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ABSTRACT: Polynitro compounds exhibit high density and good oxygen balance, which . . .g—.i
are desirable for energetic material applications, but their syntheses are often very M A 0N e, Nogy V2
challenging. Now, the design and syntheses of a new three-dimensional (3D) energetic O.N HN/— / *No, oN I o, | ﬁ
metal—organic framework (EMOF) and high-energy-density materials (HEDMs) with B Ty = 202°C y A

Tyec = 218°C

good thermal stabilities and detonation properties based on a polynitro pyrazole are = ¥ Z758m=l B 1830 o
reported. Dipotassium 3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole (S) exhibits a 3D 3D EMOF neom__
EMOF structure with good thermal stability (202 °C), a high density of 2.15 g cm™ at | . Anl

100 K (2.10 g cm™ at 298 K) in combination with superior detonation performance (D, % - g %

= 7965 m s”, P = 29.3 GPa). Dihydrazinium 3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole % 1 2 w4 = B G

(7) exhibits a good density of 1.88 g cm™ at 100 K (1.83 g cm™> at 298 K) and superior :‘-" [ z M
thermal stability (218 °C), owing to the presence of 3D hydrogen-bonding networks. Its — ;’ -

detonation velocity (8931 m s™') and detonation pressure (35.9 GPa) are considerably
superior to those of 1,3,5-trinitro-1,3,5-triazine (RDX). The results highlight the syntheses
of a 3D EMOF (5) and HEDM (7) with five nitro groups as potential energetic materials.

KEYWORDS: energetic MOF, high-energy-density materials, polynitro, pyrazole, energetic materials

B INTRODUCTION structures and high densities.””*" The coordination of metal
ions with the nitro groups and active protons of azoles is a useful
strategy to realize high-density 3D EMOFs.”” Recently, several
groups reported the syntheses of EMOFs based on dinitro-
methyl- or trinitromethyl-functionalized azole rings (Figure
1b).>* However, thermal stabilities of these EMOFs decrease
with the increase in the number of nitro groups. Therefore, it is
of significant interest to design and synthesize 3D EMOFs based
on nitro-functionalized azole rings.

To obtain polynitro compounds with energy-stability balance,
the combination of thermally stable azole rings bearing nitro
groups as well as their easy functionalization is the key point and
prerequisite. Pyrazole is an excellent building block for the
generation of HEDMs due to its good thermal stability and low
sensitivity.”"*> Recently, it has been shown that the pyrazole
ring can be linked with different nitrogen-rich heterocycles to
achieve improved properties.”®*” Nitro-substituted pyrazole
derivatives further demonstrate the importance of achievin%
high density and good detonation properties (Figure 1c).”*™>
Examples of 3D EMOFs and HEDM:s based on pyrazole bearing
more than four nitro groups are rare and challenging (Figure

Incorporation of nitro groups into molecules represents the
most reliable method to increase power in energetic
compounds.”” This strategy has gained attention to enhance
the density and oxygen balance of azole compounds for the
development of high-energy-density materials (HEDMs).>”>
Consequently, several polynitro compounds based on different
azole rings, such as furoxan, triazole, and tetrazole, which
contain explosophores, such as dinitromethyl and trinitromethyl
groups, have been reported (Figure 1).~* However, the limited
scope of the application of these materials arises because of
complications related to their thermal stability and sensitivity to
external stimuli.” The thermal stability of a compound decreases
with an increase in the number of nitro groups. For example,
heterocyclesm‘11 i and ii, which contain four nitro groups,
decompose at ~200 °C, whereas heterocycle'” iii with six nitro
moieties decomposes at ~100 °C (Figure la). Unfortunately,
heterocycle iv having six nitro groups is found to be too unstable
to be characterized.'> Therefore, the development of stable,
high-energy polynitro compounds is a challenge.

