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Object recognition and viewpoint estimation lie at the heart of visual understanding. Recent studies have suggested that con-
volutional neural networks (CNNs) fail to generalize to out-of-distribution (OOD) category-viewpoint combinations, that is,
combinations not seen during training. Here we investigate when and how such OOD generalization may be possible by evalu-
ating CNNs trained to classify both object category and three-dimensional viewpoint on OOD combinations, and identifying
the neural mechanisms that facilitate such OOD generalization. We show that increasing the number of in-distribution com-
binations (data diversity) substantially improves generalization to OOD combinations, even with the same amount of training
data. We compare learning category and viewpoint in separate and shared network architectures, and observe starkly different
trends on in-distribution and OOD combinations, that is, while shared networks are helpful in distribution, separate networks
significantly outperform shared ones at OOD combinations. Finally, we demonstrate that such OOD generalization is facilitated
by the neural mechanism of specialization, that is, the emergence of two types of neuron—neurons selective to category and

invariant to viewpoint, and vice versa.

mation is essential for effective visual understanding. In

recent years, convolutional neural networks (CNNs) have
offered state-of-the-art solutions for both these fundamental
tasks'. However, recent work also suggests that CNNs have a
hard time generalizing to combinations of object categories and
viewpoints not seen during training: out-of-distribution (OOD)
generalization is a challenge. For object recognition, work has
shown CNNs struggling to generalize across spatial transforma-
tions like two-dimensional (2D) rotation and translation’'', and
non-canonical three-dimensional (3D) views'>"”. For viewpoint
estimation, previous work has proposed learning category-specific
models™* or feeding class predictions as input to the model'>'°, as
generalizing to novel categories is a challenging task.

It remains unclear when and how CNNs may generalize to
OOD category-viewpoint combinations. Figure 1a presents a moti-
vating example: would a network trained on examples of a Ford
Thunderbird seen only from the front, and a Mitsubishi Lancer
seen only from the side generalize to predict car model (category)
and viewpoint for a Thunderbird shown from the side? If so, what
underlying mechanisms enable such OOD generalization?

In this Article, we investigate the impact of two key factors
(data diversity and architectural choices) on the capability of
generalizing to OOD combinations, and the neural mechanisms
that facilitate such generalization. Concretely, we introduce the
following discoveries.

The first discovery is that data diversity significantly improves
OOD performance, but degrades in-distribution performance.
We investigate the role of data diversity by varying the number of

| he combination of object recognition and viewpoint esti-

in-distribution category-viewpoint combinations, keeping dataset
size constant. We find that data diversity matters significantly. For
a constant dataset size, increasing data diversity makes the task
more challenging, as reflected in the deteriorating in-distribution
performance. Yet, increasing data diversity substantially improves
performance on OOD combinations.

The second discovery is that Separate architectures significantly
outperform Shared ones on OOD combinations unlike in distribu-
tion. We also analyse the performance of different architectures
in the multi-task setting of simultaneous category and viewpoint
classification, that is, learning category and viewpoint in Shared
or in Separate (no layers shared) architectures. Our results reveal
that Separate architectures generalize substantially better to OOD
combinations compared with Shared architectures. Also, this
trend is in stark contrast with the trend for in-distribution com-
binations, where Shared architectures perform marginally better.
Thus, the belief that Shared architectures outperform Separate
ones when tasks are synergistic should be revisited", as their rela-
tive performance strongly depends on whether the test sample is
in distribution or OOD.

