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particular focus here is to provide a model-based framework for accurately predicting DNA methylation from
genetic data using racially sparse public repository data. Epigenetic alterations are of great interest in cancer
research but public repository data is limited in the information it provides. However, genetic data is more
plentiful. Our phenotype of interest is cervical cancer in The Cancer Genome Atlas (TCGA) repository. Being able
to generate such predictions would nicely complement other work that has generated gene-level predictions of
gene expression for normal samples.

We develop a new prediction approach which uses shared random effects from a nested error mixed effects
regression model. The sharing of random effects allows borrowing of strength across racial groups greatly
improving predictive accuracy. Additionally, we show how to further borrow strength by combining data from
different cancers in TCGA even though the focus of our predictions is DNA methylation in cervical cancer. We
compare our methodology against other popular approaches including the elastic net shrinkage estimator and
random forest prediction. Results are very encouraging with the shared classified random effects approach

Mixed effects models
Racial diversity

uniformly producing more accurate predictions — overall and for each racial group.

1. Background

Epigenetic markers are more and more of a focus of cancer re-
searchers due to the fact that they form a bridge between the environ-
ment and the biology of a tumor. Hypermethylation of CpG islands are
well known to result in decreased gene expression of nearby genes. In
cervical cancer for instance, a number of tumor suppressor genes have
been found to have undergone hypermethylation including those
involved in apoptosis, cell-cycle, WNT-pathway, DNA repair, the FA-
BRAC pathway, mismatch repair, metastasis and cell death and cell
differentiation [5]. Additionally, African Americans have a higher
incidence and worse survival and little is known about their differential
methylation patterns. Since methylation is modifiable, understanding
this might lead to new ways to mitigate disparities.

While the amount of epigenetic data is increasing all the time, it’s
still not as ubiquitously found as other genomic profiles. So it might be
very useful if one could predict methylation values using the mountains
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of cancer-related genomic data that does exist today in the form of
genotyping data. In fact, this type of thing was done by [7] who
generated a gene expression predictive linear model based on SNP
profiles from normal tissues using the GTEx public repository [16]. They
focused on an ANOVA-type decomposition of total expression into a
genetically controlled portion, a portion determined by phenotype and a
portion determined by environmental and other factors. Thus their
predictions were interrogating the genetically controlled portion of gene
expression. Their decomposition, if applied directly to DNA methylation
(DNAm), was such that DNAm — w;gDNAm + wypDNAm + w3eDNAm,
with 21'3:1“0' = 1. The addition of covariates beyond SNPs (e.g. clinical
variables) to the model would yield predictions aimed at estimating
DNAm itself. However, it is very likely that these models will still be
under specified (biased) and would not be capturing enough of the
variation in DNAm.

So our goal is to generate highly accurate predictions of DNAm from
genetic data and other covariates. We will use a new mixed model based
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methodology to help capture the unmeasured sources of variation in
DNAm. But our task will be doubly difficult because we also are inter-
ested in predicting race-specific DNAm and will have to address the fact
that genomic data repositories notoriously lack racial and ethnic di-
versity. In fact, this was one of the impetuses behind NIH’s new All of Us
project [19] - to generate a public repository of genomic profiling data
that was more representative of the general population. A clustering step
of DNAm executed prior to fitting our mixed models which results in
clusters with racial diversity will allow for borrowing strength across
races to improve race-specific predictions.

2. Results

The TCGA Cervical and endocervical cancers (CESC) raw data con-
tained 305 patients. The data was comprised of 482,421 methylation
features (450 K platform) and 22,618 gene features with somatic copy
number alterations (SCNA). The CESC methylation data and sCNA data
along with clinical data which includes demographic and staging in-
formation were downloaded using R package TCGA2STAT [26].

