
Checking Robustness to Weak Persistency Models

Hamed Gorjiara

Weiyu Luo

Alex Lee

University of California, Irvine

U.S.A.

{hgorjiar,weiyul7,leea19}@uci.edu

Guoqing Harry Xu

University of California, Los Angeles

U.S.A.

harryxu@cs.ucla.edu

Brian Demsky

University of California, Irvine

U.S.A.

bdemsky@uci.edu

Abstract

Persistent memory (PM) technologies offer performance

close to DRAM with persistence. Persistent memory enables

programs to directly modify persistent data through nor-

mal load and store instructions bypassing heavyweight OS

system calls for persistency. However, these stores are not im-

mediately made persistent, developers must manually flush

the corresponding cache lines to force the data to be written

to persistent memory. While state-of-the-art testing tools

can help developers find and fix persistency bugs, a prior

study has shown that fixing persistency bugs on average

takes a couple of weeks for PM developers. Developers have

to manually inspect the execution to identify the root cause

of the problem. In addition, most of the existing state-of-the-

art testing tools require heavy user annotations to detect

bugs without visible symptoms such as segmentation faults.

In this paper, we present robustness as a sufficient correct-

ness condition to ensure that program executions are free

from bugs resulting from missing flushes. We develop an

algorithm for checking robustness and have implemented

this algorithm in the PSan tool. PSan can help developers

both identify silent data corruption bugs and localize bugs

in large traces to the problematic memory operations that

are missing flush operations. We have evaluated PSan on a

set of concurrent indexes, persistent memory libraries, and

two popular real-world applications. We found 48 bugs in

these benchmarks that 17 of them were not reported before.

CCS Concepts: •Hardware Memory and dense storage;

• Software and its engineering→ Software verification

and validation;

Keywords: Persistent Memory, Robustness, Software Verifi-

cation, Debugging, Testing

PLDI ’22, June 13–17, 2022, San Diego, CA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9265-5/22/06.

https://doi.org/10.1145/3519939.3523723

ACM Reference Format:

Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu,

and Brian Demsky. 2022. Checking Robustness to Weak Persistency

Models. In Proceedings of the 43rd ACM SIGPLAN International Con-

ference on Programming Language Design and Implementation (PLDI

’22), June 13–17, 2022, San Diego, CA, USA. ACM, New York, NY,

USA, 16 pages. https://doi.org/10.1145/3519939.3523723

1 Introduction

Persistent memory (PM) revolutionizes the storage-memory

hierarchy [46, 78, 86]. This technology became commer-

cially available with Intel’s release of Optane DC Persis-

tent Memory [45]. Persistent memory interfaces with the

processor via the memory bus similar to DRAM, provid-

ing byte-addressable storage access to programs via pro-

cessor load and store instructions. This enables PM to pro-

vide programs with a new level of performance by enabling

them to manipulate data directly without needing heavy-

weight OS system calls. The low latency and durability of

PM have spurred the development and redesign of file sys-

tems [17, 23, 53, 58, 59, 73, 93, 96, 98, 99], databases [3, 20, 60,

74, 81], log-based systems [16, 29, 42, 52, 66, 67], key-value

stores [15, 39, 54, 95, 97, 102, 104], and concurrent DRAM

indexes [12, 14, 63, 83, 92, 101, 105] for persistent memory.

Designing crash-consistent PM programs is especially

challenging because the cache system is volatile and its con-

tents vanish upon a failure, e.g., a system crash or a power

failure. Processor manufacturers have introduced new in-

structions such as CLWB and SFENCE on x86 [44], and DC CVAP

on ARM [2], to force cache lines to be written back to persis-

tent memory. Developers of PM programs need to carefully

use these instructions since a missing flush instruction can

make a program vulnerable to crash consistency bugs.

Researchers have taken two primary approaches to im-

prove PM reliability. First, there is a body of work on de-

veloping high-level abstractions such as transactional li-

braries [8, 11, 18, 30–32, 47, 57, 68, 75, 89, 94, 100, 103],

locks [5, 13, 41, 49, 69], or synchronization-free regions [35]

to hide the complexity of using such instructions, but these

abstractions come at a performance cost and their imple-

mentations are still susceptible to crash consistency bugs.

Second, researchers have developed testing/checking frame-

works [22, 28, 37, 38, 40, 48, 55, 62, 70–72, 79, 80] to find

and fix performance problems (e.g., redundant flushes and

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

490

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3519939.3523723
https://doi.org/10.1145/3519939.3523723

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu, and Brian Demsky

fences) and crash consistency bugs (e.g., missing fences and

flushes).

Testing tools suffer from two major drawbacks. First, to

detect persistency bugs, they require test cases that can ex-

pose an execution error such as a segmentation fault or an

assertion failure. The issue is that not all bugs cause such

visible symptoms. Some of these tools require user anno-

tations to catch bugs that do not lead to a program failure.

Writing annotations not only incurs a burden on users but

also is error-prune itself. Consequently, such tools can report

false positives that originate from users’ mistakes in using

annotations. Second, in most cases, when a bug causes an

execution to crash, it can be difficult to locate what part of

the execution contains the bug. In fact, a recent study [79] on

26 bugs reported by Intel’s pmemcheck tool shows that these

bugs took on average 23 days and a maximum of 66 days to

fix. These results highlight that diagnosing persistency bugs

demands arduous human efforts.

1.1 Correctness Criteria for Flush Operations

Bugs in the uses of flush and drain operations can be trivially

eliminated by making stores become persistent in the same

order that they become visible to other threads. Strict per-

sistency [84] is such a persistency model that ensures that

the "persistency memory order is identical to volatile mem-

ory order". Most hardware persistent memory specifications

do not provide strict persistency. However, Intel has devel-

oped an optional new feature called enhanced Asynchronous

DRAM Refresh (eADR) that relies on stored power to flush the

contents of the cache to persistent memory during a power

failure. Consequently, eADR-enabled persistent memory pro-

vides strict persistency. However, eADR functionality cannot

be relied upon because it requires the system vendor to pro-

vide additional stored energy hardware such as a battery.

Due to these specialized requirements on system vendors,

it is expected that many Intel PM systems will not provide

strict persistency for the foreseeable future according to our

email discussions with Intel engineers.

As a result, PM developers must explicitly use flush in-

structions (or similar mechanisms) to ensure that program

executions under weak persistency semantics are correct.

Our key observation is that the typical correct usage of flush

instructions in PM programs ensures that program executions

under weak persistency semantics are equivalent to those un-

der strict persistency semantics. Building on this observation,

we define a new notion of correctness, robustness, for pro-

grams under weak persistency in terms of their equivalence

to post-crash executions under strict persistency. A program

is robust to a weak persistency model if, for any crash events,

each post-crash execution of the program under that weak

persistencymodel is equivalent to some post-crash execution

after some crash event under the strict persistency model.

Robustness is a sufficient criterion to assure correct usage

of flush and drain operationsÐadding more flush and drain

operations to a robust program will not alter the set of pos-

sible post-crash executions. Robustness is not a necessary

condition because programs may (1) be tolerant of reading

stale values, e.g., counters that only need to be approximately

correct, or (2) use other mechanisms like checksums to detect

and discard inconsistent data after reading it.

In general, robustness does not require a developer to

insert flush operations immediately after every store. For

example, consider a PM program in which a new node is

added to a persistent singly-linked list. Stores to the new

node are not visible to post-crash executions unless a commit

store to the next field of some existing node in the linked list

adds the new node to the list before the crash. The program is

robust as long as these stores are flushed before the commit

store is performed. This pattern of using a commit store is

typically how developers write PM programs, and robustness

precisely captures the pattern.

1 void addChild(node *ptr , char * data) {

2 childNode * tmp = alloc_child ();

3 tmp ->data = data;

4 clflush(tmp , sizeof(childNode));

5 ptr ->child = tmp;

6 clflush (&ptr ->child , sizeof(childNode *));

7 }

8

9 char * readChild(node *ptr) {

10 if (ptr ->child != NULL) {

11 return ptr ->child ->data;

12 }

13 return NULL;

14 }

Figure 1. An example of execution being robust to the x86

persistency model, where the pre-crash execution crashes

before line 6, and the post-crash execution executes the

readChild method on the same node.

Example. To illustrate, consider the example from Figure 1

on the x86 persistency model. Suppose that execution of the

addChild method crashes immediately before line 6 and that

after the crash the program executes the readChild method

on the same node. There are two possible post-crash exe-

cutions: (1) the post-crash execution that results from the

pre-crash execution where the store of the reference to the

child field was flushed, and (2) the post-crash execution that

results from the pre-crash execution where the store of the

reference was not flushed. The first post-crash execution is

equivalent to the post-crash execution under strict persis-

tency where the pre-crash execution crashes after the store

in line 5. The second post-crash execution is equivalent to

the post-crash execution under strict persistency where the

pre-crash execution crashes before the store in line 5. Since

all post-crash executions of this program under the weak per-

sistency model are equivalent to some post-crash execution

under strict persistency, this program is robust.

Relation to Prior Work. Robustness to weak persistency

models builds on a rich literature of defining the correctness

491

Checking Robustness to Weak Persistency Models PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

of concurrent code by relating concurrent executions to other

executions. In the context of weak memory models, a pro-

gram is robust [7, 61, 76, 82] against a weak memory model

if all of the program’s executions under the weak memory

model are permitted under the sequential consistency model.

Table 1. Comparison with other tools; robustness subsumes

ordering heuristics/conditions used in existing tools.

Tool Persistent Order

PSan Robustness

Witcher [28] Dependence heuristic
PMDebugger [22] User annotations
PMTest [72] User annotations
XFDetector [71] Commit store annotations
Jaaru [37] Crash/assertion failure
Yat [62] Crash/assertion failure
Agamotto [80] Does not check order
Pmemcheck [55] Does not check order
PMFuzz [70] Just fuzzes input, uses Pmemcheck

or XFDetector for checking
Hippocrates [79] Does not repair ordering bugs

Robustness provides a rigorous foundation that subsumes

prior work that relied on heuristics or annotations to check

whether stores are persisted in the correct order. Note that in

the comparison with prior work and throughout this paper,

we only focus on ordering bugs that are result of miss-

ing/misplaced flush and fence instructions. Prior tools

are able to identify other types of bugs such as performance

bugs and the bugs resulting from stores being issued in an

improper order. PSan does not attempt to find those types

of bugs, and our comparison does not focus on them. Ta-

ble 1 summarizes the approaches other tools take to checking

the order of PM stores. All these conditions are essentially

instances of robustness violations. Witcher [28] relies on

heuristic inference rules that use control and data depen-

dencies to detect stores that are not made persistent in the

correct order due to missing flushes and fences. PMTest [72]

and PMDebugger [22] rely on programmers to explicitly an-

notate ordering constraints, e.g., that store x=1 is persisted

before store y=1. PMDebugger also has some built-in oracles

that can find some bugs without heavy annotations. XFDe-

tector [71] requires that ordering constraints are specified

implicitly by annotating a set of commit variables, otherwise

it can report false positive. Jaaru [37] and Yat [62] only de-

tect ordering bugs when the program crashes or asserts, and

developers must manually localize the bug. Pmemcheck [55]

and Agamotto [80] only check that stores are flushed and

do not check the order they are flushed in. Our comparison

with prior work is based on set of benchmarks that overlap

between their evaluation and PSan’s evaluation.

In addition to these general-purpose debugging tools,

there is a rich literature on systematic transforms for lock-

free data structures to use persistent memory [5, 19, 21, 27,

50, 92]. Most of these constructive approaches leverage dif-

ferent techniques to deduce flush and fence instructions for

lock-free programs. More recently, Mirror [27] keeps two

copies of the data in both DRAM and persistent memory.

