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Abstract

Unsupervised PCFG induction models, which
build syntactic structures from raw text, can
be used to evaluate the extent to which syn-
tactic knowledge can be acquired from distri-
butional information alone. However, many
state-of-the-art PCFG induction models are
word-based, meaning that they cannot directly
inspect functional affixes, which may provide
crucial information for syntactic acquisition in
child learners. This work first introduces a
neural PCFG induction model that allows a
clean ablation of the influence of subword in-
formation in grammar induction. Experiments
on child-directed speech demonstrate first that
the incorporation of subword information re-
sults in more accurate grammars with cate-
gories that word-based induction models have
difficulty finding, and second that this effect is
amplified in morphologically richer languages
that rely on functional affixes to express gram-
matical relations. A subsequent evaluation on
multilingual treebanks shows that the model
with subword information achieves state-of-
the-art results on many languages, further sup-
porting a distributional model of syntactic ac-
quisition.

1 Introduction

Unsupervised PCFG induction models (Johnson
et al., 2007; Jin et al., 2018b) induce grammars
from raw text and use those induced grammars to
build linguistically meaningful hierarchical struc-
tures for sentences. Recent work on PCFG induc-
tion has adopted Bayesian or neural word-based
PCFG models (Jin et al., 2018b; Kim et al., 2019;
Zhu et al., 2020), which have proven to be accurate
at discovering syntactic structures solely from word
sequences. These results indicate that a human-like
grammar can be learned from distributional data
(Harris, 1954; Saffran et al., 1996; Aslin and New-
port, 2014), providing some evidence against the
poverty of the stimulus argument (Chomsky, 1965,
1980) in language acquisition.
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However, despite their high performance, these
word-based PCFG induction models are not fully
suitable as computational-level models of syntac-
tic acquisition. Specifically, they treat words as
symbols and do not have direct access to subword
information. In contrast, child language learners
are known to be sensitive to word-internal func-
tional affixes from a very young age (Mintz, 2013;
Haryu and Kajikawa, 2016), which may provide
crucial information for syntactic acquisition (Dye
et al., 2019). This would presumably make word-
based PCFG induction models less appropriate for
modeling the acquisition of morphologically rich
languages, in which most information about syntac-
tic units and relations is expressed at the subword
level (Tsarfaty et al., 2010).

In order to address this issue, this work first de-
fines a character-based model and a minimally-
manipulated word-based counterpart for neural
PCFG induction.! This formulation allows a clean
ablation of subword information, and therefore
allows its influence on grammar induction to be
studied. Experiments using child-directed speech
demonstrate that the incorporation of subword in-
formation results in more accurate grammars with
coherent syntactic categories that the word-based
induction model has difficulty finding. Addition-
ally, this effect is found to be amplified in morpho-
logically richer languages that rely on functional
affixes to express grammatical relations. Finally,
an evaluation on multilingual treebanks shows that
the model with subword information achieves state-
of-the-art induction results on many languages, pro-
viding further evidence for a distributional model
of syntactic acquisition.

2 Related Work

Early work in unsupervised PCFG induction from
raw text (Johnson et al., 2007; Liang et al., 2009;

'Code used in this work is available at https://
github.com/lifengjin/charInduction.
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Tu, 2012) was not as successful as models of unsu-
pervised constituency parsing (Seginer, 2007; Pon-
vert et al., 2011). However, recent work from un-
supervised parsing (Shen et al., 2019; Wang et al.,
2019; Drozdov et al., 2019, 2020) and grammar
induction (Jin et al., 2018a, 2019; Kim et al., 2019;
Zhu et al., 2020; Jin and Schuler, 2020; Li et al.,
2020) shows much improvement over previous re-
sults with grammars learned solely from raw text,
indicating that statistical regularities relevant to
syntactic acquisition can be found in word collo-
cations. For example, Kim et al. (2019) propose
a word-based neural compound PCFG induction
model for accurate grammar induction on English.
Zhu et al. (2020) further extend this compound
PCFG induction model to jointly induce lexical
dependencies using a lexicalized PCFG. Jin et al.
(2019) augment a PCFG induction model to use
contextualized word embeddings with subword in-
formation to allow morphological cues to influence
induction. Unfortunately, the ELMo embeddings
(Peters et al., 2018) used in that work are trained
with a large number of tokens, which limits the
value of this approach for investigating child-like
syntactic acquisition.

