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ABSTRACT

Persistent memory (PM) or Non-Volatile Random-Access Mem-
ory (NVRAM) hardware such as Intel’s Optane memory product
promises to transform how programs store and manipulate in-
formation. Ensuring that persistent memory programs are crash
consistent is a major challenge. We present a novel class of crash
consistency bugs for persistent memory programs, which we call
persistency races. Persistency races can cause non-atomic stores to
be made partially persistent. Persistency races arise due to the inter-
action of standard compiler optimizations with persistent memory
semantics.

We present Yashme, the first detector for persistency races. A
major challenge is that in order to detect persistency races, the
execution must crash in a very narrow window between a store
with a persistency race and its corresponding cache flush operation,
making it challenging for naïve techniques to be effective. Yashme
overcomes this challenge with a novel technique for detecting races
in executions that are prefixes of the pre-crash execution. This tech-
nique enables Yashme to effectively find persistency races even if
the injected crashes do not fall into that window.We have evaluated
Yashme on a range of persistent memory benchmarks and have
found 24 real persistency races that have never been reported
before.
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1 INTRODUCTION

This paper presents a new class of persistent memory bugs, referred
to as persistency races. Persistency races stem from the fact that
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most programming language specifications provide compilers with
the freedom to assume other threads will not observe a non-atomic
store until a synchronization operation. Compilers can for example
implement a non-atomic store with multiple store instructions.
This is often referred to as store tearing. For example, given an
architecture having 16-bit store instructions with immediate fields,
the compiler might use two 16-bit store-immediate instructions
to implement a 32-bit store. Although it is rare that compilers
introduce these optimizations, it is enough of a concern that both
PMDKdevelopers and the LinuxKernel developers take care

to avoid it. Indeed, the Linux kernel mailing list provides several
examples [10] of modern compilers tearing non-atomic stores even
when they are aligned, word-length stores.

Compilers can also introduce store tearing via other optimiza-
tions. Mainstream compilers commonly rewrite code that copies or
initializes several contiguous fields into calls to the libc functions
memcpy, memmove, or memset. These functions do not guarantee 64-bit
atomicity and can hence result in store tearing. Store tearing cre-
ates the possibility that a poorly timed crash can cause non-atomic
stores to be made partially persistent. A post-crash execution can
then potentially read values that mix bytes from multiple different
store operations. This could for example cause a post-crash execu-
tion to read an invalid array index, leading to further corruption.

Store tearing is not the only potential danger of persistency races.
Compilers can also stash temporary values in the memory location
safely assuming that data race freedom means that other threads
will not see these values. Crashes can result in such temporary
values being made persistent.

1 pmobj ->val = 0x1234567812345678;

2 // crash here

3 flush (&pmobj ->val);

(a) Pre-Crash Code

1 if (pmobj ->val != 0) {

2 printf("0x%" PRIx64 "\n",

3 pmobj ->val);

4 }

(b) Post-Crash Code

Figure 1: A persistency race example. We assume pmobj->val

is initially 0 and both executions are single threaded. gcc

optimization level O1 and above generate ARM64 code for

this example that can print 0x12345678. PRIx64 is a macro for

printf that prints a 64-bit integer as hex.

Figure 1 presents an example of persistent memory code with a
persistency race. Figure 1a and Figure 1b show the code snippets
executed before and after the crash, respectively. Suppose that the
machine experiences a power failure immediately after line 1 in
Figure 1a. Since the store to the val field is non-atomic, the compiler
is free to implement this store withmultiple store instructions. Thus,
it is possible for only some of the bytes of this store to be made
persistent. When the val field is read in line 3 of Figure 1b, the
post-crash execution can read a value that is some combination of

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
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the bytes from the previous value and the newly stored value. This
concern is not theoreticalÐthe ARM64 backend of gcc generates
code for this program that could print 0x12345678.

A program has a persistency race if there exist a pre-crash exe-
cution 𝐸pre and post-crash execution 𝐸post such that (1) a load 𝑙 in
𝐸post reads from a non-atomic store 𝑠 in 𝐸pre and (2) the store 𝑠 is
not persistency ordered before the load of it in 𝐸post. To provide an
example of persistency ordering, if the pre-crash execution explic-
itly flushes a store 𝑠 before it crashes, then the store 𝑠 is persistency
ordered before any loads that might read from it in the post-crash
execution.

Persistency vs. Data Race. Persistency races are similar in spirit
to data races because both persistency races and data races violate
assumptions made by compilers and thus can break the abstraction
of a language-level store writing the specified value to memory.
Several tools have been designed to detect data races in code that
uses standard lock-based concurrency control [12ś14, 21, 40, 52, 61].
These tools generally take one of two approaches: (1) they verify
that all accesses to shared data are protected by a locking discipline
or (2) they compute a happens-before relation to detect concurrent
conflicting accesses.

While persistency races are similar to data races, there are impor-
tant fundamental differences between the two as each persistency
race involves three distinct events: (1) the racing store in the pre-
crash execution, (2) the crash event against which the store races,
and (3) a race-observing load in the post-crash execution that ob-
serves the effects of the race. This differs from data races that consist
of two memory operations that race against each other. Persistency
races exist even in single-threaded programs. Intuitively, in a per-
sistency race, a pre-crash execution thread races with the crash and
a post-crash thread observes the effects of the race.

Researchers have developed techniques for detecting races in
interrupt-based code [7, 55]. That body of work focuses on ensur-
ing that interrupts are disabled when code performs a memory
access that could potentially conflict with memory accesses in an
interrupt handler. The focus on analyzing interrupt code that relies
on disabling interrupts means that the analysis techniques are not
applicable to persistent memory where a crash can occur at any
point.

Most existing PM bug finding tools use techniques that funda-
mentally cannot detect persistency races because they just vali-
date that stores are flushed or performed in a specific order. The
one exception is that model checking tools could conceptually be
adapted to find persistency races by splitting the stores into single
byte stores at the cost of an exponential increase in the number
of executions that must be explored. Dynamic instrumentation
frameworks [11, 28, 31, 37] can observe actual store instructions in
the binary. The primary challenge in detecting persistency races
with these frameworks is that they cannot infer whether two stores
in the binary were originally one source-level store nor can they
infer which stores were atomic at the source level, thus it is not
possible for these tools to directly detect a persistency race. How-
ever, if these frameworks explore the correct execution, they can
potentially observe a crash caused by a persistency race, e.g., a
segmentation fault caused by accessing a partially persisted pointer.
Moreover, these tools can give no warning for stores that could

potentially be torn in the future. XFDetector [37] uses a finite state
machine to track the consistency and persistency of persistent data.
XFDetector finds cross-failure races, which are defined as loads
that read from locations that were not persisted before a failure.
Cross failure races are different from persistency races in that cross
failure races model normal stores as effectively atomic and do not
consider the possibility that due to compiler optimizations a store
may made partially persistent. Cross failure race detection can-
not detect persistency races because it does not model the effects
of cache coherence or the difference between atomic and normal
memory operations. XFDetector is limited to detecting cross failure
races in the given execution and cannot detect cross failure races
in any other potential executions.

There is a large body of work on finding atomicity violation
bugs [27, 39, 47, 60] which are fundamentally different from per-
sistency races. Atomicity violations occur when code written by
developers performs many operations that were intended to be
atomic, but are not atomic because of a bug. However, persistency
races violate language-level store abstractions because of a race
with a crash event.

Yashme. Detecting persistency races is extremely challenging as
it requires reasoning about the cache behavior of a program, e.g.,
where the crash occurs, where a cache line is flushed, and which pre-
execution store the post-execution code reads from. On one hand,
data race detectors focus on reasoning about mutual exclusions,
not on cache behavior. As a result, none of the data race detection
algorithms are directly applicable to detecting persistency races. On
the other hand, existing persistent memory bug detectors reason
about the timing of cache line flushes, but rely on effective test cases
and appropriate crash events to find bugs. Detecting a persistency
race with respect to a store, however, requires the crash to fall
into a small window of execution after the store and before the
(explicit or implicit) cache line flush. Such a strict requirement
dictates aggressively injecting crash events in a great number of
executions and exhaustively exploring thread schedules, which is
impractical.

Model checkers (e.g., Yat [31] and Jaaru [18]) and fuzzers (e.g.,
PMFuzz [36]) automatically explore many possible cache states, but
their effectiveness depends on the selected thread scheduleÐthey
would not detect a persistency race if the thread schedule causes
the window to close; as such, they suffer from the same weakness
as other bug detectors.

Clearly, a major challenge in devising an effective persistency
race detector is where to inject the crash event, i.e., the nature of
a persistency race is that the pre-crash event races with the crash
event.

Key Insight. Key to the success of Yashme is a shift of focus from
generating race-manifesting crash events to generalizing/expanding
the executions under a small number of crash events to make races

observable. In other words, Yashme does not rely on perfect crash
events to trigger races; instead, given a target crash event, Yashme
runs the program, obtains its pre-crash execution, and expands it
to derive many executions that can also be used to detect races.
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Yashme’s approach is similar to model checking in that both
derive many executions from existing ones. However, Yashme ex-
pands an existing pre-crash execution using a set of prefix con-

straints, which guarantee that the derived executions are consistent
with the original execution with respect to the post-crash execution.
In particular, if the post-crash execution reads from a store in the
original pre-crash execution 𝑒 , it must read from the same store
in any executions derived from 𝑒 . Expansion enables Yashme to
detect races in derived executions without actually executing them,
while model checkers incur the overhead of actually executing their
derived executions.

