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We present a lattice computation of ππ–scattering in the I = 1 channel with N f = 2 dynamical quark 
flavours obtained with ensembles bracketing the physical value of the pion mass. Employing a global fit 
to data at three values of the pion mass, we determine the universal parameters of the ρ-resonance. We 
carefully investigate systematic uncertainties by determining energy eigenvalues using different methods 
and by comparing inverse amplitude method and Breit-Wigner type parametrizations. Overall, exploring 
the complex energy plane we find mass Mρ = 786(22) MeV and width �ρ = 180(6) MeV, including 
statistical and systematic uncertainties. In contrast to previous N f = 2 extrapolations from higher than 
physical pion mass results, our mass value is in good agreement with experiment, while the width is too 
high.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Quantum Chromodynamics (QCD) – the theory of strong inter-
actions – gives rise to a fascinating plethora of hadronic states: 
mesons and baryons. A theoretical understanding of these states 
from first principles requires a non-perturbative method, as pro-
vided by lattice QCD. As most of the hadrons are not stable under 
the strong interaction and decay, such an investigation must in-
clude resonance and interaction parameters.

One very prominent such state is the so-called ρ-resonance 
(ρ(770)), which decays predominantly in a p-wave into two pi-
ons with isospin I = 1. It is experimentally observed as a peak 
in cross-sections at an energy of Mρ ∼ 775 MeV with width 
�ρ ∼ 150 MeV [1]. The corresponding p-wave phase-shift curve 
is a prime example for a resonance phase-shift, see Refs. [2,3]. Via 
vector meson dominance, the ρ plays a fundamental role in our 
theoretical understanding of many processes [4] and, since it is 
well investigated experimentally, it represents a benchmark reso-
nance state for lattice QCD simulations.

* Corresponding author.
E-mail address: urbach@hiskp.uni-bonn.de (C. Urbach).

The ρ-resonance has been investigated in lattice QCD previ-
ously [5–14], most recently in Ref. [15] with N f = 2 + 1 + 1 quark 
flavours including a continuum and chiral extrapolation. The lat-
ter was needed because the lattice simulations were performed at 
unphysically large values of the pion mass. One of the interesting 
conclusions from Ref. [15] is that the chiral extrapolation is dif-
ficult, even though there is guidance from effective field theories. 
The main reason for this was the lack of ensembles with suffi-

ciently light pion mass, the lightest being at 230 MeV. For N f = 2

there is, most notably, one investigation with nearly physical pion 
mass value [9]. This calculation has been performed at a single 
lattice spacing value and one infinite volume pion mass value of 
about 150 MeV, finding an Mρ value from a Breit-Wigner fit which 
is about 50 MeV below the experimental value mentioned above. 
Also their width is about 40 MeV below the experimental value, 
though the difference is covered by their estimate of the statistical 
error.

More recently, there is an ongoing discussion about the origin 
of the surprisingly large difference between the ρ-resonance pa-
rameters so far obtained in N f = 2 and N f = 2 + 1(+1) flavour 
lattice QCD calculations [12,16–19].

https://doi.org/10.1016/j.physletb.2021.136449
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Table 1
Parameters and pion mass values of the ensembles used. All en-
sembles have β = 2.10 and clover coefficient cSW = 1.57551 in 
common. The first column corresponds to the ensemble tag used 
in the literature. For easier readability we will use the name given 
in the second row for this paper.
Tag [20] Ens (L/a)3 × T /a Nconf Mπ [MeV]
cA2.09.48 E132 483 × 96 1485 132

cA2.30.48 E240 483 × 96 343 240

cA2.60.32 E340 323 × 64 334 340

With this letter we fill the gap to realistic pion mass val-
ues by including an ensemble slightly below the physical point. 
We present ρ-resonance parameters determined on three N f = 2

lattice QCD ensembles generated by the Extended Twisted Mass 
Collaboration (ETMC) [20] with pion masses between 132 and 
340 MeV. Thus, we bracket the physical point with our ensem-

bles. The ensemble at 132 MeV pion mass allows us in principle 
to directly determine the ρ-resonance phase shift in a model in-
dependent way using Lüscher’s method. However, since Lüscher’s 
method is only valid below the inelastic threshold, we have only 
five points available. This complication, which any lattice compu-

tation at the physical point will have to face, can be overcome by 
including heavier than physical pion mass ensembles in the analy-
sis. We perform this analysis using the so-called inverse amplitude 
method [21–23] (IAM) at next-to-leading order in chiral pertur-
bation theory, which is regularisation scale independent and pre-
serves unitarity. In addition, we consistently incorporate the scale 
setting in our analysis and carefully estimate statistical and sys-
tematic uncertainties.

