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ABSTRACT: Motivated by markets for “expertise,” we study a bandit model where a

principal chooses between a safe and risky arm. A strategic agent controls the risky

arm and privately knows whether its type is high or low. Irrespective of type, the

agent wants to maximize duration of experimentation with the risky arm. However,

only the high type arm can generate value for the principal. Our main insight is that

reputational incentives can be exceedingly strong unless both players coordinate on

maximally inefficient strategies on path. We discuss implications for online content

markets, term limits for politicians and experts in organizations.

“One forgets that though a clown never imitates a wise man, the wise man can

imitate the clown.”
—Malcolm X

Several environments in which a principal relies on an “expert” (agent) share the following

features: (1) the agent has a privately known type (good or bad) and the principal wishes

to dynamically screen, (2) the type determines the rate at which the agent receives private

information that is payoff relevant for the principal, and, (3) the agent acts strategically based

on this information in an effort to manage his reputation and prolong his relationship with the

principal.
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For example, a surfer on the internet searching for content may be faced with a content

provider of unknown quality. The provider wishes to sustain the surfer’s attention, but this

creates a dilemma: genuine content (which varies in quality) can only be generated period-

ically. How do content providers balance the quality and the frequency of the new content

they provide with the aim of retaining both interest and trust? Similar incentives are faced

by elected politicians. The ability of the politician determines whether or not he has effective

policy ideas, but a politician trying to stay in office could feel pressured into enacting risky

policies that are unlikely to succeed in an attempt to appear proactive. How does this reelec-

tion incentive affect the politician’s policy choices? Finally, similar incentives are also faced

by “experts” in organizations. For example, a scientist in a pharmaceutical company who is

trying to establish a reputation for being innovative, may choose to recommend a costly drug

trial which is very unlikely to succeed.

We develop and study a novel repeated game to analyze such environments. Because both

players are long-lived and the lack of commitment implies that incentives are provided only

via continuation value, our framework is effectively a relational contracting setting where the

agent has persistent (and periodic) private information.

Our main insight is that the agent’s reputational incentives are so strong that they can

destroy the relationship unless both players can coordinate on “maximally inefficient” strate-

gies. Perhaps paradoxically, this shows that what helps relationship functioning is precisely

the players’ ability to mutually agree to terminate it at the point where uncertainty is resolved

and, as a result, the relationship is at its most valuable.

Summary of Model and Results

Our model is perhaps easiest to describe as a bandit model with a strategic arm and we use

this metaphor throughout the paper. In the next paragraph, we link various elements of the

model to the first application since this is perhaps the least apparent of the three settings

mentioned above. The implications of our results for all three applications are developed in

detail in the body of the paper.

In each period, the principal (online content consumer) chooses between experimenting

with a costly risky arm of unknown type (visiting the website) and a costless safe arm (not
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visiting, the outside option). The risky arm’s type is privately known by the agent (con-

tent provider) who also controls its output. If the arm is the good type, it stochastically re-

ceives private project ideas (news stories) that vary in quality (the accuracy of reporting); the

bad type never receives any ideas. If the principal decides to experiment, the agent chooses

whether or not to costlessly implement the project (publish a story) based on the idea he re-

ceived (if any). An implemented project generates a public success or failure (the veracity of

the story once cross-checked by other news outlets), the probability of which depends on the

quality of the idea. In our model, good projects always succeed, bad projects (implemented

despite not receiving an idea) never succeed, while implementing a risky project sometimes

results in a success (and sometimes in a failure). The principal wants to simultaneously maxi-

mize the number of successes (true stories) and minimize failures, whereas the agent wants to

maximize the duration of experimentation by the principal (that is, maximize the number of

website visits). To make the model interesting, we assume that implementing risky projects is

myopically inefficient, in that, it generates a negative expected payoff for the principal. This

way, there is a tension between the agent’s need to establish reputation (generate successes)

and the principal’s desire to avoid failures.

Since implementing a project is costless to the agent, there are no frictions in our environ-

ment if the agent’s type is publicly known. In this “first-best” benchmark (Theorem 1), the

principal-optimal Nash equilibrium strategy is for her to always experiment with the good

type agent, and, in response, the agent (who is indifferent between all strategies) acts effi-

ciently, i.e., only implements good projects. These Nash equilibrium strategies also generate

the unique Pareto-efficient outcome. Conversely, if the agent is known to be the bad type,

the principal never experiments in the unique Nash equilibrium outcome: experimentation is

costly and the bad type can never generate positive payoffs for the principal.

Despite the lack of frictions, there are a multiplicity of Nash equilibria even when the agent

is known to be the good type. Indeed, there is a Nash equilibrium in which there is complete

relationship breakdown: the good type never runs a project and, in response, the principal

never experiments. Our main insight is to show that such maximal inefficiency, on path, can be

necessary for the relationship to function.

To see why, now suppose there is uncertainty about the agent’s type. We first examine

Nash equilibrium outcomes with the following (mild) refinement, the sole purpose of which

is to rule out the maximal inefficiency identified above. The refinement requires that, at all
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on-path histories where the principal first learns that the agent is the good type (for sure),

the continuation equilibrium is nontrivial (that is, the principal experiments at some continu-

ation history with positive probability). To put it differently, whenever the agent first proves

himself to be the good type, he receives positive continuation utility because the relationship

does not completely break down. Continuation play at these histories can be inefficient as

long as it is not maximally so. In what follows, this refinement is implicit whenever we refer

to equilibrium without using the additional “Nash” qualifier.

When there is type uncertainty, the principal may experiment with the risky arm in order

to give the agent a chance to reveal himself to be the good type by generating a success. Of

course, whether or not experimentation is worthwhile depends on how many (costly) fail-

ures the principal must suffer along the way. The key tradeoff in our model is that, absent

any dynamic enforcement, the good type always wants to implement risky projects to gen-

erate successes since he does not bear the cost of failures. To make this tradeoff between the

agent’s action strategy and the principal’s decision to experiment explicit, we consider a sec-

ond “static” benchmark which captures the highest payoff that the principal can achieve from

experimenting for a single period subject to the refinement.1 Here, the principal experiments

for the first period and stops experimenting if no success is generated. Conversely, a success

(reveals the agent to be the good type and) is followed by first-best continuation play (which

yields the highest possible continuation value for the principal). Since only a success guar-

antees positive continuation value, the good type (strictly) best responds by implementing

both good and risky projects; being indifferent, he does not run bad projects (which avoids

unnecessary failures for the principal).

The sign of the principal’s payoff in this benchmark determines her tolerance for what

we call a lack of quality control; that is, when the good type agent always implements risky

projects. If, and only if, the principal’s payoff in this benchmark is positive, the strategies

described in the previous paragraph constitute an equilibrium and, hence, the principal is

willing to experiment even when the good type agent always runs risky projects (Theorem 2).2

Conversely, when the payoff in this benchmark is negative, we say quality control is necessary

1We term this as static because screening only occurs for one period.
2One needs to carefully specify the strategy of the bad type: he must also act with positive probability as oth-
erwise acting alone will cause the principal’s belief to jump to one and so, per the refinement, the continuation
equilibrium after a failure must also be nontrivial. However, because our refinement only bites if beliefs jump
to exactly 1, this probability can be taken to be arbitrarily small so that the principal’s loss from the bad type is
correspondingly small.
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for experimentation. In this case, the principal has to provide dynamic incentives to police

the agent’s actions in order to receive an overall positive value from experimentation; simple

static strategies of the sort described above will not work.

Our first result (part 1 of Theorem 3) shows that the principal can never completely prevent

the agent from choosing inefficient actions in any equilibrium—in every nontrivial equilib-

rium, the agent implements both risky and bad projects on path. Part 2 of Theorem 3 shows

that the surplus loss from this inefficiency can be large. Specifically, whenever quality control

is necessary for experimentation, the unique equilibrium outcome is one in which the princi-

pal never experiments. In short, whenever the principal needs to discipline the agent to make

experimentation worthwhile, the agent’s need to establish reputation makes this impossible!

What makes our result stark is that breakdown can occur even with arbitrarily small amounts

of uncertainty or even if “minimal quality control” can make experimentation profitable. We

discuss each of these and their implications in turn. There are parameter values such that

quality control might be necessary even when the agent is almost surely known to be the good

type. For instance, when failures are very costly to the principal, experimentation will not be

profitable even with a high belief if the good type agent always implements risky projects.

However, when the principal’s belief is high, one might expect that the agent’s reputational

incentives are weaker and that he can be incentivized to act efficiently sufficiently often to

make experimentation worthwhile. An implication of our main result is that this is not the

case: the principal’s equilibrium payoff discontinuously drops from that of the first-best to

zero as there is infinitesimal uncertainty about whether the agent is the good type.

When the principal’s payoff in the static benchmark is negative but small, this corresponds

to the case where the principal would not experiment if the agent acts inefficiently at every

opportunity but experimentation would be profitable if the agent chose to behave efficiently

even a small fraction of the time. Our result implies that the principal cannot even provide

the long run incentives to make efficient play occur at a small fraction of histories. In this

sense, the loss of surplus due to reputational concerns can be large relative to the first best.

In Section 4, we show how coordination on maximal inefficiency can restore relationship

functioning (Theorem 5). In Section 5, we first apply this insight to demonstrate that term lim-

its for politicians can improve policy making not despite, but precisely because, even proven

good politicians must leave office at the end of their term. We also discuss the two other

applications: the benefits of moving from advertising driven revenue to subscription based
5
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payment in online content markets and the hiring of experts in organizations. In our con-

cluding remarks (Section 6), we also argue that our main result is robust to relaxing several

assumptions.

Related Literature

This paper is most closely related to two strands of the repeated games literature. The first

is the literature on “bad reputation” which builds on the work of Ely and Välimäki (2003)

(henceforth EV). They consider a two player repeated game and show that the reputational

incentives of a long-lived agent with a privately known type can cause the loss of all surplus

when faced with a sequence of short-lived principals. The game we analyze is distinct from

theirs in that our model does not not have the payoff structure of a bad reputation game in

the sense of Ely, Fudenberg, and Levine (2008). More importantly, our paper is the first to

establish a bad reputation result in a model with two long-lived players (one of whom has

multiple strategic types) and in which the principal’s discount factor is intermediate. More-

over, our result does not depend on the agent’s discount factor at all. We postpone a more

detailed discussion of the differences to Sections 3 and 4. As we argue, these properties are

not just of theoretical interest but are also important to capture relevant applications.

These features also distinguish our result from the broader reputation literature which

demonstrates how a long-lived player with a privately known type, facing a sequence of

short-lived players, can attain her Stackelberg payoff for sufficiently high discount factors (by

mimicking commitment types). There is a substantially smaller fraction of this literature that

identifies classes of games in which this result obtains with two long-lived patient players.

Early examples are Schmidt (1993) and Cripps and Thomas (1997), more recent papers are

Atakan and Ekmekci (2012, 2013).

Our paper can also be thought of as an instance of a relational contracting problem. Like

our setting, Levin (2003) studies a model with both adverse selection and strategic actions

but importantly, his agent draws his private cost type independently in each period. More

recently, Li, Matouschek, and Powell (2017) consider a setting without transfers where the

agent has independently drawn private information in each period. The absence of persistent

private information for the informed player is the main distinction between our paper and the

vast majority of this literature. In Halac (2012), the principal has a privately known persistent

outside option. This qualitatively differs because this private information does not affect the
6
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total surplus and instead determines the amount that the principal can credibly promise to

the agent. Malcomson (2016) is a recent instance of a paper with persistent payoff-relevant

private types; his main result is that full separation of the agent’s types is not possible via

a relational contract. All of the papers in this strand of the literature study substantially

different economic settings from this work but an important additional difference is that our

model features periodic (in addition to the persistent) private information. This difference

is not merely cosmetic and the latter ingredient is critical to generate our main economic

insights. Finally, Mitchell (2020) also considers a related problem without transfers but his

setting is one of pure moral hazard.

