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Abstract. We present useful connections between the finite difference
and the finite element methods for a model boundary value problem.
We start from the observation that, in the finite element context, the
interpolant of the solution in one dimension coincides with the finite
element approximation of the solution. This result can be viewed as an
extension of the Green function formula for the solution at the continu-
ous level. We write the finite difference and the finite element systems
such that the two corresponding linear systems have the same stiffness
matrices and compare the right hand side load vectors for the two meth-
ods. Using evaluation of the Green function, a formula for the inverse of
the stiffness matrix is extended to the case of non-uniformly distributed
mesh points. We provide an error analysis based on the connection be-
tween the two methods, and estimate the energy norm of the difference
of the two solutions. Interesting extensions to the 2D case are provided.

1. Introduction

When studying basic numerical methods for solving boundary value prob-
lems (BVP) many resources start with a Finite Difference (FD) approach
followed by a separate Finite Element (FE) approach. In this paper, we
adopt a new point of view that emphasizes on the connections between the
FE and FD methods by solving a standard two point boundary value prob-
lem discretized on the same nodes through both FD and the FE methods.
We present the connections that help simplify certain proofs for FD error ap-
proximation, and also, that lead to a better understanding of the advantages
of each of these two methods.

Consider the two-point boundary value problem

(1.1) −u′′(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0.

It is known that, if u ∈ C2([0, 1]) is the unique solution of (1.1), then

(1.2) u(x) =

∫ 1

0
G(x, s)f(s) ds, for all x ∈ (0, 1),
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where,

(1.3) G(x, s) =

{
s(1− x) if 0 ≤ s ≤ x,
x(1− s) if x < s ≤ 1.

For the discretization of (1.1), we divide the interval [0, 1] into n subin-
tervals, using the nodes 0 = x0 < x1 < · · · < xn = 1 and denote
hj := xj − xj−1, j = 1, 2, · · · , n. First, consider the finite difference approx-
imation of u′′(xj) that uses the quadratic polynomial interpolation of the
solution u at three nodes: xj−1, xj , and xj+1:

(1.4) u
′′
(xj) ≈

2u(xj−1)

hj(hj + hj+1)
+
−2u(xj)

hj hj+1
+

2u(xj+1)

hj+1(hj + hj+1)
.

For the uniform distribution of the nodes xj = hj, j = 0, 1, . . . , n, where
h = 1

n , the approximation (1.4) becomes the second order standard centered
difference approximation

u
′′
(xj) ≈

u(xj−1)− 2u(xj) + u(xj+1)

h2
.

For the general case of non-uniform distributed nodes, we let fj := f(xj),
and for uj ≈ u(xj), we solve the system

(1.5)

u0 = 0

−2uj−1

hj(hj + hj+1)
+

2uj
hj hj+1

+
−2uj+1

hj+1(hj + hj+1)
= fj j = 1, n− 1.

un = 0.

By multiplying the generic equation in (1.5) with
hj + hj+1

2
, we get

(1.6)
−1

hj
uj−1 +

(
1

hj
+

1

hj+1

)
uj +

−1

hj+1
uj+1 =

hj + hj+1

2
fj .

Denote uFD := [u1, u2, · · · , un−1]T , and f̃ := [f1, f2, · · · , fn−1]T . Let W

be the (n− 1)× (n− 1) diagonal matrix with entries: {h1+h2
2 , · · · , hn−1+hn

2 }
and let S be the stiffness tridiagonal (n− 1)× (n− 1) matrix

(1.7) S =



1
h1

+ 1
h2
, − 1

h2
− 1
h2

1
h2

+ 1
h3
− 1
h3

. . .
. . .

. . .

− 1
hn−2

1
hn−2

+ 1
hn−1

− 1
hn

− 1
hn−1

1
hn−1

+ 1
hn


.
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Then, using (1.6) and the fact that u0 = un = 0, the system (1.5) is
equivalent to

(1.8) S uFD = W f̃.