In an attempt to answer a similar question,
there has also been recent interest in evaluating
whether recurrent neural networks like LSTMs can
learn grammar-like representations from word se-
quence alone. Although some initial results seemed
promising (Linzen et al., 2016; Gulordava et al.,
2018), later studies have shown that some of these
results may not necessarily generalize to languages
other than English (Ravfogel et al., 2018; Davis
and van Schijndel, 2020), yielding an inconsis-
tent picture. Moreover, studies in this line of re-
search try to model specific syntactic phenomena
such as subject-verb agreement, filler-gap depen-
dencies, and auxiliary inversion, and therefore have
a slightly different focus from grammar induction.
Complementary to this approach are studies that
aim to reconstruct syntactic representations from
contextualized word representations (Tenney et al.,
2019; Hewitt and Manning, 2019). Again, however,
the use of neural language models assumes access
to much more data than the input available to the
typical child (Hart and Risley, 1995).

3 Models

Experiments described in this paper use two vari-
ants of a neural PCFG induction model, which

differ minimally in how terminal expansion is mod-
eled. A Chomsky normal form PCFG with C non-
terminal categories is first factored into two sep-
arate parts: binary-branching nonterminal expan-
sion rule” probabilities, and unary-branching termi-
nal expansion rule probabilities (Jin et al., 2019).
Given a tree as a set 7 of nodes 1 undergoing nonter-
minal expansions c¢;, — ¢, ¢z (Where n € {1,2}"
is a Gorn address specifying a path of left or right
branches from the root), and a set 7/ of nodes 7
undergoing terminal expansions ¢;, — w, (where
wy, is the word at node 1), the marginal probability
of a sentence o can be computed as:

P(o) = Z 1_[ P(cy, = cp1cpp) - 1_[ P(c, = wy),

7,7/ NET netr’
()

which is also the objective function to maximize
for all proposed models in this work.

To allow the terminal expansion model to be
separated out from the rest of the grammar in-
duction model and make the character- and word-
based models differ only by the terminal expansion
model, we first define a set of Bernoulli distribu-
tions that distribute probability mass between these
two sets of rules:

P(Term | ¢;) = sozf(t)r}l}ax(N(E 0¢,))s 2)

where ¢, is a nonterminal category, d, is a Kro-
necker delta function — a vector with value one at
index ¢, and zeros everywhere else —and E 6, is a
category vector input for the Bernoulli distribution
of ¢, with E € R*C 3 matrix of nonterminal cate-
gory embeddings of size d. N is an arbitrary neural
network, which in our implementation is a multi-
layered residual network (Kim et al., 2019). The
residual network consists of B architecturally iden-
tical residual blocks. For an input vector x;_ Ley
each residual block b performs the following com-
putation:

Xpc, = ReLU(VV;7 ReLUW, Xp-1,c, + by)
+ b;J) + Xb—l,c,,' (3)

There are two fully connected layers before and
after the residual blocks:

X()’C” = ReLU(W() E 6Cn + b()), (4)

Se, = ReLU(Wiot XBc, T bsoft)- )

2These rules include the expansion rules generating the
top node in the tree.
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All W’s and b’s are model parameters, and s, are
the logits for the final softmax in Equation 2. B is
set to 2 in all models (Kim et al., 2019). This for-
mulation naturally allows the model to learn from
the input data how to allocate preterminal and other
nonterminal categories, thereby making it more
appropriate for multilingual settings (e.g. aggluti-
native languages that have many word types may
need more preterminal categories in comparison to
other nonterminal categories).

Binary-branching nonterminal expansion rule
probabilities for a nonterminal category ¢, are de-
fined as:

P(c, — cyp1 cpp) = P(Term=0 | ¢;)) -

P(c, — ¢y cpp | ¢, Term=0). (6)

The binary-branching nonterminal expansion dis-
tribution is defined for all models as:

P(c, — ¢y cpp | ¢, Term=0) =
softmax(Wpont E 5071 + bnont)s (N

CnlsCn2

where Wyont € RC* and bnont € R are parame-
ters of the model, and E is the embedding matrix
for all hypothesized nonterminal categories.

The lexical unary-expansion rule probabilities
for a preterminal category ¢, are defined as:

P(c, — wy) = P(Term=1 | ¢;)-

P(c, — wy | ¢, Term=1), (8)

where w, is the generated word token at node 7.
The representation of the word w;, is usually sym-
bolic in PCFG induction models. In order to probe
the effect of character-based models in incorpo-
rating subword information to grammar induction,
models in this work differ in how words are rep-
resented and in turn how the terminal expansion
models are defined. The word-based models (Neu-
ralWord) use symbolic representation of words,
whereas the character-based models (NeuralChar)
use character sequences as observations for the ter-
minal expansion models. They differ minimally
by the terminal expansion models and the input
they take, which allows a clean manipulation of
subword information while holding all other model
components fixed.