In other words, any execution that shares a common prefix (start-
ing at the store) with 𝑒 and does not later perform and persist stores
that overwrite locations read by the post-crash execution is con-
sistent and can be used to detect persistency races. Prefix-based
derivation significantly expands the race-detection scope, enabling
Yashme to find more bugs even than a technique that injects a
crash event before every fence instruction. As a result, Yashme has
found persistency bugs in all but one of the programs we have

experimented with.

Results. We have implemented Yashme with a full simulation of
Px86sim semantics and applied it on widely-used persistent memory
programs including RECIPE persistent memory indexes; the PMDK
library; Memcached, a high-performance cache server; and Redis, a
persistentmemory data store. Yashme found a total of 24 persistency
bugs in every single program.

2 BACKGROUND

We next briefly overview the Intel-x86 persistent storage system
following the formalized Px86sim model in Raad et al. [49]. The
Px86sim semantics capture the behavior Intel implemented in sili-
con and intended for the architecture. They differ slightly from the
semantics presented in Intel’s manual due to mistakes in precisely
specifying the intended behavior in the documentation. Figure 2
presents a graphical overview of the x86-TSO storage system. Each
core/thread on x86 has a store buffer that buffers stores to the cache
to hide the store latency. The store buffers implement bypassing
Ð when a core performs a load, the core checks whether there is a
store to the same address in its local store buffer. If so, it returns
the value written by the most recent such store. Effectively, this
allows the local core to observe the effect of a local store before that
store becomes visible to other cores. The memory fence instruction
mfence clears the store buffer before future instructions can be ex-
ecuted. Locked RMW instructions also clear the store buffer before
future instructions can be executed.

Stores in the store buffer are written to the cache in order. The
stores update the cache in a total order across all cores and all
threads/cores observe these stores in that same order. The cache is
volatileÐa power loss event will cause cached data that has not been
written back to persistent storage to be lost. Cache lines are written
back to main memory non-deterministically when the cache needs
the space for other data. The x86 architecture provides instructions
to force the cache to write data back to persistent storage. The
three such instructions are: (1) the flush cache line instruction
clflush that flushes a cache line, (2) the optimized flush cache line
instruction clflushopt, and (3) the cache line write back instruction
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Figure 2: An x86-TSO storage system.

Table 1: Reordering constraints in the Px86sim. A✓ indicates

that the order between the two instructions is preserved, a

✗ indicates that the two instructions can be reordered, and

a CL indicates that the order is preserved only if they both

operate on the same cache line. ‘mf’, ‘sf’, ‘clfopt’, and ‘clf’

represent ‘mfence’, ‘sfence’, ‘clflushopt’, and ‘clflush’, respec-

tively.

Later in Program Order

E
ar
li
er

in
P
ro
gr
am

O
rd
er Re Wr RMW mf sf clfopt clf

Read ✓ ✓ ✓ ✓ ✓ ✓ ✓

Write ✗ ✓ ✓ ✓ ✓ CL ✓

RMW ✓ ✓ ✓ ✓ ✓ ✓ ✓

mfence ✓ ✓ ✓ ✓ ✓ ✓ ✓

sfence ✗ ✓ ✓ ✓ ✓ ✓ ✓

clflushopt ✗ ✗ ✓ ✓ ✓ ✗ CL
clflush ✗ ✓ ✓ ✓ ✓ CL ✓

clwb. Each of these instructions takes as input the address of the
cache line and flushes that line.

A key difference between these instructions is how they can be
reordered across other instructions. Table 1 summarizes the instruc-
tion ordering constraints for persistent storage on x86-TSO. The
clflush instruction is inserted into the store buffer just like store
instructions, and when it exits the store buffer it causes the cache
line to be flushed to persistent memory. The clflushopt instruction
is inserted into the store buffer also like store instructions, but it can
be reordered across store instructions to other cache lines, clflush
instructions to other cache lines, and other clflushopt instructions.
The clflushopt instruction cannot be reordered across mfence or
locked RMW instructions. The store fence instruction sfence also or-
ders clflushopt instructions relative to clflush, clflushopt, clwb,
and store instructions. The clwb instruction only writes back the
contents of the cache line and does not evict it from the cache and
thus has better performance. However, from a semantic perspective,
the clwb instruction is identical to clflushopt instruction [49], and
thus we treat them identically in our discussions.
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int Segment :: Insert(Key_t& key , Value_t value ,

size_t loc , size_t key_hash) {

...

if (CAS(&_[slot].key , &LOCK , SENTINEL))

{

_[slot]. value = value;

mfence ();

_[slot].key = key;

ret = 0;

break;

}

...

}

Figure 3: The Segment::Insert method from the CCEH

hashtable. The store to the key field commits an inser-

tion into the table. This store is non-atomic and thus a

poorly timed crash could cause the key to be partially

written.

3 MOTIVATION

The correctness of crash consistent data structures rests on careful
analysis of the ordering of operations to reason about the poten-
tial intermediate states that a crash can leave a data structure in.
Applying this type of reasoning to non-atomic memory operations
is problematic due to compiler optimizations. Compilers perform
optimizations assuming that programs are race-freeÐother threads
(or post-crash executions) will not observe updates to the states
of non-atomic shared variables until a release operation, e.g., an
unlock, is performed. For example, a compiler may implement a
non-atomic store using multiple store instructions (i.e., store tear-
ing) or even generate new store instructions (i.e., store inventing)
to temporarily stash intermediate results, e.g., if the compiler runs
out of registers to store temporary values.

3.1 Example Persistency Race

To provide a concrete example, we examined the source code of the
Cacheline-Conscious Extendible Hashing (CCEH) hashtable [45],
which is distributed with the RECIPE suite of persistent memory
indexes [32]. Figure 3 presents the Insert procedure. It uses a CAS
on the key field to lock a slot in the hashtable. When the slot is
locked, it first writes the value field and then the key field. This
design relies on the fact that both value and key fields reside on the
same cache line to ensure that the store to the value field persists
before the store to the key field. Once the key field is written, the key-
value value insertion has been committed to the table. The caller of
this procedure later flushes both stores to persistent memory.

The problem with this implementation is that since the store
to the key field is non-atomic, the compiler is free to implement
this store with multiple store instructions. While we might imagine
this would only occur in cases where the key field is not aligned
or does not match the native word size of the machine, there are
examples of modern compilers implementing such aligned, word-
size stores using multiple store instructions [10]. Hence, a crash
could potentially cause an incorrect key to be inserted into the
table. To fix this bug, the developer should implement the store of
the key field using an atomic store operation. On an x86 processor,
this fix would incur minimal overheadÐthe atomic store can still
be compiled into a normal store instruction as long as the compiler

is prevented from performing problematic optimizations (such as
store tearing).

3.2 Severity of Persistency Races

Ubiquity. The conventional wisdom in concurrent programming
is for developers to (1) use locks to protect critical sections and (2)
only use atomic operations when strictly necessary for performance
or progress guarantees. Applying such practices to persistent mem-
ory programs inevitably leads to implementations with persistency
races. Developing race-free persistent data structures requires ex-
tensive use of atomic operations or other techniques like checksums.

In our experiments with the RECIPE [32] persistent benchmark
suite, we found a total of 19 persistency races in the persistent
memory indexes that we were able to execute. 1

Compilers Performing Store Optimizations. Since persistency
races hinge upon certain store optimizations performed by a com-
piler, we have conducted a study of recent versions of gcc (version
10.3) and LLVM-clang (version 11.0), two widely-used compilers for
native code, with a goal to understand how common these optimiza-
tions are on different architectures. As reported in Table 2a, store
optimizations are widely used by both gcc and clang on both ARM
and x86 architectures. Whether such optimizations are applied to a
particular program depends on the implementations of compilers
and libraries (such as memmove and memcpy).

Empirical Validation. To understand the importance of this issue,
we carried out a study on a collection of data structures [22, 32, 45].
We compiled each data structure with clang version 11.0 with the
-O3 optimization level. Table 2b compares the number of different
memory operations (i.e., memset, memcpy, and memmove) that appear
in the source code with the number of them that appear in the
assembly code. For all programs except P-ART and P-CLHT, the
assembly code contains more memory operations than the source
code, showing that the compiler has replaced normal stores with
memory operations to optimize the code. We carefully audited
both P-ART and P-CLHT programs to understand why they do not
report more memory operations in their assembly code. For P-ART,
it turns out the source code uses 14 memset operations inefficiently
in the constructors. The compiler optimized them into 3 memset

and replaced different normal write operations in the source code
with 2 memcpy. For P-CLHT, we observed that this program uses a
lock-free design and critical store operations are defined as volatile
and the compiler did not optimize them with memory operations.

The transformation of normal stores into function calls to memcpy

and memset is very common and disabling this optimization in the
compiler would likely have significant performance penalties. Com-
piler optimizations are prone to persistency races not only because
of store tearing but also due to store inventing [26]. Compilers can
legally invent stores to memory locations that code is guaranteed
to write to, e.g., the compiler could generate new store instructions
to temporarily stash intermediate results if the compiler runs out of
registers to store temporary values. Thus, fixing persistency races
requires restricting legal optimizations and adding constraints to
memory operation calls. While this might seem an easy solution,

1i.e., CCEH, Fast&Fair, and Recipe benchmarks except P-HOT. We were not able to
execute the P-HOT because it did not compile with LLVM.
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Table 2: Ubiquity of persistency races.