Load operations in Mirror only access DRAM, but store op-

erations update both DRAM and persistent memory. While

this design enables Mirror to not require persistency barriers

after load operations, it incurs substantial memory overhead.

Israelavitz et al. [50] introduce the notion of durable linearaz-

ibility to data-race-free programs to become crash consistent.

Durable linearazibility is implemented as a set of transfor-

mation rules, which preserve the original happens-before

ordering for persistent memory. While these constructive

approaches suffice to ensure robustness, they may inject

unnecessary fence and flush instructions. PSan can deter-

mine that weaker transformations also preserve robustness

in several cases: (1) To avoid reasoning about the challeng-

ing corners of weak memory models, many implementations

might follow the standard advice to use only release/acquire

or SC atomics even when weaker atomics would suffice. But

with stronger atomics, prior work [19, 50] would generate

unnecessary fence instructions. (2) These transformations

do not consider that consecutive writes to the same cache

line eliminate the need for flush/fence operations between

the writes. (3) If there are multiple relaxed stores to the same

cache line, some of these techniques will cause a flush to be

generated after each store. (4) If some persistent memory

locations are used as temporary storage and are never read

from after a crash, prior approaches would force stores to

those locations to have flushes. (5) An existing RMW oper-

ation may suffice to serve as the needed fence instruction.

In Section 3, we describe the notion of robustness as a suffi-

cient requirement to guarantee crash consistency in lock-free

frameworks.

PSan can save significant manual effort compared to re-

pairing bugs without a tool. While Hippocrates [79] automat-

ically implements bug fixes, PSan can suggest bug fixes to

developers, for example, where there needs to be a flush in-

serted for a specific store and it must be done before another

specific store is executed. However, Hippocrates only detects

and corrects bugs where a flush is missing and cannot fix

bugs in which stores may be persisted in an incorrect order.

Such bugs commonly happen when developers delay flushes

until the end of an update, overlooking the possibility that

the stores could persist in the wrong order. PSan’s bug fixes

ensure that stores are persisted and that they are persisted in

the same order as the happens-before relation. There are also

inter-thread persistency bugs in which a thread performs

a store and stops before its flush instruction, but another

thread reads from that store, performs another store based

on the read value and then persists the later store (e.g., the

execution in Figure 7). PSan is the only tool to our knowl-

edge that will suggest the correct fix of fixing this bug in

the second thread. PSan largely complements the work on

Hippocrates of implementing interprocedural fixes. PSan

requires no ordering annotations, reducing developer bur-

den and eliminating the potential for missed bugs or false

492

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu, and Brian Demsky

alarms due to incorrect annotations. Moreover, robustness is

sufficient to guarantee the absence of missing flush or drain

operations. As shown in our evaluation, PSan found 17 new

bugs that were previously unknown.

1.2 PSan: Checking Robustness with Constraints

We develop PSan, a tool that dynamically checks robustness

for programs under the x86 persistency model and reports

violations in a fully automated fashion. For a given execu-

tion, PSan can detect all persistency bugs due to ordering

issues in that execution. Our definition of an ordering bug

is a bug that result from stores being persisted in an order

that is different from their happens-before order. These bugs

can be corrected by the addition of flush and/or fence oper-

ations. Finding other types of bugs is not the focus of the

paper. In this work, we focus on the x86 persistency model,

while our ideas are generally applicable to other weak persis-

tency models as well. Given a crash event and a post-crash

execution, PSan computes a set of strictly persistent exe-

cutions whose pre-crash executions are consistent with the

post-crash execution. If this set becomes empty, i.e., such

a strictly persistent execution does not exist, PSan finds a

robustness violation.

Our key insight is that we can efficiently compute this set

of consistent pre-crash executions under strict persistency

by reasoning about the interval in which an equivalent strictly

persistent pre-crash execution must have crashed using con-

straints. In particular, each load in the post-crash execution

that reads from a store 𝑠 in the pre-crash execution under

the x86 persistency model constrains where an equivalent

strictly persistent execution may crashÐthe crash point must

be somewhere between the store 𝑠 and the next store to the

same memory location. If this set of constraints is unsatisfi-

able, there is no equivalent strictly persistent execution.

1 x = 1;

2 y = 1;

3 x = 2;

4 y = 2;

(a) Pre-crash execution.

1 r1 = x;

2 r2 = y;

(b) Post-crash execution.

Figure 2. A weakly-persistent execution that reads r1 = 1

and r2 = 2 is not robust.

To illustrate, consider the executions in Figure 2, which

shows a single-threaded program executed under a weak

persistency model. If r1 = 1, we know that an equivalent

strictly persistent execution must have crashed after the

assignment x = 1 but before the assignment x = 2. If r2 = 2,

then we know that an equivalent strictly persistent execution

must have crashed after the assignment y = 2. These two

constraints are not simultaneously satisfiable, and therefore

this execution is not robust.

Next, we extend this approach to support multi-threaded

programs. The key idea is that PSan determines whether

there is an equivalent trace that can be produced by selecting

different (but compatible) crash points for different threads.

Our idea for implementing this is to have the robustness

analysis compute per-thread crash intervals and ensure that

these intervals describe a prefix of the pre-crash execution

that is closed under the happens-before relation.

Robustness enables PSan to infer the exact program line

with a missing flush or drain operation. Each robustness vio-

lation involves an earlier store that was not made persistent

and a later store that was made persistentÐthe earlier store

is missing a flush operation. For instance, for the execution

in Figure 2, PSan determines a flush instruction must be

inserted after x = 2 to fix the robustness violation.

This paper makes the following contributions:

1. Robustness: It defines robustness, a sufficient correct-

ness condition for the placement of flush and drain

operations in persistent memory programs.

2. Detecting Robustness Violations: It presents an ap-

proach that uses robustness to identify persistency

bugs that may not have visible symptoms.

3. Bug Localization: It presents an algorithm that local-

izes bugs in PM programs to the specific stores where

flush and drain operations should be inserted.

4. Bug Fixes: It presents an algorithm for translating

robustness violations into bug fixes. PSan’s bug fixes

ensure that stores are persisted in the correct order.

5. Implementation and Evaluation:We implemented

PSan with a full simulation of Px86sim semantics with

different modes and strategies to support complex,

real-world programs. We evaluated PSan on CCEH,

FAST_FAIR, the RECIPE persistent memory indexes,

the PMDK library, as well as two popular industrial

applications Redis and memcached. PSan found 48 per-

sistency bugs that 17 of them have never been reported

before; so far 7 bugs have been confirmed.

2 Background on x86 Persistency Model

This section briefly overviews the Intel-x86 persistency se-

mantics following the Px86sim model in Raad et al. [88]. For

our purposes, the differences between Raad et al. [88] and

Khyzha [56] are minor and do not affect our work. The

Px86sim semantics capture the behavior Intel implemented

and intended for the architecture. They differ slightly from

the semantics in Intel’s manual due to mistakes in precisely

specifying the intended behavior in the documentation. Since

the Px86sim semantics do not formalize non-temporal store

semantics, we do not support them.

The x86 architecture provides instructions to force the

cache to write data back to persistent storage. The three such

instructions are: (1) the flush cache line instruction clflush

that flushes a cache line, (2) the optimized flush cache line

instruction clflushopt, and (3) the cache line write back

instruction clwb. Each of these instructions takes as input

the address of the cache line and flushes that line.

A key difference between these instructions is how they

can be reordered across other instructions. The clflush

493

Checking Robustness to Weak Persistency Models PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

instruction is inserted into the store buffer just like store

instructions, and when it exits the store buffer it causes

the cache line to be flushed to persistent memory. The

clflushopt instruction is also inserted into the store buffer,

but it can be reordered across store instructions to other

cache lines, clflush instructions to other cache lines, and

other clflushopt instructions. The clflushopt instruction

cannot be reordered across mfenceit or locked RMW in-

structions. The store fence instruction sfence also orders

clflushopt instructions relative to clflush, clflushopt, clwb,

and store instructions. We refer to mfence, sfence, and locked

RMW instructions collectively as drain operations. The clwb

instruction writes back the contents of the cache line and

may not evict it from the cache and thus potentially has

better performance. However, from a semantics perspective,

the clflushopt instruction is identical to the clwb instruc-

tion [88], and thus we treat them identically.

3 Preliminaries

Recovery mechanisms often rely on specific persistency or-

derings in the program’s execution. Failure to enforce such

orderings can lead to data corruption and loss after a sys-

tem crash. There are different memory persistency models

that allow different persistency orderings to be observed

by recovery procedures [24, 26, 36, 51, 84, 85]. Among them,

strict persistency is the most conservative and intuitive model

which integrates memory persistency into memory consis-

tency [84]. Under strict persistency, the recovery procedure

observes the memory in an equivalent state as a separate

processor would under the memory consistency model.

This section formalizes the strict persistency model and

the robustness condition. We will introduce some notations

first. Given a PM program 𝑃 , an execution of the program

is the complete trace of memory operations, fences, cache

flush operations, and crash events in executing the program

𝑃 . We denote an execution as Exec. A crash is denoted by 𝐶 ,

and we use 𝐶𝑖 to denote the 𝑖-th crash event in an execution

Exec. The crash events partition an Exec as:

Exec = 𝑒1𝐶1𝑒2𝐶2...𝑒𝑛𝐶𝑛𝑒𝑛+1,

where 𝑛 is the number of crash events in Exec. We say that

each 𝑒𝑖 is a sub-execution of Exec and write 𝑒𝑖 ⊂ Exec to

denote this relation. This terminology describes the scenario

where a process crashes and then recovers multiple times.

Memory operations include load and store operations: a

load is denoted as ld⟨𝑥, 𝜏⟩, and a store is denoted as st⟨𝑥, 𝜏⟩,

where 𝑥 is the memory location and 𝜏 is the thread execut-

ing the operation. Since we only care about which store a

load reads from, the actual values that a store writes and a

load reads from are not important in our context, and we

omit them in the notation. When the memory location or

the thread that performs that operation is irrelevant in the

context, we will omit them in the notation and write ld⟨𝑥⟩

or st⟨𝑥⟩.

3.1 Strict Persistency

We formalize strict persistency in terms of the total store

order (TSO) memory model. If in an execution, a store st⟨𝑥⟩

is ordered before another store st⟨𝑦⟩ in the x86-TSO memory

consistency order, i.e., st⟨𝑥⟩ takes effect in the cache before

st⟨𝑦⟩, we write st⟨𝑥⟩
tso
−→st⟨𝑦⟩ to represent TSO-ordered-before

relationship between these two stores. Under strict persis-

tency, the volatile memory order and persistent memory

order are identical. That means that for two stores st⟨𝑥⟩ and

st⟨𝑦⟩, if st⟨𝑥⟩
tso
−→st⟨𝑦⟩, then st⟨𝑥⟩ is persisted before st⟨𝑦⟩.

3.2 Robustness Condition

One can naïvely implement strict persistency by inserting

flush operations after every memory access. Developers typ-

ically do not do this because this strategy can incur unac-

ceptable overheads. However, the strict persistency model

can be utilized as a correctness condition in using a weaker

persistency model, e.g., relaxed persistency. Recall from Sec-

tion 1, a program under weak persistency models can behave

the same as the program under strict persistency without re-

quiring flush operations after every load and store. Building

on this idea, we next define robustness for a single execution

in terms of multi-threaded prefixes.

Definition 1. Let 𝑒 be a sub-execution of some execution

Exec = 𝑒1𝐶1...𝐶𝑛𝑒𝑛+1. We define a multi-threaded prefix of 𝑒

as a subset𝐺 of operations in 𝑒 such that𝐺 is closed under the

happens-before relation over stores and the sequenced-before

relation, and that stores in 𝐺 maintain the same TSO order as

in 𝑒 .