Moreover, by comparing to other lattice investigations we can 
shed new light on the question of the importance of the K̄ K

threshold – which is not present in our calculation – for the ρ-

resonance phase-shift.

2. Lattice computation

The results for the ρ-resonance properties presented in this 
letter are based on gauge configurations generated by the ETMC 
at a single value of the lattice spacing, a = 0.0914(15) fm [20]. 
These employ the Iwasaki gauge action [24] and two dynamical 
mass-degenerate flavours of Wilson twisted mass clover fermions 
at maximal twist [25,26]. With this action, physical quantities are 
O(a) improved [27] such that discretisation effects only appear at 
order a2 in the lattice spacing. The three ensembles considered for 
this letter are compiled in Table 1 together with the lattice volume 
(L/a)3 × T /a, the number of configurations Nconf used in this anal-
ysis and the pion mass value in physical units. For more details we 
refer to Ref. [20].

On these ensembles, we compute centre-of-mass energy lev-
els E�

cms for irreducible representations (irreps) � of the lattice 
rotational symmetry group. We follow the procedure detailed in 
Ref. [15] and compute Euclidean correlation matrices C�,p2

C�,p2(t) = 〈O�,p(t
′ + t) ·O�,p(t

′)†〉 (1)

averaging over all equivalent momenta p. The operators O�,p =
(O1

�, O2
�, . . .)t are chosen to project to irrep � for total squared 

momentum p2. The list of irreps � considered is T1u, A1, E, B1, B2

up to d2 = 4 with p = 2πd/L.

The basis operators used to construct the operators O�,P are 
two pion and single vector meson operators

Oπ+π−(x, y) = d̄ iγ5 u(x) ū iγ5 d(y) ,

Oρ(x) = 1√
2
(ū�ρu(x) − d̄�ρd(x))

(2)

with �ρ ∈ {iγi, γ0γi}.
We apply the generalised eigenvalue method (GEVM), i.e., solve 

the generalised eigenvalue problem [28,29]

C�,p2(t)η
(n)(t, t0) = λ(n)(t, t0)C�,p2(t0)η

(n)(t, t0) (3)

for eigenvalues λ(n)(t, t0) and eigenvectors η(n) , where n labels 
the contributing states. Energy levels of these can be deter-

mined from the exponential fall-off of λ(n)(t, t0) at large t with t0
fixed. In addition, we apply the so-called Prony generalised eigen-
value method (PGEVM) in form of a matrix pencil on top of the 
GEVM [30] to reduce excited state contaminations.

The confidence in our energy eigenvalue extractions is in-
creased by employing the following three methods:

A1: direct fit to each λ(n)(t, t0) using a fit range chosen by eye.
A2: direct fit to each λ(n)(t, t0) using the fit range which yields the 

fit with the best p-value.
A3: fit to the principal correlator of the PGEVM obtained from 

λ(n)(t, t0) [30] using a fit range chosen by eye.

Energy eigenvalues for which the three methods do not yield con-
sistent results are discarded. To account for residual deviations, we 
perform the resonance parameter determinations based on energy 
eigenvalues obtained using each method separately and take the 
maximal difference between the resulting parameter values as a 
systematic uncertainty.

When considering multi-particle operators with periodic bound-
ary conditions, the corresponding correlation functions are pol-
luted by contributions from so-called thermal states and there 
exist several methods to reduce or remove these. However, in 
Ref. [15] we have shown that in the I = 1 channel, the extracted 
energies agree within errors with or without thermal state subtrac-
tion if the fit-range is chosen carefully. We have checked that this 
is the case also here and thus use energy levels extracted with-

out thermal state subtraction. Like in Ref. [15], we use so-called 
stochastic Laplacian Heaviside smearing [31] with algorithmic pa-
rameters identical to Ref. [32]. For the determination of the pion 
decay constant on the same gauge configurations, we also employ 
local time slice sources and the so-called one-end-trick, for details 
see Ref. [33].