(a) Summary of popular compilers and observed store optimizations that can lead to

persistency races.

Compiler Arch Store Optimizations

gcc ARM64 Use a non-atomic pair of stores for a 64-bit store
gcc & LLVM-clang ARM64 Replace a seq. of stores of zero with a memset

gcc & LLVM-clang ARM64 Replace a seq. of assignments with a memmove or memcpy

LLVM-clang x86-64 Replace a seq. of stores of zero with a memset

LLVM-clang x86-64 Replace a seq. of assignments with a memcpy

gcc x86-64 Replace a seq. of assignments with a memmove

(b) Number of memory operations

(i.e.,memset, memcpy, memmove) used in

source code of Fast_Fair, CCEH, and

RECIPE benchmarks compared to num-

ber in the assembly code generated by

clang version 11.0 with the -O3 option.

Prog #src-op #asm-op

CCEH 6 33
Fast_Fair 1 4
P-ART 17 8
P-BwTree 6 15
P-CLHT 0 0
P-Masstree 3 14

in practice it can be extremely challenging since all of these op-
timizations are currently standards compliant and thus ensuring
safety would require revising the C/C++ language standard. This
process would likely take many years and there is no guarantee that
the standards committee would not simply decide that developers
should simply use atomics to avoid persistency races. In addition,
there would be a wait for any changes to get rolled out to compilers
and libraries.

Although persistency races may not manifest under a particular
compiler/architecture, they can lead to bugs that are extremely
difficult to detect. For example, a library or compiler update may
expose a latent persistency race in recovery code, triggering cas-
cading bugs and even system-wide failures. Such failures can lead
to disasters in mission-critical systemsÐe.g., upgrading the com-
piler can expose a latent bug in a storage system, causing complete
loss of data. As such, there is a pressing need to find and fix such
bugs early on before they manifest. In fact, the (Intel) developers
of PMDK have confirmed [19] that łwe do try to ensure that those
issues are not present in PMDK and we do extensive validation
on compiled binaries to that end; but something can always slip
through the cracks; and we definitely don’t want to depend on
compiler-defined behavior if we can avoid that.ž

4 YASHME OVERVIEW

This section presents our basic idea and an overview of how Yashme
finds persistency races. We focus our presentation of persistency
races on the x86-TSO persistency model. However, persistency
races are more general than x86-TSO and will be applicable on
other hardware and software persistency models.

Yashme is focused on finding whether an application or library
has code for which the language standard permits the compiler
to generate code that exhibits a persistency race. Thus, Yashme
instruments the LLVM Intermediate Representation (IR) to call into
the Yashme library that simulates the x86-TSO persistency model
and monitors for persistency races.

Yashme has two modes of operation: (1) model checking and (2)
random execution. In the model checking mode, Yashme explores
all executions to find persistency races. This mode is suitable for
programs that are relatively small. For large programs for which it

is time-consuming to explore all possible executions, Yashme can
operate in random mode to detect persistency races.

Yashme’s basic approach is to simulate the execution of a PM
program, inject a crash, and then simulate the execution of the
post-crash recovery program. During the post-crash execution, we
compute which stores may have persisted incorrect values due to the

crash. There are two ways that PM program executions can ensure
that stores are fully persisted: (1) the execution explicitly flushes
the cache line after the store writes to the cache line and before

the crash to ensure that the stored value was persisted or (2) the
post-crash execution reads from a later atomic store to the same
cache line and relies on cache coherence to ensure the persistency
of the store.

Section 4.1 presents our approach to handling (1) explicit flushes
and (2) cache coherency to determine whether stores are fully
persisted. Section 4.2 then presents how Yashme leverages the idea
of execution prefixes to maximize the persistency races that can be
detected at a given injected crash.

4.1 Basics

Flush Operations. Flush operations can be used to force a cache
line to be persisted after a store is fully completed. Without an
appropriate flush operation, a non-atomic store can be partially
persisted. Thus accurately modeling the effects of cache line flush op-
erations is critical for detecting persistency races. We first describe
how Yashme models clflush.

Figure 4(a) presents an example of using the clflush instruction
to flush a cache line. In this example, the pre-crash execution stores
1 to the variable x, and then persists this store by executing a clflush
instruction. To ensure that a clflush instruction persists a store,
it is critical that the store happens before the clflush instruction.
Although store 𝑠 is non-atomic, this execution does not expose
a persistency race because 𝑠 has been flushed before the crash
(although other executions can expose a persistency race).

We next discuss how Yashme tracks whether stores have been
persisted using the clflush instruction. Yashme assigns each oper-
ation an increasing clock 𝜎 that uniquely identifies the operation.
Yashme tracks which stores have been flushed by building a map
flushmap, which maps the clock of each store 𝑠 to a pair of the
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x=1 clflush(x)

pre-crash

execution

rd(x)

post-crash

execution

CRASH!

hb
x=1 clwb(x)

pre-crash

execution

rd(x)

post-crash

execution

CRASH!

hb
fence

sb

(a) (b)

Figure 4: (a) Example of using clflush to flush the store to x.

(b) Example of using clwb to flush the store to x.

form ⟨𝜏, 𝜎⟩, where 𝜏 is the identifier of the thread that performs a
clflush that happens after 𝑠 , and 𝜎 represents the clock that labels
that clflush such that there is no other clflush that is ordered be-
tween the store 𝑠 and this clflush by happens before. To build this
map, when a clflush instruction takes effect on the cache, Yashme
updates flushmap for the latest store to each memory location to
include the thread that executed the clflush and the clock of the
clflush. When the post-crash execution reads from x, Yashme de-
termines that since flushmap(𝜎x=1) (i.e., flushmap applied to the
timestamp of the store x=1) is not empty, there is no persistency
race.

The x86 architecture provides a second, more efficient cache
line flush mechanism: the cache line write back instruction clwb.
Figure 4(b) presents an example in which the pre-crash execution
stores 1 to the variable x, and then persists this store by executing
a clwb instruction and a fence instruction. To persist the store, it
is critical that (1) the store happens before the corresponding clwb

instruction and (2) the thread that executes clwb also executes a
fence instruction later. In our example, although the store x=1 is
non-atomic, this execution does not have a persistency race because
x=1 has been flushed before the crash.

We next extend our approach to track whether stores have been
persisted using the clwb instruction. Yashme maintains a per-thread
set 𝐹𝜏 of clwb instructions that have not been followed by a fence.
When a thread 𝜏 executes a fence instruction, Yashme processes
each of the clwb instructions in 𝐹𝜏 for the thread. When a clwb

instruction takes effect on the cache, Yashme updates the flushmap
for the latest store to each memory location (if the store happens
before the clwb instruction) to include the thread that executed the
fence instruction and the sequence number of the fence. Similarly,
when the post-crash execution reads from x, Yashme determines
that flushmap(𝜎x=1) is not empty and hence there is no persistency
race.

Cache Coherence. Cache coherence protocols ensure a total order
in the persistence of stores to the same cache line. Figure 5(a) pro-
vides an example of an execution that uses cache coherence to avoid
a persistency race. Assume that the variables x and y reside on the
same cache line. We use the notation yrel=1 to indicate that the
store of 1 to y is an atomic release store. In the pre-crash execution,
the store to x happens before the store to y. Since x and y are on
the same cache line, cache coherence protocols guarantee x=1 is
completely written to the cache line before yrel=1 even if store to
x is torn into multiple store operations. Since the post-crash exe-
cution observes the store to y, the cache line is flushed sometime

after persisting yrel=1 and before the crash event. Consequently,
the post-crash execution must also observe the fully completed
store to x due to cache coherence. Thus, there is no persistency race
in this execution.

x=1 yrel=1

pre-crash

execution

rd(y)

post-crash

execution

CRASH!

hb

rd(x)
hb

x=1 clflush(x)

window for detecting 

persistency racepre-crash

execution

rd(x)

post-crash

execution

CRASH!

(a) (b)

Figure 5: (a) Example of coherence preventing persistency

races. Assume that the variables x and y reside on the same

cache line and that the store to y is an atomic release store. (b)

Crash misses window for detecting persistency race using

core algorithm.

To model the effect of cache coherence, Yashme maintains a
map lastflush that maps each cache line to a clock vector that
represents the earliest point in the pre-crash execution where the
cache line could have been written back to persistent memoryÐany
stores that happen before this point must have been fully persisted.
When the post-crash execution reads from an atomic store yrel=1,
Yashme updates the lastflush map to indicate that the cache line
must have been written back some time after the atomic store to
y. When the post-crash execution reads from the non-atomic store
to x, Yashme uses the lastflush map to determine there is no
persistency race because the cache line must have been persisted
after the store to x was completed. More technical details about the
basic algorithm are described in ğ6.

4.2 Key Idea: Expanding the Detection Window

Our core approach is to randomly inject crash events and use the
aforementioned maps to determine the existence of a persistency
race. In particular, we can use the flushmap map to detect whether
a store was fully persisted via a flush operation and the lastflush
map to determine whether a store must have been fully persisted
because the post-crash execution has read from a later store to the
same cache line. However, this approach can only detect persistency
races involving stores in a small window of the pre-crash execution.
In practice, persistent memory programs often flush stores in a
timely manner. Hence, detecting a persistency race from a given
store requires the crash point to fall into the window between the
store and the explicit flushing of its corresponding cache line.