The third discovery is that neural specialization facilitates gener-
alization to OOD combinations. Existing work suggests that OOD
generalization is facilitated by selective and invariant representa-
tions'*?'. However, this has not been demonstrated for deep learn-
ing, and does not extend to simultaneous category and viewpoint
classification. To address this, we propose the neural mechanism
of specialization—the emergence of two types of neuron, one driv-
ing OOD generalization for category, and the other for viewpoint.
This corresponds to neurons selective to a category and invariant
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Fig. 1| Category-viewpoint datasets. a, Our new Biased-Cars dataset: Can a network shown only the Ford Thunderbird from front and the Mitsubishi
Lancer from side generalize to classify the category and viewpoint for a Thunderbird seen from the side? b, iLab-2M dataset?”?*. Each cell represents a
unique category-viewpoint combination (categories vary between rows, viewpoints between columns) with multiple object instances per category and
backgrounds. ¢, Held-out test set of category-viewpoint combinations. Same held-out test set is used to evaluate networks trained with different number
of in-distribution combinations. d, Biased training set with 50% of category-viewpoint combinations. Number of categories and viewpoints selected is

always equal.

to viewpoint, and vice versa. We show that the CNN generaliza-
tion behaviour trend correlates with the degree of specialization of
the neurons.

These results are consistent across multiple CNNs and datas-
ets including the natural image dataset iLab-2M***, variations of
MNIST*** extended with position and scale, and a challenging new
dataset of car model recognition and viewpoint estimation—the
Biased-Cars dataset—which we introduce in this paper. This data-
set consists of 15,000 photo-realistic rendered images of several
car models at different positions, scales and viewpoints, and under
various illumination, background, clutter and occlusion conditions.
With this, we hope to provide a first milestone in understanding
the underlying mechanisms that enable OOD generalization in
multi-task learning for category and viewpoint classification.

Datasets for category-viewpoint classification

Most existing datasets with category and viewpoint labels***-
present two major challenges: (1) lack of control over the distribu-
tion of categories and viewpoints, or (2) small size. Thus, we pres-
ent our results on the following datasets, which do not suffer from
these challenges:

iLab-2M dataset. iLab-2M*>* is a large-scale (2 million images),
natural-image dataset with 3D variations in viewpoint and multiple
object instances for each category (Fig. 1b). The dataset was cre-
ated by placing toy objects on a turntable and photographing them
from six different azimuth viewpoints, each at five different zenith
angles (total 30). From the original dataset, we chose a subset of six
object categories: bus, car, helicopter, monster truck, plane and tank.

In Fig. 1b, each row represents images from one category and each
column images from one azimuth angle. All networks are trained
to predict one of six category and viewpoint (azimuth) labels each.

MNIST-Position and MNIST-Scale. Inspired by the MNIST-
Rotation dataset” which adds rotation to MNIST**** images, we cre-
ated two more variants by adding viewpoint in the form of position
or scale. MNIST-Position was created by placing MNIST images
into one of nine possible locations in an empty 3-by-3 grid. For
MNIST-Scale we resized images to one of nine possible sizes fol-
lowed by zero-padding. Images of the digit 9 were left out in both
these datasets, ensuring nine categories and nine viewpoints classes
(total of 81 category-viewpoint combinations). Sample images are
available in the Supplementary Section A.1.

Biased-Cars dataset. Building on other multi-view car datasets for
viewpoint estimation®>*!, we introduce a challenging new dataset
for simultaneous object category and viewpoint classification—
the Biased-Cars dataset. Our dataset features photo-realistic out-
door scene data with fine control over scene clutter (trees, street
furniture and pedestrians), car colours, object occlusions, diverse
backgrounds (building/road textures) and lighting conditions (sky
maps). Biased-Cars consists of 15,000 images of five different car
models seen from viewpoints varying between 0-90 degrees of azi-
muth, and 0-50 degrees of zenith across multiple scales. Our dataset
offers two main advantages: (1) complete control over the joint dis-
tribution of categories, viewpoints and other scene parameters, and
(2) unlike most existing synthetic city datasets*>** we use physi-
cally based rendering for greater photo-realism, which has been
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Shared