We define a multi-threaded prefix of Exec as a subset 𝐹 of

operations in Exec such that 𝐹 is closed under the reads-from

relation, and 𝐹 = 𝑒1
′ where 𝑒1

′ is a multi-threaded prefix of 𝑒1;

or 𝐹 = 𝑒1
′𝐶1 ...𝐶𝑘𝑒𝑘+1

′, where 𝑘 < 𝑛 and 𝑒𝑖
′ is a multi-threaded

prefix of 𝑒𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 + 1.

Definition 2. An execution Exec with 𝑛 crash events is robust

if for all 1 < 𝑖 ≤ 𝑛 + 1, there exists a multi-threaded prefix 𝐹𝑖
of 𝐻𝑖 = 𝑒1𝐶1...𝐶𝑖−1𝑒𝑖 such that

1. the last sub-execution of 𝐹𝑖 is 𝑒𝑖 ;

2. if st⟨𝑥⟩ ∈ 𝑒 𝑗 is read from by a load in later sub-executions

for some 𝑗 ≤ 𝑖 , then st⟨𝑥⟩ ∈ 𝐹𝑖 .

3. 𝐹𝑖 is a valid execution under strict persistency in which

all stores in 𝑒 𝑗 have committed to the cache before the

crash 𝐶 𝑗 occurs for all 1 ≤ 𝑗 < 𝑖 .

Each multi-threaded prefix of Exec preserves the

sequenced-before and reads-from relations, the happens-

before relation over stores, and the TSO order in Exec. The

happens-before relation over stores is defined in Section 3.4.

Definition 2 requires that each portion of the execution in

Exec up to some crash event (i.e., 𝐻𝑖 = 𝑒1𝐶1...𝐶𝑖−1𝑒𝑖) is equiv-

alent to the multi-threaded prefix 𝐹𝑖 in that the last sub-

execution of 𝐹𝑖 has the same behavior as that of 𝐻𝑖 . Intu-

itively, it means at any point of the execution, the most recent

494

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu, and Brian Demsky

sub-execution has the same behavior as that of some strictly

persistent execution. For store operations st⟨𝑥⟩ ∈ 𝑒 𝑗 that are

not included by any of multi-threaded prefixes 𝐹𝑖 ’s, where

𝑖 > 𝑗 , their effects are either not written to the persistent

memory or not read from by loads in sub-executions later

than 𝑒 𝑗 in Exec. However, if st⟨𝑥⟩ ∈ 𝑒 𝑗 is read from by loads

in later sub-executions, then it must be included in all of

𝐹𝑖 ’s where 𝑗 ≤ 𝑖 . Lastly, each 𝐹𝑖 is an execution under strict

persistency when all stores in 𝐹𝑖 are written to the persistent

memory.

The following definition presents the notion of robustness

for programs:

Definition 3. A program 𝑃 is robust to a weak persistency

model if every execution Exec of program 𝑃 is robust.

3.3 Persistent Lock-Free Data Structures

As prior studies note [5, 19, 50, 92], strict persistency guar-

antees recoverability for lock-free data structures. Thus, ro-

bustness is a sufficient criterion to correctly port lock-free

data structures to persistent memory. The key observation

is that a crash of a lock-free data structure under the strict

persistency model is equivalent to a crash-free execution in

which one set of threads runs the pre-crash execution and

stop at their respective crash locations and then after those

threads stop, the second set of threads runs the post-crash

execution. Lock-freedom guarantees progress for such ex-

ecution, and thus robustness plus lock-freedom suffices to

ensure crash consistency.

The robustness definition is generic and can be applied to

any program, including single-threaded, log-free, and lock-

based multi-threaded programs, in addition to lock-free pro-

grams. For persistency strategies other than lock-free pro-

grams, robustness can still be a useful tool for finding any

potential flush/fence bugs even though robustness is not

sufficient to guarantee crash consistency for such programs.

Broadly speaking, the domain of applicability for PSan is

PM programs that attempt to persist data across crashes.

3.4 Clock Vectors and Sequence Numbers

Our algorithm for checking robustness requires tracking

the happens-before relation and the TSO order, so we will

cover some basics on how we use clock vectors to track

the happens-before relation [25] over stores and sequence

numbers to track the TSO order.

Clock vectors have an initial value ⊥CV, a union operator

∪, a comparison operator ≤, and a per-thread increment

operator inc𝜏 that is invoked every time a thread performs a

store. These are defined as follows:

⊥CV = 𝜆𝜏.0,

CV1 ∪ CV2 ≜ 𝜆𝜏.𝑚𝑎𝑥 (CV1 (𝜏),CV2 (𝜏)),

CV1 ≤ CV2 ≜ ∀𝜏.CV1 (𝜏) ≤ CV2 (𝜏),

inc𝜏 (𝐶𝑉) = 𝜆𝑢. if 𝑢 == 𝜏 then CV(𝑢) + 1 else CV(𝑢).

States:

Tid ≜ Z CV ≜ Tid → Z CV ≜ Tid → CV SCV ≜ store → CV

seq : Z SEQ ≜ store → Z

[LOAD]

st⟨𝑥, 𝜏𝑠 ⟩
rf

−→ld⟨𝑥, 𝜏 ⟩ CV′ = CV[𝜏 ↦→ CV(𝜏) ∪ SCV(st⟨𝑥, 𝜏𝑠 ⟩)]

⟨CV, SCV, SEQ, seq ⟩ ⇒ld⟨𝑥,𝜏 ⟩,st⟨𝑥,𝜏𝑠 ⟩ ⟨CV′, SCV, SEQ, seq ⟩

[STORE ISSUE]

CV′ = CV[𝜏 ↦→ inc𝜏 (CV(𝜏))]
SCV′ = SCV[st⟨𝑥, 𝜏 ⟩ ↦→ CV′ (𝜏)] SEQ′ = SEQ[st⟨𝑥, 𝜏 ⟩ ↦→ 0]

⟨CV, SCV, SEQ, seq ⟩ ⇒st⟨𝑥,𝜏 ⟩ ⟨CV′, SCV′, SEQ′, seq ⟩

[STORE COMMIT]

seq′ = seq + 1 SEQ′ = SEQ[st⟨𝑥, 𝜏 ⟩ ↦→ seq′]

⟨CV, SCV, SEQ, seq ⟩ ⇒st⟨𝑥,𝜏 ⟩ ⟨CV, SCV, SEQ′, seq′⟩

[CRASH]

seq′ = 0 CV′ = reset(CV)

⟨CV, SCV, SEQ, seq ⟩ ⇒crash ⟨CV′, SCV, SEQ, seq′⟩

Figure 3.Algorithm for updating clock vectors that track the

happens-before relation over stores and sequence numbers

that record the TSO order.

Each store has a clock vector associated with it, and each

thread has its own clock vector. We define a map CV that

maps a thread identifier to the thread’s clock vector andwrite

CV(𝜏) to denote the clock vector for thread 𝜏 . We define SCV

as a map from a store to store’s clock vector.

In order to keep track of the TSO order, we define a se-

quence number for each store operation, representing the

order the stores take effect in the cache. We maintain a map

SEQ that maps a store to its sequence number.

Figure 3 presents the algorithm for updating clock vec-

tors and sequence numbers. The sequence counter seq is

a strictly increasing global counter, which is initialized

to 0. The [LOAD] rule applies when a load reads from a

store and merges the clock vector of the thread perform-

ing the load with the clock vector of the store being read

from. The [STORE ISSUE] rule applies when a thread 𝜏

performs a store, i.e., inserting the store into the thread’s

store buffer. It updates the thread 𝜏’s clock vector using

the inc𝜏 operator, initializes the store’s clock vector, and

initializes the store’s sequence number to 0. The [STORE

COMMIT] rule applies when a store leaves its store buffer.

It increments the counter seq by 1, and assigns the store’s

sequence number as the counter’s current value. When a

crash event occurs, the [CRASH] rule resets the sequence

number counter seq to 0 and the map CV to an empty map.

For two stores st⟨𝑥⟩ and st⟨𝑦⟩ in the same sub-execution,

if SCV(st⟨𝑥⟩) ≤ SCV(st⟨𝑦⟩), then the store st⟨𝑥⟩ happens

before the store st⟨𝑦⟩.

Given a store st⟨𝑥, 𝜏⟩ and its clock vector SCV(st⟨𝑥, 𝜏⟩),

we define the clock of the store as SCV(st⟨𝑥, 𝜏⟩)(𝜏), the 𝜏-th

component of its clock vector. We will use a helper function

getcl throughout the paper that takes a store as input and

495

Checking Robustness to Weak Persistency Models PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

returns the clock of the store. Because the inc𝜏 operator is

only applied to thread 𝜏 , and a load operation in thread 𝜏 may

only update components of thread 𝜏’s clock vector other than

the 𝜏-th component, every store in a thread has a unique

clock. Note that the clock of stores orders stores in a single

thread in a sub-execution by when they are issued, while the

sequence number orders stores in a sub-execution by when they

commit their values to the cache.

4 Basic Ideas

PSan builds on the open-source Jaaru infrastructure [37] for

simulating the x86 persistent memory model. Jaaru’s fron-

tend takes as input the PM program source and generates an

instrumented binary. The instrumented binary is executed

by Jaaru, and Jaaru generates an execution trace. Jaaru as-

sumes as input a set of test cases that explore a program’s

PM data structures. These can potentially be generated by

existing test data generation tools [1, 4, 6, 9, 10, 33, 34, 64, 70,

87, 90, 91]. Jaaru generates executions of PM programs, and

then PSan checks these executions for robustness violations

using Jaaru’s plugin interface.

PSan reports robustness violations to users, which can

help users find bugs in the uses of flush and drain opera-

tions. PSan can also be helpful for debugging known bugs.

When an assertion violation or other error is detected, Jaaru

provides developers with the trace. This trace can contain

millions of operations, and it can be difficult to understand

which ones are relevant to the crash. PSan can quickly re-

late bugs in the uses of flush and fence operations to the

individual memory operation that is either missing a flush

operation or has an incorrectly placed flush operation. PSan

then suggests to users one or more bug fixes.

4.1 Checking Equivalence

PSan’s approach for identifying equivalent strictly persis-

tent executions computes a set of strictly persistent execu-

tions that are consistent with the behavior of the weakly

persistent execution thus far. The basic approach relies on

computing potential crash intervals that describe the set of

equivalent strictly persistent executions. We model potential

crash intervals using constraints. If the constraints become

unsatisfiable, then no such equivalent strictly persistent pre-

crash execution exists and the program is not robust. At this

point, PSan would then report a robustness violation.

During the post-crash execution of the program, PSan

updates the constraints to compute a potential crash interval

for the pre-crash execution. The constraint set is initially

empty to indicate that any strictly persistent pre-crash exe-

cution is consistent with the behavior of the initially empty

post-crash execution. Each load in the post-crash execution

potentially narrows the set of strictly persistent pre-crash

executions that are consistent with the post-crash execution.

For each potential crash interval constraint, the beginning

of a range corresponds to a unique store, and so does the

end of a range. We use the clocks of stores defined in Sec-

tion 3.4 to mark the beginnings and ends of ranges. Note

that although the clocks of stores are used to mark the begin-

ning and end ranges of potential crash interval constraints, a

constraint really means that an equivalent strictly persistent

execution should crash after the store corresponding to the be-

ginning of the range commits to the cache and before the store

corresponding to the end of the range commits to the cache.