Lexical Expansion Models

The word-based lexical expansion model is a mul-
tilayered residual network which takes as input a

category embedding and generates a distribution
score for all words in the vocabulary:

P(cy — wy | ¢y, Term=1) = softmax(N'(E d.,)).

Wn
)
The function N’ is a four-layer residual neural net-
work with two residual blocks similar to the one
used in generating nonterminal expansion proba-
bilities, except that the output dimension of this
network is the size of the vocabulary.

For the character-based induction model, the ter-
minal expansion probability is factored into the
product of a locally-normalized sequence model
generating all the characters in the word from left
to right:

P(c, = wy | ¢y, Term=1) =

l_l P(ll |Cﬂ7ll9"'7li—1)a

Lielly,. .., In}

(10)

where the character or letter sequence [y,...,[,
comprises the word w;, with L as the character vo-
cabulary. The sequence model is a multilayered
long short-term memory network (LSTM) with B
layers. The character generation distribution from
the LSTM for each letter / is:

P(ll | CT]al]’---all'—l) =

SOftll_naX(Wchar hi,B,c,, + Pchar),

i

an

where Wepar € REX! b € RIE and £ is the size
of the hidden and cell states. The hidden and cell
states of the LSTM are calculated by:

hip.c,s Cibe, = LSTM(Dpo1c, hiz1 b, Cim1b.c,)s
(12)

where b is the current layer index. hi,b_l,cn is the
input from the LSTM one layer below, and hi—l,b,c,,
and Ci-lbc, are the input from the previous time
step. h,-,b,c,] and Cibc, are the current cell and hid-
den states of the LSTM. Finally, the initial hidden
state of the b layer of the LSTM depends on the

nonterminal category c;:
hO,b,c,7 = ReLU(Wb,term E(Sc,, + bb,term), (13)

where Wp erm € R4 and bp term € R" are trainable
parameters.

4 Experiment 1: Evaluation on
Child-directed Speech

This work first explores the influence of subword in-
formation in grammar induction by comparing the
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performance of the NeuralChar and NeuralWord
models on child-directed speech corpora, which
represent authentic linguistic input that child learn-
ers are exposed to.

4.1 Evaluation Metric: Recall-Homogeneity

It has been argued that the ability to predict con-
stituent labels that are consistent with linguistic
annotation is a crucial part of a grammar and there-
fore should be accounted for in evaluation (Jin
et al., 2019). This work uses Recall-Homogeneity
(RH, Jin et al., 2021) as a labeled evaluation met-
ric, which is calculated by multiplying unlabeled
recall of bracketed spans in the predicted trees with
the homogeneity score (Rosenberg and Hirschberg,
2007) of the predicted labels of the matching spans.
Similarly to Recall-V-Measure (RVM, Jin et al.,
2019), this metric is made insensitive to the branch-
ing factor of the grammar through the use of un-
labeled recall. However, the use of homogeneity
rather than V-measure assumes that the annotators’
decision to suppress the annotation of in-depth in-
formation such as case or subcategorization in cate-
gory labels is motivated by expediency rather than
linguistic theory. Therefore, RH does not penal-
ize induced grammars for the use of categories to
make more fine-grained distinctions, to the extent
that it does not interfere with the homogeneity of
predictions on other attested categories. In this
work, unary branches in both gold and predicted
trees are removed and only the top category of any
unary chain is used for evaluation.’

4.2 Procedures

The NeuralChar and NeuralWord models were
evaluated on English and Korean child-directed
speech corpora from CHILDES (MacWhinney,
2000). The English corpus comes from the Eve
section (Brown, 1973), which contains transcrip-
tions of interactions between Eve and her care-
givers at ages from 1 year 6 months to 2 years 3
months. Only the sentences that were uttered by
caregivers were kept in the data, which resulted
in a set of 14,251 sentences with a mean sentence
length of 5.6 words. Penn Treebank-style syntactic
annotations for these child-directed utterances are

YHomogeneity is positively correlated with the number
of categories used, achieving a perfect score when each con-
stituent is assigned a unique category. However, a grammar
with tens of thousands of categories, or even a few hundred cat-
egories, is beyond the capacity of current grammar induction
models.