Separate

Fig. 2 | Architectures for category recognition and viewpoint estimation. Shared (left), Separate (centre) and Split-2 (right) architectures for ResNet-18.
In the Shared architecture, all layers until the last convolutional block are shared between tasks, followed by task-specific fully connected branches. In the
Separate architecture, each task is trained in a separate network with no layer sharing. Split-2 presents a middle ground. These architectures are designed

similarly for backbones other than ResNet-18.

shown to help networks transfer to natural image data significantly
better’>**. Sample images are shown in Fig. 1a. As in***, we choose
to focus on azimuth prediction. The azimuth is divided into five
bins of 18 degrees each, thus ensuring five category (car models)
and five viewpoint classes (azimuth bins), for a total of 25 differ-
ent category-viewpoint combinations. More details can be found in
Supplementary Section A.2°7%,

Additional datasets. In the Supplementary Information, we provide
results on two additional standard datasets—MNIST-Rotation* and
the UIUC3D dataset™. Note that the UIUC dataset has a skewed
joint distribution of category-viewpoint combinations. This makes
it difficult to run controlled experiments. However, the experiments
that were possible on this dataset confirm that our findings extend
to it as well.

For all datasets, networks are trained to classify both category
and viewpoint simultaneously without pretraining, and the num-
ber of classes for each task is kept equal to ensure equal treatment.
As shown in the experiments, these datasets are challenging bench-
marks for testing generalization, with a huge scope for improvement
for state-of-the-art CNNs.

Factors affecting generalization behaviour

Below we present the two factors we study for their impact on gen-
eralization to OOD category-viewpoint combinations: (1) data
diversity and (2) architectural choices.

Generating train/test splits with desired data diversity. All our
datasets can be visualized as a square category-viewpoint combina-
tions grid as shown for the iLab dataset in Fig. 1b. Each row rep-
resents images from one category, and each column a viewpoint,
that is, each cell represents all images from one category-viewpoint
combination.

For each dataset, we start by constructing an OOD test split—a
set of category-viewpoint combinations are selected and held out
from the combinations grid as shown in Fig. 1c. We refer to these as
the OOD combinations. Images from OOD combinations are never
shown to any network during training. These images are only used
to evaluate how networks generalize outside the training distribu-
tion. For a fair representation of each category and viewpoint, we
ensure that every category and viewpoint class occurs exactly once
in the OOD combinations, that is, one cell each per row and column
is selected.

Remaining cells in the combinations grid are used to construct
multiple training splits with an increasing number of category-
viewpoint combinations, that is, data diversity. For each training
split, we first sample a set of combinations as shown in Fig. 1d,
which we call the in-distribution combinations. Then, we build the
training data-split by sampling images from these in-distribution
combinations. We ensure that every category and viewpoint occurs
equally in the in-distribution combinations, that is, equal num-
ber of cells per each row and column. Figure 1d shows the 50%

in-distribution training split for the iLab dataset. To ensure that we
evaluate the effect of data diversity and not that of data amount, the
number of images is kept constant across train splits as the number
of in-distribution combinations is increased. Thus, the number of
images per combination decreases as the number of in-distribution
combinations is increased. Also, note that every network is trained
with only one of these training splits at a time, that is, data diversity
is kept constant during training.

Architectural choices. One central question addressed in this
paper is the impact of architectural choices on the capability to
generalize to OOD category-viewpoint combinations. While
many separate models have been proposed for object recogni-
tion and viewpoint estimation’", recent years have seen a grow-
ing trend of architectures inspired by multi-task learning, which
suggests that recognition models can benefit from an understand-
ing of object viewpoint, and vice versa®>*>~*. These architectures
often learn a shared representation for both tasks, followed by
task-specific branches****.