1 x = 1;

2 y = 2;

3 x = 3;

4 y = 4;

5 x = 5;

(a) Pre-crash execution

r1 = y;

r2 = x;

(b) Post-crash execution

Figure 4. An example of non-robust program with missing

flush and drain operations. x and y are initialized to 0.

Figure 4 presents an example that we will use to present

our basic approach. The left column in Figure 4 shows the

code of the pre-crash execution and the right column shows

the code of the post-crash execution. Section 6.1 elaborates

on how PSan inserts crash points in the program. The clocks

of stores in the pre-crash execution are listed on the left of

Figure 4-a.

Consider an execution in which r1 = 2 and r2 = 5. Fig-

ure 5 shows such an example and illustrates the process of

checking for an equivalent strictly persistent execution. At

the beginning of the post-crash execution, the potential crash

interval constraint set is empty. After the post-crash execu-

tion reads 2 from y, this constrains an equivalent strictly

persistent pre-crash execution to have crashed after the as-

signment y = 2 commits to the cache, but before y = 4 com-

mits to the cache. Therefore, the potential crash interval

constraint [2, 4) is added to the constraints. When the post-

crash execution reads 5 from x, this constrains an equivalent

strictly persistent pre-crash execution to have crashed after

the store x = 5 commits to the cache and implies the poten-

tial crash interval constraint [5,∞) should be added to the

constraints. However, the combination of the prior interval

constraint [2, 4) and the new interval constraint [5,∞) is un-

satisfiable. Thus, there is no equivalent pre-crash execution

r1=2;

x=1 y=2 x=3 y=4 x=5
X

Power

failure

Initially

r2=5; X

Figure 5.Constraints for execution of code in Figure 4 where

r1 = 2 and r2 = 5.

496

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu, and Brian Demsky

under strict persistency. This execution is possible under the

x86 persistency model because there is no flush and drain

operation for y after y = 4.

4.2 Supporting Threads

We next discuss the basic ideas of how we generalize our

approach for updating potential crash interval constraints

to the multi-threaded context.

4.2.1 Per-Thread Crash Intervals. Naïvely applying po-

tential crash interval constraints to a multi-threaded exe-

cution trace using TSO order is overly restrictive. Figure 6

presents an example that demonstrates the issue with this

approach. We assume that the store x = 1 is TSO ordered

before the store y = 1 in the pre-crash execution and this

could potentially be observed by pre-crash threads. Consider

the execution where r1 = 0 and r2 = 1.

This execution is robust, because it is equivalent to a

strictly persistent execution where thread 𝜏1 does not per-

form any operation, thread 𝜏2 executes y = 1, and then

the program crashes. Then the post-crash execution of the

strictly persistent execution would read r1 = 0 and r2 = 1.

In the naïve approach, we inspect the trace of the pre-

crash execution to determine where an equivalent execution

should crash. Since clocks of stores do not order stores in

different threads, sequence numbers have to be used in the

constraints. r1 = x = 0 yields the constraint [0, seqx = 1), be-

cause an equivalent strictly persistent execution must crash

before the store x = 1. Similarly, r1 = y = 1 yields the con-

straint [seqy = 1,∞). However, the combination of the two

constraints [0, seqx = 1) ∧ [seqy = 1,∞) is unsatisfiable.

To solve this issue, each thread requires its own poten-

tial crash interval constraints, since each thread can make

different progress when a program crashes. Therefore, we

define potential crash interval constraints C as a map from

a thread identifier to a potential crash interval constraint

for the thread. The map C is satisfiable if and only if each

interval constraint in its range is satisfiable. Each C (𝜏) is

initially empty.

4.2.2 Persistency Closure under Happens-Before.

Another aspect of the simple approach in Section 4.1 is that

it only updates potential crash interval constraints based on

the TSO ordering between stores at the same memory loca-

tion. This simple approach is not enough to detect robustness

violations in the multi-threaded context. More specifically,

if a store is made persistent in a robust execution, then all

stores that are read from and that happen before this store

must also be made persistent. However, the simple approach

cannot detect robustness violations in executions where a

store that has been read from and that happens before a

persistent store is not made persistent.

Figure 7 presents an example that shows such robustness

violations. This example is also interesting because it shows

that simply adding flush operations after each store is not al-

ways sufficient to guarantee robustness. Figure 7-(a) and 7-(b)

present the pre-crash execution code for thread 𝜏1 and thread

𝜏2. Figure 7-(c) shows the code for the post-crash execution.

We assume that both x and y are initialized to 0, and that they

reside in different cache lines. Consider the execution where

thread 𝜏1 executes x = 1 and is paused by the operating sys-

tem before executing the corresponding flush. Then, thread

𝜏2 reads r1 = x = 1, stores y = r1 = 1, and flushes y. If the

program crashes at this point, the post-crash execution can

read r2 = 0, but r3 = 1. Such an execution is not feasible

under strict persistency.

When the post-crash execution reads r2 = 0, it can be

inferred that the thread 𝜏1 of an equivalent strictly persistent

execution must have crashed before the store x = 1 commits

to the cache. Therefore, we have C (𝜏1) = [0, getcl(x = 1)).

Similarly, when the load r3 = y reads from the store y = r1,

it can be inferred that the thread 𝜏2 of the equivalent strictly

persistent execution must have crashed after the store y =

r1 commits to the cache, and C (𝜏2) = [getcl(y = r1),∞).

At this point, both C (𝜏1) and C (𝜏2) are satisfiable, failing to

detect the robustness violation in this execution.

This execution exhibits a robustness violation because

the store y = r1 is made persistent, but the store x = 1

that happens before it is not. This robustness violation can

be fixed if x = 1 is forced to be persistent before y = r1 by

adding a flush instruction after the load r1 = x in thread 𝜏2.

It is worth noting that if we require that stores that are not

read from and are TSO ordered before a persistent store be

made persistent in a robust execution, then this condition is

too strong in that it would classify some robust executions as

non-robust. For example, the execution in Figure 6 is robust,

but x = 1 is not persistent even though it is TSO ordered

before y = 1, and y = 1 is made persistent.

4.3 Implications for Updating Constraints

In this section, we will present implications for updating

potential crash interval constraints in executions with a sin-

gle crash event. Every time a load ld⟨𝑥⟩ in the post-crash

execution reads from a store st⟨𝑥, 𝜏1⟩ in the pre-crash ex-

ecution, PSan updates constraints based on the following

implications:

1. Observed stores must have executed:When a load

ld⟨𝑥⟩ in the post-crash execution reads from a store st⟨𝑥, 𝜏1⟩

in the pre-crash execution, we can infer that an equivalent

strictly persistent execution must have crashed after the

store st⟨𝑥, 𝜏1⟩ commits for thread 𝜏1:

st⟨𝑥, 𝜏1⟩
rf

−→ld⟨𝑥⟩

⇒ C (𝜏1) := [getcl(st⟨𝑥, 𝜏1⟩),∞) ∧ C (𝜏1). (4.1)

2. Newer stores must have not executed: If there is a

second store st⟨𝑥, 𝜏2⟩ that is TSO ordered after the st⟨𝑥, 𝜏1⟩,

then the equivalent strictly persistent execution must have

497

Checking Robustness to Weak Persistency Models PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

x = 1;

flush x;

(a) Thread 𝜏1 in pre-crash execution

y = 1;

flush y;

(b) Thread 𝜏2 in pre-crash execution

r1 = x;

r2 = y;

(c) Post-crash execution

Figure 6. x and y reside in different cache lines and are initialized to 0. We assume that in the pre-crash execution, a third

thread observes that x = 1 is TSO ordered before y = 1. Can the execution read r1 = 0 and r2 = 1?

x = 1;

flush x;

(a) Thread 𝜏1 in pre-crash execution

r1 = x;

y = r1;

flush y;

(b) Thread 𝜏2 in pre-crash execution

r2 = x;

r3 = y;

(c) Post-crash execution

Figure 7. An example of just adding flushes after stores is not always sufficient to provide robustness. x and y are initialized

to 0. x and y reside in different cache lines. Can the execution read r1 = 1, r2 = 0, and r3 = 1?

crashed before st⟨𝑥, 𝜏2⟩ commits for thread 𝜏2, because other-

wise, ld⟨𝑥⟩ would read from st⟨𝑥, 𝜏2⟩ in the strictly persistent

execution instead:

st⟨𝑥, 𝜏1⟩
rf

−→ld⟨𝑥⟩ ∧ st⟨𝑥, 𝜏1⟩
tso
−→st⟨𝑥, 𝜏2⟩

⇒ C (𝜏2) := [0, getcl(st⟨𝑥, 𝜏2⟩) ∧ C (𝜏2). (4.2)

3. An execution prefix is closed under happens be-

fore: If there is any store st⟨𝑦, 𝜏3⟩ that happens before

st⟨𝑥, 𝜏1⟩ in the pre-crash execution, then the equivalent

strictly persistent execution must have crashed after st⟨𝑦, 𝜏3⟩

commits for thread 𝜏3, because st⟨𝑦, 𝜏3⟩ must have been exe-

cuted before st⟨𝑥, 𝜏1⟩:

st⟨𝑥, 𝜏1⟩
rf

−→ld⟨𝑥⟩ ∧ st⟨𝑦, 𝜏3⟩
hb
−→st⟨𝑥, 𝜏1⟩

⇒ C (𝜏3) := [getcl(st⟨𝑦, 𝜏3⟩),∞) ∧ C (𝜏3). (4.3)

4.4 Supporting Multiple Crash Events

So far, our discussion has only focused on executions with

one crash event. In an execution Exec with 𝑛 crash events,

the execution has 𝑛 + 1 sub-executions. Therefore, each

crash event should have its own potential crash interval

constraints, and we define map C that maps a sub-execution

𝑒 to the potential crash interval constraints for the crash

event immediately following the sub-execution. For a com-

plete execution, C would map the last sub-execution to an

empty set of constraints, because there is no crash event

after the last sub-execution.

In an ongoing execution, we refer to the sub-execution

after the last crash event that has occurred so far as the cur-

rent sub-execution.When a load in the current sub-execution

reads from a store in a previous sub-execution 𝑒 , PSanwould

update the potential crash interval constraints for the sub-

execution 𝑒 . However, if a load in the current sub-execution

reads from a store in a previous sub-execution that does

not immediately precede the current sub-execution, then

some additional constraints would apply, because the store

that is read from cannot be overwritten by any store in

sub-executions later than 𝑒 . We present these additional con-

straints in Section 5.1.

x = 1;

y = 1;

(a) sub-execution 𝑒1

y = 2;

r = x;

(b) sub-execution 𝑒2

s = y;

(c) sub-execution 𝑒3

Figure 8. A single-threaded program with three sub-

executions. Both sub-executions 𝑒1 and 𝑒2 are followed by

crash events. x and y reside in different cache lines and are

initialized to 0. The execution reads r = 0 and s = 1.

Figure 8 presents an example of a single-threaded exe-

cution with two crash events and three sub-executions. Al-

though this example is single-threaded, the general idea

applies to multi-threaded programs. Both sub-executions 𝑒1
and 𝑒2 are followed by crash events. The load r = x = 0 reads

from the initial value of x, and the load s = y = 1 reads from

the store y = 1 in the first sub-execution.

Right after the crash event following sub-execution 𝑒2,

the execution is robust so far. Since the program is single-

threaded, we will omit the thread identifier in the nota-

tion. The load r = x = 0 updates C(𝑒1) as C(𝑒1) =

[0, getcl(x = 1)), because the first sub-execution of an

equivalent strictly persistent execution must crash before

x = 1 commits to the cache, and C(𝑒2) has no constraints.