For a better comparison of the finite difference solution uFD to the finite
element approximation uFE , we prefer to write the linear system in the form
(1.8).

Secondly, for the FE discretization, we will use the standard notation

a(u, v) =

∫ 1

0
u′(x)v′(x) dx, and (f, v) =

∫ 1

0
f(x)v(x) dx.

Then, the variational formulation of (1.1) is : Find u ∈ V := H1
0 (0, 1) such

that

(1.9) a(u, v) = (f, v), for all v ∈ V.

Also, we consider the mesh nodes on [0, 1] as being the same as those used
for the finite difference discretization: 0 = x0 < x1 < · · · < xn = 1, and
define the corresponding discrete space Vh as the subspace of V = H1

0 (0, 1),
given by

Vh = {vh ∈ V | vh is linear on each [xj , xj+1]},
i.e., Vh is the space of all piecewise linear continuous functions with respect
to the given nodes that are zero at x = 0 and x = 1. We consider the nodal
basis {ϕj}n−1

j=1 ⊂ Vh such that ϕi(xj) = δij . Thus, the discrete variational

formulation of (1.1) is: Find uh ∈ V := H1
0 (0, 1) such that

(1.10) a(uh, vh) = (f, vh), for all vh ∈ Vh.

We look for uh = uFEh with the nodal basis expansion

uh :=
n−1∑
i=1

uiϕi, where ui = uh(xi).

If we consider the test functions vh = ϕj , j = 1, 2, · · · , n − 1 in (1.10), we
obtain the system

(1.11) S uFE =
∼
f,

for finding the coefficient vector uFE = [u1, · · · , un−1]T , where

∼
f := [(f, ϕ1), · · · (f, ϕn−1)]T and S is the (n−1)× (n−1) tridiagonal matrix

with entries Sij = a(ϕ′i, ϕ
′
j). It is an easy exercise to verify that S defined for

the finite element discretization, coincides with the matrix defined in (1.7)
for the finite difference discretization.

We note that for any α ∈ Rn−1, α 6= 0

αTS α = a(vh, vh) =

∫ 1

0
(v′h(x))2 dx > 0,

where vh =
∑n−1

i=1 αiϕi. Consequently, the stifnees matrix S is invertible.
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We can also define the (n− 1)× (n− 1) Green matrix

G̃ = [G(xi, xj)]i,j=1,n−1 .

The purpose of the paper is to show how the two types of discretization
are connected. Using that the Green function (1.3) can be viewed as a scaled
finite element function, we will prove that the common stiffness matrix S
satisfies S−1 = G̃ in the general non-uniform case. While the identity is well
known for the uniform distributed nodes, see Section 12.2.2 in [5], by the
best knowledge of the authors, the identity seems to be not available for the
non-uniform case or in the finite element context. We will also show that
the right hand side vector of (1.8), that defines the finite difference solution,
is obtained by the Composite Trapezoid Rule (CTR) approximation of the
entries of the dual vector

∼
f . As a consequence, we can compare the uFD

and uFE and estimate the energy norm of the error uFD − uFE .
The rest of the paper is organized as follows: In Section 2, we present the

similarity between the finite element and the finite difference linear systems
for the model problem (1.1). In Section 3, we use the formulas for the FD
and the FE solutions in order to compare the two discretizations and do an
error analysis. Two interesting extensions to the 2D case are presented in
Section 4.

2. The connections between the finite element and the finite
difference of the 1D model problem

In this section we investigate the systems for the FE and FD discretiza-
tions of (1.1) by relating the matrices and the load vectors for the two
systems. The following lemma gives a formula for the general component
of the dual vector

∼
f and the evaluation of the solution u at the neighboring

nodes viewed as degrees of freedom for the finite element approximation. In
addition, the formula connects with the FD discretization via the formula
(1.6).

