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ABSTRACT ARTICLE HISTORY
Classified mixed model prediction (CMMP) is a new method that Received 2 December 2020
has embedded the traditional mixed model prediction (MMP) with ~ Accepted 12 July 2021

a modern flavour. The basic idea is to first identify a class among KEYWORDS

the training data that matches the potential class corresponding O thcasins of

to the new observations, whose associated mixed effect is of inter- uncertainty; MSPE; Sumca
est for prediction. Once such a matching is established, the MMP

method can be utilized to make more accurate prediction that takes

into account the subject-level differences. In this paper, we consider

estimation of the mean squared prediction error (MSPE) of CMMP.

A recently proposed Sumca method is implemented. Sumca com-

bines analytic and Monte-Carlo approaches, leading to a second-

order unbiased estimator of the MSPE. The performance of Sumca is

investigated via simulation studies and comparisons are made with

alternative methods. The simulation study shows that a brute-force

bootstrap method performs almost as well as Sumca, while a naive

approach and a Prasad-Rao estimator at the matched index are sig-

nificantly inferior to Sumca. A real-data application is considered.

Remarks and recommendation are offered.

1. Introduction

Classified mixed model prediction (CMMP [1]) is a recently proposed, modernized ver-
sion of the traditional mixed model prediction (MMP; e.g. [2, section 2.3]). Such modern
problems occur when interest is at subject level, such as in precision medicine, or (small)
sub-population level (e.g. county, age by gender by race groups), as in precision public
health, rather than at large population level. In such cases, it is possible to make substantial
gains in prediction accuracy by identifying a class that a new subject belongs to. This idea
was recently developed in CMMP, where a match between a random effect associated with
the new data and one associated with the training data is built. Once the match is estab-
lished, the well-developed MMP method can be utilized to take advantage of the available
(massive) training data to make accurate prediction about characteristics of interest. Sun
et al. [3] extended the CMMP method to classified mixed logistic model prediction; Sun,
Luan and Jiang [4] proposed a variation of CMMP that incorporates covariate information
in the prediction.
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An important issue in statistical prediction is measure of uncertainty. This was not
addressed in the original CMMP method [1]. The measure of uncertainty in MMP, espe-
cially in terms of the mean squared prediction error (MSPE), has been well studied, in the
context of small area estimation (SAE; e.g. [5]). However, CMMP is more complicated than
MMP in that there is a matching procedure prior to the prediction. In a way, this is simi-
lar to a post-model-selection (PMS) prediction problem. Jiang and Torabi [6] proposed a
Sumca method for MSPE estimation that applies to PMS prediction problems (Sumca is an
abbreviation of ‘simple, unified, Monte-Carlo assisted’). The method, in principle, is appli-
cable to estimating the MSPE of CMMP. Although this was explored in Sun et al. (2020),
the empirical evaluation is rather limited that did not show the nice theoretical property,
namely, the second-order unbiasedness, of Sumca established in Jiang and Torabi [6]. As
shown below, correct implementation of Sumca is not entirely straightforward, which is
another point that we wish to make.

The Sumca method is carefully implemented to fit into the special feature of CMMP.
Furthermore, we study the performance of Sumeca in estimating the MSPE of CMMP in
simulation studies. We also compare Sumca with several alternative approaches, includ-
ing a brute-force bootstrap method (Boots), a naive method (Naive), and a Prasad-Rao
method evaluated at the matched (via CMMP) index (Prami). Our simulation study shows
that Boots performs nearly as well as Sumca while Naive and Prami perform consider-
ably worse than Sumca. We also demonstrate real-data applicability of the CMMP/Sumca
method. The computer code, carefully developed for the simulation studies in this
paper, can serve as benchmarks for checking a future software package that implements
the method.

In Section 2, a brief overview of Sumca as well as its implementation to CMMP is
provided. In Section 3, we present results of Monte-Carlo simulation that evaluate finite-
sample performance of Sumca as well as its comparison with the alternative methods. A
real-data application is considered in Section 4. Concluding remarks and a recommenda-
tion are offered in Section 5.