Then when the load s = y reads from y = 1, C(𝑒1) becomes

[0, getcl(x = 1)) ∧ [getcl(y = 1),∞), because the first sub-

execution of the equivalent execution must crash after y = 1

commits to the cache. Also, C(𝑒2) becomes [0, getcl(y = 2)),

because the second sub-execution of the equivalent execu-

tionmust crash before y = 2 commits to the cache. Otherwise,

the older store y = 1 would be overwritten. However, the

constraints in C(𝑒1) are not satisfiable, and such equivalent

execution does not exist.

498

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu, and Brian Demsky

Note that a misinterpretation of the constraint C(𝑒2) =

[0, getcl(y = 2)) would suggest that the second sub-

execution should be empty. Then since r = x is not exe-

cuted, C(𝑒1) becomes [getcl(y = 1),∞), resutling in satisfi-

able constraints. However, this is not the case. First of all, the

constraint C(𝑒2) = [0, getcl(y = 2)) suggests that the sec-

ond sub-execution of the equivalent execution should crash

before y = 2 commits to the cache, not necessarily before y =

2 is executed. Second, even if the second sub-execution of

the equivalent execution crashes before y = 2 is executed, it

does not affect the original weakly persistent execution that

was used to derive the map C, and so we do not remove the

implications of the load r = x from C(𝑒1).

5 Algorithm

a ∈ Reg v ∈ Val 𝜏 ∈ TId

Prog ::= TId
fin
−−−→ Com

Com ::= Exp | PCom

| let a := Com in Com

| if (Com) then {Com} else {Com}

| repeat Com

PCom ::= load(x) | store(x,Exp) | CAS(x,Exp ,Exp)

| FAA(x,Exp) | mfence | sfence

| flushopt x | flush x

Exp ::= v | a | Exp op Exp

Figure 9. A simple concurrent programming language.

We present our algorithm for detecting robustness viola-

tions with respect to the simple concurrent language used

by Px86sim [88], as described in Figure 9. We assume that Reg

is a finite set of registers (local variables), Val is a finite set

of values, and TId ⊆ N is a finite set of thread identifiers. An

expression Exp is either a register, a value, or the result of ap-

plying an arithmetic operation on two expressions.We define

a multi-threaded program Prog as a function mapping each

thread to the sequential program that the thread executes.

The sequential fragment of the language is given by the Com

grammar, which includes primitive commands PCom, express-

sions, assignments to local variables, conditional statements,

and loops. The load(x) denotes an atomic read from location

x, and the store(x,Exp) denotes an atomic write to location x.

The CAS(x,Exp,Exp) denotes the atomic compare-and-swap.

The FAA(x,Exp) denotes the atomic fetch-and-add operation.

Our analysis treats RMW operations in the same fashion as a

load immediately followed by a store. The mfence and sfence

denote a memory fence and a store fence, respectively. Lastly,

flushopt and flush denote persist instructions, persisting

the cache line where location x resides.

5.1 Operational Semantics

Figure 10 presents our algorithm in operational semantics as

an extension to the Px86sim operational model. We present a

correctness proof for the algorithm in the Supplemental Mate-

rial of our paper. Before performing the analysis in Figure 10,

the algorithm in Figure 3 for computing clock vectors and se-

quence numbers is applied to the corresponding operations.

After the analysis in Figure 10, we extend the transitions for

the Px86sim operational model [88].

We use the following notations in the algorithm:

• getexec(st⟨𝑥, 𝜏⟩) returns the sub-execution that con-

tains the store st⟨𝑥, 𝜏⟩;

• next(st⟨𝑥, 𝜏⟩, 𝑒) returns the smallest set of stores that

includes (1) the first store to the location 𝑥 in each

thread that is TSO ordered after store st⟨𝑥, 𝜏⟩ in the

sub-execution getexec(st⟨𝑥, 𝜏⟩) and (2) the first store

to the location 𝑥 in each thread in any sub-execution

that follows getexec(st⟨𝑥, 𝜏⟩) and precedes 𝑒 .

• nextop(𝑖) returns the instruction that follows 𝑖 in the

execution;

• top(Exec) returns the last sub-execution in Exec, i.e.,

the current sub-execution;

• C maps a sub-execution 𝑒 to its mapping C𝑒 from

threads to potential crash intervals.

States:

C ≜ Exec → C C ≜ TId → Constraint List

[LOAD-PREV]

st⟨𝑥, 𝜏 ⟩
rf

−→ld⟨𝑥 ⟩ 𝑒 = getexec(st⟨𝑥, 𝜏 ⟩) 𝑒𝑐 = top(Exec)
ld⟨𝑥 ⟩ ∈ 𝑒𝑐 𝑒 ≠ 𝑒𝑐 {st⟨𝑥, 𝜏1 ⟩1, ..., st⟨𝑥, 𝜏𝑛 ⟩𝑛 } = next(st⟨𝑥, 𝜏 ⟩, 𝑒𝑐)

∀𝑖 ∈ {1, ..., 𝑛}.𝑒𝑖 = getexec(st⟨𝑥, 𝜏𝑖 ⟩𝑖), 𝜎𝑖 = SCV(st⟨𝑥, 𝜏𝑖 ⟩𝑖) (𝜏𝑖)
C0 = C[𝑒 ↦→ { ⟨𝜏′, C(𝑒) (𝜏′) ∧ [SCV(st⟨𝑥, 𝜏 ⟩) (𝜏′),∞)⟩ | 𝜏 ′ ∈ TId}]

∀𝑖 ∈ {1, ..., 𝑛}.C𝑖 = C𝑖−1 [𝑒𝑖 ↦→ C𝑖−1 (𝑒𝑖) [𝜏𝑖 ↦→ C𝑖−1 (𝑒𝑖) (𝜏𝑖) ∧ [0, 𝜎𝑖))]]

⟨ld⟨𝑥 ⟩, C⟩ =⇒ ⟨nextop(ld⟨𝑥 ⟩), C𝑛 ⟩

Figure 10. Semantics for checking robustness violations.

We only check for robustness violations when a load in the

current sub-execution reads from a store in a previous sub-

execution. The clock vector SCV(st⟨𝑥, 𝜏⟩) has information

about the last store in each of the other threads that happens

before st⟨𝑥, 𝜏⟩, because for each 𝜏 ′ ≠ 𝜏 , SCV(st⟨𝑥, 𝜏⟩)(𝜏 ′)

is exactly the clock of the last store in thread 𝜏 ′ that hap-

pens before st⟨𝑥, 𝜏⟩. When 𝜏 ′ = 𝜏 , SCV(st⟨𝑥, 𝜏⟩)(𝜏 ′) is the

clock of st⟨𝑥, 𝜏⟩. Therefore, C0 is the result of applying im-

plications 4.1 and 4.3. Then the last line in Figure 10 itera-

tively applies the implication 4.2 for each store in the set

next(st⟨𝑥, 𝜏⟩, 𝑒𝑐).

5.2 Suggesting Fixes for Robustness Violations

We next discuss how PSan suggests fixes for robustness vi-

olations. In general, there are two ways to fix a robustness

violation. The first is to use flush and/or drain operations

to force the cache to write back a cache line to persistent

memory. The second is to leverage the existing cache coher-

ence mechanism to enforce the desired ordering by locating

a pair of stores for which an ordering violation is observed

on the same cache line.

Each identified bug is defined by a pair of stores: the first

store is ordered earlier in the happens-before relation than

499

Checking Robustness to Weak Persistency Models PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

x

ld<𝑦>Post-crash

execution

Pre-crash

execution

x

st
1
<𝑦>

rf

x

st
2
<𝑦>

tso

Crash

interval

Figure 11. Reading from a store that is too old.

the second store, but only the second store was persisted and

observed by loads in post-crash executions. PSan gives this

pair of stores to users. The bug fix is a little more compli-

cated because these stores could potentially be in different

threads and it is possible, for example, that the thread that

executes the first store stops immediately after the store, and

some other thread reads from this store and later performs a

second store. In this case, we cannot prevent this robustness

violation by adding a flush after the first store since that

thread stops. We have to fix this bug by adding a flush after

the load. Thus, PSan defines a fix as a set of flush intervals

that cover operations that happen between the pair of stores.

There are two cases in which a robustness violation may

be reported Ð the first case is when the most recent load

reads from a store that is too old to be consistent with the

strict persistency model, and the second case is when the

most recent load reads from a store that is too new. We first

discuss the first case in more detail.

Reading fromToo Old of Store. Figure 11 presents a robust-

ness violation that occurs when the most recent load ld⟨𝑦⟩

reads from a store st1⟨𝑦⟩ that is too old. This occurs because

the program is missing a flush on some newer store st2⟨𝑦⟩ to

the same memory location. Our algorithm detects this when

the presence of the later store st2⟨𝑦⟩ causes the algorithm

to move the end of the crash interval backward past the be-

ginning of the interval. A single load can potentially reveal

multiple stores st2⟨𝑦⟩ that are missing flush operations. This

set of stores are the stores st⟨𝑥, 𝜏𝑖⟩𝑖 such that the computation

of the maps C𝑖 in the load rule of our operational semantics

computes a new unsatisfiable interval.

The fix for this bug is to insert a flush and a drain that hap-

pen after the store st2⟨𝑦⟩ and happen before the beginning

of some potential crash interval. Specifically, PSan computes

for each thread a potential flush window that starts at the

first operation in that thread that happens after st2⟨𝑦⟩ and

continues until the beginning of that thread’s crash interval.

We distinguish the interval for the thread that performed

st2⟨𝑦⟩, and call this interval the primary fix interval. While

all the suggested fixes will eliminate the robustness violation,

we believe the primary fix interval is typically the desired

fix. However, the primary fix interval may not always exist

as seen in the scenario in Figure 7 in which a thread crashes

between performing a store and flushing and draining the

store, but a second thread observes the presence of that store

x

ld<𝑦> x

ld<𝑧>Post-crash

execution

Pre-crash

execution

x

st
1
<𝑦>

rf

x

st
2
<𝑦>

tso

Crash

interval

x

st
3
<𝑧>

rf

hb

Figure 12. Reading from a store that is too new.

and then persist stores of their own. In this case, the primary

fix interval would be empty, and PSan would produce an

alternate interval for that second thread.

Alternatively, to fix this bug by colocating fields on the

same cache line, PSan would compute the store that sets

the beginning of the crash interval shown in Figure 11. The

store st2⟨𝑦⟩ must be made persistent before that store, and

thus developers must modify the memory layout to ensure

that both stores write to the same cache line.

Reading from Too New of Store. Figure 12 presents an ex-

ecution in which the most recent load ld⟨𝑧⟩ reads from a

store st3⟨𝑧⟩ that is too new to be consistent with the strict

persistency model. This occurs because a previous load ld⟨𝑦⟩

read from a store that was too old since some store st2⟨𝑦⟩

was missing an appropriate flush operation. Our algorithm

detects this violation when the store st3⟨𝑧⟩ causes the begin-

ning of the crash interval to be move forward past the end

of the crash interval.

The fix for this bug is to insert a flush and a drain operation

such that st2⟨𝑦⟩ happens before the flush and drain operation

and the flush and drain operation happens before st3⟨𝑧⟩. We

must first compute the store st2⟨𝑦⟩. We implement this by

recording for each crash interval the store that sets that its

end. If the store at the end of an interval happens before

st3⟨𝑧⟩, then this store is a store st2⟨𝑦⟩. There can be multiple

such stores. For each thread and each store st2⟨𝑦⟩, we report

an interval such that st2⟨𝑦⟩ happens before operations in the

interval and operations in the interval happen before st3⟨𝑧⟩.

We distinguish the interval for the thread that executed st2⟨𝑦⟩

as a primary fix. Similar to the previous case, the primary

interval is typically the desired fix. But the interval can be

empty if st2⟨𝑦⟩ happens before st3⟨𝑧⟩ only if some other

thread in the pre-crash execution reads from st2⟨𝑦⟩.