The spectacular development of metal—organic frameworks
(MOFs) has drawn broad interest from many research fields
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including energetic materials and is encouraging the emergence Received: November 6, 2021 Soew
of new energetic metal—organic frameworks (EMOFs).'*~" Accepted:  December 6, 2021
The EMOFs typically consist of one- and two-dimensional (1D Published: December 17, 2021

and 2D) structures formed by the coordination of nitrogen-rich
ligands and metal ions.'®'” Recently, three-dimensional (3D)
EMOFs have attracted considerable interest owing to their rigid
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Figure 1. (a) Polynitro compounds based on different heterocyclic rings. (b) Reported potassium energetic metal—organic frameworks (EMOFs) with
different heterocyclic rings. (c) Polynitro compounds based on the pyrazole ring. (d) Reported potassium EMOFs with polynitro pyrazole ring. (e)
Compounds reported in this work.

Scheme 1. Synthesis of Dipotassium 3,5-Bis(dinitromethyl)-4-nitro-1H-pyrazole (5), Diammonium 3,5-Bis(dinitromethyl)-4-
nitro-1H-pyrazole (6), and Dihydrazinium 3,5-Bis(dinitromethyl)-4-nitro-1H-pyrazole (7)
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1d).>'7** Aiming to push the limit of nitro groups on a
heterocycle, we now report the synthesis and characterization of
dipotassium 3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole (5),
diammonium 3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole (6),
and dihydrazinium 3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole
(7), bearing five nitro groups.

B RESULTS AND DISCUSSION

Dipotassium 3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole (5)
was obtained in four steps from the dinitrile derivative 1
(Scheme 1). The reaction of compound 1 with hydroxylamine

(50% in water) results in the formation of the diamidooxime
derivative 2, which can be diazotized with NaNO,/HClI to give
3. Compound 4 was synthesized by the reaction of 3 with

trifluoroacetic acid anhydride and 100% nitric acid. Compound

4 was reacted with KI in methanol to give § as a light-yellow

solid. The energetic salts, diammonium 3,5-bis(dinitromethyl)-

4-nitro-1H-pyrazole (6) and dihydrazinium 3,5-bis-
(dinitromethyl)-4-nitro-1H-pyrazole (7), were obtained by

reacting the silver salt with ammonium chloride and hydrazine

monochloride, respectively (Scheme 1).
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Figure 2. (a,b) Thermal ellipsoid (50%) plot and tagging scheme for 5.

All compounds were characterized by NMR spectroscopy (‘H
and C), infrared spectroscopy (IR), and elemental analysis.
The synthesis and characterization details for compounds 2—7
are given in the Supporting Information (SI). The structures of §
and 7 were further confirmed by single-crystal X-ray diffraction
(SC-XRD). Single crystals suitable for SC-XRD were obtained
for 5 and 7 by slow evaporation of their saturated solutions in
water. Crystallographic data are provided in the SI. Compound §
crystallizes in the orthorhombic space group Pna2, with a
calculated density of 2.153 g cm™ at 100 K (Figure 2). In
compound §, the bond distances between carbon and nitrogen
atoms of C—(NO,), groups (N4—C4, 1.393(3), NS—C4,
1.366(3),N6—C5, 1.383(3), and N7—CS5, 1.390(3)) are shorter
than the C—NO, bond (N3—C2, 1.411(3)). The carbon and
nitrogen atoms of the pyrazole are coplanar together with the
carbon atoms of the dinitromethyl groups, with nitro groups
located on each side of the pyrazole (Figure 2b). The torsion
angles (N1-C1—C2—N3 (177.3°), N1-C1—-C2—C3 (—0.2°),
and N2—N1-C1-C4 (—179.2°)) approach +180 and =+0°,
which demonstrate that the pyrazole ring is nearly coplanar with
the carbon atoms of the dinitromethyl moieties. The crystal
packing of compound § is shown in Figure 3a,b. Due to the
presence of many coordination bonds, compound $ exists in a

3D MOF structure. As shown in Figure 3b, each dianion form is
surrounded by several potassium cations through a coordination
bond. The distance between an O-atom and the K-ions ranges
from 2.669 to 3.121 A. The distance between the pyrazole
nitrogen (N1) and potassium ion is found to be 3.165 A.