While otherwise very different, the reputational incentives (and the fact that they can dis-

tort behavior) in our setting are similar in spirit to those in models where experts with private

types choose actions in an attempt to demonstrate competence (Prendergast and Stole (1996),

Morris (2001), Ottaviani and Sørensen (2006)). More recently, Backus and Little (2018) con-

sider a single period, extensive-form game of expert advise where they derive conditions un-

der which an expert can admit uncertainty. Our setting shares an essential modeling feature

that good types may not be able to provide the principal with positive utility in all periods.

Aghion and Jackson (2016) consider a political economy setting where voters (principal) must

incentivize a politician (agent). Formally, they consider a setting without transfers where a

principal is trying to determine the type of a long-lived agent. While some features of our

game are similar (the agent’s payoff and the fact that she receives private information in each

period), the main driving forces in their model are different. Specifically, signaling is not a

source of inefficiency in their setting; instead, the principal wants the agent to take “risky”

actions that are potentially damaging to the latter’s reputation.

1. THE MODEL

We study a discrete time, infinite horizon repeated game of imperfect public monitoring

between a principal and an agent. We denote time by t ∈ {1, . . . , ∞}; the principal and agent

discount the future with discount factors δ, β ∈ (0, 1) respectively.

7



DEB, MITCHELL, AND PAI

Agent’s Initial Type: The agent starts the game with a privately known type θ which can either

be good (θg) or bad (θb). The agent is the good type θg with commonly known prior probabil-

ity 0 < p0 < 1. This initial type determines the rate at which the agent can generate positive

payoffs for the principal.

We begin by describing the stage game (summarized in Figure 1) after which we define

strategies and Nash equilibrium.

1.1. The Stage Game

At each period t, the principal and agent play the following extensive-form stage game

where the order of our description matches the timing of moves.

Principal’s Action: The principal begins the stage game by choosing whether or not to experi-

ment xt ∈ {0, 1}, where xt = 1 corresponds to experimenting. The cost of action xt is cxt with

c > 0 so experimentation is costly. If the principal chooses not to experiment, the stage game

ends. When she experiments, the stage game proceeds as follows.

Agent’s Information: In each period, the agent receives a project idea it. These can either be

bad (it = ib), risky (it = ir) or good (it = ig). it is drawn independently in each period from a

distribution that depends on the agent’s type θ.

The bad type only receives bad project ideas: i.e., if θ = θb, then it = ib with probability 1.

The good type additionally receives risky and good project ideas stochastically. That is,

if θ = θg, the agent gets good (it = ig), risky (it = ir) and bad (it = ib) project ideas with

probabilities λg, λr ∈ (0, 1) and 1− (λg + λr) respectively where λg + λr =: λ ∈ (0, 1).

Agent’s Action: After receiving the project idea, the agent decides whether or not to costlessly

implement the project. Formally, he picks a public action at ∈ {0, 1} where at = 1(0) denotes

whether (or not) the project was run.

Public Outcomes: If the principal experiments (xt = 1) and the agent acts (at = 1), a public

outcome ot ∈ {o, o} is realized from a distribution µ given by

µ(o | it) =


1 if it = ig,

qr if it = ir,

0 if it = ib,

where qr ∈ (0, 1) and o is realized with the complementary probability.
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A success (o) can only be generated by the good type and the likelihood of a success is

determined by the project quality: a good project always generates a success and a risky

project sometimes generates a success. The tension in the model arises from the fact that the

good type may want to implement risky projects in an effort to signal his type. Since this can

generate failures (o), the bad type may also act in an attempt to pool even though he only ever

receives bad project ideas.

This “good news” assumption (common in bandit models) implies that successes perfectly

reveal that the agent is the good type. As we will discuss below, this assumption is deliber-

ately stark (we do not require it for our main insights). It is intended to highlight that rela-

tionship breakdown can arise even though the good type can separate perfectly at histories

where he receives good project ideas and, hence, one might expect screening to be possible.

If either the principal does not experiment (xt = 0) or the agent does not act (at = 0),

the stage game ends with the agent generating neither a success nor failure. We denote this

outcome by ot = oϕ. Note that the extensive form implies that the agent does not receive

project ideas or get to move if the principal does not experiment; to simplify notation, we

define at = 0 and it = ib when xt = 0.

We use the shorthand notation ht = (xt, at, ot), ht ∈ {��h, hϕ, h, h} to describe the (public)

outcome of the stage game. Here,

��h := (x = 0, a = 0, o = oϕ), hϕ := (x = 1, a = 0, o = oϕ),

h := (x = 1, a = 1, o = o), h := (x = 1, a = 1, o = o).

In words, ��h denotes the case where principal chooses not to experiment, the remaining three

correspond to the separate outcomes that can occur after the principal experiments. hϕ de-

notes the case where the agent does not act, and h, h denote the cases where the agent acts

and a success, failure respectively are observed.

We use time superscripts to denote vectors. Thus, ht = (h1, . . . , ht) and it = (i1, . . . , it).

Additionally, ht′ht (and analogously for other vectors) denotes the t′ + t length vector where

the first t′ elements are given by ht′ and the t′ + 1st to t′ + tth elements are given by ht.

Stage Game Payoffs: The agent wants to maximize the duration of experimentation. Formally,

his normalized payoff is u(xt) = xt, so he receives a unit payoff whenever the principal

experiments.
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The principal wants to maximize (minimize) the number of successes (failures). Her payoff

v is given by

v(ht) =



1− c if ht = h,

−κ − c if ht = h,

−c if ht = hϕ,

0 if ht = ��h.

In words, gross of cost, the principal realizes a normalized payoff of 1 for every success, a loss

of κ > 0 for every failure and 0 otherwise.

Payoff Assumptions: We assume that risky projects yield a net loss for the principal: qr <

(1 − qr)κ. This assumption creates one of the key tradeoffs in the model: absent signaling

value, the principal wants to prevent the agent from running risky projects.

Additionally, we assume that the cost of experimentation is sufficiently low to make the

model nontrivial, that is, c < λg. If this assumption is not satisfied, the principal has no

incentive to experiment even if the agent is known to be the good type.

1.2. The Repeated Game

Histories: ht−1 ∈ {��h, hϕ, h, h}t−1 denotes the public history (henceforth, simply a history) at

the beginning of period t. This contains all the previous actions of and outcomes observed by

both players. The good type agent’s private history additionally contains all previous project

ideas it−1 and the period-t project idea it when he is deciding whether or not to act (the bad

type only receives bad project ideas and therefore has no additional private history). We use

the convention that h0 = ϕ denotes the start of the game. We use H and H g to respectively

denote the set of histories and the set of the good type agent’s private histories.3

Agent’s Strategy: We denote the agent’s strategy by ãθ . When the agent is the bad type,

ãθb(h
t−1) ∈ [0, 1] specifies the probability with which the agent acts at each period t as a

function of the history ht−1 ∈ H . When the agent is the good type, ãθg(h
t−1, it) ∈ [0, 1] spec-

ifies the probability with which he acts at each period t as a function of his private history

(ht−1, it) ∈ H g. Since the agent can only act when xt = 1, this is implicitly assumed in the

notation and we do not add this as an explicit argument of ãθ for brevity.

3Note that H g only contains histories where the outcomes for the stage game are compatible with the project
ideas received by the good type; recall that successes cannot arise when the good type implements bad projects.
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Principal’s Strategy: The principal’s strategy x̃(ht−1) ∈ [0, 1] specifies the probability of exper-

imenting in each period t as a function of the history.

On- and off-path Histories: Given strategies x̃ and ãθ , a history ht−1 ∈ H is said to be on path

(off path) if it can (cannot) be reached with positive probability for either (both) of the agent’s

possible types θ ∈ {θg, θb}. Similarly, a private history (ht−1, it) ∈ H g is said to be on path

(off path) if it can (cannot) be reached with positive probability when θ = θg.

Beliefs: A belief p̃ is associated with a pair of strategies x̃, ãθ (we suppress explicit dependence

on the strategies for notational convenience). p̃(ht−1) is principal’s belief that the agent is

the good type at history ht−1. If this history is on-path, p̃(ht−1) is derived from the agent’s

strategy ãθ by Bayes’ rule. In the entirety of what follows, we impose no restriction on how

off-path beliefs are formed.

Expected Payoffs: We use Uθg(h
t−1, it−1, x̃, ãθg), Uθb(h

t−1, x̃, ãθb), V(ht−1, x̃, ãθ) to denote the ex-

pected payoff of the good, bad type agent and principal respectively at histories ht−1 ∈ H ,

(ht−1, it−1) ∈ H g given strategies x̃, ãθ . Note that the principal’s payoff implicitly depends

on her belief p̃(ht−1) at this history.

Nash Equilibrium: A Nash equilibrium (henceforth referred to as NE) consists of a pair of

strategies x̃, ãθ such that they are mutual best responses. Formally, this implies that Uθg(h
0, i0, x̃, ãθg) ≥

Uθg(h
0, i0, x̃, ã′θg

), Uθb(h
0, x̃, ãθb) ≥ Uθb(h

0, x̃, ã′θb
) and V(h0, x̃, ãθ) ≥ V(h0, x̃′, ãθ) for any other

strategies x̃′, ã′θ .

Nontrivial NE: A NE is nontrivial if there is an on-path history (ht) where the principal experi-

ments with positive probability (x̃(ht) > 0).

We similarly will also use the phrase “nontrivial” to describe strategies and equilibria (with

our refinement in place). It always refers to the fact that the principal experiments on path.

Before beginning the analysis, it is worth discussing the main assumptions of the model:

(i) the monitoring structure mapping project type to outcomes, (ii) the lack of transfers, (iii)

actions being costless and (iv) ideas arriving for free. The first is probably the least controver-

sial because it is common in bandit models to assume a “good news” information structure.

As mentioned above, successes in our model perfectly reveal that the agent is the good type.

This assumption is deliberately stark. It is intended to highlight that relationship breakdown

can arise even though the good type can separate perfectly at histories where he receives good

11
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Agent
privately

learns
θ0 ∈

{
θg, θb

}

Principal
picks

xt ∈ {0, 1}

Agent
privately

learns
it ∈ {ih, il , iϕ}

Agent
publicly acts

at ∈ {0, 1}

Public
outcome

ot ∈ {o, o}
observed

Public
outcome
ot = oϕ

observed

Payoffs
Realized

Principal
picks

xt+1 ∈ {0, 1}

xt = 0

xt = 1

at =
0

at = 1

FIGURE 1. Flow chart describing the repeated game; the rectangle contains the
stage game.

project ideas and, hence, one might expect screening to be possible. We argue below that our

main insight is unaffected if we dispense with these assumptions.

2. TWO BENCHMARKS AND THE EQUILIBRIUM REFINEMENT

We begin by considering two simple benchmarks which provide context for our main re-

sult. Section 2.1 considers a setting where there is no incomplete information. This motivates

the refinement that we define in Section 2.2. Finally, we consider a “static” benchmark in

Section 2.3 that provides a foundation for the key parameter values that we focus on.

2.1. The First-Best Complete Information Benchmark

The purpose of this section is to show that the key friction in the model is the principal’s

need to screen the good from the bad type. To do so, we consider a benchmark in which the

agent’s type is publicly known; formally, this corresponds to the case where the prior belief

p0 ∈ {0, 1}. The theorem below characterizes the “first-best” NE under complete information.

As we often do in the paper, formal statements are presented in words sans notation to make

them easier to read. Where we feel it is helpful to the reader, we additionally describe the

strategies using the notation in footnotes and/or appendices.
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THEOREM 1. If the agent is known to be the bad type, there is a unique NE in which the principal

never experiments.4 Conversely, if the agent is known to be the good type, then, in the unique Pareto-

optimal NE outcome the principal always experiments and the agent only implements good projects.5

This result is obvious so the following discussion serves as the proof. The principal never

experiments when the agent is known to be the bad type since experimentation is costly and

this type cannot generate any successes which are the only outcomes that yield a positive

payoff to the principal. Conversely, if the agent is known to be the good type, there are no

frictions. As long as the agent only runs good projects, it is always profitable for the principal

to experiment. Since actions are costless, the agent is indifferent between all strategies and

so, in particular, always choosing the principal optimal action is a best response. In what

follows, whenever we describe the behavior of either player as efficient, we are referring to the

strategies described in Theorem 1 above. We use

Π :=
λg − c
1− δ

> 0

to denote the first-best payoff that the principal obtains from the good type. This is clearly an

upper bound for the payoff that the principal can achieve in any NE for p0 ∈ [0, 1].