2.1. Univariate filtering of CESC samples

Patients with race other than White or Black were excluded, which
reduced sample size to 230, among which 28 (12.2%) were Black and
202 (87.8%) were White. Methylation based on raw Beta values were
filtered by imposing a cutoff of 0.25 in terms of empirical standard de-
viation to select probes with high variability, resulting in 2472 most
variable features selected. The cutoff was determined based on previous
studies where [28] used a cutoff of 0.2 and [15] who used a cutoff of 0.3
in order to filter the most variable CpGs with other constraints. In this
study we chose a cuttoff of 0.25. Hypothesis testing using false detection
rate (FDR) control was entertained but not used because of the extreme
conservativeness of the procedure with such a large number of tests to
control [9]. Additionally, 70 further methylation variables were
removed due to missingness resulting in 2402 methylation responses
used in the analyses. The genetic data obtained from TCGA2STAT was
aggregated gene level somatic copy number alterations (sCNAs)
profiling from Affymetrix Genome-Wide Human SNP Array 6.0 [26],
therefore genes that harboring somatic mutations were used for filtering
and building statistical models as input features. The sCNAs were
filtered to only including the top 0.5-percentile in terms of variance,
which resulted in 114 features selected. Due to the existence of high
correlation among some of the genes which would cause model singu-
larity, one gene in any pair with a correlation greater than 0.7 were
removed. The final number of sCNAs included in the analyses was 61.

2.2. (Clinical variables
Clinical variables included in the analysis were age; gender; race; and

Stage. The Stage variable had to be manually created as described in the
next section. Age was included as continuous variable, while gender; race;
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T, regional nodes N, and metastases M) by classifying patients with
similar prognoses [6]. Table 1 below shows that all staging categories
(subcategories) are absent for CESC.

The classification and definition of TNM system differs by cancer
types, which in turn suggests that pathologic staging should modeled
taking into account specific cancer type. AJCC provides rules for
defining staging by specific cancer type using the TNM system [6] and
for CESC, the information for can be found at (https://cancerstaging.
org/references-tools/quickreferences/Documents/CervixMedium.pdf).
According to these rules and with the available TNM variables: patho-
logyTstage, pathologyNstage, and pathologyMstage; Stage can be deter-
mined. We first defined each sub-category, and then combined the sub-
categories to form stage I to IV(1 to 4) plus an additional level, stage. NA
since there are some patients who cannot be grouped into a stage due to
limited TNM information. The distribution of the new Stage variable is
displayed below in Table 2. Tables 3 and 4 show the original and new
Stage variable by cancer type when integrating LUAD samples.

2.3. The proposed method

Suppose that we have a set of training data, y;, i=1, ..., m,j=1, ..,
n; in the sense that their classifications are known, that is, one knows
which group, i, that y;; belongs to. Let y;; be the measured DNAm from a
training dataset of size Nwherei=1, ...,mandj=1, ..., ;; with > in; =
N. So this represents clustered DNAm data in m distinct groups.
Accompanying each y; measurement is a p-vector of individual level
covariates Xxjj.

The assumed linear mixed model (LMM) for the training data is

yi =Xif+Zia; + &, (1)
where y; = (Vi)1<j<n, Xi = (Xi)1<j<n, is a matrix of known covariates, f is
a vector of unknown regression coefficients (the fixed effects), Z; is a
known n; x ¢ matrix, a;is a q x 1 vector of group-specific random effects,
and ¢; is an n; x 1 vector of errors. It is assumed that the ¢;’s and ¢;’s are
independent, with @; ~ N(0,G) and & ~ N(0O,R;), where the covariance
matrices G and R; depend on a vector y of variance components.

Our goal is to make a classified prediction for a mixed effect asso-
ciated with a set of new observations, yy j, 1 <j < npew (the subscript n
refers to “new”). Suppose that

Ynj = X:]/} + 1:1[11 + Enjy 1 S] < Npew s (2)
where x,, 2z, are known vectors, I € {1,...,m} but one does not know
which element i, 1 <i < m, is equal to I. Furthermore, &y, j, 1 <j < Npew
are new errors that are independent with E(e,, ;) = 0 and var(ey, ;) =
Rpew, and are independent with the ¢;’s and ¢;’s. Note that the normality
assumption is not always needed for the new errors. Also, the variance
Ryew of the new errors does not have to be the same as the variance of ¢,
the jth component of ¢; associated with the training data. The mixed
effect that we wish to predict is

