how words are rep-

resented and in turn how the terminal expansion

models are defined. The word-based models (Neu-

ralWord) use symbolic representation of words,

whereas the character-based models (NeuralChar)

use character sequences as observations for the ter-

minal expansion models. They differ minimally

by the terminal expansion models and the input

they take, which allows a clean manipulation of

subword information while holding all other model

components fixed.

Lexical Expansion Models

The word-based lexical expansion model is a mul-

tilayered residual network which takes as input a

category embedding and generates a distribution

score for all words in the vocabulary:

P(cη → wη | cη,Term=1) = softmax
wη

(N′(E δcη)).

(9)

The function N′ is a four-layer residual neural net-

work with two residual blocks similar to the one

used in generating nonterminal expansion proba-

bilities, except that the output dimension of this

network is the size of the vocabulary.

For the character-based induction model, the ter-

minal expansion probability is factored into the

product of a locally-normalized sequence model

generating all the characters in the word from left

to right:

P(cη → wη | cη,Term=1) =∏

li∈{l1,... ,ln}

P(li | cη, l1, . . . , li−1), (10)

where the character or letter sequence l1, . . . , ln
comprises the word wη with L as the character vo-

cabulary. The sequence model is a multilayered

long short-term memory network (LSTM) with B

layers. The character generation distribution from

the LSTM for each letter l is:

P(li | cη, l1, . . . , li−1) =

softmax
li

(Wchar hi,B,cη + bchar), (11)

where Wchar ∈ R
|L|×h, bchar ∈ R

|L|, and h is the size

of the hidden and cell states. The hidden and cell

states of the LSTM are calculated by:

hi,b,cη , ci,b,cη = LSTM(hi,b−1,cη ,hi−1,b,cη , ci−1,b,cη),

(12)

where b is the current layer index. hi,b−1,cη is the

input from the LSTM one layer below, and hi−1,b,cη

and ci−1,b,cη are the input from the previous time

step. hi,b,cη and ci,b,cη are the current cell and hid-

den states of the LSTM. Finally, the initial hidden

state of the bth layer of the LSTM depends on the

nonterminal category cη:

h0,b,cη = ReLU(Wb,term E δcη + bb,term), (13)

where Wb,term ∈ R
h×d and bb,term ∈ R

h are trainable

parameters.

4 Experiment 1: Evaluation on

Child-directed Speech

This work first explores the influence of subword in-

formation in grammar induction by comparing the
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Induced

category
Count

Attested category

(relative frequency)

Representative

characterization

NC-63 100 sf (1.0) Full stop

NC-29 73 npd+jxt (0.23), nq (0.12), ncn (0.12), npd+jcs (0.1),

npd (0.1), nq+jcs (0.07), ncn+jcs (0.05)

Nouns for child (“Jong”), demonstrative pronoun (“this”)

NC-62 48 sf (1.0) Question mark

NC-38 25 px+ef (0.32), pvg+ef (0.2), paa+ef (0.2), pvg+ep+ef (0.16) Sentence-final verbs

NC-16 21 pvg+ecx (0.67), pvg+ecs (0.14), paa+ecc (0.1), paa+ef (0.1) Verbs preceding auxiliary verbs

NC-2 20 ncn (0.55), ncn+jcj (0.15), ncn+jcs (0.1), pad+ef (0.05),

mag (0.05), ncn+jxt (0.05), pvd+ecs (0.05)

Nouns for caretaker (“mom”)

NC-6 20 ii (1.0) Interjections

NC-7 20 pad+ef (1.0) Expression of agreement (“That is so”)

NW-55 61 sf (1.0) Full stop

NW-32 51 ii (0.45), pad+ef (0.2), ncn (0.12), mag (0.08), maj (0.06) Interjections, expression of agreement (“That is so”)

NW-54 50 sf (1.0) Question mark

NW-0 46 ncn (0.35), npd+jxt (0.07) Various nouns

NW-14 39 sf (1.0) Full stop

NW-10 34 ncn+jcs (0.24), mag (0.15), ncn (0.06), pvg+ecs (0.06),

ncn+jxc (0.06), nq (0.06), paa+ecs (0.06)