RH
0.60 1 o S NeuralChar
T NeuralWord
0.55
ot []]
L4
0.45
®
= |
©
> 0.40 1 - o
|

0.35 L e

T
| 1
0.25 %

English Korean
Language

Figure 1: Box plots showing the RH scores from ten
runs of the NeuralChar and Neural Word models trained
on the English (Eve) and Korean (Jong) corpora from
CHILDES. Statistical significance was determined by
a paired permutation test at the sentence level (*: p <
0.05, ***: p < 0.001).

provided by Pearl and Sprouse (2013). The Ko-
rean corpus is from the Jong section (Ryu et al.,
2015), which contains transcriptions of interactions
between Jong and his caregivers recorded at ages
from 1 year 3 months to 3 years 5 months. There
were 28,620 sentences that were uttered by care-
givers, which had a mean sentence length of 5.0
words. As there are no gold syntactic annotations
available for this dataset, a subset of 150 sentences
was annotated in order to evaluate the two models.
This was done by first automatically generating
silver parses using the state-of-the-art supervised
parser (Kitaev et al., 2019) and subsequently cor-
recting them according to the annotation scheme
of Choi (2013).%

The NeuralChar and NeuralWord models were
trained on these two corpora ten times with dif-
ferent random seeds, using 90 nonterminal cat-
egories and other hyperparameters tuned on the
Brown Corpus portion of the Penn Treebank (see
Appendix A).> Following previous work (Seginer,
2007), punctuation marks were left in the input data

“The annotated Korean data is available at https://
github.com/lifengjin/charInduction.

>The models were trained on the full set for both corpora.
However, while the models were evaluated on the full set for
the Eve section, they were evaluated only on the subset of 150
sentences with manually-corrected syntactic annotations for
the Jong section.
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Induced ‘ ‘ Attested category Representative
Count . o
category (relative frequency) characterization
NC-63 100 sf (1.0) Full stop
NC-29 73 npd+jxt (0.23), nq (0.12), ncn (0.12), npd-+jcs (0.1), Nouns for child (“Jong”), demonstrative pronoun (“this”)
npd (0.1), ng+jcs (0.07), necn+jes (0.05)
NC-62 48 sf (1.0) Question mark
NC-38 25 px+ef (0.32), pvg+ef (0.2), paa+ef (0.2), pvg+ep+ef (0.16) Sentence-final verbs
NC-16 21 pvg+ecx (0.67), pvg+ecs (0.14), paa+ecc (0.1), paa+ef (0.1) Verbs preceding auxiliary verbs
NC-2 20 nen (0.55), nen+jcj (0.15), nen+jes (0.1), pad+ef (0.05), Nouns for caretaker (“mom’)
mag (0.05), ncn+jxt (0.05), pvd+ecs (0.05)
NC-6 20 ii (1.0) Interjections
NC-7 20 pad+ef (1.0) Expression of agreement (“That is s0”)
NW-55 61 sf (1.0) Full stop
NW-32 51 ii (0.45), pad+ef (0.2), ncn (0.12), mag (0.08), maj (0.06) Interjections, expression of agreement (“That is s0”)
NW-54 50 sf (1.0) Question mark
NW-0 46 ncn (0.35), npd+jxt (0.07) Various nouns
NW-14 39 sf (1.0) Full stop
NW-10 34 nen+jes (0.24), mag (0.15), nen (0.06), pvg+ecs (0.06), Difficult to characterize (heterogeneous)
nen+jxe (0.06), nq (0.06), paa+ecs (0.06)
NWw-44 34 paa+ef (0.18), pvg+ef (0.15), nen+jp+ef (0.09), pvg+ep+ef (0.06), Sentence-final verbs
mag (0.06), pvg+etm (0.06), pvg+ef+jxf (0.06), paa+ef+jxf (0.06)
NW-29 30 mag (0.2), nen+jes (0.1), nen (0.1), paa+etm (0.1), Difficult to characterize (heterogeneous)
npp (0.07), pvg+ecx (0.07), nen+jxt (0.07)

Table 1: Gold part-of-speech tags and representative characterizations of the eight most frequent preterminal cate-
gories induced by the NeuralChar model (NC, top) and the NeuralWord model (NW, bottom). The gold tags that
account for more than 5% of each induced category are reported. The gold tags consist of morphological tags that
are delimited by plus symbols. Refer to Appendix B for a brief description of the morphological tags.

