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ABSTRACT: Motivated by markets for “expertise,” we study a bandit model where a
principal chooses between a safe and risky arm. A strategic agent controls the risky
arm and privately knows whether its type is high or low. Irrespective of type, the
agent wants to maximize duration of experimentation with the risky arm. However,
only the high type arm can generate value for the principal. Our main insight is that
reputational incentives can be exceedingly strong unless both players coordinate on
maximally inefficient strategies on path. We discuss implications for online content

markets, term limits for politicians and experts in organizations.

“One forgets that though a clown never imitates a wise man, the wise man can

imitate the clown.”
—Malcolm X

Several environments in which a principal relies on an “expert” (agent) share the following
features: (1) the agent has a privately known type (good or bad) and the principal wishes
to dynamically screen, (2) the type determines the rate at which the agent receives private
information that is payoff relevant for the principal, and, (3) the agent acts strategically based
on this information in an effort to manage his reputation and prolong his relationship with the
principal.
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For example, a surfer on the internet searching for content may be faced with a content
provider of unknown quality. The provider wishes to sustain the surfer’s attention, but this
creates a dilemma: genuine content (which varies in quality) can only be generated period-
ically. How do content providers balance the quality and the frequency of the new content
they provide with the aim of retaining both interest and trust? Similar incentives are faced
by elected politicians. The ability of the politician determines whether or not he has effective
policy ideas, but a politician trying to stay in office could feel pressured into enacting risky
policies that are unlikely to succeed in an attempt to appear proactive. How does this reelec-
tion incentive affect the politician’s policy choices? Finally, similar incentives are also faced
by “experts” in organizations. For example, a scientist in a pharmaceutical company who is
trying to establish a reputation for being innovative, may choose to recommend a costly drug
trial which is very unlikely to succeed.

We develop and study a novel repeated game to analyze such environments. Because both
players are long-lived and the lack of commitment implies that incentives are provided only
via continuation value, our framework is effectively a relational contracting setting where the
agent has persistent (and periodic) private information.

Our main insight is that the agent’s reputational incentives are so strong that they can
destroy the relationship unless both players can coordinate on “maximally inefficient” strate-
gies. Perhaps paradoxically, this shows that what helps relationship functioning is precisely
the players’ ability to mutually agree to terminate it at the point where uncertainty is resolved

and, as a result, the relationship is at its most valuable.

Summary of Model and Results

Our model is perhaps easiest to describe as a bandit model with a strategic arm and we use
this metaphor throughout the paper. In the next paragraph, we link various elements of the
model to the first application since this is perhaps the least apparent of the three settings
mentioned above. The implications of our results for all three applications are developed in
detail in the body of the paper.

In each period, the principal (online content consumer) chooses between experimenting

with a costly risky arm of unknown type (visiting the website) and a costless safe arm (not
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visiting, the outside option). The risky arm’s type is privately known by the agent (con-
tent provider) who also controls its output. If the arm is the good type, it stochastically re-
ceives private project ideas (news stories) that vary in quality (the accuracy of reporting); the
bad type never receives any ideas. If the principal decides to experiment, the agent chooses
whether or not to costlessly implement the project (publish a story) based on the idea he re-
ceived (if any). An implemented project generates a public success or failure (the veracity of
the story once cross-checked by other news outlets), the probability of which depends on the
quality of the idea. In our model, good projects always succeed, bad projects (implemented
despite not receiving an idea) never succeed, while implementing a risky project sometimes
results in a success (and sometimes in a failure). The principal wants to simultaneously maxi-
mize the number of successes (true stories) and minimize failures, whereas the agent wants to
maximize the duration of experimentation by the principal (that is, maximize the number of
website visits). To make the model interesting, we assume that implementing risky projects is
myopically inefficient, in that, it generates a negative expected payoff for the principal. This
way, there is a tension between the agent’s need to establish reputation (generate successes)
and the principal’s desire to avoid failures.