Stage were categorical variables. Male was used as baseline level for 0 =E(njlar) = x5 +z,a. ®)
Gender. Patients with race other than White and Black were excluded
before filtering, as described earlier, in the analysis Black was used as
baseline for race. Table2 o
Manual classification of CESC patients into stages.
2.2.1. Deﬁ_nlng the stage variable Stage.1 Stage.2 Stage.3 Stage.4 Stage.NA NA
Pathologic stage is an important factor in referring to cancer pro- CESC 44 14 15 4 153 0
gression and is often grouped from I to IV with increasing severity of NA. 0 0 0 0 0
disease. Usually pathologic stage is determined by TNM system (tumor
Table 1
Tabulation of Pathologic stage for CESC samples.
Stage i Stage ia Stage ib Stage ii Stage iia Stage iib Stage iiia Stage iiib Stage iv NA
CESC 0 0 0 0 0 0 0 0 0 230
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Table 3
Tabulation of pathologic stage by cancer type.
Stage i Stage ia Stage ib Stage ii Stage iia Stage iib Stage iiia Stage iiib Stage iv NA
CESC 0 0 0 0 0 0 0 0 0 230
LUAD 5 115 101 1 47 51 54 7 15 5
NA. 0 0 0 0 0 0 0 0 0 0
2.3.1. Clustering CESC DNAm profiles
Table 4, . . . Clustering was performed on methylation (2402 CpGs) in the
Tabulation of revised staging variable by cancer type. . . .
training dataset based on pam algorithm and optimal cluster number
Stage.1 Stage.2 Stage.3 Stage.4 Stage.NA NA was determined by Gap statistic method [24] using R package cluster
CESC 44 14 15 4 153 0 [17]. 5 clusters were selected and the groupid variable, indicating
LUAD 221 99 61 15 5 0 cluster membership, was created. The distribution of individuals by race
NA. 0 0 0 0 0 0

In our case, x will correspond to sCNAs, race, clinical variables and
other covariates. Parameter estimation is done via ML or REML for
instance although other estimators can be used - for example the best
predictive estimator [13,23]. We will use the method called classified
mixed model prediction (CMMP) to generate our desired predictions
[14]. This method identifies a best group in the training data from which
to attach that group’s estimated random effect to the new observations
resulting in o

Suppose that I = i. Then, the vectors y1, ..., Yi_1, O{,0), Yit1, --» ¥Ym
are independent. Thus, we have E(0|y1, ...,ym) = E(8]y). By the normal
theory, we have

E@) = xp+2,GZ(Ri+2%GZ) " (yi—Xp) 4

In practice, however, I is unknown and treated as a parameter. In
order to identify, or estimate, I, we consider the mean squared predic-
tion error (MSPE) of 0 by the BP when I is classified as i, that is MSPE; =

2
E{g)@ 70} = E{@(zi>} - ZE{E)@H} + E(¢%). Using the expression

-1 Tnew

0 =Yy, — &, wherey, = n_ > "'y, and &, is defined similarly, we have

E{é(i)g} = E{é(i)yn} — E{é(i)gn} = E{é(i)yn } Thus, we have the

expression:

MSPE; = E{éf,,) — 207, + 6 } (5)

It follows that the observed MSPE corresponding to (5) is the
expression inside the expectation. Therefore, a natural idea is to identify
I as the index i that minimizes the observed MSPE. Because ¢* does not
depend on i, the minimizer is given by

1= argmini{(;?i) — 2(;(,-)yn } 6)

The classified mixed-effect predictor (CMEP) of ¢ is then given by
=0

(1)

In the case say of a random intercept mixed model, if G > R, CMMP
can generate much more accurate predictions than usual regression
prediction which ignores the random effect (more precisely, it plugs in
the population average value for the random effect which is zero). The

CMMP prediction then becomes x, 8 + . Looking more carefully at (1),

we can see that the model is decomposing DNAm into a component
explained by x and another component that captures the group-specific
differences in DNAm. These m groups may in fact be of mixed races and
v; is capturing this. It is this feature that allows us to borrow strength
across races when making race-specific DNAm predictions.