2.2. The Equilibrium Refinement

Despite the lack of frictions when the agent is known to be the good type, there exist other,

inefficient Nash equilibria where the principal does not always experiment because the agent

acts inefficiently at certain histories. Indeed, complete relationship breakdown is also a NE:

the principal never experiments and, in response, the agent never acts—these strategies are

mutual best responses. As our main insight is the importance of such on-path maximal inef-

ficiency for relationship functioning, we will show that the market can breakdown when we

impose the following refinement that rules out these (and only these) strategies on path.

Equilibrium Refinement: An equilibrium (with no additional qualifier) is a NE in which, at all on-

path histories where the principal’s belief (first) jumps to 1, the continuation play is nontrivial.

4Formally, the principal’s unique NE strategy when p0 = 0 is x̃(ht−1) = 0 for all ht−1 ∈H . The agent’s strategies
can be picked arbitrarily.
5Formally, the Pareto-optimal NE strategies when p0 = 1 are x̃(ht−1) = 1, ãθb

(ht−1) = 0 for all ht−1 ∈ H and
ãθg (h

t−1, it−1it) = 1(0) for all (ht−1, it−1it) ∈H g where it = ( 6=)ig.

13
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Formally, NE strategies x̃, ãθ are an equilibrium if, at all on-path histories ht−1ht ∈H such

that p̃(ht−1) < 1 and p̃(ht−1ht) = 1, there exists an on-path continuation history ht−1htht′ ∈

H such that x̃(ht−1htht′) > 0.

Some readers might view this refinement as natural because it can be thought of as an

extremely weak form of renegotiation proofness. While we are not aware of other papers

that employ this exact refinement, more restrictive versions exist in the literature. Another

natural but stronger alternative would require continuation play to be nontrivial at all on-path

histories ht−1 ∈ H where the belief is p̃(ht−1) = 1. An even stronger refinement would be

to impose efficient continuation play (in the sense of Theorem 1) once uncertainty is resolved.

This refinement is employed by EV in whose model similar multiplicity arises; they explicitly

refer to it as renegotiation-proofness.6

Finally, note that the above refinement is, in an informal sense, weaker than standard re-

finements such as Markov perfection. This is, once again, because the refinement only has

bite the first time the principal’s belief jumps to 1 on path, whereas Markov perfection re-

stricts on-path behavior to always be measurable with respect to beliefs. That said, observe

that Markov strategies are not a subset of our refinement. In particular, Markovian strategies

allow for breakdown at all belief 1 histories.7

2.3. The “Static” Benchmark and the Need for Quality Control

In this section, we present, and provide a foundation for, the main parameter values that

we focus on. We are interested in parameter values where there is a tradeoff between the

agent’s short term need to establish reputation and the principal’s value from experimenta-

tion. To do so, we examine a “static” benchmark where the agent only has a single period to

prove himself to be the good type. When parameter values are such that the payoff in this

benchmark is negative, experimentation is only worthwhile to the principal if she can provide

dynamic incentives to prevent the agent from always implementing risky projects.

6To the best of our knowledge, there is no single, accepted renegotiation-proofness refinement in repeated
games with uncertainty. Our refinement (imposed after the agent’s type uncertainty is resolved) is substan-
tially weaker than what is implied by many renegotiation-proofness refinements in the literature for complete
information games. For instance, the consistency requirements in Farrell and Maskin (1989), Abreu, Pearce, and
Stacchetti (1993) and, most recently, the sustainability requirement (without renegotiation frictions) of Safronov
and Strulovici (2017) would yield the efficient outcome when the agent’s type is initially known to be good. All
three are defined for complete information repeated games with normal form stage games but can be applied to
our extensive-form stage game as well.
7That said, the only Markov equilibria that are ruled out by our refinement are uninteresting equilibria where
there is only one success on path following which the game ends.
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Specifically, consider the following strategies:

Principal: Experiment in period one. If no success is generated, stop experimenting.

If a success is generated, always experiment at all future histories.

Good-type agent: Only implement good and risky projects in period 1. If a success is gener-

ated, follow the efficient strategy. If no success is generated, stop acting.

Bad-type agent: Act with positive probability in period one and then stops acting.

Formally, these “static” strategies are given by

x̃(h0) = 1 and x̃(h1ht−1) =

 1 if h1 = h,

0 if h1 6= h,
for all h1ht−1 ∈H , t ≥ 1,

ãθg(h
0, i1) =

 1 if i1 ∈ {ig, ir},

0 if i1 = ib,

ãθg(h1ht−1, itit+1) =

 1 if h1 = h and it+1 = ig,

0 otherwise,
for all (h1ht−1, itit+1) ∈H g, t ≥ 1.

ãθb(h
0) > 0 and ãθb(h

t) = 0, for all ht ∈H , t ≥ 1.

(1)

To summarize, these strategies correspond to the principal experimenting for a single pe-

riod in the hope that the agent produces a success. A success is followed by the first-best

continuation payoff. If no success is generated, the principal stops experimenting and the

game effectively ends. Faced with this strategy, it is a strict best response for the good type

to implement both good and risky projects because only successes generate positive contin-

uation payoffs. The bad type is indifferent between implementing a bad project or not (as is

the good type), so acting with positive probability is, in particular, a best response. We term

these strategies as static because screening only occurs for one period.

An upper bound for the principal’s payoff from these strategies is given by

Π(p0) := p0(λg + λrqr)(1 + δΠ)− p0λr(1− qr)κ − c.

This is the expected payoff that the principal receives from the actions of the good type; it is

an upper bound because it does not account for the losses from failures generated by the bad

type. The first term corresponds to the payoff after a success (the principal gets a payoff of 1

in period one and the first-best continuation payoff Π) and the second term is the loss from
15
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a failure. It is straightforward to observe that a necessary and sufficient condition for these

strategies to constitute an equilibrium is that this bound is positive.

THEOREM 2. There exists an equilibrium in static strategies (given by (1)) iff Π(p0) > 0.

When Π(p0) > 0, there is always a low enough positive probability ε > 0 of action by the

bad type (ãθb(h
0) = ε) such that the principal’s payoff from experimentation is positive. Note

that, as long as the bad type sometimes, but not always, acts (ãθb(h
0) ∈ (0, 1)), the principal’s

belief following both non-success outcomes is interior (since p̃(h), p̃(hϕ) < 1) and thus the

continuation play as prescribed by the above strategies (1) is allowed by the refinement since

it has no bite at these histories.

Conversely, when Π(p0) ≤ 0, it is a strict best response for the principal to not experiment

in period one. This is because her payoff is strictly lower than this upper bound since the bad

type acts with positive probability. Note that there cannot be an equilibrium where the bad

type does not act (ãθb(h
0) = 0). Suppose to the contrary that there was such an equilibrium.

In this putative equilibrium, only the good type acts and so, irrespective of outcome, the

principal’s posterior belief must go to one after an action (p̃(h1) = 1 for h1 ∈ {h, h}). Our

refinement implies that this will result in positive continuation value for the agent. As a result

acting (ãθb(h
0) = 1) will be a strict best response for the bad type, which is a contradiction.

When Π(p0) ≤ 0, we say quality control is necessary for experimentation to generate a pos-

itive expected payoff. In this case, the principal must use the dynamics of her relationship

with the agent in order to provide the good type with the necessary incentives to implement

risky projects sufficiently infrequently. Note that the monitoring structure we have chosen

in our model is intentionally stark. By assuming successes are perfectly revealing, it should

be easier for the good type to establish reputation compared to a setting where bad projects

could also generate a success with positive probability. In other words, one might think that

screening would be relatively easier for the principal compared to the case where bad types

too could sometimes produce successes. We argue that reputational forces can be destructive

despite this stark good news monitoring structure.
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3. RELATIONSHIP BREAKDOWN

Our main insight is the minimal efficiency requirement imposed by the refinement can

cause market breakdown.

THEOREM 3. Suppose p0 ∈ (0, 1). Then:

(i) In every nontrivial equilibrium, the good type agent implements risky projects and the bad type

implements bad projects (with positive probability) on path.

Formally, in every nontrivial equilibrium, there exist on-path histories ht ∈H and (ht′ , it′ ir) ∈

H g such that ãθb(h
t) > 0 and ãθg(h

t′ , it′ ir) = 1.

(ii) If quality control is necessary (Π(p0) ≤ 0), the unique equilibrium outcome is that the prin-

cipal never experiments.

Taken together, these results have stark economic implications. The first statement of The-

orem 3 implies that a principal who is willing to experiment will necessarily face inefficient

actions. The second statement of Theorem 3 argues that the payoff implications of this in-

efficiency can be large. Specifically, the agent’s reputational incentives prevent any quality

control whenever it is necessary for experimentation and hence, the principal can never inter-

nalize the long run benefits of experimentation.

A first consequence of this result is that there are two separate discontinuities that arise in

the equilibrium payoff set. First observe that there are parameter values such that Π(1) ≤ 0;

for instance, this can arise when experimentation is costly (high c), failures yield large losses

(high κ) or when risky projects are very unlikely to generate successes (low qr). In this case,

Π(p0) ≤ 0 for all p0 ∈ (0, 1) and so the principal will never experiment. Thus, both players’

payoffs discontinuously fall from the first-best when p0 = 1 to zero when p0 < 1.

Similarly, if we fix the prior p0 but instead alter the parameter values so that the payoff

upper bound from the static benchmark Π(p0) ↓ 0, the agent’s payoff set once again discon-

tinuously shrinks to zero. As long as Π(p0) > 0, there always exists at least one nontrivial

equilibrium (described in Section 2.3) where the principal experiments in period one and the

good type can attain the first best continuation payoff with probability λg + λrqr.

We end this section by providing some intuition for Theorem 3. Our key theoretical con-

tribution establishes a bad reputation result with two long-lived players and intermediate

discounting by combining two key ideas from separate strands of the reputation literature.
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We first observe that there is a positive belief below which the principal does not experi-

ment in any NE. Experimentation is costly, so there is a belief below which experimentation

is not worth it even if uncertainty about the agent’s type would surely resolve itself with one

period of experimentation (and be followed by the first-best continuation equilibrium).

Now suppose the principal were myopic (δ = 0) so her payoff in every period of the game

must be non-negative. Then, at any history, the principal would only indulge in costly exper-

imentation if the agent generated a success with at least probability c. As a result, the prin-

cipal’s posterior belief following one of the two non-success outcomes—failure or inaction—

must not only fall (because beliefs follow a martingale) but must fall at a minimal rate. It is

then possible to show that every nontrivial equilibrium must eventually have a “last” on-path

history at which the principal’s belief p is less than p0 and at which the agent must generate a

success or otherwise the principal stops experimenting (because her belief will fall below the

above mentioned cutoff). But note that both types of agent’s incentives at such a last history

are identical to their incentives in the static benchmark. Here, it will be a best response for the

good type to run risky projects and for the bad type to act. To see the latter, note that if the bad

type did not act, then acting alone will take the principal’s posterior belief to one. Under our

refinement, the agent is then guaranteed a positive continuation value, and hence, not acting

cannot be a best response. Since Π(p0) ≤ 0 implies Π(p) ≤ 0 for all p ≤ p0 and δ, it therefore

cannot be a best response for the principal to experiment at such a history contradicting the

existence of a nontrivial equilibrium.

This is essentially the insightful inductive argument developed by EV adapted to our

model. Note that this argument cannot be employed when the principal is forward look-

ing (δ > 0). Simply, this is because the principal is willing to bear periodic losses in order

to generate a positive average payoff. A forward looking principal can slow down the rate

of learning by experimenting even when the agent is generating successes with low proba-

bilities. In particular, she could continue to experiment along a path where beliefs drop but

asymptote to a level that is not low enough to generate breakdown. If so, there would be no

last on-path history and the above inductive cannot be applied.

We argue in the proof that this cannot happen. We derive an upper bound for the princi-

pal’s payoff that captures the fact that, were beliefs to asymptote, there must be an on-path

history where the principal’s payoff from successes drops below the cost of experimentation.