Difficult to characterize (heterogeneous)

NW-44 34 paa+ef (0.18), pvg+ef (0.15), ncn+jp+ef (0.09), pvg+ep+ef (0.06),

mag (0.06), pvg+etm (0.06), pvg+ef+jxf (0.06), paa+ef+jxf (0.06)

Sentence-final verbs

NW-29 30 mag (0.2), ncn+jcs (0.1), ncn (0.1), paa+etm (0.1),

npp (0.07), pvg+ecx (0.07), ncn+jxt (0.07)

Difficult to characterize (heterogeneous)

Table 1: Gold part-of-speech tags and representative characterizations of the eight most frequent preterminal cate-

gories induced by the NeuralChar model (NC, top) and the NeuralWord model (NW, bottom). The gold tags that

account for more than 5% of each induced category are reported. The gold tags consist of morphological tags that

are delimited by plus symbols. Refer to Appendix B for a brief description of the morphological tags.

as a proxy for prosodic cues about phrasal bound-

aries, but were removed afterward for labeled eval-

uation. Subsequently, in order to examine whether

there was a significant difference in the RH mea-

sure between the NeuralChar and NeuralWord mod-

els, the conventional paired permutation test used

in supervised parsing was conducted following Jin

et al. (2021). In a paired permutation test, the pre-

dicted trees from two induced grammars are ran-

domly permuted in order to calculate an empirical

distribution of the difference in the chosen evalua-

tion metric. This empirical distribution calculates

the probability of the observed difference due to

chance. Since the evaluation metric of interest

was RH, the per-sentence-recall and per-sentence-

homogeneity of each sentence were first calculated

for each model, which were subsequently permuted

randomly to calculate an empirical distribution over

the difference in RH.

4.3 Results

Figure 1 shows the RH scores from the ten runs

of each model trained on the two child-directed

speech corpora. On the Korean corpus, the Neu-

ralChar model (mean RH = 0.388) strongly outper-

formed the NeuralWord model (mean RH = 0.291),

with the difference in RH being significant accord-

ing to a permutation test. The opposite trend was

observed on the English corpus, where the Neural-

Word model (mean RH = 0.488) performed better

than the NeuralChar model (mean RH = 0.487).

Induced

rule
Count Representative characterization

11→ 43 63 84 Attachment of full stop after declaratives

11→ 3 62 42 Attachment of question mark after questions

43→ 76 53 20 Attachment of noun before imperatives

43→ 76 43 13 Attachment of two declarative utterances

45→ 29 34 12 Left attachment of nouns

3→ 76 3 11 Attachment of adverb before questions

3→ 29 89 10 Attachment of noun before question verbs

53→ 59 75 9 Right attachment of imperative verbs

Table 2: Representative characterizations of the eight

most frequent nonterminal expansion rules induced

by the NeuralChar model on Korean child-directed

speech.

This indicates that the subword information lever-

aged by the NeuralChar model results in notably

more accurate grammars on an agglutinative lan-

guage like Korean. In contrast, subword informa-

tion does not seem to help the induction of a mostly

analytic language like English, in which grammati-

cal relationships are primarily conveyed by word

order.

4.4 Analysis of Categories and Rules Induced

by Character-based Model

Subsequently, in order to further analyze how the

character-based terminal expansion model helps

grammar induction from Korean child-directed

speech, the preterminal categories and nonterminal

expansion rules induced by the NeuralChar model

were compared to those induced by the Neural-
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speech corpora. The NeuralChar model (mean