Model (1) is not however known apriori to us because the groupings
are unknown. Thus we will have to first estimate these groupings.
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across clusters is shown in Fig. 1. Also, other clustering methods
including K-means, affinity propagation and hierarchical clustering
were explored, results were similar (see supplement Figs. S1-S12).

2.3.2. Prediction results

We transformed methylation values using the M value trans-
formation [4] and RAU value transformation [21] as below. This was
done to better satisfy normality model assumptions for the mixed model
framework or plausible support values for the other competing methods
(described below).

Beta;
1 — Beta;

RAU; = 2(146/r)arcsin(Beta)”) — 23

M; = log2<

We split the dataset into training and test partitions of 70% and 30%,
respectively. Covariates included were sCNAs and clinical variables. We
compared a number of different methods in terms of test set prediction
accuracy based on empirical mean square prediction error (MSPE).
These methods included CMMP (using group-specific random in-
tercepts), usual linear regression model (LM) prediction and a high
dimensional shrinkage estimator based on the elastic net (ENET) [29]
and random forest (RF) prediction [2]. For CMMP, LM and RF, we used
the selected 61 sCNAs as described earlier. For ENET, the same sCNAs
were entered in the model but we went a step further. We also enter-
tained the possibility of SCNA by race interactions. If any of these were
found to be important, they would also be entered into the CMMP and
LM. We also tried to look at the combination of ENET and CMMP, this
was done by applying CMMP on the residuals after fitting ENET model.
And then predictions combining fixed part (ENET) and the random part
(CMMP) were obtained. This process was done for each of the 2402
methylation responses. For CMMP-based models, clustering of DNAm
training samples was done as described above. The whole analysis was
repeated for 20 training-test splits and empirical mean test MSPEs re-
ported together with their empirical standard deviations (SD).

Figs. 2 and 3 show results of model fitting. Fig. 2 are so-called violin
plots which show average test set empirical MSPE values for all 2402
methylation responses on the same plot - by race and overall. Overlaid
on each violin plot are standard error (SE) bars. It is quite clear that
CMMP marginally improves over other models both overall and by
racial group. ENET models provide slightly lower MSPE values
compared to the other methods except CMMP and that adding CMMP on
top of ENET does not further improve things. Fig. 3 shows those average
ENET coefficient values different than zero overall all 2402 models. The
top part of the plot shows main effects and the shaded bottom part of the
plot shows sCNA by race and Stage by race interactions. Among the
predictive sSCNAs, none seem to stand out in terms of relative size. Also,
although visually looking on the same scale at the sSCNA variables, Stage
4 of the stage variable seems to have been selected. This may be illus-
trating the association might be strongest with the most serious prog-
nosis. The clinical variable indexing Stage 4 cancers was the most
important among the clinical variables. It is also interesting to see that
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Fig. 2. Average empirical test set MSPE Violin plots with individual methylation response standard error (SE) bars overlayed. Only CESC training samples used. Top
plot is the M transformation and bottom plot is the RAU transformation.
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this plot indicates that interactions with race (right side of plot in shaded
region) were not different than zero.

2.4. Combining cancer types — further opportunities to borrow strength

Model (1) can be further enhanced by including additional cancers
into the analysis and then adding a fixed effect covariate for cancer type
in the model. The rationale for combining cancer types is to increase
data heterogeneity to a certain point while controlling for clustering.
This could benefit the fit of CMMP and potentially increase the predic-
tive ability of the analysis since we also gain additional patients this
way. As mentioned in Section 2.3, as long as we can generate a clustering
of DNAm where G dominates R even more than it did with CESC data
alone and if we have enough diversity of cancer types within the clus-
ters, then including additional cancers in a combined model can further
improve predictions. This is also why the selection of cancers is very
important, if we chose cancers that are very distinct then the clustering
will separate them out and we lose the advantage of information sharing
within cluster. We want to choose combinations that will create clusters
that have representation of at least 2 cancer types. Also it is important to
provide a point of reference as to how much the performance increases
under information sharing, this is why we presented the single cancer
type (CESC) model. To deal with these considerations we used a hybrid
goodness of fit measure for clustering.

The first measure is the Gini statistic calculation from [11]:

-2}

where k is the number of clusters, C is the number of cancer types
included, n; is the total number of observations in cluster i, nj is the
number of observations in cancer type j in cluster i.