This argument, that links the uninformed player’s continuation payoffs to her learning, bears
18
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some resemblance to a fundamental insight from the reputation literature with two long-

lived players. For instance, Schmidt (1993) studies games of “conflicting interests” where the

commitment optimal action of the player trying to establish reputation holds his uninformed

opponent down to her minimax value. Intuitively, the informed player can guarantee himself

the commitment payoff when patient because there cannot be another equilibrium where the

uninformed player attempts to learn by playing an action that is not a best response to the

commitment action in any period. Because best-responding to the commitment action yields

the minimax value to the uninformed player, she will never choose an action in response that

makes her worse off or, in other words, learning is too costly in these games. Similarly, in our

setting, the principal wants to avoid last histories by prolonging experimentation (to learn the

agent’s type) but cannot do so because it eventually becomes exceeding costly.

3.1. Allowing Transfers

For some applications, it is unrealistic to rule out transfers. For instance, in addition to a

fixed wage, firms can choose to pay contingent bonuses to experts they employ. We introduce

transfers by altering the stage game to allow the principal to make payments to the agent

after the public outcome is observed. We assume that the principal can only make transfers in

periods where she experiments. This assumption is not required for our result (Theorem 4).

We impose it because we feel it is realistic for our applications and it shortens the proof.

Formally, we denote the transfer in period t by τt ≥ 0. These transfers are observed by both

players and so become part of the public history. For easy reference, Figure 2 below describes

how this alters the stage game. The formal description of histories and strategies can be

found in the appendix. The equilibrium refinement applies verbatim. Importantly, note that

the refinement applied to this version of the game does not restrict transfers in any way.

Theorem 3 extends verbatim to the game with transfers.

THEOREM 4. Suppose p0 ∈ (0, 1). Then:

(i) In every nontrivial equilibrium of the game with transfers, the good type agent (surely) imple-

ments risky projects and the bad type implements bad projects (with positive probability) on

path.

(ii) If quality control is necessary (Π(p0) ≤ 0), the unique equilibrium outcome of the game with

transfers is that the principal never experiments.
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FIGURE 2. Flow chart describing the repeated game with transfers (the rectan-
gle contains the stage game)

Transfers do not help the principal avoid inefficient actions or relationship breakdown. In

a nutshell, inefficiency is the result of the agent’s desire to generate successes and one-sided

transfers from the principal can only further reward successes instead of punishing failures.

To see this, first note that, once again, every nontrivial equilibrium must have a last on-path

history at which the principal experiments (for similar reasons to the case without transfers).

Transfers do not help prevent the agent from running risky projects at this last history. Any

payment after a success only exacerbates the problem. Moreover, the principal can never

credibly promise payments after a failure since she stops experimenting and thus her contin-

uation payoff is 0 which, in turn, implies that she has no reason to honor the promise. Thus,

Π(p0) remains an upper bound for the principal’s payoff at such last period histories since

one-sided transfers can only lower her continuation utility.

We end this subsection by observing that inefficiency can trivially be eliminated by allow-

ing transfers from the agent to the principal. For example, the principal could ask the agent

to reimburse her for the costs of failures; this would align incentives between the principal

and the good type by disincentivizing risky actions. Observe that the payments need not

necessarily come at the moment of failure and could potentially be moved to later dates, like

after the agent proves themselves to be the good type. More generally, the agent could simply

buy the experimentation technology from the principal. As is the case in many contracting
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problems, this complete removes any frictions because only the good type will be willing to

pay a sufficiently high amount.

4. CORRECTING (BAD) REPUTATIONAL INCENTIVES

In this section, we theoretically demonstrate how maximally inefficient behavior on path

can help relationship functioning.

First observe that, despite quality control being necessary, there are NE in which both play-

ers receive positive payoffs. At the most basic level, this can be seen from strategies that ig-

nore outcomes and therefore, in particular, do not condition on (type-revealing) successes. The

principal experiments for the first T periods and the agent acts efficiently. At all subsequent

periods, the principal never experiments (irrespective of outcomes in the first T periods) and

the agent never acts.8 It is easy to see that there exists a T ≥ 1 such that these strategies

constitute a NE whenever p0λg > c. This is possible even when quality control is necessary

because failures never arise on path. As the outcomes in the first T periods have no effect on

continuation play from period T + 1 onwards, both types of the agent are indifferent between

all strategies (irrespective of project ideas) and so acting efficiently is, in particular, a best re-

sponse. The principal on the other hand has an incentive to experiment for the first T periods

as long as her belief p̃(ht−1) never satisfies λg p̃(ht−1) < c for any on-path history ht−1 ∈ H ,

1 ≤ t ≤ T (by assumption, at least T = 1 satisfies this).

However, such Nash equilibria have the feature that both players’ average payoff, while

positive, might be very small. This is because, for any prior p0, there is a maximal T for

which the above strategies can be a NE because the principal’s belief falls if the agent does

not generate a success. Therefore, the average payoff for the agent approaches 0 as he be-

comes arbitrarily patient (β → 1). EV show that, in their model, the agent’s average payoff

vanishes in this way in every NE. A natural question in our setting is whether there exist Nash

equilibria such that quality control is necessary but even patient players get positive average

payoffs? The following result shows that this is indeed the case.

8Formally, x̃, ã are defined as follows. For all 0 ≤ t ≤ T − 1, ht ∈H , (ht, itit+1) ∈H g, strategies are

x̃(ht) = 1, ãθg (h
t, itit+1) =

{
1 if it+1 = ig,
0 otherwise, and ãθb

(ht) = 0.

When t ≥ T, strategies are

x̃(ht) = ãθg (h
t, it+1) = ãθb

(ht) = 0 for all ht ∈H , (ht, it+1) ∈H g.
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THEOREM 5. There are cutoff values δ, p
0
, λg, λg, c ∈ (0, 1) with c < λg < λg < 1

2 for which the

following holds: for all δ ∈ (δ, 1), β ∈ (0, 1), p0 ∈
(

p
0
, 1
)

, λg ∈
(

λg, λg

)
, λr ∈

(
0, 1

2

)
, qr ∈ (0, λg)

and c ∈ (0, c), there exists a nonempty interval (κ, κ) such that for any κ ∈ (κ, κ), quality control is

necessary but there nonetheless exists a Nash equilibrium in which the payoff to the principal and the

good type are at least p0λgΠ− c and λg/(1− β) respectively.

In words, this result states that it is possible to hold the prior p0, the arrival rates λg, λr, the

success probability from risky projects qr and the cost c fixed (as long as they lie in a particular

range) but nonetheless find NE in which both players’ average payoff is bounded from below

when they become patient despite quality control being necessary. Before providing intuition

for the result, it is worth making a brief comment about the order of the quantifiers. Note that

we provide a range for all parameters except κ, the choice of which depends on the remaining

parameters. This is because as δ → 1 (holding the other parameters fixed), we need κ to also

grow to ensure that quality control remains necessary (Π(p0) ≤ 0). Importantly, raising κ

does not affect the payoff bounds for either player.9

The proof of Theorem 5 is constructive and we describe the NE strategies informally below:

in Figure 3 and in words. The formal definitions of the strategies are in Appendix B. Unlike

the NE described at the beginning of this section in which outcomes are ignored, the strategies

we construct have the feature that both players move to the efficient continuation equilibrium

following successes at some histories.

The principal’s strategy is the following: Experiment in period one and experiment forever

(stop experimenting) if a success (failure) is observed. If the agent does not act in period one,

experiment in period two. If a success is observed, experiment at all subsequent periods. If

the agent does not act in period one and no success is observed in period two, experiment in

period three. Stop experimenting from period four onward.

In response,the bad type never acts. The good type agent acts as follows: Only run good

projects in period one. If a success is generated, follow the efficient strategy. If a failure is

generated (off path), stop acting. If no project was run in period one, implement both good

and risky projects in period two. If a success is generated, follow the efficient strategy. If no

project was run in period one and no success is observed in period two, only implement good

projects in period three. Agent stops acting thereafter regardless of the period three outcome.

9Note that we could also raise c to ensure Π(p0) ≤ 0 but doing so causes the first-best payoff Π to shrink.
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Principal experiments,
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bad type does not act
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No action
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All outcomes

o3 ∈ {o, o, oϕ}

FIGURE 3. A NE with two screening periods when Π(p0) ≤ 0.

The proof in Appendix B shows that these strategies are a NE for parameters that satisfy the

conditions in Theorem 5.

Given the above strategies, the payoff bounds can be computed readily by adding the first

period payoff with the continuation value from a success being generated (and ignoring the

continuation value from other outcomes). Now observe that it is possible to construct an

even simpler NE in which the agent gets a positive fraction of the first-best payoff: simply

remove the first period and consider the strategies from period two onwards. The reason we

add the first period is to guarantee a lower bound for the principal’s average payoff as well.

The lack of an on-path failure in period one guarantees the principal a minimal fraction of

the first-best payoff; if we only considered the NE that started at period two, there would

be parameter values that satisfy these conditions but would yield the principal a vanishingly

small payoff. Intuitively, if we did not have the first period, then the principal is only getting

one period of positive payoff (period three) since quality control is necessary and the agent

runs risky projects in period two.

Taken together, Theorems 3 and 5 provide the cleanest comparison of our results with those

of EV. They consider a model in which a principal faces an agent whom they want to induce

to take an action that matches an underlying stochastic state. The good-type agent observes

the state and his payoff function is identical to that of the principal’s; conversely, the bad
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type does not receive any information and, irrespective of the state, strictly prefers to take

one of the two actions. In order for experimentation to be profitable for the principal, the

good type must always do the “right thing” with a sufficiently high probability: thus their

payoff structure inherently captures the parameter restrictions that we explicitly impose via

the quality control condition. Importantly the principal can only observe the agent’s past

actions but neither the realizations of the state nor the past payoffs. EV show that, when

the agent in their setting gets arbitrarily patient, either (i) the agent’s average payoff goes to

0 in every NE when the principal is completely myopic or (ii) first-best payoffs (their folk

theorem) can be attained when the principal is also arbitrarily patient.

By contrast, we simultaneously demonstrate the destructive strength of reputational incen-

tives and identify a necessary condition that NE strategies must satisfy if the relationship is

to function. We feel that our environment allows us to speak to numerous applications (some

described below) that cannot be modeled by standard reputation theorems that require either

myopic or fully patient players or both and a monitoring structure that prevents players from

observing their payoffs.

Specifically, our insights require that the principal is long lived but impatient and cannot be

obtained if the principal was either myopic or fully patient. First note that quality control be-

ing necessary (Π(p0) ≤ 0) implies an upper bound on the principal’s level of patience (when

all other parameters are fixed). Then observe that, if the principal were myopic (δ = 0), the

strategies constructed in this section would not be a NE (because her period two payoff would

be negative). Moreover, it is easy to show that, if the principal is myopic, an analogue of EV’s

main bad reputation result (Theorem 1 in their paper) also arises in our model. Conversely,

we too get a folk theorem if the principal becomes patient.10 Finally, unlike EV, the agent’s

discount factor β does not play an important role in our setting.

There are a number of key modeling differences that drive these distinct implications.

Our agent only cares about extending the relationship (and not about the outcomes from the

projects) but this assumption alone would not generate our results in EV’s model. It would be

impossible to screen such an agent (even with a patient principal) in their setting since their

monitoring structure is such that the principal would never learn anything. Conversely, al-

tering their monitoring structure so the principal could observe her past payoffs would make

their bad reputation result disappear. This is because rewarding the agent when her action

10These results are available in the working paper version of this paper.
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matches the state ensures that “doing the right thing” is a best response for the good type

and is a strategy that cannot be mimicked by the bad type (since he receives no information).

Instead, our good type has the ability to produce one additional outcome that cannot be mim-

icked by the bad type but projects that can generate this outcome only arrive stochastically. It

is this modeling choice combined with the agent’s payoff that generates our novel insights.

5. APPLICATIONS

The bad reputation force we identify (in Theorems 3 and 4) arises in a variety of different

settings. In this section, we discuss how market functioning can be restored in three differ-

ent applications by altering various assumptions of the model. First, we demonstrate that a

consequence of Theorem 5 is that term limits can result in better policy making by reelection

seeking politicians. Second, we argue that introducing some commitment for the principal

(via subscriptions) can improve the quality of online content. Finally, in the context of or-

ganizations, we discuss the role played by an expert’s outside option and how the form of

transfers matters to provide incentives.