as a proxy for prosodic cues about phrasal bound-
aries, but were removed afterward for labeled eval-
uation. Subsequently, in order to examine whether
there was a significant difference in the RH mea-
sure between the NeuralChar and NeuralWord mod-
els, the conventional paired permutation test used
in supervised parsing was conducted following Jin
et al. (2021). In a paired permutation test, the pre-
dicted trees from two induced grammars are ran-
domly permuted in order to calculate an empirical
distribution of the difference in the chosen evalua-
tion metric. This empirical distribution calculates
the probability of the observed difference due to
chance. Since the evaluation metric of interest
was RH, the per-sentence-recall and per-sentence-
homogeneity of each sentence were first calculated
for each model, which were subsequently permuted
randomly to calculate an empirical distribution over
the difference in RH.

4.3 Results

Figure 1 shows the RH scores from the ten runs
of each model trained on the two child-directed
speech corpora. On the Korean corpus, the Neu-
ralChar model (mean RH = 0.388) strongly outper-
formed the NeuralWord model (mean RH = 0.291),
with the difference in RH being significant accord-
ing to a permutation test. The opposite trend was
observed on the English corpus, where the Neural-
Word model (mean RH = 0.488) performed better
than the NeuralChar model (mean RH = 0.487).

In;l:lll::ed ‘ Count ‘ Representative characterization
11 — 4363 84 Attachment of full stop after declaratives
11 -362 42 Attachment of question mark after questions

43 - 7653 20
43 - 7643 13
45 — 2934 12

Attachment of noun before imperatives
Attachment of two declarative utterances
Left attachment of nouns

35763 11 Attachment of adverb before questions
3—-2989 10 Attachment of noun before question verbs
53 = 5975 9 Right attachment of imperative verbs

Table 2: Representative characterizations of the eight
most frequent nonterminal expansion rules induced
by the NeuralChar model on Korean child-directed
speech.

This indicates that the subword information lever-
aged by the NeuralChar model results in notably
more accurate grammars on an agglutinative lan-
guage like Korean. In contrast, subword informa-
tion does not seem to help the induction of a mostly
analytic language like English, in which grammati-
cal relationships are primarily conveyed by word
order.

4.4 Analysis of Categories and Rules Induced
by Character-based Model

Subsequently, in order to further analyze how the
character-based terminal expansion model helps
grammar induction from Korean child-directed
speech, the preterminal categories and nonterminal
expansion rules induced by the NeuralChar model
were compared to those induced by the Neural-
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Word model.® As Korean is an agglutinative lan-
guage that marks grammatical information primar-
ily through suffixation, it was hypothesized that
the subword information leveraged by the Neu-
ralChar model would result in preterminal cate-
gories that are more homogeneous with regard to
part-of-speech.

The eight most frequent preterminal categories
induced by the NeuralChar model and the Neu-
ralWord model are presented in Table 1. Most
notably, the categories used by the NeuralChar
model seem to form linguistically coherent clusters;
categories NC-29 and NC-2 correspond mostly to
nouns (tags starting with ‘n’) while categories NC-
38 and NC-16 correspond mostly to predicates
(verbs and adjectives; tags starting with ‘p’). In
contrast, such systematic categorization was not
observed in the categories induced by the Neu-
ralWord model. Many of the frequent categories
were heterogeneous with regard to the attested gold
part-of-speech; categories like NW-32, NW-10, and
NW-29 corresponded to both nouns and verbs, as
well as adverbs (tags starting with ‘m’). These
results indicate that leveraging subword informa-
tion allows PCFG induction models to learn syntac-
tic categories that are more linguistically coherent.
The lack of such coherence in categories induced
by the Neural Word model further shows that word
order information alone is insufficient to accurately
induce syntactic categories from a language with
relatively free word order like Korean.

The induced nonterminal expansion rules in
Table 2 show that the NeuralChar model learns
distinct nonterminal categories corresponding to
declaratives (Category 43), questions (Category
3), and imperatives (Category 53). Even though
the nonterminal category for questions could be
learned trivially based on the presence of a question
mark, the finding that the NeuralChar model learns
the distinction between declaratives and impera-
tives is noteworthy, as the two sentence types differ
only by the suffix on the sentence-final verb. On the
contrary, the frequent rules induced by the Neural-
Word model were not very interpretable, other than
those that were used to attach punctuation marks.

4.5 Replication Using Silver Data

Finally, to examine whether a similar relationship
between morphological typology and induction per-

®For each model, the run with the highest likelihood from
Section 4.2 was analyzed.