Since implementing a project is costless to the agent, there are no frictions in our environ-
ment if the agent’s type is publicly known. In this “first-best” benchmark (Theorem 1), the
principal-optimal Nash equilibrium strategy is for her to always experiment with the good
type agent, and, in response, the agent (who is indifferent between all strategies) acts effi-
ciently, i.e., only implements good projects. These Nash equilibrium strategies also generate
the unique Pareto-efficient outcome. Conversely, if the agent is known to be the bad type,
the principal never experiments in the unique Nash equilibrium outcome: experimentation is
costly and the bad type can never generate positive payoffs for the principal.

Despite the lack of frictions, there are a multiplicity of Nash equilibria even when the agent
is known to be the good type. Indeed, there is a Nash equilibrium in which there is complete
relationship breakdown: the good type never runs a project and, in response, the principal
never experiments. Our main insight is to show that such maximal inefficiency, on path, can be
necessary for the relationship to function.

To see why, now suppose there is uncertainty about the agent’s type. We first examine
Nash equilibrium outcomes with the following (mild) refinement, the sole purpose of which

is to rule out the maximal inefficiency identified above. The refinement requires that, at all
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on-path histories where the principal first learns that the agent is the good type (for sure),
the continuation equilibrium is nontrivial (that is, the principal experiments at some continu-
ation history with positive probability). To put it differently, whenever the agent first proves
himself to be the good type, he receives positive continuation utility because the relationship
does not completely break down. Continuation play at these histories can be inefficient as
long as it is not maximally so. In what follows, this refinement is implicit whenever we refer
to equilibrium without using the additional “Nash” qualifier.

When there is type uncertainty, the principal may experiment with the risky arm in order
to give the agent a chance to reveal himself to be the good type by generating a success. Of
course, whether or not experimentation is worthwhile depends on how many (costly) fail-
ures the principal must suffer along the way. The key tradeoff in our model is that, absent
any dynamic enforcement, the good type always wants to implement risky projects to gen-
erate successes since he does not bear the cost of failures. To make this tradeoff between the
agent’s action strategy and the principal’s decision to experiment explicit, we consider a sec-
ond “static” benchmark which captures the highest payoff that the principal can achieve from
experimenting for a single period subject to the refinement.' Here, the principal experiments
for the first period and stops experimenting if no success is generated. Conversely, a success
(reveals the agent to be the good type and) is followed by first-best continuation play (which
yields the highest possible continuation value for the principal). Since only a success guar-
antees positive continuation value, the good type (strictly) best responds by implementing
both good and risky projects; being indifferent, he does not run bad projects (which avoids
unnecessary failures for the principal).

The sign of the principal’s payoff in this benchmark determines her tolerance for what
we call a lack of quality control; that is, when the good type agent always implements risky
projects. If, and only if, the principal’s payoff in this benchmark is positive, the strategies
described in the previous paragraph constitute an equilibrium and, hence, the principal is
willing to experiment even when the good type agent always runs risky projects (Theorem 2).2

Conversely, when the payoff in this benchmark is negative, we say quality control is necessary

IWe term this as static because screening only occurs for one period.
2One needs to carefully specify the strategy of the bad type: he must also act with positive probability as oth-
erwise acting alone will cause the principal’s belief to jump to one and so, per the refinement, the continuation
equilibrium after a failure must also be nontrivial. However, because our refinement only bites if beliefs jump
to exactly 1, this probability can be taken to be arbitrarily small so that the principal’s loss from the bad type is
correspondingly small.

4
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for experimentation. In this case, the principal has to provide dynamic incentives to police
the agent’s actions in order to receive an overall positive value from experimentation; simple
static strategies of the sort described above will not work.

Our first result (part 1 of Theorem 3) shows that the principal can never completely prevent
the agent from choosing inefficient actions in any equilibrium—in every nontrivial equilib-
rium, the agent implements both risky and bad projects on path. Part 2 of Theorem 3 shows
that the surplus loss from this inefficiency can be large. Specifically, whenever quality control
is necessary for experimentation, the unique equilibrium outcome is one in which the princi-
pal never experiments. In short, whenever the principal needs to discipline the agent to make
experimentation worthwhile, the agent’s need to establish reputation makes this impossible!