The second measure is the Gap statistic from [24]:

Gap(k) = E,{log(W) )} — log(Wy)

The number of clusters k is then selected via the maxSE method in
[17]:

C
o'l M

GiNlipex = max

ick = n; n;

koptimat = maxk € K s.tGap(kmax ) — Gap(k) < Gap_SE(kpax)

where k is the number of clusters, K is the maximal number of clusters
tested, [, is the expected value taking a sample size of n, and W is the
within cluster sum of squares pooled between all clusters, Gap_SE(k) is
the standard error of the bootstrap Gap values calculated, and kp,y is the
k value that gives the global maximal Gap statistic.

Combining the two measures together allows us to identify the
optimal number of clusters with sufficient cancer type diversity:

Gap + Gini = Giniy, + Gap (kop‘imal)

Fig. 4 plots this convolution measure against different combinations
of cancers from TCGA (each downloaded separately and then merged
with other cancers). The plot indicates that combining CESC with lung
adenocarcinoma (LUAD) results in an increase in the Gap+Gini. Adding
additional cancers does not improve fit much more. Thus we focused on
the CESC, LUAD combination.

The TCGA Lung adenocarcinoma (LUAD) raw data contained 569
patients and removing all patients who were not Black or White further
reduces the sample size to 401. The data was prepared by first
combining the 450 K methylation, sCNAs, and clinical data for LUAD
and CESC independently. Then the two datasets were merged by
stacking and matching the corresponding variables, along with adding
an indicator variable for cancer type. Once all merging was complete,
there were 631 patients available of which 230 had CESC (36.5%) and
401 had LUAD (63.5%) and 78 were black or African American (12.4%)
and 553 were white (87.6%). Fig. 5 summarizes the 9 clusters that were
found (by the Gap statistic) and gives the racial composition of each.
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Fig. 4. Combining cancer types goodness of fit measure.

This is important since our goal is the borrowing of information between
races; therefore, it is imperative that we have a mixture of representa-
tion of each race in our clusters.

Raw staging information in TCGA looked as follows:

Again we recreated the Stage variable for CESC as described earlier
while this variable was already available for LUAD. Then for both CESC
and LUAD, we combined each sub-categories to form include 1 to 4
stages and a stage.NA. The distribution of the new Stage variable by
cancer type is displayed below.

2.4.1. Prediction performance from combined model
We used the exact same filtered SCNAs and methylation as responses

1023

from the CESC only analysis above. While this is clearly an unorthodox
thing to do typically, for the purposes of this paper it makes sense. Doing
so, facilitates focus on the borrowing strength of our methodology across
racial groups. We will discuss this issue in more detail in the Discussion
section. Once again, we split the dataset into training and test partitions
of 70% and 30% respectively. Covariates included were sCNAs and
clinical variables with an additional variable indicating cancer type. The
analysis procedure was similar to what we described in Section 2.3.2
except that we also entertained the possibility of cancer type by stage
interactions. The whole analysis was repeated for 20 training-test splits
and empirical mean MSPEs for CESC samples only reported together with
their SEs. This emphasizes the fact that CESC DNAm prediction is our
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interest and this way, the combined model results could be directly
compared against the CESC only model.

Fig. 6 shows MSPE performance across all methods by race and
combined across racial groups. Plotted are violin plots for all 2402
methylation responses with SEs overlayed. What is evident is that not
only are median MSPE values systematically lower (by race and overall)
for CMMP, but that the distribution of values is much more skewed to-
wards small values as compared to the other methods. What is inter-
esting is that ENET did not seem to provide much improvement over LM
with univariate sCNA filtering. Finally, we also tried ENET combined
with CMMP and noted no further improvements. This is due to the fact
that the shrinkage of fixed effect estimates by ENET (induced bias)
makes group identification by CMMP much less effective.