Here, we investigate the impact of learning shared representations
on the capability of the network to generalize to OOD category-
viewpoint combinations, that is, to extrapolate in the multi-task
setting of simultaneous category and viewpoint classification. For
this, we defined two types of backbone agnostic architecture—the
Shared and the Separate architectures. Figure 2 depicts these archi-
tectures for a ResNet-18 backbone'. In the Shared case, all convo-
lutional blocks are shared between tasks, followed by task-specific
fully connected layers, while there are no layers shared between
tasks in the Separate architecture. We also investigated three addi-
tional Split architectures that represent a gradual transition from
Separate to Shared ResNet-18: the Split-1, Split-2 and Split-3 archi-
tectures. These were constructed by branching ResNet-18 after 1,
2 and 3 convolutional blocks as shown in Fig. 2. Note that splitting
at a layer leads to doubling of the number of neurons in that layer.
In our experiments, we show that this increase in width does not
provide an advantage.

Generalization through selectivity and invariance

Selectivity and invariance of neurons have long been hypothesized
to facilitate generalization in both biological and artificial neural
networks'*=*¢=% Neurons are commonly interpreted as image fea-
ture detectors, such that the neuron’s activity is high only when cer-
tain features are present in the image®'~*>. We refer to this property
as selectivity to an image feature. Selectivity alone, however, is not
sufficient to generalize to OOD category-viewpoint combinations.
For example, a neuron may be selective to features relevant to a cat-
egory, but only so for a subset of all the viewpoints. Generalization
is facilitated by selective neurons that are also invariant to nuisance
features. For instance, in Fig. la, neurons that are selective to the
Ford Thunderbird and invariant to viewpoint would have very simi-
lar activity for the Ford Thunderbird on in-distribution and OOD
viewpoints, thus enabling generalization to category recognition.
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Fig. 3 | Generalization performance for Shared and Separate ResNet-18 as in-distribution combinations are increased for all datasets. The geometric
mean of category recognition accuracy and viewpoint estimation accuracy is reported along with confidence intervals (95%). a, MNIST-Position dataset.

b, MNIST-Scale dataset. ¢, iLab dataset. d, Biased-Cars dataset.

Similarly, generalization to viewpoint estimation can be enabled by
neurons selective to viewpoint and invariant to category.

Here, we present our implementation for quantifying the amount
of selectivity and invariance of an individual neuron. Let N be the
number of categories or viewpoints in the dataset. We represent the
activations for a neuron across all category-viewpoint combina-
tions as an N X N activations grid, as shown in Fig. 5a. Each cell in
this activations grid represents the average activation of a neuron
for images from one category-viewpoint combination, with rows
and columns representing average activations for all images from
a single category (for example, Ford Thunderbird) and a viewpoint
(for example, front), respectively. These activations are normalized
to lie between 0 and 1 (Supplementary Section B.1). For neuron k,
we define af ij as the entry in the activations grid for row (category)
i and column (viewpoint) j. Below we introduce the evaluation of
a neuron’s selectivity score with respect to category and invariance
score with respect to viewpoint. Viewpoint selectivity score and cat-
egory invariance score can be derived analogously (Supplementary
Section B.2).

Selectivity score. We first identify the category that the neuron
is activated for the most on average, that is, the category that has
the maximum sum across the rows in Fig. 5a. We call th1s category
the neuron’s preferred category, and denote it as i**, such that
i = argmax;y i%ij- The selectivity score compares the average
activity for the preferred category (denoted as %) with the average
activity of the remaining categories (a¥). Let Sk be the selectivity
score with respect to category, which we define as is usual in the
literature (for example, refs. ***”) with the following expression:

~k —k

k
Sk _a —a h N 1 k ko Zi;ﬁi*ijaij
= T wereafﬁ Ak —_

Fid P C=Nw-n W

J

Observe that S is a value between 0 and 1, and higher values of sk
indicate that the neuron is more active for the preferred category
as compared with the rest. Selectivity with respect to viewpoint,
denoted as S%, can be derived analogously by swapping indices (i, ).