Alternatively, to fix this bug by colocating fields on the

same cache line, the store st2⟨𝑦⟩ must be made persistent

before the store st3⟨𝑧⟩, and thus developers must modify the

memory layout to ensure that both x and y are located on

the same cache line.

Implementation. The algorithm as described only detects

robustness violations on the current execution. Our imple-

mentation is built on the Jaaru model checker and at every

load, it selects a store for that load to read from. Before se-

lecting a store for a load to read from, PSan checks each

possible store that the load can read from to see if it will

500

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu, and Brian Demsky

create a robustness violation. PSan reports any detected vio-

lation. A straightforward application of the algorithm can

only detect a single robustness violation in an execution.

PSan can detect multiple robustness violations in a single

execution by forcing loads to read from stores that do not

cause robustness violations. This allows PSan to continue

the execution past the first detected robustness violation so

that PSan can detect additional robustness violations.

6 Evaluation

In this section, we evaluate the usefulness and effectiveness

of PSan in finding persistency bugs in a set of benchmarks.

We start by describing the benchmarks and the configuration

of our system. Then, we describe our evaluation methodol-

ogy and analyze the bugs found by PSan. Finally, we discuss

our observations from our experiments.

System Setup. PSanwas implemented atop the open-source

Jaaru model checker for persistent memory [37]. Our experi-

ments were carried out on an Ubuntu 18.04 machine with a

6 core 3.7 GHz Intel i7-8700K processor and 32GB RAM.

6.1 Methodology

We first tested PSan on the RECIPE [63] collection of PM

indexes based on B+-trees, tries, radix trees, and hash ta-

bles [43, 63, 77]. CCEH [77] is an efficient hash table for

persistent memory. FAST_FAIR [43] is an efficient imple-

mentation of B+-tree. We used all of these data structures

(i.e., P-ART, P-BwTree, P-CLHT, and P-Masstree) in our ex-

periment except P-HOT because it does not compile with

LLVM. We recompiled each of these programs with Jaaru’s

LLVM compiler pass to instrument memory accesses and

cache operations. Each program has a test driver that per-

forms operations on the data structure.

We also evaluated PSan on three popular real-world frame-

works and applications: PMDK [47], Memcached [20], and

Redis [60]. PMDK is the most active open-source library for

accessing persistent memory and is developed and main-

tained by Intel. This well-tested library simplifies accessing

persistent memory and debugging PM applications. PMDK

incorporates a wide range of libraries from direct APIs to ac-

cess persistent memory, i.e., libpmem, to object transactional

APIs, i.e., libpmemobj. Similar to prior works, we used five

PMDK data structure examples to evaluate our tool, BTree,

CTree, RBTree, Hashmap atomic, and Hashmap tx. Mem-

cached is a high-performance distributed memory caching

system implemented by Lenovo to use persistent memory.

This in-memory key-value store uses low-level libpmemAPIs

to efficiently store data in persistent memory. To evaluate

PSan with Memcached, we implemented a client that issues

insertion and lookup requests. Redis is an industrial high-

performance cache server and in-memory database devel-

oped by Intel. Redis is capable of caching data on DRAM and

persisting it in persistent memory through PMDK’s trans-

actional APIs. Similar to Memcached, we implemented our

own client to modify and lookup data.

PSan supports two different exploration strategies that tar-

get different types of applications: (1) random search mode

in which PSan explores random executions with random

crash points and (2) model checking mode in which PSan

systematically inserts crashes before each fence-like oper-

ation and after the last operation of the program and then,

explores all values that each load can read.

In our data structure benchmark experiments, i.e., CCEH,

FAST_FAIR, and RECIPE, we used bothmodel checkingmode

as well as random execution mode with 10,000 executions.

We used a similar configuration for evaluating PMDK ex-

amples. However, for Redis and Memcached we just used

random mode since these benchmarks require an outside

client, which makes model checking challenging.

6.2 Bug Detection

During our experiment, PSan found a total of 48 bugs in

benchmarks, and 17 of them were not reported by any of

the state-of-the-art testing frameworks. 13 bugs were re-

lated to robustness violations in the memory management

code of the benchmarks. Table 2 reports only violations/bugs

that are not in the memory allocation code due to space

constraints. Violations with * are known bugs. We reported

these violations to the developers of these tools and so far,

developers of CCEH and FAST_FAIR have confirmed these

violations are real bugs. The RECIPE developers acknowl-

edged the reported bugs but did not fix them, since these

bugs are related to memory allocators and garbage collectors,

and the code for memory allocators has to change regardless.

For each of these violations, PSan reports the variable that

needs a flush instruction and the precise range where the

flush needs to be inserted. In our experiment, we simply

applied PSan’s suggestions and reran the program until no

robustness violations were reported.

After analyzing each reported robustness violation, we

categorized them into three different types:

Missing Flushes/Fences. Table 2 presents all memory loca-

tions that participated in robustness violations. Note that

some of these violations refer to different usages of the same

variable in different functions or executions. All the robust-

ness violations except #9 are due to missing fence/flush in-

structions. 12 robustness violations caused program failures

in our experiment and the rest had no visible manifestations.

We examined the code and verified for each violation that

the bugs could cause data corruption, data loss, or memory

leak.

Cache-line Alignment Bugs. PSan identified one robust-

ness violation that would likely not be fixed with flush or

fence instructions, i.e., #9 in Table 2, in FAST_FAIR bench-

mark. In this benchmark, the header class is used at the

501

Checking Robustness to Weak Persistency Models PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

Table 2. Robustness violations.

Benchmark Field Cause of Robustness Violation

1 CCEH sema locking sema in Segment::Insert
2 CCEH sema unlocking sema in Segment::Insert
3* CCEH key writing to key in Segment::Insert
4* CCEH Directory::_[i] writing to _[i] in CCEH constructor
5* CCEH Directory::_ writing to _ in CCEH constructor

6* CCEH CCEH
writing to CCEH fields
in CCEH constructor

7 FAST_FAIR switch_counter incrementing it in page::insert_key
8 FAST_FAIR last_index updating it in page::insert_key
9 FAST_FAIR dummy unalignment caused by header class
10 FAST_FAIR entry::ptr writing to ptr in insert_key
11* FAST_FAIR entry::ptr writing to ptr in entry constructor

12* FAST_FAIR leftmost_ptr
writing to leftmost_ptr in

header constructor
13* FAST_FAIR btree::root writing to root in btree constructor

14 P-ART
typeVersion-

locking it in N::writeLockOrRestart
LockObsolete

15 P-ART
typeVersion-

locking it in N::lockVersionOrRestart
LockObsolete

16 P-ART
typeVersion-

unlocking it in N::writeUnlock
LockObsolete

17 P-ART nodesCount updating it in DeletionList::add
18 P-ART N16::keys updating it in N16::insert
19 P-ART N16::count updating it in N16::insert
20* P-ART N4::keys updating it in N4::insert
21* P-ART N4::children updating it in N4::insert

22* P-ART deletionLists
writing to deletionLists in

Epoche constructor
23* P-ART Tree::root writing to root in Tree constructor
24 P-BwTree next updating it in GrowChunk function

25* P-BwTree gc_metadata_p
writing to gc_metadata_p address in
GCMetaData::PrepareThreadLocal

26* P-BwTree gc_metadata_p
writing to content of gc_metadata_p
in GCMetaData::PrepareThreadLocal

27* P-BwTree tail writing to tail in AllocationMeta

28* P-BwTree epoch_manager
writing to epoch_manager
in BwTree constructor

29* P-CLHT version_list
writing to clht_t::version_list

in clht_gc_thread_init

30* P-CLHT num_buckets
writing to clht_t::num_buckets

in clht_hashtable_create

31* P-CLHT table
writing to clht_t::table
in clht_hashtable_create

32 PMDK PMEMobjpool
memcpy operation on pool object

in libpmemobj library
33 PMDK ulog storing ulog in libpmemobj library

34 PMDK
ulog_entry memcpy in applying modifications

_base on a single ulog_entry_base

35 PMDK
ulog_entry applying ULOG_OPERATION_OR

_base on a single ulog_entry_base

beginning of the page class [43]. The problem is that the

developers did not carefully consider C++ object layout se-

mantics. They neglected the fact that a word-aligned 8-bit

field has 8 bits of padding following it when it is followed by

the 16-bit field. Consequently, the header class is larger than

expected and results in the rest of the page class not having

the expected cache line alignment and thus breaks code that

relies on stores to different fields in the page class writing to

the same cache line to maintain ordering.

Memory Management Bugs. In addition to robustness vio-

lations in Table 2, PSan found 9more robustness violations in

P-ART and 4 more in P-BwTree. PSan found these violations

in memory management code such as garbage collection and

the memory allocation implementation. As mentioned in the

paper [63], the RECIPE benchmark implementations focused

on providing a platform to measure performance and did not

fully implement the crash recovery and memory manage-

ment components. These 13 reported robustness violations

are real robustness violations, but there are more significant

bugs in the code than just missing flush and drain instruc-

tions; fixing them requires more fundamental changes in the

design of the memory management component.

While robustness is a sufficient condition for an execu-

tion to be free of bugs related to missing flush and fence

operations, PSan, like all dynamic tools, can miss reporting

a flush/fence bug if it does not explore an execution that

reveals the missing flush/fence.

6.3 Performance

We next ran 100 random executions with both PSan and

Jaaru, the underlying model checker, to report the overhead

of PSan. Table 3 reports the average times taken to run one

random execution for each of the benchmarks. PSan and

Jaaru have comparable execution times because checking

robustness introduces minimal overheads. This table also

reports the total number of executions that PSan explored

to find all reported bugs. Overall, it takes less than a minute

to explore all executions used to find bugs for a benchmark

and an average of 13.1 seconds per benchmark.

Table 3. Execution times for PSan and Jaaru (the underly-

ing model checking infrastructure). PSan incurs minimal

overhead compared to Jaaru.

Benchmark Jaaru Time (s) PSan Time (s) # total executions

CCEH 0.050 0.051 1068
Fast_Fair 0.036 0.038 19
P-ART 0.045 0.047 348

P-BwTree 0.032 0.032 93
P-CLHT 0.142 0.143 6

P-Masstree 0.035 0.037 93

6.4 Discussion

Harmless Violations. While the proposed approach to cor-

rectness can handle many persistent data structures, there

are design patterns that can cause false positives. These

design patterns include link-and-persist [21], pointer tag-

ging [65], and checksums. These design patterns all allow

post-crash executions to safely observe low-level violations

of robustness without compromising high-level safety. In

particular, during our evaluation, we observed that PM pro-

grams that use checksums can safely read from data that

has only been made partially persistent because the check-

sum will fail and the program will safely discard the data.

Programs that use checksums are not robust by our prior

definition because their post-crash executions may observe

robustness violations. However, the values read by the loads

that cause the robustness violations are discarded when a

checksum check fails. PSan supports these patterns by using

annotations. In particular, PSan uses these annotations to

postpone the processing of the loads from a given check-

sum computation until the checksum validation completes

successfully. If the checksum validation fails, those loads

502

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu, and Brian Demsky

operations are discarded. In Table 2, violations #33 - #35 are

caused by checksums validating redo logs. These violations

are harmless because the program safely discards the data

when checksum fails, while such harmless violations could

be avoided by checksum annotations.

Comparison with Other Tools. Of the six tools that can po-

tentially detect ordering violations, only two tools, Jaaru [37]

and Witcher [28], are both available and do not require us

to annotate the expected ordering properties to be checked.