2.5. An interesting robustness for using classified random effects

While much attention in the analysis of DNA methylation data has
focused around what transformation would be most appropriate [4,22]
or perhaps using alternate regression modeling strategies like beta
regression [25,27], the clustered data mixed model that we use ends up
having a remarkable robustness that we can take advantage of. As
recognized by McCullogh and Neuhaus [18] some years ago, (general-
ized) linear mixed models can be quite robust to departures from
normality in a number of ways. In particular estimates of covariate ef-
fects (both within group and between group) and prediction of random
effects are quite well estimated even with large departures from
normality. Only intercept estimates show significant bias. So this would
mean that our classified random effects prediction approach could also
be robust from such distributional departures.

So we put this fact to the test and modeled the raw beta values of
methylation as a response. In supplement (Fig. S13) we have shown a
same but smaller scale analysis on the 36 most variable CpGs where we
generated Q-Q plots against normality for all 36 methylation responses
on the raw scale, the M value scale and the RAU scale. As expected, the
Beta values (raw) are quite far from normality. The transformed values
improve things somewhat with the M values producing a more palatable
transformation. We then fit and tested linear mixed models using our
CMMP approach on the raw Beta values. In the supplement (Fig. S14) we
also show boxplots of test set predictions from the CMMP, LM, ENET,
ENET-+CMMP and RF models, respectively (for a particular split of the
data). What’s very clear is that there is a maintenance of coherence for
ENET models in that the predicted test set values all fall between [0, 1]
which is the range of raw Beta values. This has to do with the amount of
shrinkage to zero in the model parameter estimates which severely
constrains model predictions. LM model on the other hand produces

MSPE averaged over 20 sample:
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many instances where relatively large percentages of the empirical
distributions fall outside of [0,1] and hence demonstrate a lack of co-
herency. This is to be expected. On the other hand, we confirm the
McCullogh and Neuhaus [18] observations and find that when extended
to to CMMP, produces mostly coherent predictions on the raw scale.

Fig. 7 shows the resulting average empirical MSPE violin plot across
methods using the raw Beta values. It’s probably a bit unfair to plot LM
as part of this plot due to the lack of coherency of this model but what is
clear is we observe something similar to when working with M and RAU
transformed responses. That is, CMMP produces markedly lower MSPEs
as compared to other models. Since the raw Beta values are often much
more interpretable biologically [4], this may suggest that one could still
operate on this scale and produce very accurate and coherent test set
predictions.

Ridgeline plots depicting the empirical MSPE distributions over the
100 simulation runs for each 36 methylation response were also shown
in the supplement (Fig. S15). The methylation response variables are
named and the actual distribution shapes can be nicely visualized. Once
again, it is clearly evident that the CMMP method produces systemati-
cally lower empirical MSPE values than the other methods - again by
race and overall.

We looked more closely at ENET coefficients themselves. Fig. 8 plots
each variable along the y-axis and their average estimated coefficients
(over the 20 training-test split runs) for all 2402 methylation responses
on the x-axis. Dots are colored by covariate type. On the bottom part of
the plot in the shaded area are the interaction effects that were exam-
ined. Now the important sCNAs look less impactful but the clinical
variable for cancer type in the combined model is highly dominant.
Again, none of the interactions with race had an impact. The lack of
race-by-gene interactions was not unexpected as this has also been
confirmed in other cancers like lung cancer [1,20].

A Kkaryoplot is provided for visualizing positions of filtered genes
with sCNAs on whole human chromosomes (See Fig. 9) which was done
by the aid of R package karyoploteR [8]. Red colored genes are the one
that showed up as important in the ENET model. It’s of immediate in-
terest to note that 4 of the 5 appear on chromosome 3. Of the red colored
genes, MECOM on chromosome 3 is also known as histone-lysine N-
methyltransferase. It is an oncogene which has a role in development,
cell proliferation and differentiation. It is also one of the primary histone
methyltransferases that direct cytoplasmic H3K9mel methylation (http
s://www.genecards.org/cgi-bin/carddisp.pl?gene=MECOM) which in
turn has been shown to significantly crosstalk with DNA methylation
pathways [3].
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Fig. 7. Combined model average empirical test set MSPE Violin plot with individual methylation response standard error (SE) bars overlayed using raw beta values.
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Elastic Net Coefficients, mean over 20 samples,
shaded are interactions - CESC, LUAD combined
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Fig. 8. Average elastic net coefficient plot with selected variable names
(variance above 10% quantile) from combined analysis.