3. Phase-shift determination

The discrete and real valued lattice energy levels E�
cms are 

mapped to the infinite volume scattering quantities using Lüscher’s 
method [29,35,36]. In case of the ρ-meson and under the assump-

tion that higher partial waves can be neglected, the p-wave phase-
shift δ1 is related to the energy levels via

cot δ1 = M�(k2) , (4)

where M� is an algebraically known matrix function [15,37,38]

of the lattice scattering momentum k(E2
cms) = √

E2
cms/4− M2

π and 
the pion mass, Mπ . Note that Eq. (4) is valid below inelastic 
threshold (Ecms < 4Mπ ) only. This represents a limitation in partic-
ular for the ensemble E132, where only five energy levels lie below 
this threshold for our L-value. In a more general sense this also im-

plies that independently of the number of points below threshold, 
the resonance region of the ρ-meson can never be mapped out 
using Lüscher’s method only, because 4Mphys

π < Mρ . Fortunately, 
it is possible to include ensembles with larger than physical pion 
mass values. Using such ensembles at physical and heavier than 
physical pion mass, the IAM still allows us to obtain a result for 
the ρ-resonance parameters at the physical point. Only with large 
enough volumes available and by possibly including the 4π chan-

nel in the analysis this shortcoming can be overcome in the future.
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Given only discrete values of Ecms, one needs to parameterise 
the scattering amplitude as a function of a continuous Ecms. One 
example for such a parametrization is a simple Breit-Wigner (BW) 
form

tan δBW1 (s) = g2ρππ

6π

k3(s)√
s (M2

ρ − s)
, (5)

with Mρ the ρ-resonance mass, gρππ the ρ − ππ coupling, k the 
lattice scattering momentum defined above and s the centre-of-
mass energy squared. The width �ρ is related to Mρ and gρππ

via

�ρ = 2

3

g2ρππ

4π

k3(M2
ρ)

M2
ρ

. (6)

Supplementary to the experimental measurements, additional in-
formation about the dynamics of the ππ system resides in the 
pion-mass dependence, which can be explored with lattice calcu-
lations. Being in the unique position of having data at the phys-
ical, as well as heavier than physical pion mass values, we use 
the IAM parametrization of the scattering amplitude [21–23]. This 
approach preserves unitarity exactly, has the correct pion mass de-
pendence up to next-to-leading order (NLO) in chiral perturbation 
theory [39,40] and fulfils further non-perturbative constraints on 
the chiral trajectory [41].

In IAM, the phase-shift δ1 is parameterised as (for more details 
see Ref. [18])

cot δIAM1 (s) =
√
s

2k

(
T2(s) − T̄4(s)

(T2(s))2
− 16π Re J (s)

)
, (7)

where T2 denotes the leading chiral order amplitude and T̄4 the 
NLO one without s-channel loop diagrams. The two-meson loop in 
dimensional regularisation is denoted by J (s). The corresponding 
amplitude is regularisation scale independent and depends on one 
combination of low-energy constants (LECs) [39] l̄12 := l̄1 − l̄2 as 
well as on the pion decay-constant in the chiral limit ( f0). Note 
that both T2 and T4 are expressed in terms of ξ = M2

π/(4π f0)
2.

The expressions (5) and (7) are fitted directly to the energy 
eigenvalues using Eq. (4) without computing the phase-shift as an 
intermediate quantity. Since we work at a single lattice spacing 
value, all fits are carried out entirely in lattice units. Fit parame-

ters are the BW parameters gρππ and Mρ or the aforementioned 
LECs, depending on the considered fit form. Both fit forms depend 
on Mπ . We include our lattice values aMπ with error estimates in 
the fit using the procedure detailed in appendix B of Ref. [15]. In 
the case of the IAM, instead of simply including f0 as a fit param-

eter, we include our lattice estimates for afπ with error estimate 
in the fit by relating it to f0 via [39]

fπ = f0

(
1− 2ξ log

[
M2

π

�2
4

])
. (8)

Thus, we add �4 as a fit parameter, which is related to the NLO 
LEC l̄4 [39], but with additional data for fπ included in the fit. 
For both, Mπ and fπ we correct the lattice data for finite volume 
effects using the parameter free ChPT predictions [42]

Mπ (L) = Mπ

(
1+ 1

2
ξ g1

)
, (9)

fπ (L) = fπ (1− 2ξ g1) ,

with g1 as defined in Ref. [42].
In the case of single ensemble fits we use the lattice spac-

ing estimated in Ref. [20] to express the results in physical units. 

