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We present a lattice computation of 777 -scattering in the I =1 channel with Ny =2 dynamical quark
flavours obtained with ensembles bracketing the physical value of the pion mass. Employing a global fit
to data at three values of the pion mass, we determine the universal parameters of the p-resonance. We
carefully investigate systematic uncertainties by determining energy eigenvalues using different methods
and by comparing inverse amplitude method and Breit-Wigner type parametrizations. Overall, exploring

the complex energy plane we find mass M, = 786(22) MeV and width I', = 180(6) MeV, including
statistical and systematic uncertainties. In contrast to previous Ny = 2 extrapolations from higher than
physical pion mass results, our mass value is in good agreement with experiment, while the width is too

high.
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1. Introduction

Quantum Chromodynamics (QCD) - the theory of strong inter-
actions - gives rise to a fascinating plethora of hadronic states:
mesons and baryons. A theoretical understanding of these states
from first principles requires a non-perturbative method, as pro-
vided by lattice QCD. As most of the hadrons are not stable under
the strong interaction and decay, such an investigation must in-
clude resonance and interaction parameters.

One very prominent such state is the so-called p-resonance
(p(770)), which decays predominantly in a p-wave into two pi-
ons with isospin I = 1. It is experimentally observed as a peak
in cross-sections at an energy of M, ~ 775 MeV with width
I'y ~ 150 MeV [1]. The corresponding p-wave phase-shift curve
is a prime example for a resonance phase-shift, see Refs. [2,3]. Via
vector meson dominance, the p plays a fundamental role in our
theoretical understanding of many processes [4] and, since it is
well investigated experimentally, it represents a benchmark reso-
nance state for lattice QCD simulations.
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The p-resonance has been investigated in lattice QCD previ-
ously [5-14], most recently in Ref. [15] with Ny =2+ 1+ 1 quark
flavours including a continuum and chiral extrapolation. The lat-
ter was needed because the lattice simulations were performed at
unphysically large values of the pion mass. One of the interesting
conclusions from Ref. [15] is that the chiral extrapolation is dif-
ficult, even though there is guidance from effective field theories.
The main reason for this was the lack of ensembles with suffi-
ciently light pion mass, the lightest being at 230 MeV. For Ny =2
there is, most notably, one investigation with nearly physical pion
mass value [9]. This calculation has been performed at a single
lattice spacing value and one infinite volume pion mass value of
about 150 MeV, finding an M, value from a Breit-Wigner fit which
is about 50 MeV below the experimental value mentioned above.
Also their width is about 40 MeV below the experimental value,
though the difference is covered by their estimate of the statistical
error.

More recently, there is an ongoing discussion about the origin
of the surprisingly large difference between the p-resonance pa-
rameters so far obtained in Ny =2 and Ny =2+ 1(+1) flavour
lattice QCD calculations [12,16-19].

0370-2693/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by
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Table 1

Parameters and pion mass values of the ensembles used. All en-
sembles have g = 2.10 and clover coefficient csw = 1.57551 in
common. The first column corresponds to the ensemble tag used
in the literature. For easier readability we will use the name given
in the second row for this paper.

Tag [20] Ens (L/a)® x T/a Neonf My [MeV]
cA2.09.48  E132 48 x 96 1485 132
cA2.30.48  E240 483 x 96 343 240
cA2.60.32  E340 323 x 64 334 340

With this letter we fill the gap to realistic pion mass val-
ues by including an ensemble slightly below the physical point.
We present p-resonance parameters determined on three Ny =2
lattice QCD ensembles generated by the Extended Twisted Mass
Collaboration (ETMC) [20] with pion masses between 132 and
340 MeV. Thus, we bracket the physical point with our ensem-
bles. The ensemble at 132 MeV pion mass allows us in principle
to directly determine the p-resonance phase shift in a model in-
dependent way using Liischer’s method. However, since Liischer’s
method is only valid below the inelastic threshold, we have only
five points available. This complication, which any lattice compu-
tation at the physical point will have to face, can be overcome by
including heavier than physical pion mass ensembles in the analy-
sis. We perform this analysis using the so-called inverse amplitude
method [21-23] (IAM) at next-to-leading order in chiral pertur-
bation theory, which is regularisation scale independent and pre-
serves unitarity. In addition, we consistently incorporate the scale
setting in our analysis and carefully estimate statistical and sys-
tematic uncertainties.