2. Sumca: overview and implementation
2.1. Overview of Sumca

Let 6 denote a mixed effect of interest, and § a predictor of 8. Then, the MSPE is defined
as MSPE(#) = E(f — 6)2. The problem of estimating the MSPE of a possibly complex
predictor, §, has been extensively studied in the context of SAE. For example, a stan-
dard method for obtaining a second-order unbiased MSPE estimator, in the sense that
E(FMﬂgE‘"E) = MSPE + o(m™1), is the Prasad-Rao linearization method (PR; [7]). Here, m
represents the number of (independent) clusters, or groups, in the (training) data. The PR
method requires differentiability in order to use the Taylor series expansion for approxima-
tion. In the case of CMMP, however, the procedure involves a non-differentiable process,
that is, the selection of i over a discrete space, i € {1,...,m}; as a result, the PR method
may not apply.

Note that, in a way, the choice of the class index for the new observations may be viewed
asa model selection problem so that the selected model connects the training data and new
data in a specified way. From this viewpoint, the Sumca method, which applies to PMS
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prediction problems, is applicable, at least in principle. Write the MSPE of 6, as
MSPE = E(d —0)2 =E [E{(é - 6)2|Y}] , )

where Y = (¥, 1), y denotes the training data and y, the new observations. The condi-
tional expectation inside the outer expectation on the right side of (1) is a function of Y
and v, a vector of unknown parameters associated with the distribution of Y, that is,

a(Y,¥) = E{( — 6)?|Y)
=62 — 20E(0|Y) + E(6%Y)
6% — 2éa1(Y, ¥) + ax(Y,y), (2)

where a,(Y,¥) = E(6°|Y),s = 1,2. Note that § does not depend on V. If we replace the
¥ in (2) by v, a consistent estimator, the result is a first-order unbiased estimator, that is,

E{a(Y, V) — a(Y,¥)} = O(m™). 3)

On the other hand, both MSPE = E{a(Y, )} [by (1), (2)] and E{a(Y, ¥)} are functions

of Y. Let b(¥) = E{a(Y,¥)}, c(¥) = E{a(Y, )} and d(¥) = b(¥/) — c(¥). Then, (3)
implies that d(y/) = O(m™1); thus, if we replace, again, ¥ by ¥ in d(y), the difference is a
lower-order term, that is d(Jr) — d(¥) = o(m™!) (in a suitable sense; e.g. in probability).
Now consider the following estimator:

MSPE = a(Y, /) + b({F) — (). (4)

‘We have, by combining the above arguments, that E(ﬁgf’i) = E{a(Y,¥)} + E{a(Y, V) —
a(Y,¥)} + E{d(¥)} = MSPE + E{d(¢/) — d(¥)} = MSPE 4 o(m™!). The above argu-
ments can be made rigorous [6].

The following alternative expression of a(Y, 1) is sometimes more convenient:

a(Y,¥) = {6 — Ey (0]Y)}? + vary (0]Y). (5)

Note that, in (4), a(Y, ¥) is the leading term which is typically O(1); the remaining term,
d(¥) = b() — c(¥) is typically O(m™!). However, the remaining term is usually much
more difficult to evaluate than the leading term. Jiang and Torabi [6] propose to evaluate
this term via a Monte-Carlo method. Let Py, denote the distribution of Y with ¥ being the
true parameter vector. Given v, one can generate Y under Py,. Let Y[;) denote Y generated
under the bth Monte-Carlo sample, b = 1,. . ., B. Then, we have

B
b — o) ~ = 3 [aVp.¥) — alViu P} ©)
b=1

where 1,5[;,] denotes ¥ based on Y[p). Jiang and Torabi argued that a reasonable choice for
the Monte-Carlo sample size, B, is B = m. Thus, we can replace the term b(¢) — c()
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in (4) by the right side of (6) with ¥ replaced by ¥, leading to the Sumca MSPE estimator:

B

o — B 1 ” "
MSPE; = (Y, ¥) + 3 ; {a(m], ) — a(Ypy, w[b])} , @)

where Y{p),b = 1,..., Bare generated as described above (6), with y = v, and /] is the
estimator of ¥ based on Y[3).