Here we present how we optimize the core approach to improve
its ability to detect persistency races. Figure 5(b) shows an example
crash scenario to illustrate this problem. In this example, the pre-
crash execution writes to the variable x, flushes the write, and then
crashes. The post-crash execution then reads from x. Since the crash
occurs after the write is flushed, the approach misses detecting the
persistency race in this program. To detect this persistency race,
the program must crash in the small window of time between the
store to x and the corresponding flush. This implies that detecting
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races using the approach would require injecting crashes in a large
number of executions, which can be prohibitively expensive for
large programs.

x=1 clflush(x)

window

for detecting

persistency race
pre-crash

execution

rd(x)

post-crash

execution

Consistent crash interval

x=1

clflush(x)

window for 

detecting

persistency race
pre-crash

execution

rd(x)

post-crash

execution

Consistent 

crash interval

rd(y)hb

yrel=1

(a) (b)

Figure 6: (a) Prefixes of pre-crash execution that are consis-

tent with the post-crash execution (b) Prefixes of pre-crash

execution that are consistent with the post-crash execution

after reading from y residing on the same cache line as x.

Our key insight for effectively detecting persistency races is that
we can check whether the post-crash execution 𝐸 ′ has a persistency
race with any prefix 𝐸+ of the pre-crash execution 𝐸 that is consistent

with 𝐸 ′. Figure 6(a) illustrates this insight. While the pre-crash
execution has flushed the store to x, the post-crash execution has
not read from any store that happens after the cache line flush.
Thus the post-crash execution at this point is consistent with any

prefix of the pre-crash execution starting at the store that writes
1 to x. The blue arrow shows the range of consistent prefixes of
the pre-crash execution. In Figure 6(b), as the post-crash execution
reads from the atomic variable y, Yashme updates the constraint of
pre-crash execution to be consistent with the post-crash execution
and to include the clflush(x) instruction.

Consistent Prefixes. Intuitively, a consistent prefix of the pre-crash
execution must contain any statement which happens before a pre-
crash store that the post-crash execution reads from. Yashme tracks
every pre-crash store that the post-crash executions reads from and
computes the shortest consistent prefix by using clock-vector-based
techniques [14] that are commonly used by race detectors. Yashme
uses the consistent prefix to determine whether there is a prefix
of the pre-crash execution that did not execute a given clflush,
clwb, or fence instruction. If so, Yashme ignores the instruction
when checking for races, because there is a pre-crash execution
that does not execute the instruction and yields the same post-
crash execution. For example, in Figure 6(a), there is a prefix of
the pre-crash execution which does not execute clflush (x). Thus,
Yashme can ignore this instruction. However, after reading y in
Figure 6(b), clflush(x) must be executed in all prefixes of the pre-
crash execution and cannot be ignored anymore. The constraint
prefix helps Yashme find persistency races even when the crash
event is inserted outside of the detection window in the model-
checking mode or random mode.

Multi-threaded Programs. Yashme fully supports multi-threaded

programs. For multithreaded executions, we use a per-thread prefix
of the execution. Note that in the multithreaded case the prefix-
based approach can detect persistency races in executions that

cannot be generated by inserting a crash event at any point in the
pre-crash execution. For example, consider a pre-crash execution
in which thread 1 performs a racy store to z, flushes z, then thread
2 sets an atomic flag f to true and a post-crash execution that reads
from z and if f is true then reads from z. There is no point in the
pre-crash execution trace that we can insert a crash to observe the
race in this code. The prefix analysis can determine that the post-
crash execution has not read from any store that happens after the
flush of z, and therefore we can rearrange the pre-crash execution
to a race revealing execution in which thread 1 performs a racy
store to z, thread 2 sets an atomic flag f to true, and then it crashes.

5 ALGORITHM PRELIMINARIES

We begin by formalizing our notion of a persistency race. Intuitively,
a persistency race occurs if an execution reads from a non-atomic
store that could have been made partially persistent. Definition 5.1
presents our definition for whether an execution contains a persis-
tency race.

Definition 5.1. A load 𝑙 in a post-crash execution 𝐸 ′ that reads
from a store 𝑠 in a pre-crash execution 𝐸 is a persistency race if
(1) 𝑠 is not atomic, (2) there is no atomic release store 𝑠 ′ to the

same cache line as 𝑠 in 𝐸 such that 𝑠
hb
−−→ 𝑠 ′ and 𝐸 ′ reads from 𝑠 ′

before it reads from 𝑠 , (3) there is no cache-line flush clflush to

the same cache line as 𝑠 such that 𝑠
hb
−−→ clflush, and (4) there is

no cache-line flush clwb to the same cache line as 𝑠 and a fence

fence such that 𝑠
hb
−−→ clwb and clwb

sb
−−→ fence.

The first condition ensures that the compiler could legally imple-
ment the store with several store instructions or insert other store
instructions to the same memory address. The second condition
ensures that there were no later atomic stores to the same cache
line that were read by the post-crash execution and thus the cache
line must have been written back after store 𝑠 completed. The third
and fourth conditions ensure that there was no cache line flush that
forced the CPU to flush the entire cache line and thus the processor
would have been free to flush the cache line when the store was
partially completed or after a compiler inserted store.

5.1 Persistency Races in Execution Prefixes

Our key insight for effectively detecting persistency races is that
we can check whether the post-crash execution 𝐸 ′ has a persis-
tency race with any prefix 𝐸+ of the pre-crash execution 𝐸 that is
consistent with 𝐸 ′.

Consistent Prefixes. For each store 𝑠 in the pre-crash execution 𝐸

that some load in the post-crash execution 𝐸 ′ reads from, Yashme
computes the prefix 𝐸𝑠 of the pre-crash execution that happens-
before 𝑠 . Since the post-crash execution 𝐸 ′ has observed 𝑠 , it is only
consistent with prefixes of the pre-crash execution that include 𝐸𝑠 .
Yashme computes 𝐸+ as the union of the sets 𝐸𝑠 that correspond
to each pre-crash store 𝑠 that the post-crash execution reads from.
This union is efficiently computed using clock vector techniques
that are commonly used by race detectors. The prefix 𝐸+ is the
smallest prefix of 𝐸 that is consistent with the post-crash execution.

Yashme uses 𝐸+ to compute whether a store must have been
made persistent in all prefixes of 𝐸 that are consistent with 𝐸 ′.
There are two situations in which the post-crash execution must
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observe 𝑠 as fully persisted: (1) 𝑠 was flushed to persistent memory
in 𝐸+ or (2) the execution 𝐸 ′ has already observed a later store to
the same cache line.

Under x86 TSO, recall that there are two ways to flush a cache
line after a store 𝑠 . The program can execute the clflush instruction
or it can execute the clwb instruction followed by a fence. Yashme
checks whether there is a clflush or clwb instruction in 𝐸+ to the
same cache line written by the store 𝑠 that happens after 𝑠 . If there is
a clflush instruction, the store 𝑠 has been made persistent. If there
is a clwb instruction, Yashme must also check whether the thread
that executed the clwb instruction later executed an instruction in
𝐸+ with fence semantics. If so, the store 𝑠 was fully persisted.

If the cache line was not explicitly flushed, Yashme checks
whether the post-crash execution has already observed a later store
to the same cache line. If not, Yashme reports a persistency race and
the pre-crash execution prefix 𝐸+ combined with the post-crash
execution 𝐸 ′ as a witness.

Theorem 1 (Persistency Race in Execution Prefixes). Given a pre-
crash execution 𝐸 and a post-crash execution 𝐸 ′, there exists a
race-revealing pre-crash execution 𝐸+ that has a persistency race
with 𝐸 ′ if there is a load 𝑙 in 𝐸 ′ that reads from a store 𝑠 in 𝐸 and
all of the following conditions hold:

(1) 𝑠 is not atomic.
(2) �𝑠 ′ ∈ 𝐸, such that 𝑠 ′ is an atomic release

store, and 𝑠
hb
−−→ 𝑠 ′ ∧ samecacheline(𝑠, 𝑠 ′) ∧

𝐸 ′ reads from 𝑠 ′ before it reads from 𝑠

(3) �clflush ∈ 𝐸 such that 𝑠 ′ ∈ 𝐸, 𝑠
hb
−−→ clflush ∧

samecacheline(𝑠, clflush) ∧ clflush
hb
−−→ 𝑠 ′ ∧

𝐸 ′ reads from 𝑠 ′

(4) �clwb, fence ∈ 𝐸 such that 𝑠 ′ ∈ 𝐸, 𝑠
hb
−−→ clwb ∧

samecacheline(𝑠, clwb) ∧ clwb
sb
−−→ fence ∧ fence

hb
−−→

𝑠 ′ ∧ 𝐸 ′ reads from 𝑠 ′

Proof. Assume that we have a pre-crash execution 𝐸 and post-
crash execution 𝐸 ′ where a load in 𝐸 ′ reads from a store 𝑠 in 𝐸 that
satisfies the conditions 1 through 4.

We define the execution 𝐸+ to include all statements in 𝐸 that
happen before the stores in 𝐸 that are read by 𝐸 ′ and those stores.
We next show that 𝐸+ has a persistency race with the post-crash
execution 𝐸 ′.