RH = 0.502) outperformed the NeuralWord model

(mean RH = 0.470) on the German corpus, with

the difference in RH being significant according to

a permutation test. The same trend was observed

on the Chinese corpus, on which the NeuralChar

model (mean RH = 0.372) performed better than

the NeuralWord model (mean RH = 0.351). The

caveat of using silver data to evaluate model per-

formance notwithstanding, a similar relationship

between morphological typology and induction

performance is observed on German and Chinese;

the increase in performance from the NeuralChar

model seems to be more salient on the morphologi-

cally richer German than on Chinese.7

5 Experiment 2: Evaluation on

Multilingual Treebanks

Subsequently, in order to determine if the evaluated

models are competitive with state-of-the-art gram-

mar induction models, we present experiments on

multilingual newswire treebanks to test the perfor-

mance of the NeuralChar and NeuralWord models

using both labeled evaluation (RH) and standard

unlabeled evaluation (bracketing F1). These are

evaluated on newswire to compare against models

developed on predominantly newswire data. The re-

sults show that the NeuralChar model outperforms

these models in grammar induction on most lan-

guages. In addition, comparison of model perfor-

mance on different languages hints at the inductive

biases embodied by each of these systems.

5.1 Procedures

The NeuralChar and NeuralWord models are eval-

uated on ten constituency treebanks, including

Arabic (Maamouri et al., 2004), Chinese (Xia

et al., 2000), English (Marcus et al., 1993), French

(Abeillé et al., 2003), German (Skut et al., 1998),

Hebrew (Sima’an et al., 2001), Japanese (Alastair

et al., 2018), Korean (Han et al., 2006), Polish

(Woliński et al., 2018) and Vietnamese (Nguyen

et al., 2009).8 Compared induction models include

a pure word-based Bayesian PCFG model (DIMI,

Jin et al., 2018a); a PCFG induction model that

generates independently trained character-based

word vectors (Flow, Jin et al., 2019); word-based

7Although Mandarin Chinese is very analytic in the sense
that it has almost no inflectional affixes, the character-based
model seems to have helped induction by identifying one-
character-long derivational morphemes on compound nouns.

8Refer to Appendix C for basic statistics of the treebanks.

neural models Compound and Compound-v (Kim

et al., 2019), which differ in that Compound-v in-

duces sentence-specific grammars, as well as its

extension with lexical dependencies (L-PCFG, Zhu

et al., 2020). At least three random initial seeds are

used for each model and each language, and the

average performance of grammars with the highest

likelihoods are reported. Hyperparameters for the

NeuralChar and NeuralWord models are reported

in Appendix A, and those for other baseline models

followed reported values in their respective papers.

5.2 Results

Table 3 reports the labeled evaluation results for

all models9 as well as unlabeled evaluation results

using F1 for reference. The labeled and unlabeled

evaluation scores generally correlate with each

other very strongly. First, the NeuralChar model

performs very well across the majority of evaluated

languages, showing that the character-based lexical

expansion model is able to capture regularities in

subwords that help grammatical categorization and

constituency boundary detection. In addition, all

models generally perform better on languages with

a small number of high-frequency function words

such as German and English, than on languages

with a large number of high-frequency function

words and affixes such as Chinese and Korean. On

languages that primarily use marker affixes (e.g.

Arabic, Japanese, and Korean), the results show

that the character-based models are able to use in-

formation from these affixes for grammar induc-

tion, resulting in higher performance compared to

word-based induction models.

However, for all models, it still seems much eas-

ier to extract statistical information from words

than from affixes, as demonstrated by the stark con-

trast in the performance of the NeuralChar model

on Japanese and Korean. Japanese and Korean are

both agglutinative languages with similar syntax,

but according to the Japanese annotation guidelines,

all case markers are separated from their stems and

are treated as separate function words. In contrast,

according to the Korean annotation guidelines, case

markers are treated like suffixes and are left unsep-

arated from the word stem. This difference leads to

∼25% of the tokens in the Japanese dataset being

function words but leaves only ∼2% of function

words in the Korean dataset. This can partially

9Evaluation of the Flow model (Jin et al., 2019) on Viet-
namese was not available due to its use of pretrained ELMo
embeddings for individual syllables rather than words.
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Models / RH
Individual languages