2.2. Implementation to CMMP

Following Jiang et al. [ 1], we assume that the training data satisfy the following nested-error
regression (NER; [8]) model:

Yi = x;;ﬁ + ai + €ij (8)
i=1,...,m,j=1,...,k;, where i represents the group index corresponding to the train-
ing data, k; is the group size for group i; y; is the outcome of interest, x;; is a vector of
associated covariates, B is an unknown vector of regression coefficients (the fixed effects),
@; is a group-specific random effect, and ¢;; is an error. In practice, the group index i
may correspond to a subject, or group subject sharing similar characteristics, such as in
precision medicine. In small area estimation [5], the index i may correspond to a small
geographical area or subpopulation. It is assumed that the random effects and errors are
independent with a; ~ N(0, G) and €;; ~ N(0, R), where G > 0, R > 0 are unknown vari-
ances. Furthermore, suppose that the outcomes of interest corresponding to a new subject,
Ynj» 1 <j < kn, satisfy

Ynj = ;1},8 + ar + €nj, (9)
1 < j < ky, where xy; is the corresponding vector of covariates; I is an unknown group
index that is thought to be one of the 1,. . ., m corresponding to the training data groups,
although, in reality, this may or may not be true; and €yjs are the new errors that are
independent and distributed as N(0, R), and are independent with the ;s and ¢js.
To apply the Sumca method, note that, here, ¥ = (8’, G, R,I)’, where I is the true group
index treated as another unknown parameter, and 6 = x| B + o is the mixed effect of
interest that one wishes to predict. By the normal theory, it can be derived that

(k1 + kn)G

Ey(0]Y) = x,8 + R+ (o + k)G (Prun- — Xun.B) » (10)
vary (0]Y) = L, (11)
R+ (ki + kn)G

where yjun. = (k1 + kn)—l(zj’.‘il yij + Zj‘;l ¥nj) and Xqup. is defined similarly. Note the
similarity, and difference, between (10) and the empirical best predictor (EBP) based on
the training data (only), which is used in CMMP [1]:

. . kG
by = XB + ———= (. — X.B)., 12
i) = XnB R+k,'G(y B) (12)

where ;. = k;'! Zf‘:l Vi = k! Zf;l x5, and B, G, R are also based on the training
data. The Sumca estimator of the MSPE of f is then obtained by (7) with a(Y, ) given
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by (5), (10), (11) and 1,@ = (,.‘:?’, G. ﬁ,j)’, where ﬁ, G, R are the (consistent) estimators men-
tioned, and T is obtained from CMMP by minimizing the distance between 83, and y, =

kt Z}-‘;l Ynj [1, p. 278]. Specifically, we have

a(Y,¥) = {6 — E;(01Y))* + var; (0]Y)

2
k G ~ A k + k)G 2
- { G-z fy—tRC o o n.ﬁ)}

R+kG 7 R+ (kg + ka)G
GR
S ——————— (13)
R+ (k; + kn)G
a(Yiep, ¥) = {6y — E&(SlbllY[b])}z +varg (0| Vi)
={x (B kf[blé“’] a3
= 1% — B) + % R+ o, G et — * o1z, Ple)
G 2
(k; + k)G _ N )
TRT (6 1 ke Vtitun ~ Xiejiun )
R+ (k + k)G (tetiun: = *iun
GR
Yoo . s (14)
R+ (k; + ko) G
S i -
a(Ypp Vo)) = {611 — Eyj, 6| Y)Y + vary, Ol Y1)
ki, Giel
Wt o o g
| R C : 5 By
R + ki[b] Gl Ot (b1
F 2
B (ks + kn) Gy e o s
R[b]Jr(,‘cj[&]+.fcn)f;[b] [BlT51Un: ~ *[b]i;un-P]
Ge1 Ry . .
Rip + (g, + kn) Gy

(6]

3. Simulation studies

‘We begin with an initial demonstration of the performance of Sumca as different factors
such as the sample sizes and variances of the random effects and errors vary. Later we
extend the simulation and make comparison with some alternative methods.

3.1. Initial demonstration

As an initial demonstration, we consider the following simple NER model:

Yii = Bo + Bixij + vi + ejj, (16)
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Table 1. Simulated %RB of Sumca Estimator: M, Matched; UM, Unmatched.