Invariance score. A neuron’s invariance to viewpoint captures the
range of its average activity for the preferred category as the view-
point (nuisance parameter) is changed. Let I¥ be the invariance
score with respect to viewpoint, which we define as the difference
between the highest and lowest activity across all viewpoints for the
preferred category, that is

I =1— ( max a;(*kj — min af-ikj (2)
J J
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where the range is subtracted from 1 to have the invariance score
equal to 1 when therei is maximal invariance. Invariance with respect
to category, denoted I¥, can be derived analogously.

Specialization score. Generalization to category recognition may
be facilitated by neurons selective to category and invariant to view-
point. Similarly, viewpoint selective and category invariant neu-
rons can help generalize well to viewpoint estimation. This reveals
a tension when category and viewpoint are learned together, as a
neuron that is selective to category, cannot be invariant to category.
The same is true for viewpoint. One way this contradiction may be
resolved is the emergence of two types of neuron—category selec-
tive and viewpoint invariant, and vice versa. We refer to this as
specialization. This hypothesis is well aligned with the findings in
ref. **, which showed the emergence of groups of neurons contrib-
uting exclusively to single tasks. Thus, in the context of category
recognition and viewpoint estimation, we hypothesize that neurons
become selective to either category or viewpoint at later layers as the
relevant image features for these tasks are disjoint (the category of
an object cannot predict its viewpoint, and vice versa).

To classify neuron k as a category or viewpoint neuron, we com-
pare its selectivity for both category and viewpoint (Sk and S).
If S¥ is greater than S£, then neuron k is a category neuron, other-
wise, it is a viewpoint neuron. Since generalization capability relies
on both invariance and selectivity, we introduce a new metric for a
neuron, the specialization score, I'*, which is the geometric mean of
its selectivity and invariance scores, that is

. V/SEIE if SF > S5 (category neuron ) 3
I" = 3
V/SEIE if SF < Sk (viewpoint neuron )

Below, we present results that show that the specialization score is
highly indicative of a network’s performance on OOD combinations.

When do CNNs generalize to OOD combinations?

Below, we summarize our findings from evaluating Separate
and Shared architectures when tested on unseen images from
in-distribution and OOD category-viewpoint combinations. See
Supplementary Section C for experimental details™*.

For fixed dataset size data diversity enables better OOD gener-
alization but deteriorates in-distribution performance. Figure 3
presents the geometric mean of category and viewpoint classification
accuracy for Separate and Shared architectures with the ResNet-18
backbone, for all datasets. These experiments were repeated three
times, and here we present the mean performance with confidence
intervals. For fixed dataset size, increasing in-distribution com-
binations makes the task more challenging as images with each
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Fig. 4 | Generalization performance for different architectures and backbones as in-distribution combinations are increased for iLab and Biased-Cars
datasets. The geometric mean between category recognition accuracy and viewpoint recognition accuracy is reported for OOD combinations as number
of in-distribution combinations is increased. a,b, Accuracy of Separate and Shared for backbones other than ResNet-18, for iLab (a) and Biased-Cars (b)
datasets. ¢,d, Accuracy of ResNet-18 Separate, Shared and different Split architectures made by splitting at different blocks of the network, for iLab (¢) and

Biased-Cars (d) datasets.
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Fig. 5 | Specialization to category recognition and viewpoint estimation. a, Prototypical activation grids for different types of selective and invariant
neuron. b,¢, Percentage of neurons after ResNet-18 block-4 that are specialized to category and viewpoint, for iLab (b) and Biased-Cars (c) datasets.
ResNet-18 Separate and Shared networks are evaluated; for Separate, only the task-relevant neurons for each branch are displayed.

category and viewpoint become more diverse, leading to some drop
in accuracy on in-distribution combinations. By contrast, both
architectures show a significant improvement of their performance
on images from OOD combinations, as data diversity increases.
We ensured that this result can not be attributed to having closer
viewpoint angles between in-distribution and OOD combinations
as data diversity is increased (Supplementary Section D.1). CNNs
do not theoretically guarantee viewpoint invariance”, but our result
provides reassurance that CNNs can become robust to OOD cat-
egory—viewpoint combinations as long as they are shown enough
diversity during training. Taken together, these results suggest an
inherent trade-off between getting better on in-distribution combi-
nations and extrapolating to OOD combinations, which is impacted
by training data diversity. Also, these results add to a growing body of
work investigating the trade-offs inherent to multi-task learning®"*.