Average

Ar Zh En Fr De He Ja Ko Pl Vi

DIMI (Jin et al., 2018a) 16.5 12.4 23.4 16.8 10.3 14.9 23.5 7.1 6.3 8.1 13.9
Compound (Kim et al., 2019) 21.1 21.2 36.8 37.7 41.4 23.5 15.2 5.6 35.1 15.8 25.3

Compound-v (Kim et al., 2019) 16.9 22.6 35.0 39.9 39.4 29.1 13.1 7.0 33.0 24.0 26.0
L-PCFG (Zhu et al., 2020) 24.4 19.4 15.0 18.2 28.3 17.0 30.1 10.2 17.4 10.2 19.0

NeuralWord (this work) 23.0 20.8 29.7 29.8 33.8 21.6 29.8 11.7 22.0 15.1 23.7

Flow (Jin et al., 2019) 25.4 18.7 21.6 25.3 29.7 25.4 24.4 15.0 31.0 — 24.1
NeuralChar (this work) 29.1 23.9 33.4 40.7 39.3 29.5 40.2 16.3 21.0 12.8 28.5

Models / F1
Individual languages

Average

Ar Zh En Fr De He Ja Ko Pl Vi

DIMI (Jin et al., 2018a) 35.3 36.6 50.6 39.6 36.4 45.4 36.2 26.5 43.2 42.7 39.3
Compound (Kim et al., 2019) 32.4 34.2 51.7 48.2 49.7 40.5 22.9 19.1 50.1 34.3 38.3

Compound-v (Kim et al., 2019) 27.6 37.4 50.9 49.6 47.9 49.2 21.6 20.7 47.2 38.3 39.1
L-PCFG (Zhu et al., 2020) 45.0 46.2 36.2 34.4 46.8 38.4 45.2 30.0 32.1 27.3 38.2

NeuralWord (this work) 36.9 41.3 44.4 41.5 44.4 40.0 42.4 23.3 35.2 37.5 38.7

Flow (Jin et al., 2019) 35.3 38.1 38.6 40.3 38.0 45.0 33.8 34.4 47.1 — 39.0
NeuralChar (this work) 42.0 44.9 49.9 51.5 47.7 48.6 55.9 34.6 33.1 28.7 43.7

Table 3: Average labeled Recall-Homogeneity and unlabeled F1 scores from various unsupervised grammar induc-

tion models on multilingual treebanks. The upper group of models are word-based models, and the lower group of

models have access to subword information. The language codes are: Ar: Arabic; Zh: Chinese; En: English; Fr:

French; De: German; He: Hebrew; Ja: Japanese; Ko: Korean; Pl: Polish; Vi: Vietnamese.

explain the results that all models perform much

better on Japanese than on Korean.

There are indications of another inductive bias

at work in the Compound models. One main archi-

tectural difference between NeuralWord and Com-

pound is that Compound distinguishes preterminal

(lexical) tags from other nonterminal (phrasal) tags

while NeuralWord does not. This means that given

the same number of syntactic categories, the Neu-

ralWord models have a larger search space of pos-

sible grammars than Compound. This distinction

between lexical-phrasal categories seems to benefit

induction on Indo-European languages, as can be

seen by the higher performance of Compound mod-

els. Nonetheless, this distinction does not seem to

be helpful on other languages. We leave investiga-

tions of the exact nature of this inductive bias to

future work, although we conjecture that it could

be related to the obligatory use of determiners in

Indo-European languages.

Finally, the average RH and F1 scores show that

the NeuralChar model would be the best model to

try on a new language if no inductive biases per-

taining to grammar induction are known about that

language. Furthermore, the average F1 scores are

very similar across models compared to the aver-

age RH scores, which indicates that models that

perform similarly in terms of unlabeled evaluation

may produce constituent labels of varying quality.