Moreover, by comparing to other lattice investigations we can
shed new light on the question of the importance of the KK
threshold - which is not present in our calculation - for the p-
resonance phase-shift.

2. Lattice computation

The results for the p-resonance properties presented in this
letter are based on gauge configurations generated by the ETMC
at a single value of the lattice spacing, a = 0.0914(15) fm [20].
These employ the Iwasaki gauge action [24] and two dynamical
mass-degenerate flavours of Wilson twisted mass clover fermions
at maximal twist [25,26]. With this action, physical quantities are
O(a) improved [27] such that discretisation effects only appear at
order a? in the lattice spacing. The three ensembles considered for
this letter are compiled in Table 1 together with the lattice volume
(L/a)® x T /a, the number of configurations Neonr used in this anal-
ysis and the pion mass value in physical units. For more details we
refer to Ref. [20].

On these ensembles, we compute centre-of-mass energy lev-
els Egms for irreducible representations (irreps) I' of the lattice
rotational symmetry group. We follow the procedure detailed in
Ref. [15] and compute Euclidean correlation matrices Cr. >

Crp2(t) = (Orp’ +1)- Orp(t)) (1)

averaging over all equivalent momenta p. The operators Or p =
(01,0%,...)t are chosen to project to irrep I' for total squared
momentum p2. The list of irreps I' considered is Ty, A1, E, By, B2
up to d> =4 with p=27d/L.

The basis operators used to construct the operators Orp are
two pion and single vector meson operators

Ontn-(x,y) = diysux) tiysd(y),
(2)

Op(x) %(ar/’u(x) —dr*d(x))
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with I'” € {iyi, yoyi}-
We apply the generalised eigenvalue method (GEVM), i.e., solve
the generalised eigenvalue problem [28,29]

Crp2 ON™ (¢, to) = 1™ (¢, t0)Cr 2 (t0)n™ (¢, to) 3)

for eigenvalues 2™ (t,ty) and eigenvectors n™, where n labels
the contributing states. Energy levels of these can be deter-
mined from the exponential fall-off of A7V (¢, to) at large t with to
fixed. In addition, we apply the so-called Prony generalised eigen-
value method (PGEVM) in form of a matrix pencil on top of the
GEVM [30] to reduce excited state contaminations.

The confidence in our energy eigenvalue extractions is in-
creased by employing the following three methods:

A1: direct fit to each A (¢, to) using a fit range chosen by eye.

A2: direct fit to each A (t, ty) using the fit range which yields the
fit with the best p-value.

A3: fit to the principal correlator of the PGEVM obtained from
2™ (¢, to) [30] using a fit range chosen by eye.

Energy eigenvalues for which the three methods do not yield con-
sistent results are discarded. To account for residual deviations, we
perform the resonance parameter determinations based on energy
eigenvalues obtained using each method separately and take the
maximal difference between the resulting parameter values as a
systematic uncertainty.

When considering multi-particle operators with periodic bound-
ary conditions, the corresponding correlation functions are pol-
luted by contributions from so-called thermal states and there
exist several methods to reduce or remove these. However, in
Ref. [15] we have shown that in the I =1 channel, the extracted
energies agree within errors with or without thermal state subtrac-
tion if the fit-range is chosen carefully. We have checked that this
is the case also here and thus use energy levels extracted with-
out thermal state subtraction. Like in Ref. [15], we use so-called
stochastic Laplacian Heaviside smearing [31] with algorithmic pa-
rameters identical to Ref. [32]. For the determination of the pion
decay constant on the same gauge configurations, we also employ
local time slice sources and the so-called one-end-trick, for details
see Ref. [33].