For the global IAM fit we instead use a self consistent procedure. 
We define the physical point using the current FLAG [43] val-

ues Mphys
π = 135 MeV and f physπ = 130.41 MeV. Next, we fit both 

cot δIAM1 and afπ simultaneously as functions of (aMπ )2 with fit 
parameters l̄1 − l̄2, l̄4 and af0. Now, using Eq. (8) we express

f
phys
π

M
phys
π

= af0

aM
phys
π

×

×
⎛
⎝1− 2

(
aM

phys
π

4πaf0

)2

log

(
(aM

phys
π )2

(a�4)2

)⎞
⎠ ,

(10)

and numerically solve for aMphys
π with fitted af0 and a�4 and 

f
phys
π /M

phys
π = 0.966 as input. The value of a in physical units is 

then obtained by setting Mphys
π = 135 MeV. Note that this relation 

is valid up to the next-to-leading chiral order. We perform this 
for each of the bootstrap samples and methods A1-3 separately. 
Besides phase-shifts and pole positions at the physical point, this 
also allows one to extract f0 in physical units as well as the low-

energy constant of interest l̄4 = 2 log(a�4/(aM
phys
π ). In all fits we 

take full account of correlations and compute statistical uncertain-
ties using the bootstrap. All bare data is publicly available in a data 
repository [44].

The procedure to set the scale outlined above via Mπ and 
Mπ/ fπ has in our opinion several advantages:

• Mπ and fπ are naturally part of the analysis and thus, we do 
not need to introduce additional scale setting quantities,

• both, Mπ and fπ can be estimated with high statistical accu-
racy and the full correlation can be taken into account,

• other mesonic quantities like f K , which can be estimated with 
similar accuracy, do not yield significantly higher scale setting 
precision amid very similar results [20].

It is clear that any scale setting procedure employing just a single 
value of the lattice spacing and with only two dynamical flavors is 
bound to suffer from systematic biases which are beyond our con-
trol. In particular, employing a different scale setting quantity, for 
example the nucleon mass, would lead to a 1.2% difference in the 
scale and quadruple the corresponding statistical uncertainty, see 
Ref. [20] for details. More generally, there is an ambiguity in the 
scale setting procedure which can only be resolved by performing 
a calculation including a continuum limit and in a theory includ-
ing at least three dynamical flavors. To account for these effects 
beyond our control, we assign a generic 2.5% uncertainty to (un-
determined) discretisation artefacts which are generically of order 
a2�2

QCD and a 1.2% scale setting uncertainty in our final results.

4. Results

Here we present and discuss mainly the results obtained with 
method A1 to estimate energy levels if not mentioned otherwise. 
For methods A2-3 see the supplemental material. In Fig. 1 we 
show k cot(δ1) as a function of the centre-of-mass energy Ecms

both in units of the pion mass for the three ensembles separately. 
The solid red lines with 1σ error band correspond to the best fits 
of Eq. (7) directly to the energy levels on each ensemble sepa-
rately, the blue dashed lines to Breit-Wigner fits Eq. (5). The data 
points with slanted error bars indicating the correlation between 
δ1 and Ecms are generated using Eq. (4) for illustration purposes 
only. Filled symbols correspond to data points with Ecms/Mπ ≤ 4, 
which are included in the fits, open symbols to the rest.

The results of our fits and the corresponding χ2
dof

values are 
compiled in Table 2. The complex ρ-resonance pole position Eρ =
Mρ + i�ρ/2 is found by analytical continuation of the scattering 
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Fig. 1. k cot(δ1) as a function of Ecms, both in units of Mπ , obtained from the fits to energy eigenvalues of analysis A1 for the three individual ensembles separately (from 
left to right: E132, E240 and E340). Full red (with 1σ uncertainty band in grey) and blue dashed lines show results of IAM- and BW-based fits, respectively. Data points are 
added for illustration purposes only. For better legibility we have dropped a few points with absolute error larger than 20 and relative error larger than 75%. Only data points 
with filled symbols are included in the underlying fits.