2.1. A formula for the finite element solution.

Lemma 2.1. Let u be the solution of (1.1), and {ϕj}j=1,2,··· ,n−1 be the nodal
basis for Vh. Then, for j = 1, 2, · · · , n− 1, we have

(2.1) (f, ϕj) = − 1

hj
u(xj−1) +

(
1

hj
+

1

hj+1

)
u(xj)−

1

hj+1
u(xj+1)

Proof. From the variational formulation (1.10), we have (f, ϕj) = a(u, ϕj) =∫ 1

0
u′(x)ϕ′j(x)dx =

1

hj

∫ xj

xj−1

u′(x)dx+
−1

hj+1

∫ xj+1

xj

u′(x)dx = − 1

hj
u(xj−1) +(

1

hj
+

1

hj+1

)
u(xj)−

1

hj+1
u(xj+1). �
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Next, for any s ∈ (0, 1), we define the function

(2.2) φs(x) =


x

s
if 0 ≤ x ≤ s,

1− x
1− s

if s < x ≤ 1.

Note that, if s = xj , j = 1, 2, · · · , n − 1, then φxj is a piecewise linear
function that belongs to Vh.

Corollary 2.2. (Green’s Formula) For any s ∈ (0, 1), we have

(2.3) (f, φs) =
1

s(1− s)
u(s)

Proof. In the Lemma (2.1), take n = 2, x0 = 0, x2 = 1, x1 = s, h1 = s,
h2 = 1− s. �

Note that the equation (2.3) is in fact the Green’s formula (1.10). This is
because

(2.4) G(x, s) = s(1− s)φs(x) = G(s, x), for all x, s ∈ (0, 1).

This formula shows that the Green’s Function can be interpreted as a
scaled finite element function.

Corollary 2.3. Let uh :=
n−1∑
i=1

uiϕi be the finite element solution of (1.10),

and let uFE := [u1, u2, · · · , un−1]T . Then uh coincides with the linear inter-
polant of u on the nodes x0, x1, . . . , xn.

In other words, uj = u(xj), j = 1, 2, · · · , n− 1.

Proof. Since the stiffness matrix S for the system (1.10) is given by (1.7),
from the equation (2.1) we have that ũ = [u(x1), u(x2), . . . , u(xn−1)]T solves
Sũ =

∼
f . On the other hand, from (1.11) we have that S uFE =

∼
f . Using

that the matrix S is invertible, we conclude that uFE = ũ. �

Corollary 2.4. If S is the stiffness matrix defined in (1.7), then

(2.5) S−1 = G̃,

consequently, uFE = S−1
∼
f = G̃

∼
f .

Proof. Apply (2.3) for s = xj , j = 1, 2, · · · , n− 1 to get

(2.6) u(xj) = xj(1− xj)
∫ 1

0
φxj (x)f(x)dx.
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Obviously, by the definition of φxj we have φxj ∈ Vh. Hence, φxj coincides
with its interpolant on the nodes x0, x1, . . . , xn. Thus,

(2.7) φx(x) =

n−1∑
i=1

φxj (xi)ϕi(x).

For the equations (2.6) and (2.7), we get

(2.8) u(xj) = xj(1− xj)
n−1∑
i=1

φxj (xi)

∫ 1

0
f(x)ϕi(x)dx.

Since xj(1−xj)φxj (xi) = G(xj , xi), we obtain u(xj) =

n−1∑
i=1

G(xj , xi)(f, ϕi),

j = 1, 2, · · · , n− 1, which combined with the fact that the finite element so-
lution coincides with the interpolant as given by Corollary 2.3, leads to
uFE = G̃

∼
f . Since uFE = S−1

∼
f for any

∼
f ∈ Rn−1, we conclude that the

formula (2.5) holds. �

In order to obtain the formula (2.8), it is essential that φxj ∈ Vh, and
that φxj can be expanded in the basis {ϕi}.

2.2. A formula for the finite difference solution. Let us consider the
finite difference discretization (1.5) that is equivalent to (1.6) and builds the
system (1.8).