3. Phase-shift determination

The discrete and real valued lattice energy levels EL . are
mapped to the infinite volume scattering quantities using Liischer’s
method [29,35,36]. In case of the p-meson and under the assump-
tion that higher partial waves can be neglected, the p-wave phase-
shift 8 is related to the energy levels via

cots; = MY (k%) , (4)

where M' is an algebraically known matrix function [15,37,38]
of the lattice scattering momentum k(EZ2 ) = /E2,./4 — M2 and
the pion mass, M. Note that Eq. (4) is valid below inelastic
threshold (E.ms < 4My ) only. This represents a limitation in partic-
ular for the ensemble E132, where only five energy levels lie below
this threshold for our L-value. In a more general sense this also im-
plies that independently of the number of points below threshold,
the resonance region of the p-meson can never be mapped out
using Liischer's method only, because 4ME™S < M. Fortunately,
it is possible to include ensembles with larger than physical pion
mass values. Using such ensembles at physical and heavier than
physical pion mass, the IAM still allows us to obtain a result for
the p-resonance parameters at the physical point. Only with large
enough volumes available and by possibly including the 47 chan-
nel in the analysis this shortcoming can be overcome in the future.
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Given only discrete values of E.ys, one needs to parameterise
the scattering amplitude as a function of a continuous E.ps. One
example for such a parametrization is a simple Breit-Wigner (BW)
form

2
Epmm k3(s)

67 /s(M2—5)’
with M, the p-resonance mass, gyz» the p —m coupling, k the
lattice scattering momentum defined above and s the centre-of-

mass energy squared. The width I', is related to M, and g,z
via

tan 8¥W (s) =

(5)

 28pan K(MD)

r, = 6
P73 ar M2 (©)

Supplementary to the experimental measurements, additional in-
formation about the dynamics of the mm system resides in the
pion-mass dependence, which can be explored with lattice calcu-
lations. Being in the unique position of having data at the phys-
ical, as well as heavier than physical pion mass values, we use
the IAM parametrization of the scattering amplitude [21-23]. This
approach preserves unitarity exactly, has the correct pion mass de-
pendence up to next-to-leading order (NLO) in chiral perturbation
theory [39,40] and fulfils further non-perturbative constraints on
the chiral trajectory [41].

In IAM, the phase-shift 8; is parameterised as (for more details
see Ref. [18])

IAM(S)_ﬁ T2(s) — Ta(s)
P2k (Ta(s)?

where T, denotes the leading chiral order amplitude and T4 the
NLO one without s-channel loop diagrams. The two-meson loop in
dimensional regularisation is denoted by J(s). The corresponding
amplitude is regularisation scale independent and depends on one
combination of low-energy constants (LECs) [39] I12:=1; — L as
well as on the pion decay-constant in the chiral limit ( fp). Note
that both T, and T4 are expressed in terms of & = M72T/(47Z' fo)2.

The expressions (5) and (7) are fitted directly to the energy
eigenvalues using Eq. (4) without computing the phase-shift as an
intermediate quantity. Since we work at a single lattice spacing
value, all fits are carried out entirely in lattice units. Fit parame-
ters are the BW parameters g,z and M, or the aforementioned
LECs, depending on the considered fit form. Both fit forms depend
on M. We include our lattice values aM, with error estimates in
the fit using the procedure detailed in appendix B of Ref. [15]. In
the case of the IAM, instead of simply including fo as a fit param-
eter, we include our lattice estimates for af, with error estimate
in the fit by relating it to fp via [39]

2
fr=fo (1 ~2¢log [%D . (8)
4

Thus, we add A4 as a fit parameter, which is related to the NLO
LEC I4 [39], but with additional data for f, included in the fit.
For both, M; and f; we correct the lattice data for finite volume
effects using the parameter free ChPT predictions [42]

cot § — 167 Re](s)) , (7)