Fig. 2. Compilation of results of this and other N f = 2 calculations [5,6,9,45] on Mρ(Mπ ). Results of ETMC 2+1+1 calculation [15] are included for comparison, too. The 
indicated error bars combine systematic and statistical uncertainties. The blue (grey) shaded band shows the pion mass dependence of our global fit with corresponding 
statistical (statistical and systematic) uncertainty. We quote the PDG central value [1] by the red star at 135 MeV (dashed vertical line) for comparison.

amplitude to the complex energy-plane. Note that in the case of 
the BW parametrization this can also be approximated by Eq. (6), 
while in the case of the IAM parametrization, the poles are re-
coded on the second Riemann Sheet in the usual manner, see, 
e.g., Refs. [46–48] for explicit IAM expressions. The results are 
given in Table 3 in the last two columns. The last row corre-
sponds to the result of the global IAM fit and the pole position 
at the physical point, determined as outlined above and resulting 
in a = 0.0919(1) fm (statistical error only) well compatible with 
the result from Ref. [20]. The results of the single (IAM, BW) and 
global (IAM) fits are depicted in Fig. 2 together with the physical 
result [1] and previous N f = 2 lattice determinations [5,6,9,45]. 
In the same figure we also show the N f = 2 + 1 + 1 results of 
Ref. [15], because this is the only work where the continuum limit 
was taken.

The complex pole positions of our global fit are visualised in 
Fig. 3. The solid 1σ error band represents Eρ determined by the 
global IAM fit as a function of the pion mass (from larger pion 
mass in the bottom right to smaller pion mass in the top left cor-
ner of the plot), the blue ellipse indicates the corresponding pole 
position at the physical point. The two grey ellipses correspond 
to pole positions from global IAM fits A2 and A3. In addition, we 
show PDG values [1], indicating the variation in the phenomeno-

Table 2
Results of IAM-based correlated fits to single ensembles and global 
set of eigenvalues, including statistical uncertainties determined from 
re-sampling. Fits are based on energy levels estimated with method

A1, for A2-3 see [34].

Ens l̄12 af0 a�4 χ2
dof

dof

E132 −11.0+2.5
−2.8 0.060+0.002

−0.003 0.088+0.284
−0.067 1.6 4

E240 −6.8 +0.8
−0.4 0.065+0.002

−0.004 0.138+0.167
−0.039 0.9 25

E340 −6.3 +0.2
−0.8 0.063+0.004

−0.001 0.041+0.041
−0.104 0.8 23

all −5.3 +0.0
−0.1 0.057+0.000

−0.000 0.543+0.010
−0.006 1.1 58

logical extractions, and results of chiral extrapolations of previous 
heavier pion mass N f = 2 lattice determinations [9,16,18].

Finally, in Fig. 4 we show the experimental phase-shift data [2,

3] as a function of Ecms and compare to our global IAM fit pre-
diction for the physical pion mass value. For the latter we plot in 
blue the envelope area of all the error bands of the three global 
IAM analyses A1-3, thus, visualising statistical and IAM uncertain-
ties. The grey band includes our estimate of the lattice artefacts 
and the scale setting uncertainty added in quadrature. The lattice 

4



M. Fischer, B. Kostrzewa, M. Mai et al. Physics Letters B 819 (2021) 136449

Fig. 3. The complex pole position of the ρ-meson. The blue ellipse shows the 1σ boundary of the pole positions (global fit A1) at the physical point. Corresponding ellipses 
for global fits to methods A2-3 are depicted as grey empty ellipses. Blue (grey) shaded band shows the pion mass dependence of the pole position with corresponding 1σ
statistical (statistical and systematic) uncertainty. PDG results [1] and those of earlier lattice calculations [9,16,18] are quoted for comparison. Light orange ellipses correspond 
to individual fits for the two ensembles at unphysically large pion mass values.

Table 3
Pole positions Eρ determined using IAM and BW 
parametrizations for the different lattice ensembles with 
method A1 to estimate the energy levels. Last row shows 
the extrapolation of the global IAM fit to the physical point.