RH
NeuralChar ,&
0.55 NeuralWord
0.50
0.45
o *kk
=
©
= 0.401 ﬁ ’l‘
0.351 \—H
0.30
Chirlnese Gen'ﬂan
Language

Figure 2: Box plots showing the RH scores from ten
runs of the NeuralChar and NeuralWord models trained
on the Chinese (Tong) and German (Leo) corpora from
CHILDES. Statistical significance was determined by a
paired permutation test at the sentence level (***: p <
0.001).

formance is observed in languages other than En-
glish and Korean, the NeuralChar and NeuralWord
models were also evaluated on Mandarin Chinese
and German child-directed speech corpora from
CHILDES. The Chinese corpus consists of 19,541
caregiver utterances from the Tong section (Deng
et al., 2018) with a mean sentence length of 5.7
words, which were recorded at ages from 1 year
0 months and 4 years 5 months. The German
corpus contains 20,000 child-directed utterances
randomly sampled from the Leo section (Behrens,
2006), as the original corpus contained many du-
plicate utterances in interactions between Leo and
his caregivers between ages 1 year 11 months and
4 years 11 months. The sampled dataset had a
mean sentence length of 6.7 words. However, since
gold syntactic annotations were not available for
these corpora, the reference trees were automati-
cally generated using the Kitaev et al. (2019) parser.
Following similar procedures as Section 4.2, the
NeuralChar and NeuralWord models were trained
ten times on each corpus using different random
seeds. Subsequently, the RH score of each run was
calculated, and a paired permutation test was con-
ducted to determine the statistical significance of
the difference in model performance.

Figure 2 shows the RH scores from the ten runs
of each model trained on the two child-directed
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speech corpora. The NeuralChar model (mean
RH = 0.502) outperformed the NeuralWord model
(mean RH = 0.470) on the German corpus, with
the difference in RH being significant according to
a permutation test. The same trend was observed
on the Chinese corpus, on which the NeuralChar
model (mean RH = 0.372) performed better than
the NeuralWord model (mean RH = 0.351). The
caveat of using silver data to evaluate model per-
formance notwithstanding, a similar relationship
between morphological typology and induction
performance is observed on German and Chinese;
the increase in performance from the NeuralChar
model seems to be more salient on the morphologi-
cally richer German than on Chinese.’

5 Experiment 2: Evaluation on
Multilingual Treebanks

Subsequently, in order to determine if the evaluated
models are competitive with state-of-the-art gram-
mar induction models, we present experiments on
multilingual newswire treebanks to test the perfor-
mance of the NeuralChar and NeuralWord models
using both labeled evaluation (RH) and standard
unlabeled evaluation (bracketing F1). These are
evaluated on newswire to compare against models
developed on predominantly newswire data. The re-
sults show that the NeuralChar model outperforms
these models in grammar induction on most lan-
guages. In addition, comparison of model perfor-
mance on different languages hints at the inductive
biases embodied by each of these systems.

5.1 Procedures

The NeuralChar and NeuralWord models are eval-
uated on ten constituency treebanks, including
Arabic (Maamouri et al., 2004), Chinese (Xia
et al., 2000), English (Marcus et al., 1993), French
(Abeillé et al., 2003), German (Skut et al., 1998),
Hebrew (Sima’an et al., 2001), Japanese (Alastair
et al., 2018), Korean (Han et al., 2006), Polish
(Wolinski et al., 2018) and Vietnamese (Nguyen
et al., 2009).8 Compared induction models include
a pure word-based Bayesian PCFG model (DIMI,
Jin et al., 2018a); a PCFG induction model that
generates independently trained character-based
word vectors (Flow, Jin et al., 2019); word-based

7 Although Mandarin Chinese is very analytic in the sense
that it has almost no inflectional affixes, the character-based
model seems to have helped induction by identifying one-
character-long derivational morphemes on compound nouns.

8Refer to Appendix C for basic statistics of the treebanks.

neural models Compound and Compound-v (Kim
et al., 2019), which differ in that Compound-v in-
duces sentence-specific grammars, as well as its
extension with lexical dependencies (L-PCFG, Zhu
et al., 2020). At least three random initial seeds are
used for each model and each language, and the
average performance of grammars with the highest
likelihoods are reported. Hyperparameters for the
NeuralChar and NeuralWord models are reported
in Appendix A, and those for other baseline models
followed reported values in their respective papers.