Thus, we limited our comparison to Jaaru and Witcher. Jaaru

found 18 persistency bugs in CCEH, FAST_FAIR, and RECIPE

benchmarks, of which 15 are related to missing proper per-

sistency mechanisms. Jaaru’s developers had to manually

examine each bug and reason about the execution traces

to fix each persistency bug. On the contrary, PSan auto-

matically reported the exact variable that needed a flush

instruction and the precise location where the flush needed

to be inserted. PSan reported 20 bugs that were not identified

by Jaaru. Witcher reported 4 ordering bugs in our evaluated

benchmarks and for each bug, Witcher requires developers’

manual efforts to reason about the root cause of intricate

crash states. One of these bugs was also found by PSan. PSan

did not report the rest of these bugs sinceWitcher used differ-

ent test driver programs to exercise the RECIPE benchmarks,

while we used the programs from Jaaru’s distribution of the

RECIPE. While we would like to perform an evaluation on

the exact same programs, this is problematic. We could not

run PSan’s programs on Witcher, because Witcher’s distri-

bution does not contain support for finding correctness bugs.

We could not run Witcher’s programs on PSan, because they

do not have any code that runs after a crash. PSan reported

31 bugs that could not be found by Witcher.

Note that not being able to find all bugs reported by other

tools on the same set of benchmarks evaluated by PSan

and these tools is primarily due to the implementations of

these tools that have particular dependencies on program

versions, inputs, environments, etc., not a limitation of using

robustness as a correctness criterion. As discussed earlier,

robustness subsumes all ordering-related constraints and

PSan should report all ordering bugs for given executions

that are caused by missing flush and fence instructions.

7 Conclusion

This paper presents robustness, a sufficient correctness con-

dition for the use of flush and drain operations in persis-

tent memory programs. We implemented the first tool that

leverages this condition to localize persistency bugs in the

program and suggests fixes. PSan found 48 bugs (including

17 new bugs) in 13 popular PM benchmarks.

Acknowledgments

We would like to thank our shepherd, Satish Narayanasamy,

and the anonymous reviewers for their thorough and insight-

ful comments that helped us substantially improve the paper.

This work is supported by the National Science Founda-

tion grants CNS-1703598, OAC-1740210, CNS-1763172, CNS-

1907352, CNS-2006437, CCF-2006948, CNS-2007737, CCF-

2102940, CNS-2128653, and CNS-2106838, as well as ONR

grants N00014-16-1-2913 and N00014-18-1-2037.

References
[1] Damiano Angeletti, Enrico Giunchiglia, Massimo Narizzano, Alessan-

dra Puddu, and Salvatore Sabina. 2010. Using Bounded Model Check-

ing for Coverage Analysis of Safety-Critical Software in an Industrial

Setting. J. Autom. Reasoning 45 (12 2010), 397ś414.

[2] ARM. 2021. Arm Architecture Reference Manual Armv8, for A-profile

architecture. https://developer.arm.com/documentation/ddi0487/

latest.

[3] Joy Arulraj and Andrew Pavlo. 2017. How to Build a Non-Volatile

Memory Database Management System (SIGMOD ’17). 1753ś1758.

[4] Domagoj Babić, Lorenzo Martignoni, Stephen McCamant, and Dawn

Song. 2011. Statically-Directed Dynamic Automated Test Generation

(ISSTA ’11). 12ś22.

[5] Hans-J. Boehm and Dhruva R. Chakrabarti. 2016. Persistence Pro-

gramming Models for Non-Volatile Memory (ISMM 2016). 55ś67.

[6] Bernard Botella, Mickael Delahaye, Stephane Hong-Tuan-Ha, Niko-

lai Kosmatov, Patricia Mouy, Muriel Roger, and Nicky Williams.

2009. Automating structural testing of C programs: Experience with

PathCrawler. 70ś78.

[7] Ahmed Bouajjani, Roland Meyer, and Eike Möhlmann. 2011. Decid-

ing Robustness against Total Store Ordering, Luca Aceto, Monika

Henzinger, and Jiří Sgall (Eds.). 428ś440.

[8] Bill Bridge. 2021. Nvm-direct library. https://github.com/oracle/nvm-

direct.

[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE:

Unassisted and Automatic Generation of High-Coverage Tests for

Complex Systems Programs (OSDI’08). 209ś224.

[10] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill,

and Dawson R. Engler. 2008. EXE: Automatically Generating Inputs

of Death. ACM Trans. Inf. Syst. Secur. 12, 2, Article 10 (Dec. 2008),

38 pages.

[11] Daniel Castro, Paolo Romano, and João Barreto. 2018. Hardware

transactional memory meets memory persistency (IPDPS ’18). 368ś

377.

[12] Hokeun Cha, Moohyeon Nam, Kibeom Jin, Jiwon Seo, and Beomseok

Nam. 2020. B3-Tree: Byte-Addressable Binary B-Tree for Persistent

Memory. ACM Trans. Storage 16, 3, Article 17 (July 2020), 27 pages.

[13] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014.

Atlas: Leveraging Locks for Non-Volatile Memory Consistency (OOP-

SLA ’14). 433ś452.

[14] Shimin Chen and Qin Jin. 2015. Persistent B+-Trees in Non-Volatile

Main Memory. Proc. VLDB Endow. 8, 7 (Feb. 2015), 786ś797.

[15] Xianzhang Chen, Edwin H.-M. Sha, Ahmad Abdullah, Qingfeng

Zhuge, Lin Wu, Chaoshu Yang, and Weiwen Jiang. 2017. UDORN: A

design framework of persistent in-memory key-value database for

NVM. 1ś6.

[16] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and

Jiwu Shu. 2020. FlatStore: An Efficient Log-Structured Key-Value

Storage Engine for Persistent Memory (ASPLOS ’20). 1077ś1091.

[17] Youmin Chen, Jiwu Shu, Jiaxin Ou, and Youyou Lu. 2018. HiNFS:

A Persistent Memory File System with Both Buffering and Direct-

Access. ACM Trans. Storage 14, 1, Article 4 (April 2018), 30 pages.

[18] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp,

Rajesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:

Making Persistent Objects Fast and Safe with next-Generation, Non-

Volatile Memories. 105ś118.

503

https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://github.com/oracle/nvm-direct
https://github.com/oracle/nvm-direct

Checking Robustness to Weak Persistency Models PLDI ’22, June 13ś17, 2022, San Diego, CA, USA

[19] Mahesh Dananjaya, Vasilis Gavrielatos, Arpit Joshi, and Vijay Na-

garajan. 2020. Lazy Release Persistency. 1173ś1186.

[20] Inc. Danga Interactive. 2018. Memcached. https://github.com/lenovo/

memcached-pmem.

[21] Tudor David, Aleksandar Dragojević, Rachid Guerraoui, and Igor

Zablotchi. 2018. Log-Free Concurrent Data Structures (USENIX ATC

’18). 373ś385.

[22] Bang Di, Jiawen Liu, Hao Chen, and Dong Li. 2021. Fast, Flexible,

and Comprehensive Bug Detection for Persistent Memory Programs

(ASPLOS 2021). 503ś516.

[23] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip

Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System

Software for Persistent Memory (EuroSys ’14). Article 15, 15 pages.

[24] Per Ekemark, Yuan Yao, Alberto Ros, Konstantinos Sagonas, and

Stefanos Kaxiras. 2021. TSOPER: Efficient Coherence-Based Strict

Persistency. 125ś138.

[25] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: Efficient

and Precise Dynamic Race Detection (PLDI ’09). 121ś133.

[26] Alexander Freij, Shougang Yuan, Huiyang Zhou, and Yan Solihin.

2020. Persist Level Parallelism: Streamlining Integrity Tree Updates

for Secure Persistent Memory. 14ś27.

[27] Michal Friedman, Erez Petrank, and Pedro Ramalhete. 2021. Mirror:

Making Lock-Free Data Structures Persistent. 1218ś1232.

[28] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohan-

nad Ismail, Sunny Wadkar, Dongyoon Lee, and Changwoo Min. 2021.

Witcher: Systematic Crash Consistency Testing for Non-VolatileMem-

ory Key-Value Stores (SOSP 2021). 100ś115.

[29] Ning Gao, Zhang Liu, and Dirk Grunwald. 2017. DTranx: A SEDA-

based Distributed and Transactional Key Value Store with Persistent

Memory Log. arXiv:1711.09543 [cs.DB]

[30] Kaan Genç, Michael D. Bond, and Guoqing Harry Xu. 2020. Crafty:

Efficient, HTM-Compatible Persistent Transactions (PLDI 2020). 59ś

74.

[31] Jerrin Shaji George, Mohit Verma, Rajesh Venkatasubramanian, and

Pratap Subrahmanyam. 2020. go-pmem: Native Support for Program-

ming Persistent Memory in Go. 859ś872.

[32] Ellis Giles, Kshitij Doshi, and Peter Varman. 2017. Continuous Check-

pointing of HTM Transactions in NVM (ISMM 2017). 70ś81.

[33] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART:

Directed Automated Random Testing. SIGPLAN Not. 40, 6 (June 2005),

213ś223.

[34] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Au-

tomated Whitebox Fuzz Testing. Microsoft, San Diego, California,

USA.

[35] Vaibhav Gogte, Stephan Diestelhorst, William Wang, Satish

Narayanasamy, Peter M. Chen, and Thomas F. Wenisch. 2018. Persis-

tency for Synchronization-Free Regions (PLDI 2018). 46ś61.

[36] Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M. Chen,

Satish Narayanasamy, and Thomas F. Wenisch. 2020. Relaxed Persist

Ordering Using Strand Persistency. 652ś665.

[37] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2021. Jaaru:

Efficiently Model Checking Persistent Memory Programs (ASPLOS

2021). 415ś428.

[38] Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2022.

Yashme: Detecting Persistency Races (ASPLOS 2022). 830ś845.

[39] Minjong Ha and Sang-Hoon Kim. 2020. InK: In-Kernel Key-Value

Storage with Persistent Memory. Electronics 9, 11 (2020), 22 pages.

[40] Morteza Hoseinzadeh and Steven Swanson. 2021. Corundum:

Statically-Enforced Persistent Memory Safety (ASPLOS 2021). 429ś

442.

[41] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Kee-

ton, and Patrick Eugster. 2017. NVthreads: Practical Persistence for

Multi-Threaded Applications (EuroSys ’17). 468ś482.
[42] Haixin Huang, Kaixin Huang, Litong You, and Linpeng Huang. 2018.

Forca: Fast and Atomic Remote Direct Access to Persistent Memory.

246ś249.

[43] Deukyeon Hwang, Wook-Hee Kim, Youjip Won, and Beomseok Nam.

2018. Endurable Transient Inconsistency in Byte-Addressable Persis-

tent B+-Tree (FAST ’18). 187ś200.

[44] Intel. 2020. Third Generation Intel Xeon Processor Scalable

Family Technical Overview. https://software.intel.com/content/

www/us/en/develop/articles/intel-xeon-processor-scalable-family-

overview.html?wapkw=clwb.

[45] Intel. 2021. Memory Optimized for Data-centeric Work-

loads. https://www.intel.com/content/www/us/en/architecture-and-

technology/optane-dc-persistent-memory.html.

[46] Intel. 2021. Revolutionizing Memory and Storage.

https://www.intel.com/content/www/us/en/architecture-and-

technology/intel-optane-technology.html.

[47] Intel Corporation. 2020. Persistent Memory Development Kit.

https://pmem.io/pmdk/.

[48] Intel Corporation. 2021. Intel Inspector.

https://software.intel.com/content/www/us/en/develop/tools/oneapi/

components/inspector.html.

[49] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. 2016. Failure-

Atomic Persistent Memory Updates via JUSTDO Logging (ASPLOS

’16). 427ś442.