5.1. Term Limits for Politicians

We now argue that our results provide one explanation for why term limits can improve

policy making by reelection seeking politicians.11 To do so, we describe a slight variant of our

model that allows for reelection but contains essentially the identical forces to the framework

we have analyzed above.

A representative voter (the principal) needs a politician (the agent) to represent her in each

period. In each period t, experimentation for the voter is compulsory and costless (c = 0),

she simply decides whether or not to retain the politician (xt = 1) or to irreversibly replace

him (xt = 0) with another ex-ante identical candidate (who is the good type with probability

p0).12 A good type elected politician stochastically receives policy ideas that can either be

good or risky; a bad type politician can only enact policies that result in failures. Payoffs

to both players are as in our model and have obvious interpretations in this context. The

refinement applies almost verbatim: a politician who reveals himself to be the good type

cannot be replaced for sure in the next period.

11We are grateful to Navin Kartik for pointing out this application of our result.
12As previously mentioned, our results are not affected by assuming the irreversibility of stopping experimenta-
tion.
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The necessity of quality control in this application implies that the voter will get a negative

utility if the politician always enacts risky policies.13 Consider symmetric equilibria in which

every politician follows the same strategy once elected. An implication of our main result is

that, if quality control is necessary, every elected politician never implements any projects in

the voter-optimal symmetric equilibrium.14

This result is easy to see. As far as an individual politician is concerned, the reputational

incentives are identical to the original model. So suppose, to the converse, that there was a

symmetric equilibrium where the voter received a positive payoff. Then, the ex ante expected

value of electing each politician must be positive. This introduces an implicit opportunity cost

in retaining a current politician as the voter could always get positive utility by replacing him.

This opportunity cost would then play an identical role to the cost of experimentation (c > 0)

in our model and we would then get the same contradiction as that driving Theorem 3.

The above argument demonstrates that reelection incentives can have an extremely per-

verse effect on policy choices. As we have already argued, reputational incentives can be

weakened by strategies that feature maximally inefficient play on path. In this context, such

strategies can be interpreted as term limits; the politician is replaced even though he has

proven himself to be good. Indeed, our analysis is instructive precisely because this is al-

most always presented as an argument against imposing term limits.15 The voter’s strategy

can easily incorporate such term limits: every politician is always replaced after a fixed num-

ber T of periods but can additionally be replaced before. The argument in Section 4 implies

that, despite quality control being necessary, the voter can get a positive payoff from higher

quality policy making if she follows such a strategy.

5.2. Online Content Markets and the Role of Commitment

In the introduction we described how our framework can be applied to model the incen-

tives of online content providers. When the consumer demands a minimal quality of report-

ing (that is, she wants the provider to not always publish poorly vetted content), Theorem 3

demonstrates that the need to generate clicks can make the market function extremely poorly.

13Formally, p0(λg + λrqr)
(
1 + (δ/(1− δ))λg

)
− p0λr(1− qr)κ ≤ 0.

14Since there must be an elected representative even if they generate a negative voter payoff, there will be other
equilibria in this model.
15One (of many) recent such instances is the fourth of “Five reasons to oppose congressional term limits” by Casey
Burgat published in Brookings Blog on January 18, 2018.
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An alternate payment model for online content is subscriptions. A natural way to capture a

T period subscription in our model is via partial commitment: whenever the principal de-

cides to experiment, she commits to experimenting for T > 1 periods and sinks the T period

discounted cost of experimentation ((1− δT)/(1− δ))c up front. Thus the stage game now

consists of the principal’s experimentation decision followed by the agent receiving project

ideas and acting for T periods. Note that our refinement applies verbatim since the only re-

striction on the principal’s strategy is to force her to experiment at histories where she might

otherwise not.

It is possible to show that such partial commitment for the principal to T periods of exper-

imentation implies that the good type does not need to always run risky projects and this in

turn can generate a positive average profit for the principal.16 Indeed, when Π(p0) is nega-

tive but small, we can construct simple equilibria in which the principal receives a positive

expected payoff from experimentation in every period (not just a positive total payoff) gross

of the sunk cost. This latter observation is important because otherwise the principal could

choose to “ignore” the agent’s action in period T (that is, not visit the website despite having

paid for the subscription).

To summarize, having been paid a subscription fee, a provider can be more judicious about

his choice of content as he does not need to incentivize each additional click. Indeed, a recent

article (“We Launched a Paywall. It Worked! Mostly.” by Nicholas Thompson on May 3, 2019)

from the editor-in-chief of technology publication Wired highlights exactly this mechanism

in work after they instituted their paywall. One of the lessons they learned was that the

content that drove subscriptions (“long-form reporting, Ideas essays, and issue guides”) was

typically harder and more time consuming to produce (akin to good projects in our model).

Importantly, Thompson observes that when

“your business depends on subscriptions, your economic success depends on

publishing stuff your readers love—not just stuff they click. It’s good to align

one’s economic and editorial imperatives! And by so doing, we knew we’d

be guaranteeing writers, editors, and designers that no one would be asked to

create clickbait crap of the kind all digital reporters dread.”
16There are numerous dynamic mechanism design problems (for instance, Guo (2016) and Deb, Pai, and Said
(2018)) where full commitment for the principal does not yield a higher payoff relative to the principal-optimal
NE. In our model, commitment makes the principal strictly better off and details of this argument are in the
working paper version.
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5.3. Relational Contracting in Firms

Our results also have numerous implications for relational contracting in organizations.

Consider the hiring of experts. When failure is very costly, for instance for failed drug trials

in the biotech sector, firms may benefit from hiring in house researchers as opposed to biotech

consultants (for the same reasons that subscriptions were effective in Section 5.2). This is

because the latter typically have shorter contracts and have stronger incentives to prove ex-

pertise to extend employment duration. Additionally, our model provides one rationale for

hiring brand name experts who may have higher outside options. The model can easily be

generalized to give the agent an outside option 0 ≤ u ≤ 1/(1− δ) and give him the ability

to unilaterally resign at the beginning of any period. A higher outside option can ensure that

the agent would rather resign than enter a continuation equilibrium where the likelihood of

termination is high. Since our refinement does not force the principal to permanently hire the

agent even after she knows the agent is the good type for sure, fixed term contracts can arise

as equilibrium outcomes when u > 0 but not when u = 0 since in the former case the agent is

happy to leave once the likelihood of being retained is sufficiently low. Note that in this case,

the agent not the principal ends the relationship.

Our model also speaks to how experts should be compensated; the extension which accom-

modates transfers can be found in Section 3.1. We show (in Theorem 4) that bonuses alone

cannot correct bad reputation forces. Instead, it might be more effective to link the compen-

sation of experts directly to firm performance—importantly, they need to be exposed to both

the upside and downside—via stock options as this will make it failures costly to the agent. It

should be pointed out that there are many papers that describe a variety of different benefits

of giving agents “skin in the game;” our dynamic model highlights the trade-offs inherent in

determining the optimal vesting period for stock options. If the vesting period is too long,

this may create perverse incentives for the agent to prove his worth and extend the duration

of his employment at the expense of the firm. Conversely, a short vesting period may end up

giving away a share of the firm to an unqualified expert.

The maximal inefficiency we highlight also arises in many employment relationships. Note

that our model allows for different types of firm-worker separations. Firing after a failure

disincentivizes the agent from implementing risky or bad projects. Such separations can be

interpreted as firing “with cause.” Even in the absence of failures, information is acquired
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about the quality of the firm-worker match as the relationship matures and the firm’s belief

that the worker is the good type may drop over time. This may lead to separation of the sort

common in the labor literature that incorporates learning about match value (an early work

is Jovanovic (1979)). Such a “without cause” separation often legally requires a notice period;

this appears in the form of the third period employment in the example of Section 4. Indeed,

such grace periods are a feature of academic contracts in which professors who are denied

tenure are typically given an additional year of employment. Importantly, in the academic

context, separation is typically irreversible and the professor’s performance in the grace year

does not lead to reversals of tenure decisions.

6. CONCLUDING REMARKS

In this concluding section, we address the robustness of our main insight. The model we

described in Section 1 makes some assumptions that may give the impression that our main

result (Theorem 3) is knife-edged. This is not the case and we briefly describe some natural

extensions here; formal statements and proofs are in the working paper version.

Perhaps the most stark is that we assumed costless actions; so instead suppose that the

agent has to pay a cost C > 0 to implement a project irrespective of quality. As should be

unsurprising, we need to impose a stronger version of our refinement. Recall that Theorem 3

leveraged the observation that, if the principal stops experimenting following inaction, the

agent would always act if doing so resulted in a nontrivial continuation play (irrespective

of magnitude of the continuation payoff). Of course, when actions are costly, this will only

happen if, at the very least, the continuation payoff from the latter compensates the agent for

the cost of the action.

Consider the following stronger version of the refinement. For any u ∈ (0, 1/(1− β)), a

u-equilibrium is a NE in which, at all on-path histories where the principal’s belief (first) jumps

to one, the continuation payoff for the good type is at least u.

With costly actions, we say that quality control is necessary when

ΠC(p0) := p0(λg + λrqr)(1 + δΠC)− p0λr(1− qr)κ − c ≤ 0,

where ΠC ≤ Π is the highest NE payoff that the principal can obtain when the agent is known

to be the good type (p0 = 1). Note that this is a weaker condition because the principal cannot
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achieve payoff Π even when uncertainty is resolved because of the moral hazard problem

introduced by costly actions.

Our main insight extends to this environment. Specifically, we can show that, for any

u ∈ (0, 1/(1− β)), there exists a cost C > 0 such that, when the cost of actions C ∈
(
0, C
)

is

lower, the unique u-equilibrium outcome is that the principal never experiments whenever

quality control is necessary.

Now suppose that, instead of costly actions, the good type needs to pay a small cost to

draw good, risky ideas (with the same probabilities λg, λr respectively). Here too, we can

show that, for any u ∈ (0, 1), relationship breakdown is the unique u-equilibrium outcome for

sufficiently small costs of information acquisition. As in the case with costly actions, the good

type will need to be incentivized to acquire information even when uncertainty is resolved.

Finally, we can also allow for successes to not be perfectly revealing: implementing bad

projects can also generate successes with a (small) positive probability and so successes can

be generated by both agent types. Consequently, there need not be on-path histories where

the principal’s belief jumps to one. Hence, we will once again require a stronger variant of

our refinement: when the principal belief first jumps above a threshold, the continuation play

must be nontrivial. Our main insight extends to this monitoring structure.
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APPENDIX A. PROOFS OF THEOREM 3 AND THEOREM 4

We prove Theorem 4 for the game with transfers and then argue that it implies Theorem 3.

Before we proceed with the proofs, we want to formally define histories and strategies for the

game with transfers which we chose to omit from Section 3.1.

Transfers: After the public outcome is realized in period t, the principal makes a one-sided

transfer τt ∈ R+ to the agent.

Histories: A (public) history (h1 . . . ht−1, τ1 . . . τt−1) at the beginning of period t ≥ 2 satisfies

h1 . . . ht−1 ∈ H and τt′ ≥ (=)0 when ht′ 6= (=)��h for all 1 ≤ t′ ≤ t. In addition to the

previous actions and outcomes, it also contains the previous transfers (that are zero whenever

the principal does not experiment). (h0, τ0) denotes the beginning of the game. We denote

the set of histories using T .

As before, the good type agent’s period-t private history (ht−1, τt−1, it) additionally con-

tains the current and previous project ideas it. We use T g to denote the set of the good type

agent’s private histories.

We use T̃ t where t ≥ 1 to denote the set of on-path histories at the beginning of period t+ 1.

The notation reflects the fact that this set depends on the (equilibrium) strategies (x̃, τ̃, ãθ).

Agent’s Strategy: The bad type’s strategy ãθb(h
t−1, τt−1) ∈ [0, 1] specifies the probability of

acting at each period t public history (ht−1, τt−1) ∈ T . Similarly, ãθg(h
t−1, τt−1, it) ∈ [0, 1] for

each private history (ht−1, τt−1, it) ∈ T g.