Ens Method Re Eρ [MeV] Im Eρ [MeV]

E132 IAM 587.3+65.7
−49.1 28.8+14.1

−8.7

BW 603.1+228.2
−86.9 34.2+171.9

−24.3

E240 IAM 821.0+0.0
−11.8 48.0+5.0

−4.1

BW 821.0+0.0
−11.8 48.0+5.0

−4.1

E340 IAM 868.0+1.7
−5.4 24.1+0.3

−2.7

BW 868.0+1.7
−5.8 24.1+0.3

−2.7

all global IAM 786.8+0.1
−5.2 90.1+0.0

−2.0

prediction agrees with most of the experimental points within two 
σ .

5. Discussion

First, we observe very good agreement between BW and IAM 
fits on the three ensembles separately, as can be see in Tables 2

and 3, with smaller errors in the IAM fits. This is even the case 
on the physical point ensemble, however, with much too low pole 
mass and width. The latter can be attributed to only five points 
which can be included in the fit. These five points for the phase 
shift are all located at values of Ecms where the phase shift δ1
is close to zero. This leads to the situation that mostly a single 
point at the largest included value of Ecms is determining the cur-
vature, as can also be seen in the leftmost panel of Fig. 1. If this 
single phase shift value was lower by one σ , the result of the 
single ensemble fit would change significantly. Insofar, we con-
clude that systematic errors of such fits to the phase shift with 
insufficiently many data points in the resonance region are under-
estimated.

This emphasises the importance of including ensembles with 
larger than physical pion mass value in the analysis: only on those 
ensembles can the Lüscher method cover the resonance region 
fully.

Interestingly, if one were to ignore the inelastic threshold on 
the physical point ensemble and use Eq. (4) to obtain values for 
δ1, the such obtained phase-shift points compare better with the 

Fig. 4. ρ-meson p-wave phase-shift δ1 at the physical point. We compare exper-
imental data [2,3] to our prediction from three global IAM fits to N f = 2 lattice 
QCD data, see text. The blue band visualises the statistical and fitting uncertainties, 
the grey band includes in addition the estimated lattice artefacts and scale setting 
uncertainty added in quadrature.

experimental data than the results from our single ensemble fits 
restricted to energy values below inelastic threshold. In particular, 
the resonance masses are for these fits 50 − 80 MeV larger than 
the PDG value. This better agreement is likely due to the fact that 
ρ → ππ is almost elastic up to 1 GeV, which is actually also the 
assumption to obtain the experimental phase-shift points (see also 
Ref. [49]). We decided not to include such fits in our main analysis, 
because it adds in our opinion uncontrolled systematics rendering 
the results difficult to interpret. However, the corresponding pole 
positions can be found in the supplemental material.

The three global IAM analyses based on energy determinations

A1-3 agree very well with each other (see Tab. 1 in [34]) and we 
conclude that they lead to consistent chiral extrapolations. Though 
the physical point ensemble E132 might not, due to the few energy 
levels, add much information to the global fit, it anchors the fit at 
slightly below the physical pion mass value.

Below, we take the maximum of the ± statistical errors as our 
statistical uncertainty, the maximal deviation between the three 
analyses A1-3 as a systematic uncertainty. Therefore, we quote as 
our final result the results from the global IAM fit with analysis 
method A1, reading

5
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Mρ = 786 (5)stat (1)sys (19)lat (10)scale MeV ,

�ρ = 180 (4)stat (1)sys (5)lat (2)scale MeV ,

l̄12 = −5.27 (8)stat (3)sys (13)lat (6)scale ,

l̄4 = +4.31 (4)stat (2)sys (11)lat (5)scale ,

f0 = 122.27 (8)stat (4)sys (3.06)lat (1.47)scale MeV .

(11)

Note that our parametrically estimated lattice artefacts are the 
largest source of uncertainty in our results.

In the past, other calculations of the isovector ππ scattering 
with two dynamical quarks have been performed as well. The 
goal of these and the present study is to clarify the role of the 
strange quark in the simplest hadronic resonance channel, which 
is complimentary information to any experimental data and thus 
may lead to a deeper understanding of the QCD dynamics. Specif-
ically, it was believed that the strange quark plays only a minor 
to no role for this channel, which then was challenged by the 
GWUQCD result [12] and following chiral extrapolations to the 
physical point [16,17,50]. Based on a chiral unitary approach dif-
ferent from ours, it was reported there that the two-flavor ρ-

resonance is lighter than the physical one by about 50 MeV and 
that the missing strangeness channels might explain this discrep-
ancy. Later, more sophisticated extrapolations were performed in 
Refs. [18,19] confirming the lighter ρ-mass at the physical point.