2.5.1. Classified random effects - evidence of borrowing strength across
racial groups

To demonstrate the borrowing strength effect across races using
CMMP, we plotted the classified random effects for test observations
from one training-test split using the methylation response cg01315092
in Fig. 10. The y-axis plots the cluster-specific intercept (i.e. random
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effect) and the x-axis identifies a test patient ID. Orange circles are Black
individuals and green circles are White individuals. Fully 10 out of the
10 Black individuals in the test set were assigned a non-zero classified
(group-specific) random effect shared also with White individuals in the
same cluster. Only 5 test set White individual was given a value of zero
which indicates that because we used the no-match version of CMMP,
that this test observation was not classified to any of the training set
clusters and usual regression prediction was done.

3. Discussion

The most natural way to think about borrowing strength across racial
groups would be through a model like the nested error regression (NER)
model,

vy = x;jﬁ +wia+v; + ey, 2
where the fixed effect w; would index race and the random effects v;
would be race-specific effects. In fact this is the strategy used in small
area estimation [10] where more accurate estimates for “small areas”
are achieved by borrowing strength across areas/groups via the model.
Then, new observations would simply be classified by their w, values
rather than by using the CMMP strategy. This is usually termed mixed
model prediction (MMP) [12]. To see why this might be suboptimal
compared to what we are doing, let’s take a look at the following.

A well-known formula of borrowing strength under the NER model:

The best predictor (BP) of the group mean, 6; = )_(;ﬁ + Wia + v, is

(o

Thus it is seen that a BP-based method, such as the EBLUP “borrows
strength” from the entire data in two ways: (i) at the population level
through estimation of the population parameters, G, R; (ii) at the area
level through the sample means y;, X;. and w;.. The latter depend on the
sample size, n;. If n; is small, the group-level strength that can be bor-
rowed is limited. It is seen from (8) that the best one can do in estimating
v; is limited to y;, which has sample size n;. This is a limitation of the
traditional mixed model prediction (MMP). On the other hand, CMMP
estimates v; in a different way by matching it to a cluster of the existing
data, whose sample size post clustering whilst ignoring race may be
much larger than n;.

Let’s return briefly to the way we kept sCNAs and methylation
response filtering the same for the CESC only and the combined model.
Ideally, we would repeat filtering for each model separately. This might
result in different filtered sCNA and methylation responses and ulti-
mately improve MSPE results. However, since the focus of this paper is
on the new methodology of borrowing strength across racial groups,
keeping the filtering the same allows us to better bring out the gains of
the proposed methods.

Another clear avenue for further research would be to develop a
multivariate version of our shared classified random effects prediction
idea where all methylation responses would be modeled together
incorporating their joint correlation structure into the model. Since it is
likely that methylation values are not independent, this would accom-
modate that structure. We will report on this extension in future work.
Finally, as with the original PrediXcan work we referenced in the
Introduction for predicting gene expression values from genetic data,
our approach is also gene-based. The main rationale in PrediXcan for
doing so was to aid in interpretation but also reduce multiple testing
issues due to working with a diminished dimensionality of the predictor
space.

n,‘G

R+n,G

Xp+Wa+ —Xp—w a) ©)

4. Conclusions

In summary, we have developed a novel mixed effects model based
approach using shared random effects to generate accurate predictions
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Fig. 9.

Karyoplot of filtered genes with CNAs on human chromosomes. The red colored genes are the ones which showed up as important in the elastic net model.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Classified random effects for test data points for a particular split of full dataset.

of DNAm from gene level data profiles. These predictions demonstrate
uniformly higher accuracy both in total and at the race-specific level
when compared to other popular machine learning based approaches
including the elastic net shrinkage estimator and random forest
prediction.

Software

R scripts for implementing all methods as well as a description of the
analytical pipeline can be found at URL https://github.com/hhh
xz305/DNAmPredict. Each R script was named by the corresponding
analysis procedure, followed by a number indicating the step. For
example,

Import_setupdata.0.Rindicates this is step 0 and this code demon-
strates how to import the data and set up the data ready to use for the
next step.
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