Principal’s Strategy: The principal’s strategy consists of two functions: an experimentation de-

cision x̃(ht−1, τt−1) ∈ [0, 1] and a transfer strategy τ̃(ht−1ht, τt−1) ∈ ∆(R+) which specifies the

distribution over transfers for each (ht−1, τt−1) ∈ T , ht ∈ {h, h, hϕ}. Note that, by definition,

τ̃(ht−1ht, τt−1) is the Dirac measure at 0 when ht = ��h.

Beliefs: Finally, the principal’s beliefs p̃(ht−1, τt−1), p̃(ht−1ht, τt−1) at the moment she makes

her experimentation and transfer decision respectively also depend on the past history of

transfers. These beliefs are derived by Bayes’ rule on path and are not restricted off path.

Expected Payoffs: Expected payoffs now additionally also have as an argument the history of

transfers and are denoted by Uθg(h
t−1, τt−1, it), Uθb(h

t−1, τt−1), V(ht−1, τt−1) to denote the ex-

pected payoff of the good, bad type agent and principal respectively. We sometimes also refer
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to the agent’s expected payoff Uθg(h
t, τt−1, it), Uθb(h

t, τt−1) after the outcome but before the

principal’s transfer in period-t is realized. For brevity, we suppress dependence on strategies.

Last History: A last history is an on-path history at which the principal experiments such

that, if no success is generated, the principal stops experimenting (almost surely) at all fu-

ture histories. Formally, a last history is an on-path (ht, τt) ∈ T̃ t such that x̃(ht, τt) > 0,

p̃(ht, τt) < 1 and Uθb(h
tht+1, τt) = 0 for all on-path ht+1 ∈ {h, hϕ}. Note that this also implies

Uθg(h
tht+1, τt, it+1) = 0 for ht+1 ∈ {h, hϕ}.

Note that we define a last history in terms of the agent’s payoff (as opposed to the princi-

pal’s experimentation decision) so that we can avoid qualifiers about the principal’s actions at

on-path continuation histories that are reached with probability 0 (after the principal’s trans-

fer is realized via her mixed strategy). Also observe that Uθb(h
tht+1, τtτt+1) = 0 implies that

τt+1 = 0 since it cannot be a best response for the principal to make a positive transfer to the

agent in period t + 1 when her continuation value is 0.

We now argue that every nontrivial NE must have such a last history.

LEMMA 1. Suppose p0 ∈ (0, 1). Every nontrivial NE (x̃, τ̃, ãθ) of the game with transfers must have

a last history.

PROOF. We first define,

p = inf
{

p̃
(

ĥt′ , τ̂t′
) ∣∣∣∣ (ĥt′ , τ̂t′) ∈ T̃ t′ , t′ ≥ 0

}
< 1,

to denote the infimum of the beliefs at on-path histories. We will now assume to the converse

that there is no last history. With this assumption in place, the following steps yield the

requisite contradiction.

Step 1: Experimentation at low beliefs. For all ε > 0, there exists an on-path history (ht′ , τt′) ∈

T̃ t′ such that the principal experiments x̃(ht′ , τt′) > 0 and the belief is close to the infimum

p̃(ht′ , τt′) < 1, p̃(ht′ , τt′)− p < ε.

By definition, there exists a history (ĥt, τ̂t) ∈ T̃ t such that the belief satisfies p̃(ĥt, τ̂t) < 1

and p̃(ĥt, τ̂t)− p < ε. It remains to be shown that there is such a history at which the principal

experiments. We consider the case where x̃(ĥt, τ̂t) = 0 as otherwise (ht′ , τt′) = (ĥt, τ̂t) would

be the required history.
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If Uθb(ĥ
t, τ̂t) > 0, then this implies that there is an on-path continuation history (ĥtĥs, τ̂tτ̂s) ∈

T , ĥs = (��h, . . . , ��h), τ̂s = (0, . . . , 0), s ≥ 1 where the principal eventually experiments x̃(ĥtĥs, τ̂tτ̂s) >

0; this is because the principal is not allowed to make transfers unless she experiments first.

But since the belief does not change without experimentation, this implies that p̃(ĥtĥs, τ̂tτ̂s) =

p̃(ĥt, τ̂t) and thus (ht′ , τt′) = (ĥtĥs, τ̂tτ̂s) is the requisite history.

So suppose instead that Uθb(ĥ
t, τ̂t) = 0. Let 0 < s + 1 ≤ t be the last period in the

history (ĥt, τ̂t) at which the principal experiments. Formally, x̃(ĥs, τ̂s) > 0 and (ĥt, τ̂t) =

(ĥshs+1ĥt−s−1, τ̂sτ̂t−s) where ĥt−s−1 = (��h, . . . , ��h) when s < t− 1 and τ̂t−s = (0, . . . , 0). Such a

history (ĥs, τ̂s) must exist because the NE is nontrivial. If principal’s realized choice was not

to experiment at period s + 1, then we have hs+1 = ��h. Since the principal’s belief could not

have changed without experimentation being realized, this implies p̃(ĥs, τ̂s) = p̃(ĥt, τ̂t) and

(ht′ , τt′) = (ĥs, τ̂s) is the requisite history.

So finally suppose that the realized action of the principal was to experiment at s + 1.

Then we must have ĥs+1 ∈ {h, hϕ} (note that if ĥs+1 = h, this would imply p̃(ĥt, τ̂t) = 1

which is a contradiction). If Uθb(ĥ
sĥs+1, τ̂s) > 0, this would imply the existence of a first

continuation history (ĥsĥs+1h̆s′ , τ̂sτ̆s′+1) ∈ T̃ s+s′+1 such that x̃(ĥsĥs+1h̆s′ , τ̂sτ̆s′+1) > 0 and

p̃(ĥsĥs+1h̆s′ , τ̂sτ̆s′+1) = p̃(ĥsĥs+1, τ̂s) = p̃(ĥt, τ̂t) and so (ht′ , τt′) = (ĥsĥs+1h̆s′ , τ̂sτ̆s′+1) would

be the requisite history.

Therefore the only remaining case to analyze is when Uθb(ĥ
sĥs+1, τ̂s) = 0. Since we have

assumed that there is no last history, it must be the case that the principal experiments after

the other non-success outcome or that Uθb(ĥ
sh̆s+1, τ̂s) > 0 for h̆s+1 ∈ {h, ĥϕ}, h̆s+1 6= ĥs+1. But

then it cannot be a best response for type θb to reach history (ĥsĥs+1, τ̂s) since he can always

reach history (ĥsh̆s+1, τ̂s) costlessly with probability 1. This implies that p̃(ĥsĥs+1, τ̂s) = 1

(since this history is on path) which once again yields the contradiction p̃(ĥt, τ̂t) = 1. Thus

ĥs+1 ∈ {h, hϕ} is not possible and the proof of this step is complete.

Step 2: Upper bound for the principal’s payoff. Fix an ε > 0 and a history (ht, τt) ∈ T̃ t such that

the principal experiments x̃(ht, τt) > 0 and the belief satisfies p̃(ht, τt) < 1, p̃(ht, τt)− p < ε.

For any integer s ≥ 1,
ε

1− p
s− c + δs Π ≥ V(ht, τt) (2)

is an upper bound for the principal’s payoff at history (ht, τt).
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For the remainder of this step, we assume that the principal’s realized action choice is to

experiment at (ht, τt). Since x̃(ht, τt) > 0, experimenting at (ht, τt) must be a (weak) best

response and so it suffices to compute an upper bound for the principal’s payoff assuming

she experiments for sure at (ht, τt).

We use q to denote the probability that at least one success arrives in the periods between

t + 1 and t + s. Now consider the principal’s beliefs at on-path histories (hths, τtτs) ∈ T̃ t+s.

Since the beliefs follow a martingale, they must average to the belief p̃(ht, τt). This immedi-

ately yields an upper bound for q since

q + (1− q)p ≤ p̃(ht, τt) =⇒ q ≤
p̃(ht, τt)− p

1− p
≤ ε

1− p
.

Since the belief jumps to 1 after a success, the maximal probability of observing a success (sub-

ject to Bayes’ consistency) can be obtained by assuming that the belief is the lowest possible

(p) when a success does not arrive (which happens with probability 1− q).

We can write the principal’s payoff V(ht, τt) by summing three separate terms: (i) the ex-

pected payoff from the outcomes in the s periods following t, (ii) the expected cost of experi-

mentation and transfers in the s periods and (iii) the expected continuation value at t + s + 1.

To derive the upper bound for the principal’s payoff from (2), we label each of the terms of

ε

1− p
s︸ ︷︷ ︸

(i)

− c︸︷︷︸
(ii)

+ δs Π︸︷︷︸
(iii)

,

so that they individually correspond to a bound for each component (i)-(iii) of the payoffs.

(i) qs is an upper bound for the expected payoff that the principal can receive from out-

comes in the s periods following history (ht, τt). This corresponds to getting a success

in every one of the s periods (with no loss from discounting) whenever at least one

success arrives (which occurs with probability q ≤ ε/(1− p)) and no losses from fail-

ures.

(ii) Since the principal experiments for sure at (ht, τt) her expected cost of experimentation

must be greater than c. Additionally, her cost from transfers must be at weakly greater

than 0.
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(iii) The principal’s expected continuation value must be less than Π since this is the first-

best payoff corresponding to the case where the agent is known to be the good type

for sure.

Step 3: Final contradiction. By simultaneously taking s large and εs small, we can find a history

(ht, τt) ∈ T̃ t where the principal experiments x̃(ht, τt) > 0 but the maximal payoff she can

get (given by the bound (2)) is negative. Since this cannot be true in any NE, this contradicts

the assumption that there is no last history and completes the proof of the lemma. �

We are now in a position to prove Theorem 4.

PROOF OF THEOREM 4. We prove each part in turn.

Part (i). Suppose (x̃, τ̃, ãθ) is a nontrivial equilibrium. Then Lemma 1 shows that there must

be a last history. At this history, implementing risky projects ãθg(h
t, τt, itir) = 1 is a strict best

response for type θg since our refinement implies that

qrUθg(h
th, τt) + (1− qr)Uθg(h

th, τt) ≥ qrUθg(h
th, τt) > 0 = Uθg(h

thϕ, τt).

This additionally implies that failure at this history (hth, τt) must be on path. A final con-

sequence is that we must have ãθb(h
t, τt) > 0 as otherwise p̃(hth, τt) = 1 which, due to the

refinement, would contradict the fact that (ht, τt) is a last history. This proves the first part of

the theorem.

Part (ii). Suppose (x̃, τ̃, ãθ) is a nontrivial equilibrium. Then Lemma 1 implies that there must

be a last history. Since the principal’s expected payoff at any on-path history must be non-

negative, this implies that her beliefs at all last histories must be strictly greater than p0 (since

Π(p0) ≤ 0). We will show this is not possible via the following sequence of steps.

We first define π̃(T |ht, τt) which denotes the probability of reaching the set of histories

T ⊂ T starting at history (ht, τt) ∈ T via equilibrium strategies (x̃, τ̃, ãθ).

Step 1: Partitioning the histories. We can partition the set of on-path period-t + 1 histories T̃ t

into three mutually disjoint sets:

(1) The set L̃ t ⊂ T̃ t of all histories that follow from a last history: this consists of all

histories (hsht−s, τsτt−s) ∈ T̃ t such that (hs, τs) is a last history for some 1 ≤ s ≤ t.
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(2) The set S̃ t ⊂ T̃ t of all histories that follow from a success being generated in a non-

last history: this consists of all histories (ht, τt) ∈ T̃ t such that hs = h for some 1 ≤

s ≤ t, hs′ 6= h for all 1 ≤ s′ < s and (hs−1, τs−1) /∈ L̃ s−1 is not a last history.

(3) All other remaining histories R̃t = T̃ t\
(
S̃ t ∪ L̃ t). Note that for all (ht, τt) ∈ R̃t, we

must have hs 6= h for all 1 ≤ s ≤ t.

Step 2: The lowest belief amongst histories in the set R̃t is less than p0. Formally, for all t, R̃t is

nonempty and there is a history (ht, τt) ∈ R̃t such that p̃(ht, τt) ≤ p0.