Compound 7 crystallizes in the triclinic space group P1 with
two dianions and four hydrazinium cations (Z = 2) in each unit
cell (Figure 4). The calculated density of compound 7 at 100 K is
1.878 g cm ™. The bond distances between carbon and nitrogen
atoms of C—(NO,), groups (N4—C4, 1.370(3), N5S—C4,
1.403(3),N6—CS5, 1.387(3), and N7—CS, 1.369(3)) are shorter
than the C—NO, bond (N3—C2, 1.428(3)). Similar to
compound §, the carbon and nitrogen atoms of the pyrazole
ring in compound 7 are coplanar with the carbon atoms of the
dinitromethyl groups, with torsion angles N1-N2—C3-CS =
179.0°, N1-C1-C2—C3 = —0.4°, and N2—-N1-C1-C4 =
—178.6°, respectively.

The presence of electronegative oxygen atoms in the dianion
provides more opportunity for the cations to gather around it to
form strong intermolecular contacts. The hydrazinium cation
increases the intermolecular contacts, in particular, the hydrogen
bonding formed by N—H:--O or N—H:--N interactions. Each
dianion is stabilized by the hydrogen bonds from the
surrounding hydrazinium cations to form a 3D network (Figure
5a,b). The hydrogen bonds and their lengths are given in the
Supporting Information (Table S9). Due to the extensive 3D H-
bonding networks, compound 7 exhibits a good crystal density.

Pyrazoles having an NH proton undergoes nonstoppable
prototropic transformations. As a result, the free proton of the
pyrazole ring is difficult to observe in 'H NMR.*>™*’
Interestingly, in the '"H NMR spectrum of §, a peak at 13.7
ppm was assigned to the fixed proton of the pyrazole (Figure
6a). In addition, five characteristic peaks corresponding to the
five carbon atoms are observed in the *C NMR (Figure 6b).
This is due to the coordination between the ring nitrogen and
potassium atoms, which results in blocking of the NH proton
exchange (proton-locking). In contrast to 5, compounds 6 and 7
show no NH proton in 'H NMR spectra (Figure 6¢,e).
Moreover, compounds 6 and 7 show the three characteristic
peaks of five carbons atoms in the *C NMR (Figure 6d,f). This
is due to the axial symmetric structure of 6 and 7, which is a
result of nonstoppable prototropic tautomerism. In compounds
6 and 7, the broad peaks arising from the NH signals
corresponding to ammonium and hydrazinium group are
observed at ~7.18 and 7.80 ppm, respectively (Figure 6c,e).
In addition, the chemical environments of different nitro groups
were determined using '*N NMR. A broad peak of five nitro

(b)

LS. S
) \
. = P
J \ ‘ez
‘,' ‘ cz c1C4
§a \ N2 (N1
s

Figure 3. (a) Packing diagram of 5. (b) Coordination diagram between the dianion and potassium atoms.
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(b)

(a)

Figure S. (a) 3D intermolecular hydrogen bonding (dotted lines) in the crystal structure of 7. (b) Hydrogen bonds around the cation and anion in 7

(dotted lines).

groups is observed in §, 6, and 7 at ~—18.01, —22.73, and
—22.95, respectively (Figures S11—S13).

The thermal behavior of 5—7 was explored using differential
scanning calorimetry (DSC) at a heating rate of 5 °C min™'
(Figures S1—S3). They decompose (onset temperature)
without melting at 202 °C (5), 176 °C (6), and 218 °C (7),
respectively (Table 1). The densities were measured using a gas
pycnometer at 25 °C and are 2.10 g cm ™ (5), 1.85 g cm™ (6),
and 1.83 g cm™ (7), respectively (Table 1). To study the
energetic properties of compounds 5—7, the molar enthalpies of
formation were calculated using isodesmic reactions with the
Gaussian 03 (revision D.01) suite of programs. Compounds 5
and 6 have negative HOFs of —1.19 and —0.61 kJ g7,
respectively, while compound 7 has a positive HOF of 0.29 kJ
g~ The values of calculated HOFs and pycnometer-measured

densities are used to calculate the detonation properties of
compounds 5—7 (Table 1). The detonation velocities
(calculated) are between 7965 and 8931 m s™*, and detonation
pressures (calculated) range from 29.3 to 35.9 GPa.