Bo B G R m k kn M UM
5.0 10 10 1.0 100 5 10 0.52 —8.59
5.0 10 10 10 100 5 1 9.1 —6.18
5.0 10 10 10 25 5 10 8.88 -9.16
5.0 10 10 1.0 100 20 10 5.09 269
5.0 10 0.1 1.0 100 5 10 —1.48 3.74
5.0 10 10 05 100 5 10 —0.15 —467
i=1,...,m,j=1,...,k; the new observations are generated as

}’nj = 9+3nj: j: 1:---;kﬂ! (17)

where 6 = By + Bi1xn + vi, where xjj, x, are generated from N(0, 1), and fixed within each
of the simulation scenarios corresponding to the rows of Table 1; I = 1 in the matched case,
and o is generated independently in the unmatched case. We used B = 100 v m for com-
puting the Sumca estimator, as suggested by Jiang and Torabi [6]. We carried out L = 500
simulations runs for each combination of the true parameters and sample sizes listed in
Table 1. In each simulation run, we generate the training data and new data according to
the matched or unmatched scenarios, then compute s = (@ — 6)? and the Sumca estima-
tor of MSPE(6), denoted by S, as described above. Then, we have MSPE ~s 5 = L~ ZLI s

and E(ﬁgﬁﬁ) aS=L"1 Z}r;l S;, where s; and S; are s and S based on the /th simulation
run. The percentage relative bias (%RB) is defined as

B E(MSPE) — MSPE
%RB = 100 x [ oo }

The %RB are reported in Table 1. We start with the basic scenario in the first row and
vary one component each time to generate a total of six scenarios for the matched and
unmatched cases. It is seen that all %RBs are single digits (in absolute value), which are gen-
erally considered very good performance. Overall, the performance of Sumca is somewhat
better in the matched case than in the unmatched case, which seems reasonable. However,
the matched cases do not always outperform the unmatched cases. This may be due to the
fact that CMMP does not have matching-consistency, that is, consistency in terms of iden-
tifying the true class, even if it exists [1]. As noted by the latter authors, the consistency of
CMMP is in terms of estimation, or prediction, of the mixed effect associated with the new
observations, not in term of correctly identifying the true class index corresponding to the
new observations.

3.2. Extended simulation

We extend the simulation in the previous section by considering the same simulation
setting in Jiang et al. [1]. The underlying model can be expressed as

}’g =14+ 2xij,1 + 3ij,2 -+ o + E,'j., (18)

i=1,...,m, j=1,...,k. The new observations satisfy (17) with 6, =1+ 2x,; +
3xn2 + o, where @;, €, o, €, j are the same as in the previous subsection, with G varies
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among 0.25, 1.0, 2.0 and R fixed at 1.0. Three combinations of sample sizes are considered:
m = 50, k = 5; m = 50, k = 25, and m = 100, k = 25; k; = 10 in all cases. Again, we
consider the matched and unmatched scenarios, as described in the previous subsection.

In addition to the Sumca estimator, we consider three alternative methods of MSPE esti-
mation. The first is what we call brute-force (parametric) bootstrap (Boots). What one does
is to treat B, G, R and I, the unknown group index for the new observations, as unknown
parameters. Then, from CMMP, one obtains estimates of 8, G, R (e.g. REML), say, B, G, R,
respectively, and I, the matched group index. One then treats B, G, R, I as the true param-
eters to regenerate both the training data and the new data. Although this seems to be a
straightforward application of Efron’s plug-in principle [9], it is worth noting that, typ-
ically, the application of the bootstrap requires consistency of the parameter estimation.
Here, B, G, R are consistent estimators, but the story about  is different. As noted by Jiang
et al. [1], T may not be consistent as m — 00. Nevertheless, the latter authors showed that
the CMMP of 6 is consistent, which is all that matters. This is the rationale behind Boots.
Note that, for the bootstrapped data, one knows the value of 8, the mixed effect associated
with the new data; one also has the CMMP, §, of 6. Therefore, one can evaluate the empir-
ical MSPE of the CMMP based on the bootstrap replications. The number of bootstrap
replicates, B, is chosen as the same as the B for Sumca, which is 100.

The second alternative is to simply use the leading term in (5) or (7), that is, a(Y, 1,9).
This is called the naive estimator (Naive).