Even though the geometric mean of category and viewpoint
classification increases consistently with increased in-distribution
combinations, individual accuracy for these tasks does not always
increase consistently (Supplementary Section D.2). We attribute
this to the randomness in the selection of in-distribution and OOD
combinations. Furthermore, the relative accuracy of the two tasks
varies depending on the dataset, and no task is consistently harder
than the other across all datasets.

Separate architectures generalize significantly better than Shared
ones in OOD combinations unlike in distribution. A striking find-

ing that emerged from our analysis is the contrast in the trends of the
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in-distribution and OOD performance. While both architectures per-
form well on new images from in-distribution combinations, Separate
architectures outperform Shared ones by a very large margin on OOD
combinations. For the ResNet-18 backbone, this result can be seen
consistently across all four datasets as shown in Fig. 3. Supplementary
Section D.2 shows that Separate also outperforms Shared for category
and viewpoint classification individually. Note that previous works
have shown that Shared architectures are superior for synergistic
tasks, as networks can share features among tasks. These works test
on the same combinations as seen during training (in-distribution),
and when we do so, we also observe that Shared architectures per-
form the same or slightly better than Separate ones (Fig. 3 dashed
lines). Thus, our results reveal that the relative performance between
Shared and Separate depends not only on the synergy between tasks,
but also whether the evaluation is in distribution or OOD.

We extended our analysis to Separate and Shared architec-
tures with different backbones, namely ResNeXt*, WideResNet ¢,
Inception v3* and the DenseNet®, as shown in Fig. 4a,b. As can
be seen, Separate architectures outperform Shared ones by a large
margin for all backbones, which confirms that this result is not
backbone specific. Investigating further, we experiment with Split
architectures, and as can be seen in Fig. 4c,d, there is a consistent,
gradual dip in the performance as we move from the Separate to
the Shared architectures. Thus, generalization to OOD category-
viewpoint combinations is best achieved by learning both tasks
separately, with a consistent decrease in generalization as more
parameter sharing is enforced.
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Fig. 6 | Neuron specialization (selectivity to category and invariance to viewpoint, and vice versa) in the Biased-Cars dataset. a,b, Median specialization
score of neurons (I'¥) in Separate and Shared architectures for category (a) and viewpoint (b) classification tasks, for backbones other than ResNet-18.
Confidence intervals (95%) displayed in low opacity. ¢,d, Median specialization score of neurons in ResNet-18 Separate and Shared architectures with
splits made at different blocks of the network, for category (¢) and viewpoint (d) classification tasks.

To make sure that Separate architectures do not perform better
due to the added number of neurons, we made the Shared-Wide
architecture by doubling the neurons in each layer of the Shared
ResNet-18 network. As Fig. 4c,d shows, this architecture per-
forms very similarly to the Shared one (see additional results in
Supplementary Section D.3). This is in accordance with previous
results that show that modern CNNs may improve in performance
as the width is increased but to a limited extent®*.

In the Supplementary Information, we provide a number of
additional controls that support the generality of our results.
Concretely, we show results for different number of training images
(Supplementary Section D.4), viewpoint estimation for four new car
models and category prediction for new viewpoints (Supplementary
Section D.5), and the order in which category and viewpoint are
learned (Supplementary Section D.6). We also present results on
additional datasets (Supplementary Section D.7) and architectures
(Supplementary Section D.8)%",

How do CNNs generalize to OOD combinations?

We now analyse the role of specialized (that is selective and invari-
ant) neurons in driving generalization to OOD category-viewpoint
combinations.