Since beliefs follow a martingale, the expected value of the beliefs at the beginning of period

t + 1 must equal the prior at the beginning of the game,i.e. p0 = E[ p̃(ht, τt)]. Note that the

expectation above and those that follow in the proof of this step are taken with respect to the

distribution π̃(·|h0, τ0) over period t + 1 histories induced by the equilibrium strategies. We

can rewrite this expression as

p0 =π̃(S̃ t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ S̃ t] + π̃(L̃ t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ L̃ t]

+ π̃(R̃t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ R̃t].

Since p̃(ht, τt) = 1 for all (ht, τt) ∈ S̃ t, the above equation becomes

p0 =π̃(S̃ t|h0, τ0) + π̃(L̃ t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ L̃ t]

+ π̃(R̃t|h0, τ0)E[ p̃(ht, τt) | (ht, τt) ∈ R̃t].
(3)

Now recall that the beliefs at all last histories must be strictly greater than p0. This implies

that E[ p̃(ht, τt) | (ht, τt) ∈ L̃ t] > p0 whenever π̃(L̃ t|h0, τ0) > 0 since these are the histories

that follow last histories and beliefs follow a martingale. Of course, this in turn implies that

π̃(R̃t|h0, τ0) > 0 and that E[ p̃(ht, τt) | (ht, τt) ∈ R̃t] ≤ p0, which shows that R̃t is nonempty

and that there must be a history (ht, τt) ∈ R̃t such that p̃(ht, τt) ≤ p0.

Step 3: The principal experiments following a history in R̃t where the belief is low. Formally, for all

t and ε > 0, there is a history (ht, τt) ∈ R̃t such that

p̃(ht, τt) ≤ inf
(ĥt,τ̂t)∈R̃t

p̃(ĥt, τ̂t) + ε, p̃(ht, τt) ≤ p0 and x̃(htht′ , τtτt′) > 0,

for some (htht′ , τtτt′) ∈ T̃ t+t′ , t′ ≥ 0.

First suppose inf(ĥt,τ̂t)∈R̃t p̃(ĥt, τ̂t) = p0. Then, for all histories (ĥs, τ̂s) ∈ T s, 0 ≤ s ≤ t, we

must have p̃(ĥs, τ̂s) = p0 which implies (ĥs, τ̂s) ∈ R̃s. Suppose this were not true. Take an
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earliest history (ĥsĥs+1, τ̂sτ̂s+1) ∈ T s+1 (with the smallest s < t) such that p̃(ĥsĥs+1, τ̂sτ̂s+1) 6=

p0. Then, by definition, we must have p̃(ĥs, τ̂s) = p0 and (ĥs, τ̂s) ∈ R̃s since (ĥs, τ̂s) /∈ L̃ s

because the beliefs at all last histories are strictly greater than p0. Then, by Bayes’ consistency,

there must be a continuation history (ĥsh̆s+1, τ̂sτ̆s+1) ∈ R̃s+1 such that p̃(ĥsh̆s+1, τ̂sτ̆s+1) <

p0,17 which would be a contradiction.

Now note that, if the principal does not experiment at any continuation history following

(ĥt, τ̂t) ∈ R̃t = T̃ t, it cannot be a best response for her to experiment at any history before

period t + 1 either because no successes are ever generated on path. This contradicts the fact

that the equilibrium is nontrivial.

Next suppose inf(ĥt,τ̂t)∈R̃t p̃(ĥt, τ̂t) < p0. We define

s = max

s ≤ t
∣∣∣∣ (h̆s−1h̆sh̆t−s, τ̆t) ∈ R̃t, h̆s ∈ {h, hϕ}, p̃(h̆s−1h̆sh̆t−s, τ̆t) ≤ p0 and

p̃(h̆s−1h̆sh̆t−s, τ̆t) ≤ inf(ĥt,τ̂t)∈R̃t p̃(ĥt, τ̂t) + ε

 ,

to be the last period amongst the low belief histories where the principal observes a non-

success outcome after experimenting. Let the set of period-t + 1 histories that yield the above

maximum be Rt
s. Note that, by definition, h̆t−s = (��h, . . . , ��h) for all (h̆sh̆t−s, τ̆t) ∈ Rt

s. Observe

that the maximum is well defined because R̃t is nonempty (from Step 2) and the principal

experiments before t (otherwise the infimum of the beliefs cannot be strictly lower than p0).

We now show that, for any history (h̆t, τ̆t) ∈ Rt
s, we must have x̃(h̆sĥs−s, τ̆s−1τ̂s−s+1) = 0

for all s ≤ s < t, (h̆sĥs−s, τ̆s−1τ̂s−s+1) ∈ T̃ s. In words, this says that the principal does not ex-

periment between periods s+ 1 and t at any on-path continuation history following (h̆s, τ̆s−1).

A consequence of this statement is that the principal’s belief does not change until period t+ 1

and, since the beliefs at all last histories are strictly greater than p0, (h̆sĥt−s, τ̆s−1τ̂t−s+1) ∈ T̃ t

implies (h̆sĥt−s, τ̆s−1τ̂t−s+1) ∈ Rt
s.

Suppose this were not the case, and consider the smallest s ≤ s < t such that there is an on-

path history (h̆sĥs−s, τ̆s−1τ̂s−s+1) ∈ T̃ s where the principal experiments x̃(h̆sĥs−s, τ̆s−1τ̂s−s+1) >

0. Then, there must be an on-path continuation history (h̆sĥs−s+1, τ̆s−1τ̂s−s+2) ∈ T̃ s+1, ĥs−s+1 ∈

{h, hϕ} such that

p̃(h̆sĥs−s+1, τ̆s−1τ̂s−s+2) ≤ p̃(h̆sĥs−s, τ̆s−1τ̂s−s+1) = p̃(h̆s, τ̆s−1τ̂s) = p̃(h̆s, τ̆s) ≤ p0.

17Clearly, if p̃(ĥs ĥs+1, τ̂sτ̂s+1) < p0, then (ĥs h̆s+1, τ̂sτ̆s+1) = (ĥs ĥs+1, τ̂sτ̂s+1) is such a history.
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The first inequality follows from Bayes’ consistency and the equalities follow from the facts

that there is no experimentation from periods s + 1 to s and the transfer in period s does

not change the belief at period s + 1. This combined with the fact that (h̆s−1, τ̆s−1) ∈ R̃s−1,

implies that (h̆sĥs−s+1, τ̆s−1τ̂s−s+2) ∈ R̃s+1 since the beliefs at all last histories are strictly

greater than p0. But then, we can once again use the argument in Step 2 starting at the

history (h̆sĥs−s+1, τ̆s−1τ̂s−s+2) with associated belief p̃(h̆sĥs−s+1, τ̆s−1τ̂s−s+2) (instead of the

beginning of the game (h0, τ0) and belief p0) to conclude that there must be a period-t + 1

history (h̆sĥt−s, τ̆s−1τ̂t−s+1) ∈ R̃t satisfying

p̃(h̆sĥt−s, τ̆s−1τ̂t−s+1) ≤ p̃(h̆sĥs−s+1, τ̆s−1τ̂s−s+2)

which would contradict the maximality of s.

So finally suppose, to the converse, that the principal stopped experimenting after all his-

tories (h̆t, τ̆t) ∈ Rt
s. An implication is that Uθb(h̆

s, τ̆s−1) = 0. The equality follows from the

above argument which shows that the principal does not experiment between periods s + 1

and t after history (h̆s, τ̆s−1) and that the transfer in period s must be 0 since the principal’s

continuation value after this history is 0. Then it must be the case that the history correspond-

ing to the other period s non-success outcome (h̆s−1ĥs, τ̆s), ĥs ∈ {h, hϕ}, ĥs 6= h̆s must either

be off-path or we must have Uθb(h̆
s−1ĥs, τ̆s−1) = 0. To see this, note that if this was not the

case, then it is a strict best response for the bad type to costlessly reach history (h̆s−1ĥs, τ̆s−1)

which is not possible since this would imply p̃(h̆s, τ̆s) = 1.

But then x̃(h̆s−1, τ̆s−1) > 0 is not possible as otherwise we would get the contradiction that

(h̆s−1, τ̆s−1) ∈ L̃ s−1 is a last history. Thus, the principal must experiment after at least one

history (h̆t, τ̆t) ∈ Rt
s and the proof of this step is complete.

Step 4: Final contradiction. We define

pR = inf
{

p̃(ht, τt) | (ht, τt) ∈ R̃t, t ≥ 0
}
≤ p0,

to be the lowest belief that can arise at a history that does not follow a last history. For ε > 0,

we pick an (ht, τt) ∈ R̃t such that p̃(ht, τt) ≤ pR + ε and x̃(ht, τt) > 0, and we will argue that

the principal’s payoff must be negative at such a history if ε is small enough.

39



DEB, MITCHELL, AND PAI

First observe that a consequence of Step 3 is that such a history must exist. We now define

a few additional terms for any arbitrary s ≥ 1:

qS := π̃(S̃ t+s|ht, τt), qL := π̃(L̃ t+s|ht, τt) and pL := E[ p̃(htĥs, τtτ̂s) | (htĥs, τtτ̂s) ∈ L̃ t+s].

The first two terms are the probabilities that, after s periods, the players reach a history that

follows from a success being generated in a non-last history or a history that follows a last

history respectively. The third term is the expected belief at the latter set of histories where

the expectation is taken with respect to the distribution π̃(·|ht, τt).

The martingale property of beliefs implies

p̃(ht, τt) = qS + qL pL + (1− qS − qL )E[ p̃(htĥs, τtτ̂s) | (htĥs, τtτ̂s) ∈ R̃t+s]

≥ qS + qL pL + (1− qS − qL )pR ,

where, once again, the expectation is taken with respect to the distribution π̃(·|ht, τt). This

implies that

qS ≤ ε

1− pR
and qL pL ≤ p̃(ht, τt), (4)

where the first inequality follows from the fact that either qL pL = 0 or pL > p0 ≥ pR

(because beliefs follow a martingale and the beliefs at all last histories are strictly greater than

p0) and p̃(ht, τt)− pR < ε.

Now note that at any last history (ht′ , τt′), we must have Π( p̃(ht′ , τt′)) ≥ 0 (because other-

wise x̃(ht′ , τt′) > 0 cannot be an equilibrium action by the principal) and

Π( p̃(ht′ , τt′)) = Π
(

E
[

p̃(ht′ ĥs′−t′ , τt′ τ̂s′−t′) | (ht′ ĥs′−t′ , τt′ τ̂s′−t′) ∈ L̃ s′
])

= E
[
Π
(

p̃(ht′ ĥs′−t′ , τt′ τ̂s′−t′)
)
| (ht′ ĥs′−t′ , τt′ τ̂s′−t′) ∈ L̃ s′

]
,

(5)

where the expectation is taken with respect to π̃(·|ht′ , τt′). The first equality is a consequence

of the martingale property of beliefs and the second follows from the fact that Π(·) is linear.

We can write the principal’s payoff at (ht, τt), for a s ≥ 1 when her realized action choice

is to experiment by summing four separate terms: (i) the expected continuation value af-

ter a success arrives from a non-last history in these s periods, (ii) the expected continua-

tion value at last histories, (iii) the cost of experimentation, transfers and failures at histories

(hths′ , τtτs′) ∈ R̃t+s′ , 0 ≤ s′ ≤ s− 1 and (iv) the expected continuation value at all remaining

period-t + s + 1 histories (hths, τtτs) ∈ R̃t+s.
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We can now derive a simple upper bound

qS (1 + δΠ)︸ ︷︷ ︸
(i)

+ δqL E
[
Π
(

p̃(htĥs, τtτ̂s)
)
| (htĥs, τtτ̂s) ∈ L̃ t+s

]
︸ ︷︷ ︸

(ii)

− c︸︷︷︸
(iii)

+ δsΠ︸︷︷︸
(iv)

,

for the principal’s payoff when she experiments at (ht, τt) and each term is labeled to individ-

ually correspond to a bound for each above mentioned component (i)-(iv) of the principal’s

payoff. The expectation is taken with respect to the distribution π̃(·|ht, τt).