The third alternative is the PR estimator (see Section 2.1) at matched index (Prami).
Note that, given the group index i, the PR MSPE estimator, with REML estimator of the
variance components, can be computed as

MSPEpr; = £1i(6%) + £2:(6%) + 2g3:(6%), (19)

where 62 = (G, R)’ is the REML estimator of 02 = (G, R)'. Datta and Lahiri [10] gave more
specific expressions of the terms on the right side of (19). The Prami estimator is given
by (19) with i = I, the matched index by CMMP.

We carry out L = 500 simulation runs that compare the performance of the four meth-
ods, Sumca, Boots, Naive and Prami, in terms of %RB. The results are presented in Table 2.
It is seen that both Sumca and Boots significantly outperform Naive and Prami in terms
of %RB. In fact, the %RB for Sumca and Boots are mostly single-digit, or slightly over
single-digit. There seems to be no obvious patterns between different scenarios, matched
or unmatched. The %RBs of Naive are consistently negative, while those of Prami are
consistently positive when k is smaller, and consistently negative when k is larger.

The picture is less clear, however, regarding the comparison between Sumca and Boots.
It appears that Sumca performs slightly better than Boots in terms of the number of double-
digit %RB cases (3 vs. 5) and in terms of the maximum absolute value of %RB (14.72
vs. 18.60). To help with the comparison, we compute key summary statistics including
the mean (Mean), standard deviation (Sd), minimum (Min), first quartile (Q1), median
(Median), third quartile (Q3) and maximum (Max) for both %RB and percentage absolute
relative bias (%|RB|; that is, the absolute value of %RB) over the 18 scenarios considered
in Table 2. The results are presented in Table 3. The figures confirm that Sumca, indeed,
performs slightly better than Boots in overall performance; in terms of the median %|RB|,
Sumca performs moderately better than Boots (3.65 vs. 6.11).
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Table 2. Simulated %RB of Sumca, Boots, Naive and Prami Estimators: M, Matched; UM, Unmatched.

Matched Unmatched
m k G Sumca Boots Naive Prami Sumca Boots Naive Prami
50 5 0.25 153 6.51 —34.98 37.22 —2.88 —10.89 —37.48 30.44
50 5 1.0 —5.23 —1.94 —36.30 69.19 —9.80 —9.74 —37.73 4753
50 5 20 —10.20 —4.11 —40.03 57.70 —1.68 —18.60 —30.08 62.45
50 25 0.25 —0.80 0.75 —71.00 —58.67 —1.06 —1.66 —70.97 —60.88
50 25 1.0 6.98 0.83 —69.19 —57.58 —3.24 —2.58 —72.13 —58.84
50 25 20 5.39 1.16 —69.95 —56.68 —14.72 —9.57 —74.65 —67.01
100 25 0.25 —3.22 —13.83 —7296 —63.69 —0.45 —1.67 —72.15 —62.68
100 25 1.0 —9.04 —11.74 —74.34 —62.80 —11.55 —5.70 —74.21 —65.52
100 25 20 4.05 —12.26 —70.52 —58.77 0.32 —7.80 —71.44 —59.56

Table 3. Summary Statistics of %RB and %|RB| for Sumca and Boots.

%RB Mean Sd Min o]} Median Q3 Max
Sumca —3.09 6.03 —14.72 —B8.09 —2.28 013 6.98
Boots -5 6.48 —18.60 —10.60 —4.9 —1.66 6.51

%|RB| Mean Sd Min Q1 Median Q3 Max
Sumca 5.12 432 032 1.57 365 853 14.72
Boots 6.74 533 0.75 1.74 6.11 10.60 18.60

Note that, theoretically speaking, Sumca is known to be second-order unbiased [6],
while bootstrap without double-bootstrap bias correction is typically first-order unbiased
(e.g. [11]; however, the double-bootstrap method is computationally too intensive). On the
other hand, Boots has some advantage of its own. First, it is guaranteed positive, a desir-
able property that Sumca is not known to possess; in fact, out all of the 15,000 Sumca
estimates computed in our simulation studies of the current and previous subsections (18
scenarios in the current subsection and 12 scenarios in the previous one, with 500 simula-
tion runs under each scenario), we observed a single case in which the Sumca estimate is
non-positive (the value is —6.58 x 1072).