In contrast to this, our results are much closer to the values 
quoted in the PDG, even though obtained using an approach for 
the chiral extrapolation similar to Ref. [18,19]. There are different 
possibilities to explain this difference: on the one hand a reason 
for the difference could be, as suggested in Ref. [19], the scale 
setting procedure. The scale setting for our ensembles using vari-
ous different observables is discussed comprehensively in Ref. [20]. 
The 1.2% change when using the nucleon mass instead of fπ to 
set the scale would indeed shift our result towards lower values 
for Mρ (if applied blindly by not taking the corresponding change 
in Mπ into account), but not enough to obtain values as low as 
reported in Ref. [12]. Also, as mentioned above, errors would in-
crease significantly at the same time. Using the gradient flow scale 
w0 determined in Ref. [20] (again blindly) would induce an even 
larger shift. Here, the physical value for w0 with N f = 2 is taken 
from the proceeding contribution [51]. The scale determination 
from w0, however, appears to be an outlier, since even using the 
alternative gradient flow scale 

√
t0 leads to results completely in 

line with the scales determined from fπ .

On the other hand, a difference could also come from lattice 
artefacts, which we cannot control in our calculation, nor are we 
aware of a continuum extrapolation of the ρ-resonance properties 
in N f = 2 flavour lattice QCD. Thus, lattice artefacts could provide 
the additional shift to bring our result to agreement with a signif-
icantly lower ρ-resonance mass value. But also the other N f = 2

flavour lattice results could be affected by such artefacts.
Compared to Ref. [15] with N f = 2 + 1 + 1 dynamical quark 

flavours, we have presented in this letter a significantly better con-
trolled chiral extrapolation thanks to the included physical point 
ensemble and the IAM. While the pole mass is similarly close to 
the experimental value, our width is larger than the experimental 
one, whereas in Ref. [15] a lower value was found. A final estimate 
will require a continuum extrapolation at the physical pion mass 
value.

When one compares the results presented here for the N f = 2

ensembles at larger than physical pion mass value to the cor-
responding results with N f = 2 + 1 + 1 from Ref. [15] directly 
in Fig. 2, one observes a systematic downward trend from N f =
2 +1 +1 to N f = 2 in the ρ-resonance mass values. As mentioned 
above, this could be due to scale setting, residual lattice artefacts, 
or simply statistics. We cannot exclude with certainty that the 

N f = 2 flavour ρ-resonance mass is lower than its N f = 2 + 1 + 1

counter part.

6. Conclusion

We have presented a lattice QCD analysis of the ρ-resonance 
including an ensemble with slightly lower than physical pion 
mass value for the first time. This allows us to estimate the ρ-

resonance parameters at the physical point using the inverse am-

plitude method including the pion mass dependence up to NLO in 
the chiral expansion.

With all our uncertainties added in quadrature, our results for 
the ρ-resonance mass and width read

Mρ = 786(22) MeV , �ρ = 180(6) MeV .

While Mρ agrees well with the PDG value, the width is too large 
by 20%. The low energy constants are in very good agreement 
with the corresponding FLAG lattice averages [43,52–56]. This is 
not necessarily expected, since the IAM resums higher order ef-
fects due to unitarisation. While comparing with experiment, it is 
important to keep in mind that our calculation is based on N f = 2

dynamical quark flavours, which introduces a systematic uncer-
tainty we cannot control.

Our result for the resonance mass is in good agreement with 
experiment, even though the K K̄ threshold is not present. This 
difference to previous N f = 2 lattice calculations can still be ex-
plained by (a combination of) scale setting and lattice artefacts.

We summarise the result of this letter in Fig. 4, where, in addi-
tion to the experimental data for the p-wave phase-shift, the blue 
band shows our result for the phase-shift at the physical pion mass 
value obtained from the global IAM fit. The width of the band rep-
resents fitting and statistical uncertainties. The grey band includes 
in addition an estimate of lattice artefacts and scale setting uncer-
tainty.

Eventually, this computation needs to be repeated with N f =
2 + 1(+1) dynamical quark flavours, several values of the lattice 
spacing and physical point ensembles included. Particular empha-

sis should also be on different spatial volumes at the physical 
point.
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