5.2 Results

Table 3 reports the labeled evaluation results for
all models® as well as unlabeled evaluation results
using F1 for reference. The labeled and unlabeled
evaluation scores generally correlate with each
other very strongly. First, the NeuralChar model
performs very well across the majority of evaluated
languages, showing that the character-based lexical
expansion model is able to capture regularities in
subwords that help grammatical categorization and
constituency boundary detection. In addition, all
models generally perform better on languages with
a small number of high-frequency function words
such as German and English, than on languages
with a large number of high-frequency function
words and affixes such as Chinese and Korean. On
languages that primarily use marker affixes (e.g.
Arabic, Japanese, and Korean), the results show
that the character-based models are able to use in-
formation from these affixes for grammar induc-
tion, resulting in higher performance compared to
word-based induction models.

However, for all models, it still seems much eas-
ier to extract statistical information from words
than from affixes, as demonstrated by the stark con-
trast in the performance of the NeuralChar model
on Japanese and Korean. Japanese and Korean are
both agglutinative languages with similar syntax,
but according to the Japanese annotation guidelines,
all case markers are separated from their stems and
are treated as separate function words. In contrast,
according to the Korean annotation guidelines, case
markers are treated like suffixes and are left unsep-
arated from the word stem. This difference leads to
~25% of the tokens in the Japanese dataset being
function words but leaves only ~2% of function
words in the Korean dataset. This can partially

“Evaluation of the Flow model (Jin et al., 2019) on Viet-
namese was not available due to its use of pretrained ELMo
embeddings for individual syllables rather than words.
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Individual languages

Models / RH Average
Ar Zh En Fr De He Ja Ko Pl Vi
DIMI (Jinetal., 2018a) 16.5 124 234 168 103 149 235 7.1 6.3 8.1 13.9
Compound (Kim et al., 2019) 21.1 212 36.8 37.7 414 235 152 56 351 158 25.3
Compound-v (Kim et al., 2019) 169 22.6 350 399 394 291 131 70 330 24.0 26.0
L-PCFG (Zhu et al., 2020) 244 194 150 182 283 17.0 30.1 102 174 10.2 19.0
NeuralWord (this work) 23.0 20.8 29.7 298 338 216 298 11.7 220 15.1 23.7
Flow (Jinetal.,2019) 254 187 21.6 253 297 254 244 150 31.0 — 24.1
NeuralChar (this work) 29.1 239 334 40.7 393 295 402 163 21.0 128 28.5
Models / F1 Individual languages Average
Ar Zh En Fr De He Ja Ko Pl Vi
DIMI (Jin et al., 2018a) 353 36.6 50.6 39.6 364 454 362 265 432 427 39.3
Compound (Kim et al., 2019) 324 342 51.7 482 49.7 405 229 191 501 343 38.3
Compound-v (Kim et al., 2019) 27.6 374 509 49.6 479 49.2 216 20.7 472 383 39.1
L-PCFG (Zhu et al., 2020) 45.0 46.2 362 344 468 384 452 30.0 321 273 38.2
NeuralWord (this work) 369 413 444 415 444 400 424 233 352 375 38.7
Flow (Jinetal., 2019) 353 381 386 403 38.0 450 338 344 471 — 39.0
NeuralChar (this work) 42.0 449 499 515 477 486 559 34.6 33.1 287 43.7

Table 3: Average labeled Recall-Homogeneity and unlabeled F1 scores from various unsupervised grammar induc-
tion models on multilingual treebanks. The upper group of models are word-based models, and the lower group of
models have access to subword information. The language codes are: Ar: Arabic; Zh: Chinese; En: English; Fr:
French; De: German; He: Hebrew; Ja: Japanese; Ko: Korean; P1: Polish; Vi: Vietnamese.

explain the results that all models perform much
better on Japanese than on Korean.

There are indications of another inductive bias
at work in the Compound models. One main archi-
tectural difference between Neural Word and Com-
pound is that Compound distinguishes preterminal
(lexical) tags from other nonterminal (phrasal) tags
while NeuralWord does not. This means that given
the same number of syntactic categories, the Neu-
ralWord models have a larger search space of pos-
sible grammars than Compound. This distinction
between lexical-phrasal categories seems to benefit
induction on Indo-European languages, as can be
seen by the higher performance of Compound mod-
els. Nonetheless, this distinction does not seem to
be helpful on other languages. We leave investiga-
tions of the exact nature of this inductive bias to
future work, although we conjecture that it could
be related to the obligatory use of determiners in
Indo-European languages.