Second, Boots is relatively simpler to program than Sumca. The trickier part of Sumca
programming is to note that the difference a(Y{y), V) — a(Yp), ¥p)) in (7) involves three
things: Y[), ¥, and ¥5]; except for the places where v/ and V() appear, everywhere else
involves the same Y[3). This may be easier said than done and mistakes can occur. For
example, the CMMP, é[b], is the same in both a(Y[), ¥) and a(Yp), 1;?;[;,]), and so are the
means of the training data groups for x and y that are involved [see (14) and (15)]. In
contrast, the programming for Boots is fairly straightforward.

Also, note again that the matched cases do not always outperform the unmatched cases,
and this is true for any given method. This may be explained similarly as in Section 3.1 (see
the end of Section 3.1).

4. Real-data example

We illustrate the measures of uncertainty for CMMP with a real-data example on predict-
ing Framingham Risk Score (FRS) using various cardiovascular risk factors based on data
from the University of Miami Health System’s electronic health record. The FRS is one
of many different scoring systems that are frequently used to determine individual risk of
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developing cardiovascular disease. It provides an estimate of the probability that a person
will develop cardiovascular disease usually within the next 10 years; it also indicates who
is most likely to benefit from prevention. The FRS is estimated using age, total cholesterol,
smoking status, HDL and systolic blood pressure as inputs. Slight variations in cutoffs are
used in the scoring system depending on gender of the individual. Scores of < 10% indi-
cate low risk, 10%-20% indicate moderate risk and > 20% indicate high risk. However,
these cutoffs are somewhat arbitrary [12,13].

Our original data as of June 2020 and contains 219,499 unique patient records with
a potential cardiovascular indicated issue and 33 variables including information on age,
gender, race/ethnicity, country of origin, language of preference, clinical diagnoses, blood
pressure, hemoglobin A1C, body mass index (BMI), smoking status, and linked residen-
tial address to census area level covariates. Some patients have repeated scores over time;
in those cases the average FRS over the repeated scores are used. We then take the logit
transformation of the FRS, or average FRS, which is the response variable.

There were 471 zip codes associated with the records. We first select a subset of the data
as our training data, as described below. We focus on all of the patient-level variables and
thereare 17 of them. After some initial cleaning that removed all of the records with NAs on
at least one of the 19 variables, we have about 135 thousands of records remaining, covering
267 distinct zip codes. We focus on the first record in case there are multiple records from
the same ID. We chose those zip codes that contain at least 10 unique IDs. There are 130
such zip codes. From each of those zip codes, we dram a 25% random sample of the IDs
with their corresponding records. This gives us 2331 records, which are used as the training
data. Thus the training data consist of m = 130 groups with the total sample size n = 2331.
The group sizes in the training data range from 3 to 83.

We then randomly select 20 zips codes from the 267 zip codes. From each selected zip
code, we randomly select 5 first records from those excluded from the training data (in case
the zip code matches one of the zip code in the training data). This is used as the new data.
This leaves up 59 ID/records, among which 30 have matched IDs and 29 are unmatched.
There are no replicates in the covariate (which is 17-dimensional), so there are 59 different

mixed effects, one for each new observation.
We fit a NER model of (8), which is expressed as

logit(yj) = x;B + i + €ijs (20)

i=1,...,130, j=1,...,n; where y; is FRS, and x;; the 17-dimensional covariate, as
described below (8). Then, for each of the 59 new data records, we obtain the CMMP for
its corresponding mixed effect as well as the associated Sumca and Boots MSPE estimates.
Boxplots of the MSPE estimates are presented in Figure 1. It appears that the, overall, the
Sumca estimates are slightly smaller, and less variable, than the Boots estimates. All of the
Sumca estimates are positive (the Boots estimates are positive by definition).