6 Conclusion and Future Work

This paper presents a character-based model and

a minimally-manipulated word-based counterpart

for neural PCFG induction. The character-based

model allows subword information to influence

grammar induction, which is more consistent with

the information that child language learners are

able to leverage. Experiments and analyses using

child-directed speech corpora show that the incor-

poration of subword information results in more ac-

curate grammars with linguistically homogeneous

syntactic categories, with its impact being stronger

on morphologically richer languages. Addition-

ally, this model achieves state-of-the-art induction

results on many languages, providing further sup-

port for a distributional model of syntactic acqui-

sition. Taken together, these results indicate that

the proposed character-based model incorporates

more realistic input and captures more successful

learning outcomes, thus making it a more plausible

cognitive model.

While this work addresses a major drawback of

word-based PCFG induction models, the proposed

model nonetheless relies on symbolic representa-

tions of characters, which are abstractions from po-

tentially noisy perceptual input. Future work could

explore the extent to which syntactic knowledge

can be acquired from lower-level (e.g. phonemic or
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acoustic) input alone by including a word segmenta-

tion task (Elsner and Shain, 2017; Shain and Elsner,

2020) for the model. Additionally, recent work in

unsupervised grammar induction (Jin and Schuler,

2020; Zhang et al., 2021) has shown that incorpo-

rating visual information in the form of images and

videos helps learn constituents that denote entities

or action. Adopting such grounded approaches can

help answer questions about the extent to which the

visual scene or other contexts contain relevant in-

formation, and eventually about the nature of input

required for syntactic acquisition.
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A Hyperparameters and Data

Preprocessing

The NeuralWord and NeuralChar models differ

minimally in terms of hyperparameters used for

training. The following values of each hyperparam-

eter apply to both models if not stated otherwise.

The number of nonterminals (C) is 90. The learn-

ing rate for the Adam optimizer is 0.001, with other

hyperparameters following the default values of Py-

Torch. The size of the category embeddings is 128.

For the character-based induction model, the size

of the hidden and cell states of the LSTMs is 512.

The gradients are renormalized when the norm ex-

ceeds 5.0. The size of each training batch is 2

sentences. The data likelihood is calculated for the

entire training set every two epochs starting from

the second epoch. The NeuralWord models usu-

ally take about 2 to 8 epochs to converge, and the

NeuralChar models take about 12 to 20 epochs to

converge, which is indicated by reaching the high-

est marginal likelihood. All models were trained

on V100 GPUs with 16G memory.

Sentences with 40 or fewer words (including

punctuation) were kept in the training data, and all

words were lowercased. The first 14 and the last 14

characters were concatenated to form a word if the

word had more than 28 characters. No limit was

imposed on the vocabulary size for any model.

B Morphological Tags in the Korean

Annotation Scheme of Choi (2013)

Table 4 provides a description of the morphological

tags used in the Korean annotation scheme of Choi

(2013).

C Statistics of Treebanks

Table 5 shows the basic statistics of sentences and

words from treebanks used in this work.

Tag label Tag description

ncn Non-predicative common noun

npd Demonstrative pronoun

npp Personal pronoun

nq Proper noun

jcj Conjunctive case particle

jcs Subjective case particle

jp Predicative marker

jxc Common auxiliary

jxf Final auxiliary

jxt Topical auxiliary

paa Attributive adjective

pad Demonstrative adjective

pvd Demonstrative verb

pvg General verb

px Auxiliary verb

ecc Coordinate conjunction EM

ecs Subordinate conjunction EM

ecx Auxiliary conjunction EM

ef Final EM

ep Pre-final EM

etm Adnominalizing EM

mag General adverb

maj Conjunctive adverb

ii Interjection

sf Sentence-final punctuation

Table 4: Description of the morphological tags used

in the Korean annotation scheme of Choi (2013). EM:

ending marker.

Language # sentences # word types

Arabic 12754 30810

Mandarin 14907 27386

English 45407 40300

French 15965 23342

German 19396 45346

Hebrew 6189 15249

Japanese 34675 39333

Korean 9686 42899

Polish 13022 35798

Vietnamese 9553 12277

Table 5: Statistics of the treebanks used in this work.