The store 𝑠 in 𝐸+ is non-atomic by the assumed condition 1 and
thus satisfies condition 1 from Definition 5.1. The store 𝑠 in 𝐸+

satisfies condition 2 by assumption and thus satisfies condition 2
from Definition 5.1. By assumption, condition 3 is true for the store
𝑠 in 𝐸. Since 𝐸+ by construction only contains events from 𝐸 that
happen before some store 𝑠 ′ that 𝐸 ′ reads from, there cannot be a
clflush in 𝐸+ to the same cache line as 𝑠 that is ordered after 𝑠 .
Therefore, 𝑠 in 𝐸+ satisfies condition 3 of Definition 5.1. By the same
argument, the store 𝑠 in 𝐸+ satisfies condition 4 from Definition 5.1.
Therefore, the execution 𝐸+ has a race with 𝐸 ′. □

6 RACE DETECTION ALGORITHM

We next present our persistency race detection algorithm. We begin
by presenting the following notations that we will use throughout
the paper:

• We refer to an execution as 𝑒 .
• We denote a thread using 𝜏 ∈ T.
• Each thread 𝜏 has a store buffer 𝑆𝜏 that keeps a queue of
store, clflush, and sfence operations that have not yet taken
effect on the cache.

• Each thread 𝜏 has a cache line flush buffer 𝐹𝜏 that stores the
set of clwb operations that have not yet flushed the cache
line to persistent storage.

• A given failure scenario may involve a sequence of multiple
executions ending in failures. For example, a persistency
race in the recovery procedure would require two crashes:
one to get into the recovery procedure and a second to reveal
a bug in the recovery procedure. We record this sequence of
executions that have been executed on the persistent store
using a stack, referred to as exec.

• Function top(exec) denotes the most recent execution (the
current one) on the stack exec.

• Function prev(𝑒) returns the execution that immediately
precedes 𝑒 in exec.

• A global sequence number counter 𝜎curr is used to assign
increasing sequence numbers to stores, clflush, and sfence

instructions. Each store, clflush, and sfence instruction 𝑖

is assigned a sequence number 𝜎𝑖 . These numbers record
the total order in which these instructions take effect in the
cache. Using a global sequence number has no performance
drawbacks since Yashme already determines the interleaving
of threads and has full control over the scheduling of all
memory operations.

• Each execution 𝑒 has a map 𝑒.storemap that maps each ad-
dress addr to the thread 𝜏 and sequence number 𝜎 generated
at the moment that value was stored.

• Each 𝑒 has a map 𝑒.flushmap that maps a store’s sequence
number 𝜎 to a set of pairs ⟨𝜏, 𝜎⟩ of a 𝜏 and the sequence
number 𝜎 of the first flush it performed after the store.

• Each 𝑒 has a map 𝑒.lastflush that maps a cache line iden-
tifier to a clock vector that is a lower bound for when the
cache line was written back.

• Each 𝑒 has a clock vector 𝑒.CVpre that records how much of
the execution 𝑒 that later executions have observed.

The TSOmemorymodel separates the executions of stores, cache
flush operations, and sfence operations into two phases: (1) the
initial phase that often inserts an operation into a buffer and (2)
the second phase that removes the instruction from the buffer and
updates the state of the cache or persistent storage. We present our
algorithm for each of the stages.

Executing instructions. Figure 7 presents our algorithm for the
first phase of instruction execution, which inserts an instruction
into each thread’s local store buffer 𝑆𝜏 . The mfence instruction waits
until 𝑆𝜏 is empty and then clears the thread’s flush buffer 𝐹𝜏 . RMW
instructions also have mfence like semantics and are handled in the
same fashion.

Evicting Operations. Figure 8 presents our algorithm for the sec-
ond phase of instruction execution when the instructions exit the
core’s store buffer and take effect on the memory system. The
Evict_SB procedure for stores assigns a store a clock when it is
evicted from the store buffer. It then updates the storemap for the
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1: function Exec_Store(addr, val, 𝜏 )
2: Enqueue ⟨store, addr, val⟩ into 𝑆𝜏 .

3: function Exec_CLFLUSH(addr)
4: Enqueue ⟨clflush, addr ⟩ into 𝑆𝜏 .

5: function Exec_CLWB(addr)
6: Enqueue ⟨clwb, addr ⟩ into 𝑆𝜏 .

7: function Exec_SFENCE

8: Enqueue ⟨sfence⟩ into 𝑆𝜏 .

9: function Exec_MFENCE

10: Evict all entries in 𝑆𝜏 .
11: Flush 𝐹𝜏 .

Figure 7: Algorithm for executing instructions.

1: function Evict_SB(⟨store, addr, val⟩, 𝜏 )
2: 𝜎curr := 𝜎curr + 1

3: top(exec) .storemap := top(exec) .storemap[addr → ⟨𝜏, 𝜎curr ⟩].

4: function Evict_SB(⟨clflush, addr,CVclflush ⟩, 𝜏 )
5: 𝜎curr := 𝜎curr + 1

6: for all addr𝑠 such that CacheID(addr𝑠 ) = CacheID(addr) do
7: ⟨𝜏𝑠 , 𝜎𝑠 ⟩ = top(exec) .storemap(addr𝑠 )
8: if 𝜎𝑠 < CVclflush (𝜏𝑠 )∧
9: �⟨𝜏′, 𝜎𝜏′ ⟩ ∈ top(exec) .flushmap(𝜎𝑠 ), 𝜎𝜏′ < CVclflush (𝜏

′) then
10: top(exec) .flushmap(𝜎𝑠 ) := top(exec) .flushmap(𝜎𝑠 ) ∪

{ ⟨𝜎𝜏 ,CVclflush (𝜏fence) ⟩ }

11: function Evict_SB(⟨clwb, addr,CV ⟩, 𝜏 )
12: Add ⟨addr,CV, 𝜏 ⟩ to 𝐹𝜏 .

13: function Evict_SB(⟨sfence⟩, 𝜏 )
14: 𝜎curr := 𝜎curr + 1

15: Flush 𝐹𝜏 .

16: function Evict_FB(⟨addr,CVflush ⟩, 𝜏flush, ⟨CVfence, 𝜏fence ⟩)
17: for all addr𝑠 such that CacheID(addr𝑠 ) = CacheID(addr) do
18: ⟨𝜏𝑠 , 𝜎𝑠 ⟩ = top(exec) .storemap(addr)
19: if 𝜎𝑠 < CVflush (𝜏𝑠 ) ∧
20: �⟨𝜏, 𝜎𝜏 ⟩ ∈ top(exec) .flushmap(𝜎𝑠 ), 𝜎𝜏 < CVfence (𝜏) then
21: top(exec) .flushmap(𝜎𝑠 ) := top(exec) .flushmap(𝜎𝑠 ) ∪

{ ⟨𝜏fence,CVfence (𝜏fence) ⟩ }

Figure 8: Algorithm for evicting store and flush buffers.

execution to record that the address addr was written to by the
current thread 𝜏 and store. The Evict_SB procedure for clflush

instructions assigns the clflush instruction a clock.
Next it updates the storemap for each most recent store to an

address on the same cache line to include the thread and clock
vector for this clflush instruction if (1) the store happens before
the clflush instruction and (2) there is not already a flush instruc-
tion in storemap that happens before the clflush. The Evict_SB

procedure for clwb instructions adds the clwb instruction to the
thread’s flushbuffer 𝐹𝜏 .

The Evict_SB procedure for sfence instruction evicts the clwb

instructions in the thread’s flushbuffer 𝐹𝜏 . The Evict_FB procedure
handles evicting a clwb instruction from the flushbuffer. It takes as
parameters (1) the address, clock vector, and thread identifier for
the clwb instruction and (2) the clock vector and thread identifier
for the fence instruction. This procedure updates the storemap for
each most recent store to an address on the same cache line to
include the thread and clock vector for this clflush instruction if
(1) the store happens before the clwb instruction and (2) there is no
flush instruction in storemap that happens before the fence.

Processing Loads. Figure 9 presents our algorithm for handling
loads that read from stores performed by a prior execution 𝑒 . The
Load_Atomic function handles atomic loads. It updates the lower

1: function Load_Atomic(addr, ⟨𝑒,CV𝑠 , val⟩)
2: 𝑒.lastflush := 𝑒.lastflush[CacheID(addr) →

𝑒.lastflush(CacheID(addr)) ∪ CV𝑠 ]
3: 𝑒.CVpre := 𝑒.CVpre ∪ CV𝑠

4: function Load_NonAtomic(addr, ⟨𝑒,CV𝑠 , 𝜏, val⟩)
5: if CV𝑠 (𝜏) > 𝑒.lastflush(CacheID(addr)) (𝜏) ∧
6: �⟨𝜏𝑓 , 𝜎𝑓 ⟩ ∈ 𝑒.flushmap(𝑠), 𝜎𝑓 < 𝑒.CVpre (𝜏𝑓 ) then
7: Print persistency race error

8: 𝑒.CVpre := 𝑒.CVpre ∪ CV𝑠

Figure 9: Algorithm for loads.

bound for the last time that the respective cache line was flushed in
execution 𝑒 . It then updates the clock vector CVpre that is used to
compute the smallest consistent prefix of the execution 𝑒 . The
Load_NonAtomic function handles non-atomic loads. It checks
whether the store that the load reads from is ordered after the
lower bound for the last time that its cache line was flush. If so,
then it checks whether the cache line was flushed after the store. If
not, it prints an error. It then updates the clock vector CVpre that is
used to compute the smallest consistent prefix of the execution 𝑒 .