For a continuous function θ : [0, 1] → R such that θ(0) = θ(1) = 0, the
composite trapezoid rule (CTR) on the nodes x0, x1, . . . , xn is

(2.9)

∫ 1

0
θ(x)dx ≈ Tn(θ) :=

n−1∑
i=1

θ(xi)
hi + hi+1

2
.

Note that if I(θ) =
n−1∑
i=1

θ(xi)ϕi is the interpolant of θ, and by using that

∫ 1
0 ϕi(x)dx =

hi + hi+1

2
, then the CTR formula becomes

Tn(θ) =

∫ 1

0
I(θ)(x)dx.

We observe that the diagonal entries of W in equation (1.8) are exactly the
weights of the quadrature formula (2.9).

Next, we will show that, componentwise, the finite difference solution uj is
the CTR approximation of the solution u(xi) given by the Green’s formula:

(2.10) u(xj) =

∫ 1

0
G(xj , x)f(x)dx.

For each j = 1, 2, · · · , n− 1, we define

θj(x) = G(xj , x)f(x), x ∈ [0, 1], and
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wj := Tn(θj) =
n−1∑
i=1

hi + hi+1

2
θj(xi) =

n−1∑
i=1

G(xj , xi)
hi + hi+1

2
f(xi)

= (G̃W f̃)j .

Consequently, we have

(2.11) w = G̃W f̃.

Proposition 2.5. The finite difference solution uFD of (1.8) coincides with
the vector w = [w1, w2, . . . , wn−1]T .

Proof. From the formula (2.5), we have that uFD = G̃W f̃ which compared
to (2.11), leads to uFD = w. �

Remark 2.6. We can prove the Proposition 2.5 without using finite ele-
ment arguments needed to prove (2.5). We can just verify that the vector w

satisfies the system Sw = Wf̃ by essentially using that φxj is linear on the
intervals [0, xj ] and [xj , 1].

2.3. Comparison. By rewriting the FD system, we have that the FD and
the FE linear systems have the same stiffness matrices. The corresponding
solutions are given by

uFE = S−1

∼
f, and uFD = S−1Wf̃, where

(
∼
f)j = (f, ϕj) =

∫ 1

0
f(x)ϕj(x) dx, and (Wf̃)j =

hj + hj+1

2
f(xj).

The right hand sides of the two systems are componentwise related by

(2.12) (f, ϕj) = Tn(fϕj).

3. Error Estimates

As a consequence of the previous section, we provide error estimates for
u−uFDh in both the discrete infinity norm and the energy norm, and estimate

the energy norm of the difference uFEh − uFDh .

3.1. The infinity norm estimate for the FD solution. From Lemma
2.5, we can estimate the error

max
j=1,n−1

|u(xj)− uFDj |

in the general non-uniform case.
For the uniform case, it is well known (see e.g. [5]), that if f ∈ C2([0, 1]),

then

(3.1) max
1≤j≤n

|u(xj)− uFDj | ≤
h2

96
‖f ′′‖∞,

where for a continuous function θ on [a, b], we define ‖θ‖∞,[a,b] := max
x∈[a,b]

|θ(x)|

and ‖θ‖∞ := ‖θ‖∞,[0,1].
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For extending (3.1) to the general nonuniform case, we will use the known
formula for the CTR error as follows: For a function θ : [a, b]→ R,
θ ∈ C2([a, b]), and the nodes a ≤ x0 < x− 1 < . . . < xn = b, we have

(3.2)

∣∣∣∣∫ b

a
θ(x)dx− Tn,[a,b]

∣∣∣∣ ≤ b− a
12

h2‖θ′′‖∞,[a,b],

where Tn,[a,b](θ) =
n∑
i=1

(xi − xi−1)
θ(xi) + θ(xi−1)

2
and h = max

i=1,n
(xi − xi−1).