What makes our result stark is that breakdown can occur even with arbitrarily small amounts
of uncertainty or even if “minimal quality control” can make experimentation profitable. We
discuss each of these and their implications in turn. There are parameter values such that
quality control might be necessary even when the agent is almost surely known to be the good
type. For instance, when failures are very costly to the principal, experimentation will not be
profitable even with a high belief if the good type agent always implements risky projects.
However, when the principal’s belief is high, one might expect that the agent’s reputational
incentives are weaker and that he can be incentivized to act efficiently sufficiently often to
make experimentation worthwhile. An implication of our main result is that this is not the
case: the principal’s equilibrium payoff discontinuously drops from that of the first-best to
zero as there is infinitesimal uncertainty about whether the agent is the good type.

When the principal’s payoff in the static benchmark is negative but small, this corresponds
to the case where the principal would not experiment if the agent acts inefficiently at every
opportunity but experimentation would be profitable if the agent chose to behave efficiently
even a small fraction of the time. Our result implies that the principal cannot even provide
the long run incentives to make efficient play occur at a small fraction of histories. In this
sense, the loss of surplus due to reputational concerns can be large relative to the first best.

In Section 4, we show how coordination on maximal inefficiency can restore relationship
functioning (Theorem 5). In Section 5, we first apply this insight to demonstrate that term lim-
its for politicians can improve policy making not despite, but precisely because, even proven
good politicians must leave office at the end of their term. We also discuss the two other

applications: the benefits of moving from advertising driven revenue to subscription based
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payment in online content markets and the hiring of experts in organizations. In our con-
cluding remarks (Section 6), we also argue that our main result is robust to relaxing several

assumptions.

Related Literature

This paper is most closely related to two strands of the repeated games literature. The first
is the literature on “bad reputation” which builds on the work of Ely and Valiméaki (2003)
(henceforth EV). They consider a two player repeated game and show that the reputational
incentives of a long-lived agent with a privately known type can cause the loss of all surplus
when faced with a sequence of short-lived principals. The game we analyze is distinct from
theirs in that our model does not not have the payoff structure of a bad reputation game in
the sense of Ely, Fudenberg, and Levine (2008). More importantly, our paper is the first to
establish a bad reputation result in a model with two long-lived players (one of whom has
multiple strategic types) and in which the principal’s discount factor is intermediate. More-
over, our result does not depend on the agent’s discount factor at all. We postpone a more
detailed discussion of the differences to Sections 3 and 4. As we argue, these properties are
not just of theoretical interest but are also important to capture relevant applications.

These features also distinguish our result from the broader reputation literature which
demonstrates how a long-lived player with a privately known type, facing a sequence of
short-lived players, can attain her Stackelberg payoff for sufficiently high discount factors (by
mimicking commitment types). There is a substantially smaller fraction of this literature that
identifies classes of games in which this result obtains with two long-lived patient players.
Early examples are Schmidt (1993) and Cripps and Thomas (1997), more recent papers are
Atakan and Ekmekci (2012, 2013).

Our paper can also be thought of as an instance of a relational contracting problem. Like
our setting, Levin (2003) studies a model with both adverse selection and strategic actions
but importantly, his agent draws his private cost type independently in each period. More
recently, Li, Matouschek, and Powell (2017) consider a setting without transfers where the
agent has independently drawn private information in each period. The absence of persistent
private information for the informed player is the main distinction between our paper and the
vast majority of this literature. In Halac (2012), the principal has a privately known persistent

outside option. This qualitatively differs because this private information does not affect the
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total surplus and instead determines the amount that the principal can credibly promise to
the agent. Malcomson (2016) is a recent instance of a paper with persistent payoff-relevant
private types; his main result is that full separation of the agent’s types is not possible via
a relational contract. All of the papers in this strand of the literature study substantially
different economic settings from this work but an important additional difference is that our
model features periodic (in addition to the persistent) private information. This difference
is not merely cosmetic and the latter ingredient is critical to generate our main economic
insights. Finally, Mitchell (2020) also considers a related problem without transfers but his
setting is one of pure moral hazard.