Implementation. Yashme uses the Jaaru open-source model check-
ing infrastructure [18] to simulate program executions. This infras-
tructure uses an LLVM compiler frontend to automatically instru-
ment programs to intercept reads, writes, clflush instructions, clwb
instructions, and memory fences. This infrastructure implements a
simulation framework for persistent memory and this framework
supports injecting crashes between executions. The simulation
framework enables Yashme to reason about all potential effects of
cache flushes and precisely control execution while at the same
time avoids requiring access to actual hardware supporting these
instructions. Yashme is implemented as a plugin for the model
checking infrastructure, which reports persistent memory relevant
execution events to Yashme. In model checking mode, Yashme sys-
tematically injects crashes before every clflush or fence operation.
While Yashme controls multithreaded scheduling to regenerate
the same execution, it does not exhaustively explore the space of
schedules.

We implement a new mode, random mode, on the infrastruc-
ture that randomly generates executions in addition to the existing
model checking mode. This enables Yashme to execute programs
that cannot easily bemodel checked. At each load, the infrastructure
computes a set of candidate stores from pre-crash executions that
the load could read from depending on when a cache line was made
persistent. Yashme leverages this design to check all of these can-
didate stores for potential data races using the Load_NonAtomic
procedure. In random mode, Yashme randomly explores different
concurrent schedules and read choices and simulates crashes before
random fence operations. Users can specify the number of random
executions based on the complexity and size of the tool under test.

7 EVALUATION

We ran our experiments on an Ubuntu Linux 18.04 machine with
a 4 core Intel Xeon E3-1245 v3 CPU and 32GB RAM. We used gcc
version 7.5.0 and clang version 11.0.0.

Our Benchmarks. We have evaluated Yashme on state-of-the-art
persistent memory applications and libraries. Yashme was tested
with the RECIPE benchmarks [32], FAST_FAIR [22], CCEH [45],
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PMDK [24], Memcached [9], and Redis [30]. These frameworks
were used in prior works to evaluate their bug-finding tools [18,
37, 38, 46]. Prior testing tools revealed multiple bugs but none of
them were capable of detecting persistency races. Yashme is the
first persistency race detector and has found 24 persistency races in
well-tested persistent memory applications.

7.1 Methodology

We first evaluated Yashme on a collection of data structures [22, 32,
45]. RECIPE [32] is a collection of concurrent DRAM indexes for
persistent memory. We used all RECIPE benchmarks (i.e., P-ART,
P-BwTree, P-CLHT, and P-Masstree) except P-HOT because it did
not compile with LLVM. CCEH [45] is an efficient hash table for
persistent memory. FAST_FAIR [22] is a fault-tolerant B+-tree for
persistent memory. We changed the compiler options for these
benchmarks to disable optimizations to avoid any optimizations
that might reorder memory operations and potentially cause us to
miss reporting persistency races. We recompiled these programs
with Yashme and used their example test application to drive our
testing. These example programs manipulate each data structure
through standard insertion, deletion, and lookup operations.

We also evaluated Yashme on real-world frameworks [9, 24, 30].
PMDK [24] is a collection of libraries and tools developed by Intel
for application developers to simplify accessing persistent memory
devices. This is the most active open-source PM framework, which
has been maintained for 7 years, and is used both by academia and
industry. Similar to prior works [18, 37, 38, 46], we used example
data structures provided with PMDK to find bugs in the PMDK
library (i.e., BTree, CTree, RBTree, Hashmap atomic and Hashmap
TX). Redis [30] is a popular in-memory database and memory cache
ported by Intel to use both DRAM and persistent memory. It uses
PMDK’s transaction APIs to store data on persistent memory. We
developed our own client to modify the database server using inser-
tion and lookup operations. Memcached [9] is a high-performance
distributed memory caching system ported to use persistent mem-
ory. This in-memory key-value store uses low-level libpmem APIs
to flush cache lines to persistent memory. We developed our own
client from Memcached’s test cases to evaluate Yashme. This client
modifies the cache server using insertion and lookup operations.
We adapted the original compilation flags for these frameworks
and only changed the flags to cause them to link against Yashme
dynamic library.

We evaluated Yashme with PM indexes with the model checking
mode, and we used the random execution mode for Memcached, Re-
dis, and PMDKwhich are relatively more complicated. The working
mode can be specified by a command-line argument.

7.2 Race Detection

We run Yashme over RECIPE, CCEH, FAST_FAIR, PMDK, Mem-
cached, and Redis to automatically detect persistency races. We
manually deduplicated all race reports since one variable can par-
ticipate in multiple buggy scenarios. Then, we manually inspected
the race reports. Yashme has found a total of 24 races in these
programs that are all new and have not been discovered by prior

tools. We first discuss our experience with the collection of PM data
structures [22, 32, 45]. Table 3 reports 19 races we found in these

Value_t CCEH::Get(Key_t& key) {

...

if (dir_ ->_[slot].key == key) {

...

return dir_ ->_[slot]. value;

}

...

}

Figure 10: The CCEH::Get method from the CCEH hashtable

reads from the non-atomic key and value fields.

data structures. For each bug, we list the program in which the bugs
were found and the field that causes the persistency race.

Table 3: Races found in CCEH, FAST_FAIR, and RECIPE

benchmarks.

# Benchmark Root Cause of Bug
1 CCEH value in Pair struct in pair.h
2 CCEH key in Pair struct in pair.h
3 FAST_FAIR last_index in header class in btree.h
4 FAST_FAIR switch_counter in header class in btree.h
5 FAST_FAIR key in entry class in btree.h
6 FAST_FAIR ptr in entry class in btree.h
7 FAST_FAIR root in btree class in btree.h
8 FAST_FAIR sibling_ptr in header class in btree.h
9 P-ART compactCount in N class in N.h
10 P-ART count in N class in N.h

11 P-ART
deletitionListCount in DeletionList class

in Epoche.h

12 P-ART
headDeletionList in DeletionList class

in Epoche.h
13 P-ART nodesCount in LabelDelete struct in Epoche.h
14 P-ART added in DeletionList class in Epoche.h

15 P-ART
thresholdCounter in DeletionList class

in Epoche.h
16 P-BwTree epoch in BwTreeBase class in bwtree.h
17 P-Masstree root_ in masstree class in masstree.h
18 P-Masstree permutation in leafnode class in masstree.h
19 P-Masstree next in leafnode class in masstree.h

Due to space constraints, we only elaborate on the persistency
races for bug #1 and #2 of Table 3. Figure 3 shows the source code
of pre-crash execution where the program writes to the key and
value fields of a Segment and flushes them. Figure 10 shows the post
crash execution where the program reads from key and value fields.
These variables are non-atomic and thus a poorly timed crash could
cause the program to read from from partially persisted stores in
the CCEH:Get method in the post-crash execution.

Note that the majority of these persistency race bugs are in
the core implementation of the data structures, e.g., the key and
value fields of the tree. Some of the persistency races were found
in memory allocators. These races can lead to different symptoms
in the program including (1) accessing an illegal memory address
and crashing with a segmentation fault, (2) exiting with assertion
failure, and (3) showing wrong or undefined behavior.

Next, we discuss the results for the PMDK benchmarks, Redis,
and Memcached [9, 24, 30]. Redis uses PMDK’s libpmemobj and
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transaction APIs to modify persistent memory and Memcached
uses PMDK’s libpmem API. Table 4 reports 5 new persistency races
found by Yashme in PMDK, Redis, and Memcached. For each bug,
we list the variable that causes the persistency race. The majority of
races revealed by Memcached and PMDK testcases involve header
fields for the object pool. PMDK library uses these fields for memory
management, e.g., defragmentation and garbage collection. Most
of these races could be revealed by Redis as well. Yashme found 4
persistency races in Memcached. Similar to PMDK, the majority of
these races are related to the internal representation of the object
pool, e.g., flags for validating the data. Persistency races in Table 4
can corrupt a persisted store leading to data loss. All these races
are new and none have been reported before.

Table 4: Races found in PMDK, Redis, and Memcached.

# Benchmark Root Cause of Bug
1 PMDK pointer to ulog_entry in ulog.c
2 memcached valid variable in pslab_pool_t struct in pslab.c
3 memcached id variable in pslab_t struct in pslab.c
4 memcached it_flags variable in item_chunk struct in memcached.h
5 memcached cas variable in item struct in memcached.h

Table 3 and Table 4 report the variables that cause persistency
race in each benchmark. As mentioned in Section 3, store tearing
is not the only way the compiler can introduce problems. The
compiler can invent stores to locations that are guaranteed to be
written to [26]. Thus a persistency race on byte-size fields such as
#14 in Table 3 and #2 - #4 in Table 4 are not safe. This bug report
containing information for each problematic store is very beneficial
to the developers to reason about different buggy scenarios. To fix
these bugs, the developers need to replace racing non-atomic stores
with atomic ones (in C++ change int to atomic<int> or in C change
int to atomic_int. On x86 this incurs no overhead if one uses atomic
stores with the memory_order_release memory ordering, because
they are implemented with normal move instructions. But it ensures
that compiler optimizations will not tear the store.