1
Mz (L) = Mz (1 + 55&) ; (9)

fa (D)= fr(1—28g1),

with g; as defined in Ref. [42].
In the case of single ensemble fits we use the lattice spac-
ing estimated in Ref. [20] to express the results in physical units.
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For the global IAM fit we instead use a self consistent procedure.
We define the physical point using the current FLAG [43] val-
ues M,[;hys =135 MeV and f,‘?hys =130.41 MeV. Next, we fit both
cot8!™ and af, simultaneously as functions of (aMy)? with fit
parameters [y — [, 4 and afp. Now, using Eq. (8) we express

hys
2 afo
M]prhys aM]pThys

(aMJIDThyS)Z ((aM,’;h-‘/s)2>
x|1-2 log| ————— ,
4 afy (ahg)?
and numerically solve for aM,[;hys with fitted afp and aA4 and
FEYS /MPYS _ 0,966 as input. The value of a in physical units is
then obtained by setting M2™® = 135 MeV. Note that this relation
is valid up to the next-to-leading chiral order. We perform this
for each of the bootstrap samples and methods A1-3 separately.
Besides phase-shifts and pole positions at the physical point, this
also allows one to extract fo in physical units as well as the low-
energy constant of interest I = 210g(aA4/(aM§hyS). In all fits we
take full account of correlations and compute statistical uncertain-
ties using the bootstrap. All bare data is publicly available in a data
repository [44].

The procedure to set the scale outlined above via M, and
My / fx has in our opinion several advantages:

e M, and f5 are naturally part of the analysis and thus, we do
not need to introduce additional scale setting quantities,

e both, M; and f; can be estimated with high statistical accu-
racy and the full correlation can be taken into account,

e other mesonic quantities like fy, which can be estimated with
similar accuracy, do not yield significantly higher scale setting
precision amid very similar results [20].

It is clear that any scale setting procedure employing just a single
value of the lattice spacing and with only two dynamical flavors is
bound to suffer from systematic biases which are beyond our con-
trol. In particular, employing a different scale setting quantity, for
example the nucleon mass, would lead to a 1.2% difference in the
scale and quadruple the corresponding statistical uncertainty, see
Ref. [20] for details. More generally, there is an ambiguity in the
scale setting procedure which can only be resolved by performing
a calculation including a continuum limit and in a theory includ-
ing at least three dynamical flavors. To account for these effects
beyond our control, we assign a generic 2.5% uncertainty to (un-
determined) discretisation artefacts which are generically of order
aZAzQCD and a 1.2% scale setting uncertainty in our final results.

4. Results

Here we present and discuss mainly the results obtained with
method A1 to estimate energy levels if not mentioned otherwise.
For methods A2-3 see the supplemental material. In Fig. 1 we
show kcot(81) as a function of the centre-of-mass energy Ecms
both in units of the pion mass for the three ensembles separately.
The solid red lines with 1o error band correspond to the best fits
of Eq. (7) directly to the energy levels on each ensemble sepa-
rately, the blue dashed lines to Breit-Wigner fits Eq. (5). The data
points with slanted error bars indicating the correlation between
81 and Ecps are generated using Eq. (4) for illustration purposes
only. Filled symbols correspond to data points with Ecns/My <4,
which are included in the fits, open symbols to the rest.

The results of our fits and the corresponding X(fof values are
compiled in Table 2. The complex p-resonance pole position E, =
M, +iI'y/2 is found by analytical continuation of the scattering
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Fig. 1. kcot(81) as a function of E¢ms, both in units of M, obtained from the fits to energy eigenvalues of analysis A1 for the three individual ensembles separately (from
left to right: E132, E240 and E340). Full red (with 1o uncertainty band in grey) and blue dashed lines show results of IAM- and BW-based fits, respectively. Data points are
added for illustration purposes only. For better legibility we have dropped a few points with absolute error larger than 20 and relative error larger than 75%. Only data points

with filled symbols are included in the underlying fits.
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Fig. 2. Compilation of results of this and other Ny =2 calculations [5,6,9,45] on M, (My). Results of ETMC 2+1+1 calculation [15] are included for comparison, too. The
indicated error bars combine systematic and statistical uncertainties. The blue (grey) shaded band shows the pion mass dependence of our global fit with corresponding
statistical (statistical and systematic) uncertainty. We quote the PDG central value [1] by the red star at 135 MeV (dashed vertical line) for comparison.