Theorem 3.1. Let f ∈ C2[0, 1]), and let u be the solution of the boundary
value problem (1.1), and uFD = [u1, u2, . . . , un−1]T be the finite difference
solution of (1.8). If hj = xj − xj−1 for j = 1, 2, . . . , n and h := max

j=1,n
|hj |,

then, we have

(3.3) max
1≤j≤n−1

|u(xj)− uj | ≤
h2

48
(4‖f ′‖∞ + ‖f ′′‖∞).

Proof. From the proof of Corollary 2.5 and the equation (2.6), we have

u(xj) = xj(1− xj)
∫ 1

0
φxj (x)f(x)dx.

From Proposition 2.5, equations (2.9) and (2.12), we also have that

(3.4)

uj = (G̃W f̃)j =
n−1∑
i=1

G(xj , xi)
hi + hi+1

2
f(xi)

= xj(1− xj)
n−1∑
i=1

φxj (xi)
hi + hi+1

2
= xj(1− xj)Tn(φxjf).

Consequently, the error Ej = u(xj)− uj satisfies

(3.5)

Ej = xj(1− xj)
(∫ 1

0
φxj (x)f(x)dx− Tn(φxjf)

)
=

= xj(1− xj)
(∫ xj

0
φxj (x)f(x)dx− Tn,[0,xj ](φxjf)

)
+

+ xj(1− xj)

(∫ 1

xj

φxj (x)f(x)dx− Tn,[xj ,1](φxjf)

)
.

By noting that φxf is C2 on [0, xj ] and [xj , 1], applying the estimate (3.2)
on the intervals [0, xj ] and [xj , 1] for θ(x) = φxj (x)f(x), and using

max
x∈[0,xj ]

|θ′′(x)| ≤ 2

xj
‖f ′‖∞ + ‖f ′′‖∞, and

max
x∈[xj ,1]

|θ′′(x)| ≤ 2

1− xj
‖f ′‖∞ + ‖f ′′‖∞,
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we obtain

|Ej | ≤ xj(1− xj)
h2

12
xj

(
2

xj
‖f ′‖∞,[0,xj ] + ‖f ′′‖∞

)
+

+ xj(1− xj)
h2

12
(1− xj)

(
2

1− xj
‖f ′‖∞,[xj ,1] + ‖f ′′‖∞

)
.

Since xj(1− xj) ≤ 1
4 , the above estimate leads to (3.3). �

Remark 3.2. It is known that (1.4) is only first order accurate if hj 6= hj+1,
see e.g., Section 1.3 in [4]. The estimate (3.3) shows that the FD method
based on (1.5) or (1.6) is globally O(h2). We also emphasize that our proof
is done using the formula of the solution (3.4), and it is not based on
δ-functional arguments as usually done for proving (3.1), see e.g., [5].

Based on the CTR approximation, the formula (3.4) allows for further
error analysis in the energy norm.

3.2. Energy Norm Errors. For v ∈ V = H1
0 (0, 1), define the energy norm

(3.6) |v| = |v|a =

(∫ 1

0
(v′(x))2dx

) 1
2

= (a(v, v))
1
2 .

If the vector uFD = [u1, . . . , un−1]T is the solution of the finite difference
system (1.8), then we define the corresponding function in Vh as

uFDh :=
n−1∑
i=1

uiϕi. From the previous sections, we know that uFD satisfies

the equation SuFD = G̃(Wf̃), where Wf̃ is defined by (1.7) and (1.8), and
hi + hi+1

2
f(xi) = Tn(fϕj). Thus, since the finite element stiffness matrix is

still S, we have that

a(uFDh , ϕj) = Tn(fϕj), for all j = 1, 2, . . . , n− 1.

Using the linearity of a(uFDh , ·) and Tn(f, ·), we have that

(3.7) a(uFDh , vh) = Tn(fvh), for all vh ∈ Vh.
On the other hand, we have

(3.8) a(uFEh , vh) = (f, vh) =

∫ 1

0
fvh dx, for all vh ∈ Vh.

From the equations (3.7) and (3.8), we obtain

a(uFEh − uFDh , vh) = Fh(vh) :=

∫ 1

0
fvh dx− Tn(fvh).