(i) This term is an upper bound because it assumes that the successes from non-last his-

tories that arrive between periods t + 1 and t + s arrive immediately.

(ii) This term upper bounds the sum of payoffs at last histories by assuming that these

payoffs are not discounted beyond period t + 1. Consider a last history (hths′ , τtτs′),

1 ≤ s′ ≤ s. From the perspective of period t + 1, the payoff from this history is

bounded above by

0 ≤δs′ π̃(hths′ , τtτs′ |ht, τt)Π
(

p̃(hths′ , τtτs′)
)

=δs′ π̃(hths′ , τtτs′ |ht, τt)Π
(

E
[

p̃(hths′hs−s′ , τtτs′τs−s′) | (hths′hs−s′ , τtτs′τs−s′) ∈ L̃ t+s
])

≤δπ̃(hths′ , τtτs′ |ht, τt)E
[
Π
(

p̃(hths′hs−s′ , τtτs′τs−s′)
)
| (hths′hs−s′ , τtτs′τs−s′) ∈ L̃ t+s

]
,

where the expectations are taken with respect to π̃(·|hths′ , τtτs′). Summing over all

last histories and using the law of iterated expectations gives us the required bound.

(iii) This term only accounts for the cost of experimentation at (ht, τt) but no subsequent

costs of experimentation, transfers or losses due to failures.

(iv) This term is trivially an upper bound for the continuation payoff as it assumes that the

principal gets the first best payoff at period t + s + 1 for sure.

Now observe that

qS (1 + δΠ) + δqL E
[
Π
(

p̃(htĥs, τtτ̂s)
)
| (htĥs, τtτ̂s) ∈ L̃ t+s

]
− c + δsΠ

=qS (1 + δΠ) + δqL Π(pL )− c + δsΠ

=qS (1 + δΠ) + δΠ(qL pL ) + δ(1− qL )c− c + δsΠ

≤ ε

1− pR
(1 + δΠ)− (1− δ(1− qL ))c + δsΠ,
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where the inequality follows from (4) and the fact that qL pL ≤ p̃(ht, τt) ≤ p0, Π(p0) ≤ 0.

This last term is negative is we take ε sufficiently small and s sufficiently large. This shows

that there must exist an on-path history (ĥt′ , τ̂t′) ∈ R̃t′ where x̃(ĥt′ , τ̂t′) > 0 and the principal’s

payoff is less than 0 which contradicts the existence of a nontrivial equilibrium and completes

the proof. �

We now show that Theorem 4 implies Theorem 3.

PROOF OF THEOREM 3. Take a NE (x̃, ãθ) of the original game and consider the following

strategies (x̃′, τ̃′, ã′θ) in the game with transfers:

x̃′(ht, τt) =

 x̃(ht, τt) if ht ∈ H̃ t and τt = (0, . . . , 0),

0 otherwise,

τ̃′(ht+1, τt) = 0 (the Dirac measure at 0),

ã′θb
(ht, τt) =

 ãθb(h
t, τt) if ht ∈ H̃ t and τt = (0, . . . , 0),

0 otherwise,

ã′θg
(ht, τt, it) =

 ãθg(h
t, τt, it) if ht ∈ H̃ t and τt = (0, . . . , 0),

0 otherwise,

where H̃ t is the set of period-t + 1 histories that are on path when players use strategies

(x̃, ãθ) in the game without transfers. In words, these strategies are identical to (x̃, ãθ) at

histories where the principal has not made a transfer in the past. Hence, the only on-path

histories T̃ t when players use strategies (x̃′, τ̃′, ã′θ) in the game with transfers will be those

where the principal never makes a transfer. Note that (x̃′, τ̃′, ã′θ) will be a NE because, if either

player deviates off path, they receive a payoff of 0 since the principal stops experimenting and

the agent stops acting. Finally, note that every equilibrium outcome of the original game is

also an equilibrium of the game with transfers; indeed we can use the identical construction

above. This is because the refinement does not restrict transfers after a success is generated.

Thus, Theorem 3 is an immediate consequence of Theorem 4. �

APPENDIX B. PROOF OF THEOREM 5

Before proving the result, we first formally define the strategies that were informally de-

scribed in Figure 3.
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The principal follows the following strategy.

• Experiment in period one and experiment forever (stop experimenting) if a success

(failure) is observed. Formally, x̃(h0) = 1, x̃(hht) = 1 and x̃(hht) = 0 for all ht ∈H .

• If the agent does not act in period one, experiment in period two. If a success is ob-

served, experiment at all subsequent periods. Formally, x̃(hϕ) = 1, and x̃(hϕhht) =

1 for all ht ∈H .

• If the agent does not act in period one and no success is observed in period two, ex-

periment in period three. Stop experimenting from period four onward. Formally,

x̃(hϕh2) = 1, x̃(hϕh2ht) = 0 for h2 ∈ {hϕ, h} and for all ht ∈H , t ≥ 1.

In response, the good type’s strategy is the following.

• Only run good projects in period one. If a success is generated, follow the efficient

strategy. If a failure is generated (off-path), stop acting. Formally,

ãθg(h
0, i1) =

 1 if i1 = ig,

0 if i1 ∈ {ir, ib},

ãθg(hht−1, itit+1) =

 1 if it+1 = ig,

0 otherwise,
for all (hht−1, itit+1) ∈H g,

ãθg(hht−1, it+1) = 0 for all (hht−1, it+1) ∈H g.

• If no project was run in period one, implement both good and risky projects in period

two. If a success is generated, follow the efficient strategy. Formally,

ãθg(hϕh2, i1i2) =

 1 if i2 ∈ {ig, ir},

0 if i2 = ib,

ãθg(hϕhht−2, i1i2it−2it+1) =

 1 if it+1 = ig,

0 otherwise,
for all (hϕhht−2, i1i2it−2it+1) ∈H g.

• If no project was run in period one and no success is observed in period two, only

implement good projects in period three. Stops acting thereafter regardless of the

period three outcome. Formally,

ãθg(hϕh2, i2i3) =

 1 if i3 = ig,

0 otherwise,
for all h2 ∈ {h, hϕ} and (hϕh2, i2i3) ∈H g,
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ãθg(hϕh2ht, it+3) = 0 for all h2 ∈ {h, hϕ} and (hϕh2ht, it+3) ∈H g, t ≥ 1.

Finally, the bad type never acts or, formally, that ãθb(h
t) = 0 for all ht ∈H .

We now proceed to proof of the result.

PROOF OF THEOREM 5. Fix any δ ∈ (0, 1) and λg < λg < 1
2 . First, observe that we can

always find a low enough c ∈ (0, 1) to satisfy

(1− (λg + 1/2))(λg − c) >
1 + δ

δ
c. (C1)

Note that the above expression implies that λg > c. In the remainder of the proof, we implic-

itly assume that δ ∈ (δ, 1), λg ∈
(

λg, λg

)
, λr ∈

(
0, 1

2

)
and c ∈ (0, c).

Now note that there is always a set of values of κ, (κ, κ that satisfy the condition

0 < (λg + λrqr)
(
1 + δΠ

)
− λr(1− qr)κ < c. (C2)

Observe that, when the above condition holds, quality control is necessary irrespective of the

initial belief p0. This is because

Π(p0) = p0(λg +λrqr)(1+ δΠ)− p0λr(1− qr)κ− c < (λg +λrqr)
(
1 + δΠ

)
−λr(1− qr)κ− c < 0.

Note, (C2) also implies Π(p0) > −c. Henceforth, we implicitly assume that κ satisfies (C2).

We now derive the belief bound p
0

such that the principal’s strategy defined in Figure 3

is a best response for all prior beliefs p0 ∈
(

p
0
, 1
)

. Clearly, her continuation strategy is a

best response to a success being observed in either periods one or two and to a failure being

observed in period one. It remains to be shown that experimenting is a best response in each

of the remaining histories in periods one to three.

First observe that the principal’s payoff in period three when the agent does not take an

action in the first two periods satisfies

p̃(hϕhϕ)λg− c =
p0(1− λg)(1− λ)

p0(1− λg)(1− λ) + (1− p0)
λg− c >

p0(1− λg)(1− (λg + 1/2))

p0(1− λg)(1− (λg + 1/2)) + (1− p0)
λg− c.

Clearly, there exists a p′ ∈ (0, 1) such that

p0(1− λg)(1− (λg + 1/2))

p0(1− λg)(1− (λg + 1/2)) + (1− p0)
λg − c > 0
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for all p0 ≥ p′ or, in words, that the principal’s payoff at this history is positive for high

enough initial belief.

The principal’s expected payoff in period two when the agent does not act in period one is

positive if

Π( p̃(hϕ)) + δ p̃(hϕ)(1− (λg + qrλr))(λg − c)− δ(1− p̃(hϕ))c > 0,

⇐⇒ p̃(hϕ)(1− (λg + qrλr))(λg − c) > (1− p̃(hϕ)) c−
Π( p̃(hϕ))

δ
.

We now argue that this condition will be true for sufficiently high p0. First, observe that

p̃(hϕ) =
p0(1− λg)

p0(1− λg) + (1− p0)
,

is increasing in p0 and is 1 when p0 = 1. Then note that

p̃(hϕ)(1− (λg + qrλr))(λg − c) > p̃(hϕ)(1− (λg + 1/2))(λg − c)

>
1 + δ

δ
c > (1− p̃(hϕ))c +

c
δ
>

1 + δ(1− p̃(hϕ))

δ
c−

Π( p̃(hϕ))

δ

for sufficiently high p0. To see this, note that the second inequality holds when p0 is high

because of (C1) and the last inequality is a consequence of the fact that Π(p0) > −c. Let p′′ be

a value of p0 such that the second inequality is satisfied and note that the principal’s expected

payoff in period two when the agent does not act in period one is positive for all p0 ≥ p′′.

Finally, the principal’s expected payoff in period one is positive since her period one stage

game payoff is positive: observe that the prior belief p0 > p̃(hϕhϕ) and the latter was assumed

above to be sufficiently high to make the period three stage game payoff positive.

So set p
0
= max{p′, p′′} and note that for all values p0 ∈ (p

0
, 1), qr ∈ (0, 1), δ ∈ (δ, 1),

λg ∈
(

λg, λg

)
, λr ∈

(
0, 1

2

)
, c ∈ (0, c), there is a range of values of κ (satisfying C2) such that

the principal’s strategy is a best response.

It remains to be argued that the agent’s strategy is a best response. First, note that the

bad type never has an incentive to act since he can never generate a success and this is the

only way to get the principal to experiment after period three. The good type is indifferent

between acting or not in period three and strictly prefers to run both good and risky projects

in period two (while being indifferent about whether or not to implement a bad project).
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Finally, we argue that when qr ∈ (0, λg) the good type strictly prefers to not run a risky

project in period one; clearly, he strictly prefers to not run a bad project. To see this, observe

that his expected continuation payoff from running a risky project is qr/(1− β). If he chooses

to not run a project in period one, his expected continuation payoff is

λg + qrλr

1− β
+ (1− (λg + qrλr))(1 + β).

In words, the good type has the option value of waiting till period two and, if he generates

a success he receives the efficient continuation payoff (if not, the principal experiments for

one more period). Clearly this option value is strictly greater when qr < λg irrespective of his

discount factor β.

To summarize, the above argument derives bounds such that for any p0 ∈ (p
0
, 1), δ ∈ (δ, 1),

β ∈ (0, 1), λg ∈
(

λg, λg

)
, λr ∈

(
0, 1

2

)
, qr ∈

(
0, λg

)
and c ∈ (0, c), there exist values of κ such

that the proposed strategies constitute a NE.

We complete the proof by noting that the principal’s payoff satisfies

V(h0, x̃, ãθ) = p0λg(1 + δΠ)− c + δ(1− p0λg)V(hϕ, x̃, ãθ) ≥ p0λg(1 + δΠ)− c

and the good type’s payoff satisfies

Uθg(h
0, i0, x̃, ãθg) =

λg

1− β
+ (1− λg)(1 + βUθg(hϕ, i1, x̃, ãθg)) ≥

λg

1− β

where i1 = ib (we can equivalently plug in i1 = ir since the good type’s strategy is identical in

both cases). �
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