7.3 Optimization & Performance

Persistency races have a narrow window for detection and this can
make detecting persistency races rather challenging. To understand
the importance of searching for persistency races in prefixes of
available executions, we injected crashes before every fence in the
execution of Fast_Fair, CCEH, and the RECIPE benchmarks. We ran
Yashme with this optimization (prefix) and without this optimiza-
tion (baseline) to compare their bug finding capabilities. Table 5
reports persistency races detected by these two techniques. For
each technique, we report numbers for running a single randomly
generated execution. Yashme finds 5× more persistency races. This
demonstrates that the prefix-based approach can find many more
persistency races because prefixes generalize executionsÐmany of
the derived executions would otherwise be hard to reach. Table 5
also reports the times taken to run one random execution on both
Yashme and Jaaru, the underlying infrastructure. They have com-
parable running times because the race checks introduce minimal
overheads.

Note that persistency races were not known before and hence there

does not exist any other tool with which we can compare Yashme

directly.

Table 5: # races detected w/ and w/o prefix-based expan-

sion for a single execution on RECIPE, PMDK, Memcached,

and Redis benchmarks, as well as execution times for both

Yashme and Jaaru (the underlying checking infrastructure).

Yashme incurs minimal overhead compared to Jaaru.

Benchmark Prefix Baseline Yashme Time Jaaru Time

CCEH 2 0 0.043s 0.041s
Fast_Fair 2 1 0.039s 0.039s
P-ART 0 0 0.046s 0.044s

P-BwTree 0 0 0.034s 0.033s
P-CLHT 0 0 0.159s 0.157s

P-Masstree 2 0 0.037s 0.038s
Btree 1 0 2.541s 2.095s
Ctree 1 0 2.544s 2.099s
RBtree 1 0 2.552s 2.100s

hashmap-atomic 1 0 2.298s 1.896s
hashmap-tx 1 0 2.294s 1.892s

Redis 0 0 5.623s 5.361s
Memcached 4 2 8.032s 8.035s

7.4 Bug Reporting and Confirmation

We contacted the authors of these programs to obtain their feedback
on the bugs found by Yashme. As of the time of writing the paper,
we have heard back from the authors of PMDK, Memcached-pmem,
and the RECIPE benchmarks. For RECIPE, the authors confirmed
that the bugs 9-11 and 19-21 are real bugs. For the persistency races
12-18, they are related to the code of a memory allocator that is
known to be crash inconsistentÐthe RECIPE benchmark suite did
not attempt to correctly implement a crash-consistent memory
allocator. To be clear, these are all real persistency races, but the
code for the memory allocator needs to be replaced anyways and
hence they would not fix the bugs 12-18. Furthermore, we reported
the bugs 2-5 inMemcached-pmem to its developers. They confirmed
that all of these bugs are real. After our bug report, both developers
of RECIPE and Memcached-pmem immediately fixed the reported
persistency races. These fixes are publicly available on their github
repositories. For PMDK, the developers confirmed bug 1.

7.5 Discussion

Analyzing Bugs. The current version of the code was compiled
with gcc v7.5 and clang v11.0 for x86. We manually investigated
the the assembly generated by this compiler and there were many
cases of using memory operations (i.e., memset and memcpy) in object
initializations which can lead to store tearing and persistency bugs
(e.g., bug #8 in Fast_Fair). For other cases, while these particular
compilers may not tear the racing stores, the fact that it can mean
that compiler upgrades, architectural changes, or even unrelated
changes to the code (e.g., adding new fields to struct/class and
breaking variable’s alignments) can cause optimizations to generate
problematic assembly code. Leaving a persistency race in mission-
critical code (e.g., storage systems, self-driving cars, airplane control
systems, etc.) can lead to catastrophic failures and even disasters
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from library/compiler/hardware upgrades. Although these bugs may

or may not manifest in today’s code, it can suddenly break tomorrow’s

executions even if user code is not changed at all. As confirmed
by PMDK developers, łmaking sure their code does not depend
on compiler/library behaviorsž is their daily routine and "they do
extensive validation to that end".

Although the developer can manually inspect the assembly code
on every compiler, architectural, and code change, this approach is
very time-consuming and not practically possible for large source
code bases. Yashme automatically flags out such bugs caused by
miscompiling that can corrupt a large data store. We believe it
is strictly necessary to fix such bugs in mission-critical code that
cannot afford to break.

Benign Issues. Programs can access inconsistent data in the post-
crash execution. However, these program accesses are not necessar-
ily followed by sensitive operations that use this data. For examples,
programs can use customized fault tolerance techniques to detect
data inconsistency and ignore the inconsistent data. For example,
PMDK, Redis, and Memcached use a checksum-based strategy to
verify that data is consistent. This strategy computes a checksum
on the data and writes the checksum. Before using the data, the
program first verifies the checksum to validate data integrity. Even
if these programs read from partially-persistent data, such data
are not used as they fail the checksum validation. In addition to
the 24 persistency races, Yashme found 10 bugs that are benign
issues due to checksums (although these are still true persistency
races by definition). Yashme did not report any other types of

benign issues other than the ones from checksums. A future
implementation of Yashme could use annotations to suppress race
warnings from stores that are read by the checksum validation
procedure.

As with any dynamic tool, Yashme can only find bugs in the ex-
ecutions it explores. As such, Yashme may miss bugs in unexplored
executions.

Persistency Races on eADR CPUs. Persistency races are still pos-
sible on eADR systems [23] where flushing is not required. The
absence of races on a non-eADR system implies the absence of
races on eADR systems, but the opposite is not true. Thus, Yashme
can be used as is to guarantee the absence of races on the eADR
systems. However, Yashme could be adapted to only detect races
that are possible on eADR systems by adding support to handle the
slightly different persistency semantics.

8 RELATED WORK

Bug/crash consistency detection. There exists a large body of
work on testing [29, 31, 44, 56], checking [43, 51, 58, 59], and
formally verifying [5, 6, 54] file system implementations to find
and eliminate crash consistency bugs. Fuzzing techniques such as
Janus [56] and Hydra [29] mutate disk images and file operations to
explore states of file system code. Using heuristics, B3 [44] employs
a bounded testing technique to explore states in a bounded space.
EXPLODE [58], FiSC [59], and SAMC [33] use model checkers to
systematically explore states of a file system implementation. There
is much work on torn writes in disk where only part of a multi-
sector write completes. File systems use a variety of techniques to
ensure consistency, such as shadow updates [2, 50], journaling [53],

soft updates [41], and post-reboot checking [42, 48]. Although crash
consistency bugs in file systems bear similarities with bugs in PM
programs, they are fundamentally different in the access granularity
as well as how writes are performed.

There is a recent line of work on checking/testing PM programs
to find bugs. PMTest [38] lets developers annotate a program with
checking rules to infer the persistency status of writes and ordering
constraints between writes. Pmemcheck [28] checks how many
stores were not made persistent and detects memory overwrites
using binary rewriting. PMDebugger [11] is a debugger developed
on top of Valgrind that tracks operations to find persistency bugs.
PMDebugger relies on programmers to explicitly annotate order-
ing constraints. Agamotto [46] finds bugs in persistent memory
programs by using symbolic execution. It tracks the state of per-
sistent memory objects and their corresponding cache lines in the
program, i.e., whether the cache line is modified. Persistency races
result from the interaction between the pre-crash and post-crash ex-
ecutions. Agamotto only explores the pre-crash execution and thus
cannot be easily extended to find persistency races. Jaaru [18] takes
a constraint-based approach to enumerating executions that can
drastically reduce the number of post-failure executions. Yashme
is built on Jaaru’s constraint-based execution engine that enables
Yashme to observe many possible stores that a load can read from
(depending on when the cache line was evicted) and checks for
persistency races in all of them. Although all existing tools are
able to find many bugs, they all effectively treat writes to persistent
memory as atomic or cannot distinguish if a source-level store oper-
ation is torn at the binary level. Thus, the current implementations
of all previous tools are unable to detect persistency races.

Programming Models for PM. There is a great deal of work on
building programming systems that allow developers to use PM
in a reliable way without knowing the details of PM. For example,
a line of work [3, 8, 15, 16, 34, 57] proposes to use (software or
hardware) transactions to provide (failure and thread) atomicity.
Another line of work [1, 4, 20, 25, 35] advocates use of locks or
synchronization-free regions [17]. Yashme is complementary to
these approaches, it can be used to check the correctness of their
implementations.

9 CONCLUSION

This paper formally defines a new class of bug in PM programs,
persistency races, and present Yashme, the first tool to detect per-
sistency races. Yashme builds on a novel technique that improves
persistency race detection by checking prefixes of the pre-crash
execution. Our evaluation shows that Yashme has found 24 real
persistency races in our applications.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact contains a vagrant repository that downloads and
compiles the source code for Yashme, its companion compiler pass,
and benchmarks. The artifact enables users to reproduce the bugs
that are found by Yashme in PMDK, Memcached, and Redis (Table 4
of the paper), and RECIPE (Table 3) as well as the performance
results to compare Yashme with Jaaru (Table 5).

A.2 Artifact Check-List (Meta-Information)
• Algorithm: Persistency race detector
• Program: Yashme
• Compilation: GCC 7.5.0 and Clang
• Binary: Instrumentation LLVM pass
• Data set: RECIPE, Redis, Memcached, and PMDK benchmarks
• Run-time environment: Any system that can run Vagrant
• Hardware: One 6 core 3.7 GHz Intel i7 machine with 32 GB DDR4
memory

• Run-time state: Managed by Jaaru’s x86 simulator
• Execution: Automated by Jaaru’s tooling system
• Metrics: Reporting persistency race in program under test
• Output: Persistency race bugs. Logging performance measurement
for executions.