amplitude to the complex energy-plane. Note that in the case of
the BW parametrization this can also be approximated by Eq. (6),
while in the case of the IAM parametrization, the poles are re-
coded on the second Riemann Sheet in the usual manner, see,
e.g., Refs. [46-48] for explicit [AM expressions. The results are
given in Table 3 in the last two columns. The last row corre-
sponds to the result of the global IAM fit and the pole position
at the physical point, determined as outlined above and resulting
in a =0.0919(1) fm (statistical error only) well compatible with
the result from Ref. [20]. The results of the single (IAM, BW) and
global (IAM) fits are depicted in Fig. 2 together with the physical
result [1] and previous Ny = 2 lattice determinations [5,6,9,45].
In the same figure we also show the Ny =2+ 14 1 results of
Ref. [15], because this is the only work where the continuum limit
was taken.

The complex pole positions of our global fit are visualised in
Fig. 3. The solid 1o error band represents E, determined by the
global 1AM fit as a function of the pion mass (from larger pion
mass in the bottom right to smaller pion mass in the top left cor-
ner of the plot), the blue ellipse indicates the corresponding pole
position at the physical point. The two grey ellipses correspond
to pole positions from global IAM fits A2 and A3. In addition, we
show PDG values [1], indicating the variation in the phenomeno-

Table 2

Results of IAM-based correlated fits to single ensembles and global
set of eigenvalues, including statistical uncertainties determined from
re-sampling. Fits are based on energy levels estimated with method
A1, for A2-3 see [34].

Ens I afo ahs x2,  dof
125 +0.002 +0.284

E132  —11.025 00601092 0088028 16 4
108 10.002 +0.167

240 —68708 00657002 0138707 09 25

E340 —63 102 00637590  0.04170%1 08 23
all -53 109 0.05759% 054370000 1.1 58

logical extractions, and results of chiral extrapolations of previous
heavier pion mass Ny =2 lattice determinations [9,16,18].

Finally, in Fig. 4 we show the experimental phase-shift data [2,
3] as a function of E.yps and compare to our global IAM fit pre-
diction for the physical pion mass value. For the latter we plot in
blue the envelope area of all the error bands of the three global
IAM analyses A1-3, thus, visualising statistical and IAM uncertain-
ties. The grey band includes our estimate of the lattice artefacts
and the scale setting uncertainty added in quadrature. The lattice
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Fig. 3. The complex pole position of the p-meson. The blue ellipse shows the 1o boundary of the pole positions (global fit A1) at the physical point. Corresponding ellipses
for global fits to methods A2-3 are depicted as grey empty ellipses. Blue (grey) shaded band shows the pion mass dependence of the pole position with corresponding 1o
statistical (statistical and systematic) uncertainty. PDG results [1] and those of earlier lattice calculations [9,16,18] are quoted for comparison. Light orange ellipses correspond

to individual fits for the two ensembles at unphysically large pion mass values.

Table 3

Pole positions E, determined using IAM and BW
parametrizations for the different lattice ensembles with
method A1 to estimate the energy levels. Last row shows
the extrapolation of the global IAM fit to the physical point.

Ens Method ReE, [MeV] ImE, [MeV]
+65.7 +14.1
E132 1AM 587.31%37 28.873%
228.2 171.9
BW 603.17555% 342754
—+0.0 —+5.0
E240 1AM 821.01907 48.0139
0.0 5.0
BW 821.0707 48.0757
1.7 0.3
E340 1AM 868.074 241793
1.7 0.3
BW 868.0157 241193
0.1 0.0
all global IAM  786.872) 90.175%

prediction agrees with most of the experimental points within two
0.