Consequently,

(3.9) |uFEh − uFDh | = sup
vh∈Vh

Fh(vh)

|vh|
:= ‖Fh‖V ∗h

where the supremum is taken over all non-zero vectors.
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Theorem 3.3. Assume that f ∈ C2([0, 1]), and that uFEh and uFDh are
the finite element and the finite difference corresponding solutions of the
boundary value problem (1.1) on the nodes x0 = 0 < x1 < . . . < xn = 1.

Let h = max
i=1,n

(xi − xi−1) = max
i=1,n

(hi). Then,

(3.10) |uFEh − uFDh | ≤ h2

(
‖f ′′‖∞

12
+
‖f ′‖∞

6

)
.

Proof. According to the equation (3.9), we just have to find an upper bound
for ‖Fh‖V ?

h
. Let θi(x) := f(x)vh(x), for x ∈ [xi−1, xi], i = 1, 2, . . . , n. Using

the trapezoid rule error formula for θi, we have that

(3.11) Fh(vh) = − 1

12

n∑
i=1

h3
i θ
′′
i (ξi), ξi ∈ [xi−1, xi].

To simplify the notation, we assume that vh =

n−1∑
i=1

αiϕi. Then, on the

interval (xi−1, xi), v
′
h = αi−αi−1

hi
, and from the equation (3.11), we have

Fh(vh) = − 1

12

(
n∑
i=1

h3
i f
′′(ξi)vh(ξi) + 2

n∑
i=1

h3
i

αi − αi−1

hi
f ′(ξi)

)
.

We have hi ≤ h and |vh(x)| ≤ ‖vh‖∞ ≤ |vh|, for all vh ∈ Vh. Thus,

(3.12) |Fh(vh)| ≤ 1

12
h2|vh|

n∑
i=1

hi|f ′′(ξi)|+
1

6
h2‖f ′‖∞

n∑
i=1

|αi − αi−1|.

Using the discrete mean value theorem, (see e.g., Theorem 9.1 in [5]), for
some ξ ∈ (0, 1), we have

n∑
i=1

hi|f ′′(ξi)| = |f ′′(ξ)|
n∑
i=1

hi ≤ ‖f ′′‖∞.

For the second sum in (3.12), the Cauchy-Schwarz inequality gives

n∑
i=1

|αi − αi−1| =
n∑
i=1

h
1
2
i

|αi − αi−1|

h
1
2
i

≤

(
n∑
i=1

hi

)1/2( n∑
i=1

|αi − αi−1|2

hi

)1/2

=

(
n∑
i=1

∫ xi

xi−1

(v′h)2dx

)1/2

= |vh|.

Combining the last two estimates with (3.12), gives

|Fh(vh)| ≤ 1

12
h2|vh|‖f ′′‖∞ +

1

6
h2‖f ′‖∞|vh|.

Hence,

‖Fh‖V ∗h ≤ h
2

(
‖f ′′‖∞

12
+
‖f ′‖∞

6

)
,
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which, together with (3.9) proves the statement of the theorem. �

Corollary 3.4. Under the same assumptions as in the Theorem 3.3, we
have

(3.13) |u− uFDh | ≤ Ch(‖f ′′‖∞ + ‖f‖L2(0,1)),

where C is a constant independent of h or f .

Proof. It is known that the following estimate for the finite element error in
the energy norm holds

(3.14) |u− uFEh | ≤ Ch‖f‖L2(0,1).

where C is a constant independent of h or f , see e.g. [1, 2, 3].
Now, the inequality (3.13) follows using (3.14), (3.10), and the triangle

inequality

|u− uFDh | ≤ |u− uFEh |+ |uFEh − uFDh |.
�

4. Interesting extensions to the 2D case

Let Ω ⊂ R2 be a polygonal domain, and f ∈ L2(Ω) or f is a continuous
functional on H1

0 (Ω). Consider the model problem: Find u such that

(4.1)

{
−∆u = f in Ω,

u = 0 on ∂Ω.