Finally, the average RH and F1 scores show that
the NeuralChar model would be the best model to
try on a new language if no inductive biases per-
taining to grammar induction are known about that
language. Furthermore, the average F1 scores are
very similar across models compared to the aver-
age RH scores, which indicates that models that
perform similarly in terms of unlabeled evaluation
may produce constituent labels of varying quality.

6 Conclusion and Future Work

This paper presents a character-based model and
a minimally-manipulated word-based counterpart
for neural PCFG induction. The character-based
model allows subword information to influence
grammar induction, which is more consistent with
the information that child language learners are
able to leverage. Experiments and analyses using
child-directed speech corpora show that the incor-
poration of subword information results in more ac-
curate grammars with linguistically homogeneous
syntactic categories, with its impact being stronger
on morphologically richer languages. Addition-
ally, this model achieves state-of-the-art induction
results on many languages, providing further sup-
port for a distributional model of syntactic acqui-
sition. Taken together, these results indicate that
the proposed character-based model incorporates
more realistic input and captures more successful
learning outcomes, thus making it a more plausible
cognitive model.

While this work addresses a major drawback of
word-based PCFG induction models, the proposed
model nonetheless relies on symbolic representa-
tions of characters, which are abstractions from po-
tentially noisy perceptual input. Future work could
explore the extent to which syntactic knowledge
can be acquired from lower-level (e.g. phonemic or
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acoustic) input alone by including a word segmenta-
tion task (Elsner and Shain, 2017; Shain and Elsner,
2020) for the model. Additionally, recent work in
unsupervised grammar induction (Jin and Schuler,
2020; Zhang et al., 2021) has shown that incorpo-
rating visual information in the form of images and
videos helps learn constituents that denote entities
or action. Adopting such grounded approaches can
help answer questions about the extent to which the
visual scene or other contexts contain relevant in-
formation, and eventually about the nature of input
required for syntactic acquisition.
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A Hyperparameters and Data
Preprocessing

The NeuralWord and NeuralChar models differ
minimally in terms of hyperparameters used for
training. The following values of each hyperparam-
eter apply to both models if not stated otherwise.
The number of nonterminals (C) is 90. The learn-
ing rate for the Adam optimizer is 0.001, with other
hyperparameters following the default values of Py-
Torch. The size of the category embeddings is 128.
For the character-based induction model, the size
of the hidden and cell states of the LSTMs is 512.
The gradients are renormalized when the norm ex-
ceeds 5.0. The size of each training batch is 2
sentences. The data likelihood is calculated for the
entire training set every two epochs starting from
the second epoch. The NeuralWord models usu-
ally take about 2 to 8 epochs to converge, and the
NeuralChar models take about 12 to 20 epochs to
converge, which is indicated by reaching the high-
est marginal likelihood. All models were trained
on V100 GPUs with 16G memory.

Sentences with 40 or fewer words (including
punctuation) were kept in the training data, and all
words were lowercased. The first 14 and the last 14
characters were concatenated to form a word if the
word had more than 28 characters. No limit was
imposed on the vocabulary size for any model.

B Morphological Tags in the Korean
Annotation Scheme of Choi (2013)

Table 4 provides a description of the morphological
tags used in the Korean annotation scheme of Choi
(2013).

C Statistics of Treebanks

Table 5 shows the basic statistics of sentences and
words from treebanks used in this work.

Tag label Tag description

ncn Non-predicative common noun
npd Demonstrative pronoun
npp Personal pronoun

nq Proper noun

jcj Conjunctive case particle
jcs Subjective case particle
jp Predicative marker

jxc Common auxiliary

jxf Final auxiliary

jxt Topical auxiliary

paa Attributive adjective

pad Demonstrative adjective

pvd Demonstrative verb

pvg General verb

pX Auxiliary verb

ecc Coordinate conjunction EM
ecs Subordinate conjunction EM
ecx Auxiliary conjunction EM
ef Final EM

ep Pre-final EM

etm Adnominalizing EM

mag General adverb

maj Conjunctive adverb

ii Interjection

sf Sentence-final punctuation

Table 4: Description of the morphological tags used
in the Korean annotation scheme of Choi (2013). EM:
ending marker.

Language # sentences # word types
Arabic 12754 30810
Mandarin 14907 27386
English 45407 40300
French 15965 23342
German 19396 45346
Hebrew 6189 15249
Japanese 34675 39333
Korean 9686 42899
Polish 13022 35798
Vietnamese 9553 12277

Table 5: Statistics of the treebanks used in this work.
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