5. Discussion

First, we observe very good agreement between BW and IAM
fits on the three ensembles separately, as can be see in Tables 2
and 3, with smaller errors in the IAM fits. This is even the case
on the physical point ensemble, however, with much too low pole
mass and width. The latter can be attributed to only five points
which can be included in the fit. These five points for the phase
shift are all located at values of E.yns where the phase shift §;
is close to zero. This leads to the situation that mostly a single
point at the largest included value of Eyg is determining the cur-
vature, as can also be seen in the leftmost panel of Fig. 1. If this
single phase shift value was lower by one o, the result of the
single ensemble fit would change significantly. Insofar, we con-
clude that systematic errors of such fits to the phase shift with
insufficiently many data points in the resonance region are under-
estimated.

This emphasises the importance of including ensembles with
larger than physical pion mass value in the analysis: only on those
ensembles can the Liischer method cover the resonance region
fully.

Interestingly, if one were to ignore the inelastic threshold on
the physical point ensemble and use Eq. (4) to obtain values for
81, the such obtained phase-shift points compare better with the

T e Experiment
1)
=
E
— 2
—
o
= Lattice QCD
0 TAM global analysis
T I I I l
500 700 900 1100
Ecms [MeV]

Fig. 4. p-meson p-wave phase-shift §; at the physical point. We compare exper-
imental data [2,3] to our prediction from three global IAM fits to Ny =2 lattice
QCD data, see text. The blue band visualises the statistical and fitting uncertainties,
the grey band includes in addition the estimated lattice artefacts and scale setting
uncertainty added in quadrature.

experimental data than the results from our single ensemble fits
restricted to energy values below inelastic threshold. In particular,
the resonance masses are for these fits 50 — 80 MeV larger than
the PDG value. This better agreement is likely due to the fact that
p — o is almost elastic up to 1 GeV, which is actually also the
assumption to obtain the experimental phase-shift points (see also
Ref. [49]). We decided not to include such fits in our main analysis,
because it adds in our opinion uncontrolled systematics rendering
the results difficult to interpret. However, the corresponding pole
positions can be found in the supplemental material.

The three global IAM analyses based on energy determinations
A1-3 agree very well with each other (see Tab. 1 in [34]) and we
conclude that they lead to consistent chiral extrapolations. Though
the physical point ensemble E132 might not, due to the few energy
levels, add much information to the global fit, it anchors the fit at
slightly below the physical pion mass value.

Below, we take the maximum of the + statistical errors as our
statistical uncertainty, the maximal deviation between the three
analyses A1-3 as a systematic uncertainty. Therefore, we quote as
our final result the results from the global IAM fit with analysis
method A1, reading
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M, = 786 (5)stat (1sys (19)1at (10)scale MeV,
Ty = 180 stat (Dsys Biat 2)scale MeV,

iz = —5.27 (8)stac 3)sys (13)1at (B)scale » (11)
Iy = +4.31 @)star (2)sys (1D1ar (5)scale »

fO = 122.27 (S)Stat (4)sys (3-06)lat (1-47)scale MeV.

Note that our parametrically estimated lattice artefacts are the
largest source of uncertainty in our results.

In the past, other calculations of the isovector w7 scattering
with two dynamical quarks have been performed as well. The
goal of these and the present study is to clarify the role of the
strange quark in the simplest hadronic resonance channel, which
is complimentary information to any experimental data and thus
may lead to a deeper understanding of the QCD dynamics. Specif-
ically, it was believed that the strange quark plays only a minor
to no role for this channel, which then was challenged by the
GWUQCD result [12] and following chiral extrapolations to the
physical point [16,17,50]. Based on a chiral unitary approach dif-
ferent from ours, it was reported there that the two-flavor p-
resonance is lighter than the physical one by about 50 MeV and
that the missing strangeness channels might explain this discrep-
ancy. Later, more sophisticated extrapolations were performed in
Refs. [18,19] confirming the lighter p-mass at the physical point.