[50] Joseph Izraelevitz, Hammurabi Mendes, and Michael L. Scott. 2016.

Linearizability of Persistent Memory Objects Under a Full-System-

Crash Failure Model, Cyril Gavoille and David Ilcinkas (Eds.). 313ś

327.

[51] Jungi Jeong and Changhee Jung. 2021. PMEM-Spec: Persistent Mem-

ory Speculation (Strict Persistency Can Trump Relaxed Persistency)

(ASPLOS 2021). 517ś529.

[52] Jungi Jeong, Chang Hyun Park, Jaehyuk Huh, and Seungryoul Maeng.

2018. Efficient Hardware-Assisted Logging with Asynchronous and

Direct-Update for Persistent Memory. 520ś532.

[53] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim,

Aasheesh Kolli, and Vijay Chidambaram. 2019. SplitFS: Reducing

Software Overhead in File Systems for Persistent Memory (SOSP ’19).

494ś508.

[54] Olzhas Kaiyrakhmet, Songyi Lee, Beomseok Nam, Sam H. Noh, and

Young ri Choi. 2019. SLM-DB: Single-Level Key-Value Store with

Persistent Memory. 191ś205.

[55] Tomasz Kapela. 2015. An introduction to pmemcheck (part 1) - basics.

https://pmem.io/2015/07/17/pmemcheck-basic.html.

[56] Artem Khyzha and Ori Lahav. 2021. Taming X86-TSO Persistency.

Proc. ACM Program. Lang. 5, POPL, Article 47 (Jan. 2021), 29 pages.

[57] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F.

Wenisch. 2016. High-Performance Transactions for Persistent Mem-

ories (ASPLOS ’16). 399ś411.

[58] Harendra Kumar, Yuvraj Patel, Ram Kesavan, and Sumith Makam.

2017. High Performance Metadata Integrity Protection in the WAFL

Copy-on-Write File System. 197ś212.

[59] Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett

Witchel, and Thomas Anderson. 2017. Strata: A Cross Media File

System (SOSP ’17). 460ś477.

[60] Redis Labs. 2020. Redis. https://github.com/pmem/redis.

[61] Ori Lahav and Roy Margalit. 2019. Robustness against Release/Ac-

quire Semantics (PLDI 2019). 126ś141.

[62] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran,

and Jeff Jackson. 2014. Yat: A Validation Framework for Persistent

Memory Software. 433ś438.

[63] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim, and

Vijay Chidambaram. 2019. RECIPE: Converting Concurrent DRAM

Indexes to Persistent-Memory Indexes (SOSP ’19). 462ś477.

[64] Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan. 2011.

KLOVER: A Symbolic Execution and Automatic Test Generation

Tool for C++ Programs, Ganesh Gopalakrishnan and Shaz Qadeer

504

https://github.com/lenovo/memcached-pmem
https://github.com/lenovo/memcached-pmem
https://arxiv.org/abs/1711.09543
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html?wapkw=clwb
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html?wapkw=clwb
https://software.intel.com/content/www/us/en/develop/articles/intel-xeon-processor-scalable-family-overview.html?wapkw=clwb
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html
https://pmem.io/2015/07/17/pmemcheck-basic.html
https://github.com/pmem/redis

PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Hamed Gorjiara, Weiyu Luo, Alex Lee, Guoqing Harry Xu, and Brian Demsky

(Eds.). 609ś615.

[65] Nan Li and Wojciech Golab. 2021. Brief Announcement: Detectable

Sequential Specifications for Recoverable Shared Objects (PODC’21).

557ś560.

[66] Sumin Li and Linpeng Huang. 2020. LosPem: A Novel Log-Structured

Framework for Persistent Memory. J. Emerg. Technol. Comput. Syst.

16, 3, Article 27 (May 2020), 17 pages.

[67] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei

Wu,Weimin Zheng, and Jinglei Ren. 2017. DudeTM: Building Durable

Transactions with Decoupling for Persistent Memory (ASPLOS ’17).

329ś343.

[68] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei

Wu,Weimin Zheng, and Jinglei Ren. 2017. DudeTM: Building Durable

Transactions with Decoupling for Persistent Memory (ASPLOS ’17).

329ś343.

[69] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H.

Noh, and Changhee Jung. 2018. iDO: Compiler-Directed Failure

Atomicity for Nonvolatile Memory (MICRO-51). 258ś270.

[70] Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan. 2021.

PMFuzz: Test Case Generation for Persistent Memory Programs (AS-

PLOS 2021). 487ś502.

[71] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,

Aasheesh Kolli, and Samira Khan. 2020. Cross-Failure Bug Detection

in Persistent Memory Programs (ASPLOS ’20). 1187ś1202.

[72] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira

Khan. 2019. PMTest: A Fast and Flexible Testing Framework for

Persistent Memory Programs (ASPLOS ’19). 411ś425.

[73] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an

RDMA-enabled Distributed PersistentMemory File System. 773ś785.

[74] Virendra J. Marathe, Margo Seltzer, Steve Byan, and Tim Harris. 2017.

Persistent Memcached: Bringing Legacy Code to Byte-Addressable

Persistent Memory (HotStorage’17). 4.

[75] Leonardo Marmol, Mohammad Chowdhury, and Raju Rangaswami.

2018. LibPM: Simplifying Application Usage of Persistent Memory.

ACM Trans. Storage 14, 4, Article 34 (Dec. 2018), 18 pages.

[76] Yuri Meshman, Noam Rinetzky, and Eran Yahav. 2015. Pattern-Based

Synthesis of Synchronization for the C++ Memory Model (FMCAD

’15). 120ś127.

[77] MoohyeonNam, Hokeun Cha, Young-Ri Choi, SamH. Noh, and Beom-

seok Nam. 2019. Write-Optimized Dynamic Hashing for Persistent

Memory (FAST ’19). 31ś44.

[78] Dushyanth Narayanan and Orion Hodson. 2012. Whole-System

Persistence (ASPLOS XVII). 401ś410.

[79] Ian Neal, Andrew Quinn, and Baris Kasikci. 2021. Hippocrates: Heal-

ing Persistent Memory Bugs without Doing AnyHarm (ASPLOS 2021).

401ś414.

[80] Ian Neal, Ben Reeves, Ben Stoler, and Andrew Quinn. 2020. AG-

AMOTTO: How Persistent is your Persistent Memory Application?

1047ś1064.

[81] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout,

and Mendel Rosenblum. 2011. Fast Crash Recovery in RAMCloud

(SOSP ’11). 29ś41.

[82] Peizhao Ou and Brian Demsky. 2015. AutoMO: Automatic Inference

of Memory Order Parameters for C/C++11 (OOPSLA 2015). 221ś240.

[83] Ismail Oukid, Johan Lasperas, Anisoara Nica, Thomas Willhalm, and

Wolfgang Lehner. 2016. FPTree: A Hybrid SCM-DRAM Persistent

and Concurrent B-Tree for Storage Class Memory (SIGMOD ’16).

371ś386.

[84] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2014. Memory

persistency. 265ś276.

[85] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. 2015. Memory

Persistency: Semantics for Byte-Addressable Nonvolatile Memory

Technologies. IEEE Micro 35, 3 (2015), 125ś131.
[86] Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill Bridge.

2013. Storage Management in the NVRAM Era. Proc. VLDB Endow. 7,

2 (Oct. 2013), 121ś132.

[87] Corina S. Pundefinedsundefinedreanu, Peter C. Mehlitz, David H.

Bushnell, Karen Gundy-Burlet, Michael Lowry, Suzette Person, and

Mark Pape. 2008. Combining Unit-Level Symbolic Execution and

System-Level Concrete Execution for Testing Nasa Software (ISSTA

’08). 15ś26.

[88] Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2019.

Persistency Semantics of the Intel-x86 Architecture. Proceedings of

the ACM on Programming Languages 4, POPL, Article 11 (December

2019), 31 pages.

[89] Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,

and Onur Mutiu. 2015. ThyNVM: Enabling software-transparent

crash consistency in persistent memory systems. 672ś685.

[90] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Concolic

Unit Testing Engine for C (ESEC/FSE-13). 263ś272.

[91] Nikolai Tillmann and Jonathan de Halleux. 2008. PexśWhite Box

Test Generation for .NET, Bernhard Beckert and Reiner Hähnle (Eds.).

134ś153.

[92] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan,

and Roy H. Campbell. 2011. Consistent and Durable Data Structures

for Non-Volatile Byte-Addressable Memory (FAST’11). 5.

[93] Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,

Venkatanathan Varadarajan, Prashant Saxena, and Michael M.

Swift. 2014. Aerie: Flexible File-System Interfaces to Storage-Class

Memory (EuroSys ’14). Article 14, 14 pages.

[94] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.

Mnemosyne: Lightweight Persistent Memory (ASPLOS XVI). 91ś104.

[95] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei Ren, Michel

Hack, Zili Shao, and Song Jiang. 2016. NVMcached: An NVM-Based

Key-Value Cache (APSys ’16). Article 18, 7 pages.

[96] Xiaojian Wu and A. L. Narasimha Reddy. 2011. SCMFS: A file system

for Storage Class Memory. 1ś11.

[97] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A

Hybrid Index Key-Value Store for DRAM-NVM Memory Systems

(USENIX ATC ’17). 349ś362.

[98] Jian Xu and Steven Swanson. 2016. NOVA: A Log-Structured File

System for Hybrid Volatile/Non-Volatile Main Memories (FAST’16).

323ś338.

[99] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadhara-

iah, Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy

Rudoff. 2017. NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Mem-

ory File System (SOSP ’17). 478ś496.

[100] Yi Xu, Joseph Izraelevitz, and Steven Swanson. 2021. Clobber-NVM:

Log Less, Re-Execute More. 346ś359.

[101] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong

Yong, and Bingsheng He. 2015. NV-Tree: Reducing Consistency Cost

for NVM-Based Single Level Systems (FAST’15). 167ś181.

[102] Baoquan Zhang and David H. C. Du. 2021. NVLSM: A Persistent

Memory Key-Value Store Using Log-Structured Merge Tree with

Accumulative Compaction. ACM Trans. Storage 17, 3, Article 23 (Aug.

2021), 26 pages.

[103] Lu Zhang and Steven Swanson. 2019. Pangolin: A Fault-Tolerant

Persistent Memory Programming Library. 897ś912.

[104] Wenhui Zhang, Xingsheng Zhao, Song Jiang, and Hong Jiang. 2021.

ChameleonDB: A Key-Value Store for Optane Persistent Memory

(EuroSys ’21). 194ś209.

[105] Xinjing Zhou, Lidan Shou, Ke Chen, Wei Hu, and Gang Chen. 2019.

DPTree: Differential Indexing for Persistent Memory. Proc. VLDB

Endow. 13, 4 (Dec. 2019), 421ś434.

505

	Abstract
	1 Introduction
	1.1 Correctness Criteria for Flush Operations
	1.2 PSan: Checking Robustness with Constraints

	2 Background on x86 Persistency Model
	3 Preliminaries
	3.1 Strict Persistency
	3.2 Robustness Condition
	3.3 Persistent Lock-Free Data Structures
	3.4 Clock Vectors and Sequence Numbers

	4 Basic Ideas
	4.1 Checking Equivalence
	4.2 Supporting Threads
	4.3 Implications for Updating Constraints
	4.4 Supporting Multiple Crash Events

	5 Algorithm
	5.1 Operational Semantics
	5.2 Suggesting Fixes for Robustness Violations

	6 Evaluation
	6.1 Methodology
	6.2 Bug Detection
	6.3 Performance
	6.4 Discussion

	7 Conclusion
	Acknowledgments
	References