The corresponding variational or weak formulation of (4.1) is:
Find u ∈ H1

0 (Ω) such that

(4.2) a(u, v) = (f, v), for all v ∈ H1
0 (Ω),

where, for any u, v ∈ H1
0 (Ω), and for f ∈ L2(Ω),

a(u, v) :=

∫
Ω
∇u · ∇v dx, and (f, v) :=

∫
Ω
f(x)v(x) dx.

For the discretization of (4.1), we let Th be a triangulation of Ω and con-
sider Vh a conforming finite element space with a nodal basis {ϕ1, · · · , ϕn}
associated with the mesh Th. If ϕj is a generic basis function with support
Dj ⊂ Ω, we assume

Dj =

nj⋃
i=1

Ti, with Ti being a triangle in Th.

The formula (2.1) is a formula of significant importance because it shows
the strong connection between the FE and the FD discretizations in 1D.
A corresponding formula for the 2D case can be obtained by applying the
Green’s formula for the function fϕj = −∆uϕj to get
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(4.3)

(f, ϕj) =

∫
Ω
−∆uϕj dx =

∫
Ω
∇u · ∇ϕj dx =

= −
∑
Ti⊂Dj

∫
Ti

(∆ϕj)u dx+
∑
Ti⊂Dj

∫
∂Ti

(∇u · n)u ds.

where n is the outer normal vector to the integration domain’s boundary.
Similary to the 1D case, the components (f, ϕj) of the dual vector f relative
to the basis {ϕ1, · · · , ϕn} can be written as linear combinations of degrees
of freedom acting on u. However, in this case, the degrees of freedom have
to involve integrations on triangles and on the edges of Th. We can redefine
an interpolant using the new degrees of freedom in order to have the FE
solution agree with the interpolant. However, the main challenge in this
case is to match the number of degrees of freedom with the number n of
basis functions when considering the system given by (4.3). Except for very
simple meshes, this seems to be difficult to achieve.

Next, we consider two special 2D cases, leaving the challenge to extend
this idea to the more general cases of meshes in 2D or 3D for future work.

4.1. The Green function for the 1D BVP as a 2D discretization
function fo the 2D BVP. Consider the problem (4.1) on the unit square
Ω = (0, 1) × (0, 1), and define the mesh T1 = T1 ∪ T2, where T1, T2 are the
two triangles determined by the positive slope diagonal Γ of Ω. We define
Vh = V1 = span{G}, where G = G(x, y) is the function defined in (1.3).

We have G ∈ H1
0 (Ω), and if u is the solution of (4.1), then

(4.4)

(f,G) =

∫
Ω
−∆uGdxdy =

∫
Ω
∇u · ∇Gdxdy =

=

∫
T1

−∆Gudxdy

∫
∂T1

(∇G · nT1)u ds+

+

∫
T2

−∆Gudxdy

∫
∂T2

(∇G · nT2)u ds.

Using that ∆G = 0 on Ω\Γ and on Γ = {(x, y) ∈ Ω| x = y}, and that

∇G|T1 · nT1 +∇G|T2 · nT2 =
√

2,

from (4.4), we obtain a formula for
∫

Γ u ds.

Theorem 4.1. Let u be the solution of (1.1). Then,

(4.5)

∫
Γ
u ds =

1√
2

∫
Ω
fGdxdy =

1√
2

∫
Ω
∇u · ∇Gdxdy.