Specialization score correlates with generalization to OOD cat-
egory-viewpoint. We first investigate the emergence of category
and viewpoint neurons in the final convolutional layer of the net-
works. Figure 5b,c shows the percentage of neurons of each type in
Shared and Separate architectures as in-distribution combinations
are increased. As can be seen, all neurons in the category and view-
point branches of the Separate architecture become specialized to
category and viewpoint respectively. But in the Shared case, as the
network is expected to simultaneously learn both tasks, both kinds
of neurons emerge at a ratio of about 50%. We found that this ratio
depends on the relative weight of loss terms for the two tasks. When
using a different weight from the optimal in terms of maximum geo-
metric mean accuracy, the 50% ratio of specialized neuron becomes
unbalanced. For a small number of in-distribution combinations,
the ratio of specialized neurons may also be impacted by the relative
difficulty of two tasks, with more neurons becoming specialized for
the easier task (Supplementary Section E.1).

In Fig. 6 we present the median of specialization scores across
neurons, that is, the median of I'%, in the final convolutional layer
for Shared, Split and Separate architectures across multiple back-
bones in Biased-Cars dataset (see Supplementary Section E.2
for results in other datasets). These results are presented sepa-
rately for the category and viewpoint neurons. We show that as
in-distribution combinations increase, there is a steady increase in
the specialization score for both category and viewpoint neurons,

suggesting specialization. These trends mirror the generalization
trends, which suggests that specialization facilitates OOD general-
ization. Invariance and selectivity scores are reported separately in
Supplementary Section E.3. We also show that specialization builds
up across layers (Supplementary Section E.4) as expected™".

Separate networks facilitate the emergence of specialized neu-
rons. Figure 6 shows that Separate architectures facilitate specializa-
tion, while the Shared architecture makes it harder for the neurons
to specialize (lower specialization scores). This might be because
unlike the Shared architecture, the branches of the Separate archi-
tecture are not forced to preserve features relevant to both tasks.
Each branch can develop features that are selective to only one task,
and invariant to the other. This may facilitate an increase in special-
ization and thus enable better performance on OOD combinations.
Even though the Shared architecture tries to split into two special-
ized parts, this specialization is much stronger in the Separate archi-
tecture due to already having separate branches.

Conclusions

We have demonstrated that CNNs generalize better to OOD cat-
egory-viewpoint combinations as the training data diversity grows,
for constant dataset size. We have also shown that networks trained
separately for category and viewpoint classification surpass by a
large margin a shared network trained on both tasks when tested
on OOD combinations. We attribute this to the branches in the
Separate architecture not being forced to preserve information
about both tasks, which facilitates an increase in specialization,
that is, selectivity to category and invariance to viewpoint, and vice
versa. These results are consistent across five CNN backbones and
six datasets, one of them introduced in this paper as a controlled yet
photo-realistic benchmark for CNN generalization.

We also found that the aforementioned impact of data diver-
sity and Separate architecture are the opposite for in-distribution
and OOD combinations—increased data diversity degrades
in-distribution performance, and Separate networks perform worse
than Shared ones in in-distribution combinations. This highlights
that findings from in-distribution analysis do not apply to OOD.

As a first step towards understanding generalization to OOD
combinations, our work makes certain assumptions (summarized
in Supplementary Section F), which present interesting directions
for future work. These include understanding how generalization
is impacted by a larger number of tasks, multiple objects in the
image, object symmetries, non-rigid objects and non-uniform ways
of holding-out the test set, among others. Finally, we are intrigued
to explore what other factors can help learn selective and invariant
neural representations which can generalize better and lead the way
towards robust, trustable CNNs.
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Data availability

To access and cite the Biased-Cars dataset, please visit https://data-
verse.harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVN/
FINQ3R&faces-redirect=true.

Code availability

Source code and demos are available on GitHub at https://
github.com/Spandan-Madan/generalization_to_OOD_category_
viewpoint_combinations.
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