The detonation velocity and detonation pressure (8931 ms™/,
35.9 GPa) of compound 7 are superior to 1,3,5-trinitro-1,3,5-
triazine (RDX) (8795 m s™', 34.9 GPa) and the previously
reported HEDM 1§, ii, and iii (Figure 1) based on azole rings
(Table 1). The IS and FS for 5—7 were measured using BAM
standard methods. The new salts exhibit a sensitivity of impact
values between 6 and 10 J and a sensitivity of friction values from
40 to 120 N. While § is sensitive toward impact and friction (IS 6
J,FS40N), 6 and 7 have IS of 10 and 8 J, respectively, and FS of
120 N, which are comparable to RDX (Table 1).
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Figure 6. (a,b) 'H and *C NMRs of compound § in dimethyl sulfoxide (DMSO)-dg. (c, d) 'H and "*C NMRs of compound 6 in DMSO-d. (e, f) 'H

and *C NMRs of compound 7 in DMSO-d,.

Table 1. Compounds 5—7: Energetic Properties

T," (°C) p’ (gem™) AH¢ (I mol™)/(k] g7) P* (GPa) D, (ms™) 18/ (7) ES¢ (N)
S 202 2.10 —475.0/-1.19 29.3 7965 [ 40
6 176 1.85 —-217.3/-0.61 34.5 8688 10 120
7 218 1.83 113.8/0.29 35.9 8931 8 120
i” 218 2.13 —421.0/-1.13 27.3 7759 0.1-1 S
i’ 190 1.84 10.2/0.03 36.3 8900 19 80
i’ 102 1.92 29.4/0.08 29.2 8229 4 240
RDXF 204 1.80 92.6/0.42 34.9 8795 7.5 120

“Onset decomposition temperature. “Measured density (25 °C—gas pycnometer). “Calculated molar enthalpy of formation determined using
EXPLOS (version 6.01). “Detonation pressure (calculated). “Detonation velocity (calculated). 7 Sensitivity—impact (IS). #Sensitivity—friction

(FS). "Ref S. 'Ref 6. /Ref 7. *Ref 38.

The physical properties of energetic compounds, such as
sensitivity to impact and sensitivity to friction, are influenced by
their crystal packing. Therefore, the Hirshfeld surface analysis
and the associated 2D fingerprint plots®”*° were employed using
Crystalexplorer17.5 to understand the role of intermolecular
interactions on the properties of compounds 5 and 7 (Figure 7).
Strong intermolecular (O-+-O) interactions arising from oxygen
atoms in the nitro groups present in 5 led to high density and
more sensitivity to external stimuli (Figure 7c). Compound 7
has lower ratios of O---O interactions (12.4%) in comparison to
that of compound § (27.8%). Compound 7 also exhibits higher
ratios of stabilizing interactions such as O---H and N---H. The
hydrogen bonding in 7 plays a major role with 65.7% of the total
weak interactions, which decreases the mechanical sensitivity
(Figure 7d). The remarkably abundant hydrogen bonds in 7 give
rise to low sensitivity and better molecular stability. The
calculated results are in excellent agreement with the sensitivity
data from the BAM experiments.

61361

B CONCLUSIONS

In summary, the challenging syntheses of new compounds
containing five nitro groups on a pyrazole ring were achieved.
Dipotassium  3,5-bis(dinitromethyl)-4-nitro-1H-pyrazole (5)
was obtained in four steps from the dinitrile derivative 1. It
exhibits a 3D EMOF structure with good thermal stability (202
°C), a high density of 2.15 g cm™ at 100 K (2.10 g cm™> at 298
K), and superior detonation performance (D, = 7965 ms™, P =
29.3 GPa). Dihydrazinium 3,5-bis(dinitromethyl)-4-nitro-1H-
pyrazole (7) has a relatively high thermal stability (218 °C) and
a density of 1.88 g cm™> at 100 K (1.83 g cm ™ at 298 K) arising
from the presence of stabilizing 3D hydrogen bonding. Due to
their high densities, acceptable thermal stabilities, and good
detonation performance, compounds 5—7 are attractive as new
HEDMs.
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