Tables 4 and 5 present the values of the response variable for the new data [that is,
logit(ypew) for each new data record], the corresponding CMMP, and square roots of the
MSPE estimates, ms for Sumca and ﬁéﬁg for Boots. The first 30 cases are matched
(Table 4) and last 29 cases are unmatched (Table 5). For the matched, we also present their
true group numbers as well as the matched group numbers. As can be seen, none of the
group numbers is actually matched. However, this does not matter, as CMMP does not rely
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Figure 1. Boxplots of MSPE estimates.

on matching the group numbers. As shown in Jiang et al. [1], even if the group numbers
are mismatched, or in an unmatched case where, of course, there is no actual match of
the group number, CMMP still provides consistent prediction of the mixed effect of inter-
est, which is what we are interested. Also note that CMMP does not intend to predict the
response, that is, logit(ypew ), but rather the mixed effect associated with the response, that
i, Opew = XpewB + @1 corresponding to (20), where I is the (unknown) group number. In
terms of the MSPE estimates (or their square roots), it is seen that the Sumca and Boots
estimates are quite close in most cases.

5. Conclusion, remarks and recommendation

‘We have implemented Sumca method for the estimation of the MSPE of CMMP, and stud-
ied its performance empirically in comparison with several alternative methods, including
Boots, Naive and Prami. The empirical study shows that Boots performs almost as well as
the Sumca, while Naive and Prami are significantly inferior than Sumca.

In our simulation study, we consider the NER model with one or two covariate variables.
In Jiang et al. [1], CMMP is developed under two scenarios, the match case and unmatched
case. Under the match scenario, it is assumed that the training data satisfy a linear mixed
model that can be expressed as y; = X;8 + Zjo; + ¢;,i = 1,...,m, where y; is n; x 1 vec-
tor representing the responses in group i; X; is an n; x p matrix of known covariates; Z; is
a known n; x g matrix; ¢; is a g x 1 vector of group-specific random effects, and ¢; is an
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Table 4. Response, CMMP and Square Root of MSPE Estimate (Matched).

True
Group Matched —__n "2
Index # Group # Response CMMP MSPE; mﬂ
1 4 77 —6.454 —5.967 0.068 0.067
2 4 95 —0.929 —1.006 0.084 0.082
3 4 35 —1.306 —1.306 0.074 0.076
4 4 95 —3.546 —3.588 0.070 0.068
5 4 77 —6.529 —6.031 0.071 0.073
6 28 95 —1.504 —2075 0.080 0.089
7 28 95 —2.194 —28N1 0.075 0.076
8 28 43 —3.690 —3.691 0.072 0.072
9 28 a5 —4.261 —4.432 0.075 0.076
10 28 77 —3.214 —3.189 0.063 0.066
1" 61 77 —0.54 —0.361 0.074 0.079
12 61 77 —2.284 —1.988 0.069 0.074
13 61 77 —1.691 —0.895 0.068 0.069
14 61 77 —5.336 —5.032 0.068 0.067
15 61 77 —3.657 —3634 0.070 0.075
16 64 a5 —1.095 —1.269 0.077 0.076
17 64 a5 —0.382 —0.721 0.089 0.089
18 64 77 —0.594 1.5000 0.096 0.092
19 64 a5 —1.817 —1.862 0.075 0.075
20 64 77 —3.800 —3.792 0.058 0.062
i 98 a5 —5.180 —5.312 0.076 0.071
22 98 77 —5.079 —3918 0.085 0.087
23 98 112 —1.113 —1.113 0.079 0.081
24 98 77 —6.974 —6.410 0.072 0.070
25 98 a5 —1.580 —1.807 0.076 0.072
26 116 77 —0.737 —0.370 0.068 0.076
7 116 77 —2310 —0.672 0.076 0.070
28 116 77 —2.020 —1.210 0.077 0.081
29 116 a5 2926 1.888 0.079 0.073
30 116 77 —0.176 —0.133 0.077 0.075

n; x 1 vector of additional errors. Furthermore, @, €;,i = 1,. .., m are independent with
a; ~ N(0, G) and ¢; ~ N(0, R;), where G, R; are covariance matrices that depend on a vec-
tor y of variance components. Note that the NER model is a special case of the above
model with g = 1. Under the unmatched scenario, an NER model is assumed. In this
paper, we focus on the NER model because it covers both the matched and unmatched
cases. The Sumca estimator is expected to perform similarly under the NER models with
more covariate predictors. Furthermore, extension to the linear mixed model considered
by Jiang et al. [1] under the matched scenario is fairly straightforward. Another class of
models, for which CMMP is developed, is the mixed logistic model with a structure simi-
lar to the NER model. It is expected that the Sumca method can be extended to the latter
case as well. See Sun et al. [3].