Remark 4.2. The simple calculations leading to formula (4.5) have the
following consequences:

i) The function G = G(x, y) is the unique solution of

(4.6) −∆u =
√

2 δΓ on Ω = (0, 1)× (0, 1),
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where

δΓ(ϕ) =

∫
Γ
ϕds, for all ϕ ∈ C∞0 (Ω).

ii) The function G = G(x, y) is the Riesz representation of
the functional

√
2 δΓ : H1

0 (Ω)→ R.
iii) Part ii) can be viewed as an extension of the 1D problem on (0, 1),

where, for each s ∈ (0, 1), the function

x→ s(1− s)Φs(x) = G(s, x)

is the Riesz representation of δs : H1
0 (Ω)→ R,

δs(ϕ) = ϕ(s), for any ϕ ∈ C∞0 (Ω).

iv) The function G = G(x, y) can be viewed also as the finite element
discretization of (1.1), using C0−P 2 discretization on the space V1.

v) In light of the FD versus FE connections presented here, any 2D

quadrature approximation of the 2D integral
1√
2

∫
Ω
fG can be viewed

as a “finite difference” approximation of

∫
Γ
u ds, where u is the

solution of (1.1).

4.2. A bubble function for the 2D discretization on a special do-
main. Consider that Ω is the domain defined by one equilateral triangle T
with vertices z1, z2, z3. We define the bubble function

B = λ1λ2λ3,

where λ1, λ2 and λ3 are the linear functions on T with the property that
λi(zj) = δij , i, j = 1, 2, 3. We denote the area of the triangle T by |T |.

It is easy to check that B ∈ H1
0 (Ω) and

(4.7) −∆B =
1√

3 |T |
.

Then, for any function ϕ ∈ H1
0 (Ω), we have

(4.8)
1√

3 |T |

∫
Ω
ϕ =

∫
Ω

(−∆B)ϕ =

∫
Ω
∇B · ∇ϕ.

In particular, if u ∈ H1
0 (Ω) is the solution of (4.1) for a given f , we have

(4.9)
1√

3 |T |

∫
Ω
u =

∫
Ω
∇B · ∇u =

∫
Ω
f B = (f,B).

Theorem 4.3. Let Ω be an equilateral triangle, and let u be the solution of
(1.1), then

(4.10)

∫
Ω
u =
√

3|Ω|
∫

Ω
fB.

Remark 4.4. As in the previous case, we point out the following conse-
quences:
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i) The function
√

3 |Ω|B is the unique solution of{
−∆u = 1 in Ω,

u = 0 on ∂Ω.

ii) From (4.8), the function
√

3B is the Riesz representation of the
functional F : H1

0 (Ω)→ R,

F (ϕ) =
1

|Ω|

∫
Ω
ϕ.

iii) The function
√

3 |Ω|B can be viewed also as the finite element dis-
cretization of (1.1), using C0 − P 3 discretization on the space
V0 := span{B}.

iv) Any 2D quadrature approximation of
√

3
∫

Ω fB dxdy can be viewed

as a “finite difference” approximation of 1
|Ω|
∫

Ω u, where u is the

solution of (1.1).

We note that the assumption that Ω be an equilateral triangle is needed
in order to have that the Laplacian operator acting on the bubble function
is a constant function.

5. Conclusion

We considered the finite difference and the finite element methods for a
model boundary value problem. We emphasized the connections between the
two methods by rewriting the FD system such that the matrix of the system
coincides with the stiffness matrix of the FE discretization. In this reformu-
lation, the right hand side vector for the FD system can be also viewed as a
dual vector obtained componentwise from the composite trapezoid rule ap-
proximation of the FE dual vector. Using the connection between the Green
function and the C0 − P 1 finite element basis functions, we found that the
inverse of the stiffness matrix S is exactly the matrix obtained by evaluat-
ing the Green function at the interior grid nodes {(xi, xj)} ⊂ (0, 1)× (0, 1).
Consequently, we found simplified proofs for the standard FD error analysis,
and provided an energy estimate for the difference between the FE and FD
solutions. We presented interesting possible extensions to the 2D case based
on the fact that the components of the FE dual vector associated with the
given data f acting on conforming finite element basis functions, can be
written as linear combinations of various degrees of freedom acting on the
solution u. The challenges of extending these ideas to the more general cases
of discrete spaces and meshes in 2D or 3D, remain to be addressed in our
future work.
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