In contrast to this, our results are much closer to the values
quoted in the PDG, even though obtained using an approach for
the chiral extrapolation similar to Ref. [18,19]. There are different
possibilities to explain this difference: on the one hand a reason
for the difference could be, as suggested in Ref. [19], the scale
setting procedure. The scale setting for our ensembles using vari-
ous different observables is discussed comprehensively in Ref. [20].
The 1.2% change when using the nucleon mass instead of f; to
set the scale would indeed shift our result towards lower values
for M, (if applied blindly by not taking the corresponding change
in My into account), but not enough to obtain values as low as
reported in Ref. [12]. Also, as mentioned above, errors would in-
crease significantly at the same time. Using the gradient flow scale
wo determined in Ref. [20] (again blindly) would induce an even
larger shift. Here, the physical value for wo with Ny =2 is taken
from the proceeding contribution [51]. The scale determination
from wg, however, appears to be an outlier, since even using the
alternative gradient flow scale /to leads to results completely in
line with the scales determined from f.

On the other hand, a difference could also come from lattice
artefacts, which we cannot control in our calculation, nor are we
aware of a continuum extrapolation of the p-resonance properties
in Ny =2 flavour lattice QCD. Thus, lattice artefacts could provide
the additional shift to bring our result to agreement with a signif-
icantly lower p-resonance mass value. But also the other Nf =2
flavour lattice results could be affected by such artefacts.

Compared to Ref. [15] with Ny =241+ 1 dynamical quark
flavours, we have presented in this letter a significantly better con-
trolled chiral extrapolation thanks to the included physical point
ensemble and the IAM. While the pole mass is similarly close to
the experimental value, our width is larger than the experimental
one, whereas in Ref. [15] a lower value was found. A final estimate
will require a continuum extrapolation at the physical pion mass
value.

When one compares the results presented here for the Ny =2
ensembles at larger than physical pion mass value to the cor-
responding results with Ny =2 + 1+ 1 from Ref. [15] directly
in Fig. 2, one observes a systematic downward trend from Ny =
24+1+1to Ny =2 in the p-resonance mass values. As mentioned
above, this could be due to scale setting, residual lattice artefacts,
or simply statistics. We cannot exclude with certainty that the

Physics Letters B 819 (2021) 136449

Ny =2 flavour p-resonance mass is lower than its Ny =2+1+1
counter part.

6. Conclusion

We have presented a lattice QCD analysis of the p-resonance
including an ensemble with slightly lower than physical pion
mass value for the first time. This allows us to estimate the p-
resonance parameters at the physical point using the inverse am-
plitude method including the pion mass dependence up to NLO in
the chiral expansion.

With all our uncertainties added in quadrature, our results for
the p-resonance mass and width read

M, = 786(22) MeV, T, = 180(6) MeV.

While M, agrees well with the PDG value, the width is too large
by 20%. The low energy constants are in very good agreement
with the corresponding FLAG lattice averages [43,52-56]. This is
not necessarily expected, since the IAM resums higher order ef-
fects due to unitarisation. While comparing with experiment, it is
important to keep in mind that our calculation is based on Ny =2
dynamical quark flavours, which introduces a systematic uncer-
tainty we cannot control.

Our result for the resonance mass is in good agreement with
experiment, even though the KK threshold is not present. This
difference to previous Ny =2 lattice calculations can still be ex-
plained by (a combination of) scale setting and lattice artefacts.

We summarise the result of this letter in Fig. 4, where, in addi-
tion to the experimental data for the p-wave phase-shift, the blue
band shows our result for the phase-shift at the physical pion mass
value obtained from the global IAM fit. The width of the band rep-
resents fitting and statistical uncertainties. The grey band includes
in addition an estimate of lattice artefacts and scale setting uncer-
tainty.

Eventually, this computation needs to be repeated with Ny =
2 + 1(+1) dynamical quark flavours, several values of the lattice
spacing and physical point ensembles included. Particular empha-
sis should also be on different spatial volumes at the physical
point.
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