• Experiments: Regenerating all bugs found by Yashme. Reproduc-
ing performance results and comparing them with Jaaru (underlying
open-source model checker)

• How much disk space required (approximately)?: 80G
• How much time is needed to prepare workflow (approxi-

mately)?: 4 hours
• Howmuch time is needed to complete experiments (approx-

imately)?: About 90 minutes
• Publicly available?: Yes. Open-source on GitHub
• Code licenses (if publicly available)?: GNU GENERAL PUBLIC
LICENSE Version 2

• Data licenses (if publicly available)?: Lenovo, BSD-3-Clause,
and Apache License 2.0.

• Workflow framework used?: Vagrant.
• Archived (provide DOI)?:

https://dl.acm.org/doi/10.1145/3462316

A.3 Description

Our workflow has four primary parts: (1) creating a virtual machine
and installing dependencies needed to reproduce our results, (2)
downloading the source code of Yashme and the benchmarks and
building them, (3) providing the parameters corresponding to each
bug to reproduce the bugs, and (4) running the benchmarks to
compare Yashme with the Jaaru, the underlying model-checker.
After the experiment, the corresponding output files are generated
for each bug and each performance measurement.

A.3.1 How to Access. All source code is open-source and available
on GitHub. Our packaging requires cloning the vagrant system
repository from https://github.com/uci-plrg/pmrace-vagrant. As
described in the README.md file of the repository, you will need
to install a VirtualBox VM and Vagrant on your machine. Then, the
vagrant setup will install the required dependencies and download
the source code of the tools from our git repository. Next, it builds
each tool on the virtual machine.

A.3.2 Hardware Dependencies. Our tooling system and Yashme
have no special hardware dependencies and it can be running on
any x86 machine with at least 32GB RAM and 4 cores.

A.3.3 Software Dependencies. To run our system, the following
should be installed on the local machine:

• Linux (we tested on Ubuntu)
• Vagrant
• VirtualBox
• Vagrant-disksize plugin

A.3.4 Data Sets. To evaluate Yashme, our tooling system down-
loads the source code of RECIPE, Redis, Memcached, and PMDK
from our git repository.We forked a branch from the original source
code of these benchmarks that don’t contain our bug fixes. The
tooling system automatically sets up and builds these benchmarks
and runs them under Yashme to identify bugs in them.

A.4 Installation

Please see the README.md file of the https://github.com/uci-
plrg/pmrace-vagrant repository, which contains a detailed step-
by-step guide to setup Yashme on a virtual machine. Then, our
scripts automatically do the following:

(1) Install all the dependencies needed to install and evaluate
Yashme on different benchmarks.

(2) Check out the source code for LLVM, Yashme, Yashme’s
LLVM pass, RECIPE, Redis, Memcached, and PMDK.

(3) Include Yashme’s LLVM pass to LLVM and building it
(4) Set up and build Yashme with two different configurations

(One for RECIPE that uses libvmemmalloc, and one for PMDK
that uses libpmem APIs).

(5) Set up and building RECIPE (including CCEH, FAST_FAIR,
P-ART, P-BwTree, P-CLHT, and P-Masstree benchmarks),
Redis, Memcached, and PMDK benchmarks.

(6) Generate seven scripts in the home (or ∼/) directory of the
virtual machine to generate the results.

Once the scripts are finished setting up the virtual machine and
benchmarks, the user can use Yashme on the virtual machine to
further evaluate different benchmarks or regenerate our evaluation
results.

A.5 Experiment Workflow

After setting up the virtual machine, the user can use ’vagrant ssh’
to connect to the VM and use Yashme. The detailed instructions to
run the suggested workflow is included in the README.md file of
https://github.com/uci-plrg/pmrace-vagrant repository. There are
seven scripts in the home directory of the virtual machine that user
can run:

perf.sh : It runs PMDK, Redis, Memcached, and RECIPE bench-
marks using Yashme and gathers measurements to compare Yashme
against Jaaru. For each benchmark, the corresponding log file is
generated in ∼/results/performance.

recipe-bugs.sh : It runs the RECIPE benchmarks using Yashme
and sets the corresponding parameters to reproduce each bug.
For each benchmark, the corresponding log file is generated in
∼/results/recipe.
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pmdk-bugs.sh : It runs PMDK benchmarks by using Yashme and
set the corresponding parameters to reproduce each bug. For each
test case, the corresponding log file is generated in ∼/results/pmdk.

memcached-client.sh : It runs memcached client test script to
execute scenarios to reproduce each bug in Memcached benchmark.

redis-client.sh : It runs Redis client test script to execute scenarios
to reproduce each bug in Redis benchmark.

memcached-server.sh : It runs Memcached benchmark by using
Yashme and set the corresponding parameters to reproduce each
bug. The server script runs on one terminal, and the client script
runs in another terminal. The persistency races are printed out on
the server’s terminal.

redis-server.sh : It runs Redis benchmark by using Yashme and set
the corresponding parameters to reproduce each bug. The server
script runs on one terminal, and the client script runs on another
terminal. The persistency races are printed out on the server’s
terminal.

A.6 Evaluation and Expected Result

After successfully running the experiment using our scripts, the
results directory is generated in the home directory. This directory
contains the following results:

A.6.1 RECIPE. There are 7 files in ∼/results/recipe directory with
the pattern of [BENCHMARK_NAME]-races.log. Each file contains
the persistency races found by Yashme in each benchmark. Fig-
ure 11 contains information about how Yashme reports each bug
correspond to Table 3.

# Bug ID Cause of Bug
1 CCEH-1 Write to value in CCEH_LSB.cpp:29
2 CCEH-2 Write to key in CCEH_LSB.cpp:31

3 FAST_FAIR-1
Write to last_index in btree.h:643

and btree.h:831

4 FAST_FAIR-2
Write to switch_counter in btree.h:578

and btree.h:820

5 FAST_FAIR-3
Write to key in btree.h:584,
btree.h:624, and btree.h:605

6 FAST_FAIR-4
Write to ptr in btree.h:585,

btree.h:604, btree.h:625, and btree.h:828
7 FAST_FAIR-5 Write to root in btree.h:1857
8 FAST_FAIR-6 Write to sibling_ptr in btree.h:824

9 P-ART-1
Write to compactCount in
N4.cpp:26 and N16.cpp:15

10 P-ART-2 Write to count in N4.cpp:27 and N16.cpp:16
11 P-ART-3 Write to deletitionListCount in Epoche.cpp:44
12 P-ART-4 Write to headDeletionList in Epoche.cpp:57
13 P-ART-5 Write to nodesCount in Epoche.cpp:60:22
14 P-ART-6 Write to added in Epoche.cpp:63
15 P-ART-7 Write to thresholdCounter in Epoche.cpp:78
16 P-BwTree-1 Write to epoch in bwtree.h:572
17 P-Masstree-1 Write to root_ in masstree.h:1216

18 P-Masstree-2
Write to permutation in masstree.h:1318,
masstree.h:1364, and masstree.h:1399

19 P-Masstree-3 Write to next in masstree.h:1162

Figure 11: More information about the bugs found by

Yashme in CCEH, Fast_Fair, and RECIPE benchmarks. Num-

ber after ’:’ represents the line number.

A.6.2 PMDK, Redis, Memcached. There are 2 files in
∼/results/pmdk directory. These two files contain the bug
corresponding to bug #1 in Figure 12. Bug #2 - #4 are printed

in the terminal output after running memcached-server.sh and
memcached-client.sh scripts. Figure 12 corresponds to bugs in
Table 4.

# Benchmark Found Symptom
1 PMDK Write to ulog_entry in ulog.c:561
2 Memcached Write to valid in pslab.c:368
3 Memcached Write to id in pslab.c:92

4 Memcached
Write to it_flags in slabs.c:543,
items.c:519, and items.c:343

5 Memcached
Write to cas in memcached.c:4290

and items.c:538

Figure 12: More information about the bugs that are found

by Yashme in PMDK, Memcached and Redis benchmarks.

Number after ’:’ represents the line number.

A.6.3 Performance Results. Running ./perf.sh generates perfor-

mance.out file in /results/performance directory. This file contains
the performance information as well as number of bugs found w/
or w/o prefix-based expansion algorithm corresponding to Table 5
of the paper. Note, since we manually deduplicate these bugs, the
numbers of bugs in performance.out could be more than the number
of bugs reported in paper.

A.7 Experiment Customization

The experiment workflow can be customized to install and run
everything on the local machine instead of the virtual machine. To
set up everything locally, download data/setup.sh script from the
https://github.com/uci-plrg/pmrace-vagrant repository in the home

directory of your local machine and run the script after installing
the dependencies.

A.8 Notes

Note that the performance results generated for the benchmarks
can be different from the numbers that are reported in the paper
since there is non-determinism in scheduling threads; when stores,
flushes, and fences leave the store buffer; and memory alignment in
the malloc procedure. This non-determinism can possibly impact
on the number of bugs reported in Table 3 and Table 4 for RECIPE,
Redis, Memcached, and PMDK benchmarks.
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