Also, in our simulation study we have considered moderate number of groups, namely,
m between 25 and 100. We expect that the Sumca method will perform similarly when
m is smaller, as long as B, the Monte-Carlo sample size is not too small [in this paper,
we use B = 100 Vv m; see below (17)]. As for larger m, it is known that, theoretically, for
consistency of CMMP, the group sizes need to increase with m. For example, if only m
increases but the group sizes do not increase fast enough, neither CMMP nor Sumca are
expected to perform well. Note that such a scenario is not unpractical in modern data
science, when it is becoming more feasible to collect data at subject levels. Another factor
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Table 5. Response, CMMP and Square Root of MSPE Estimate (Unmatched).

——1/2 —1/2
Index Response CMMP MSPEg MSPEg
3 —4.189 —5.621 0.077 0.075
32 —1.568 —1.568 0.076 0.080
33 —3.177 —2.035 0.092 0.096
34 —2.198 —2.846 0.077 0.072
35 —4.468 —5315 0.069 0.065
36 —2.379 —2.798 0.070 0.068
37 —1.916 —1.928 0.073 0.070
38 —1.716 —2.106 0.082 0.083
20 —2.029 —1.730 0.093 0.099
40 —3.669 —3.159 0.069 0.075
4 —0.401 =1 F 0.077 0.069
42 —1.030 —1.031 0.082 0.078
43 1.737 1.310 0.080 0.075
44 —3.014 —2.984 0.076 0.075
45 —0.409 —0.835 0.075 0.077
46 —2.1M —2.590 0.075 0.078
47 —0.805 —0.769 0.072 0.075
48 —2.200 —1.612 0.081 0.080
49 —1.313 —1.991 0.084 0.086
50 —1.915 —1.794 0.071 0.072
51 —2.832 —2.698 0.071 0.072
52 1.126 0.609 0.076 0.076
33 —5.413 —5.497 0.072 0.064
54 —1.945 —1.735 0.074 0.072
iy —0.121 —0.210 0.078 0.076
56 —1.410 —0.864 0.073 0.069
57 —1.636 —0.755 0.074 0.079
58 —2.094 —2.334 0.081 0.080
59 —1.447 —1.662 0.079 0.081

that needs to be considered is computational cost. It is recommended [1] that B = m. Thus
when m is very large, Sumca may become computationally intensive.

As noted in Sun et al. (2020), in practice, the random effect, «;, is often used to ‘capture
the un-captured’, that is, variation not captured by the mean function, x;;8, at the cluster or
group level. On the other hand, some components of x;; may be also at the group level, that
is, they depend on i but not j. It is natural to think that there may be association between
a; and some of the group-level components of x;;; however, we do not know what kind of
association it is excepted that it must be nonlinear (because, otherwise, it would be captured
by xj;8). Sun et al. (2020) explored this scenario and proposed an extension of CMMP
by incorporating the covariate information in the matching procedure. The extension of
Sumca to this case is fairly straightforward.

Regarding software development, computer code is carefully developed for the two sim-
ulated examples considered in this paper. These can serve as benchmarks for checking
future software; namely, any future software package should produce the same or very
similar results as our code does under those two examples.

As noted, Sumca is theoretically more attractive (second-order unbiased) than Boots
(first-order unbiased); on the other hand, the implementation of Sumca is less straightfor-
ward than Boots (see the last paragraph of Section 3). A practical recommendation would
be to compute both Sumca and Boots estimates, as outputs of the Monte-Carlo samples
can be used for both Sumca and Boots (in other words, one does not need to generate dif-
ferent Monte-Carlo samples for computing Sumca and Boots). The Boots estimates can be
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used as a check on whether the Sumca method is implemented correctly, in which case, the
Sumca and Boots estimates should be mostly close. Also, in a (very) rare situation that the
Sumca estimate is negative, the Boots estimate can be used as a back-up.
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