While otherwise very different, the reputational incentives (and the fact that they can dis-
tort behavior) in our setting are similar in spirit to those in models where experts with private
types choose actions in an attempt to demonstrate competence (Prendergast and Stole (1996),
Morris (2001), Ottaviani and Serensen (2006)). More recently, Backus and Little (2018) con-
sider a single period, extensive-form game of expert advise where they derive conditions un-
der which an expert can admit uncertainty. Our setting shares an essential modeling feature
that good types may not be able to provide the principal with positive utility in all periods.
Aghion and Jackson (2016) consider a political economy setting where voters (principal) must
incentivize a politician (agent). Formally, they consider a setting without transfers where a
principal is trying to determine the type of a long-lived agent. While some features of our
game are similar (the agent’s payoff and the fact that she receives private information in each
period), the main driving forces in their model are different. Specifically, signaling is not a
source of inefficiency in their setting; instead, the principal wants the agent to take “risky”

actions that are potentially damaging to the latter’s reputation.

1. THE MODEL

We study a discrete time, infinite horizon repeated game of imperfect public monitoring
between a principal and an agent. We denote time by ¢ € {1,...,c0}; the principal and agent

discount the future with discount factors 6, € (0, 1) respectively.
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Agent’s Initial Type: The agent starts the game with a privately known type 6 which can either
be good () or bad (6;). The agent is the good type 6, with commonly known prior probabil-
ity 0 < po < 1. This initial type determines the rate at which the agent can generate positive
payoffs for the principal.

We begin by describing the stage game (summarized in Figure 1) after which we define

strategies and Nash equilibrium.

1.1. The Stage Game

At each period ¢, the principal and agent play the following extensive-form stage game

where the order of our description matches the timing of moves.

Principal’s Action: The principal begins the stage game by choosing whether or not to experi-
ment x; € {0,1}, where x; = 1 corresponds to experimenting. The cost of action x; is cx; with
c > 0 so experimentation is costly. If the principal chooses not to experiment, the stage game

ends. When she experiments, the stage game proceeds as follows.

Agent’s Information: In each period, the agent receives a project idea i;. These can either be
bad (i; = i), risky (it = i,) or good (i; = ig). i; is drawn independently in each period from a
distribution that depends on the agent’s type 0.
The bad type only receives bad project ideas: i.e., if § = 6, then i; = i, with probability 1.
The good type additionally receives risky and good project ideas stochastically. That is,
if 0 = 0,, the agent gets good (i; = iy), risky (i; = i,) and bad (i; = 7;) project ideas with
probabilities Ag, A, € (0,1) and 1 — (Ag + A;) respectively where Ay + A, =: A € (0, 1).

Agent’s Action: After receiving the project idea, the agent decides whether or not to costlessly
implement the project. Formally, he picks a public action a; € {0,1} where a; = 1(0) denotes
whether (or not) the project was run.

Public Outcomes: If the principal experiments (x; = 1) and the agent acts (a2; = 1), a public

outcome o; € {0,0} is realized from a distribution y given by

1 ifiy =g,
]/1(5‘ it) = qr if it = ir/
0 ifi; = ip,

where g, € (0,1) and o is realized with the complementary probability.

8
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A success (0) can only be generated by the good type and the likelihood of a success is
determined by the project quality: a good project always generates a success and a risky
project sometimes generates a success. The tension in the model arises from the fact that the
good type may want to implement risky projects in an effort to signal his type. Since this can
generate failures (0), the bad type may also act in an attempt to pool even though he only ever
receives bad project ideas.

This “good news” assumption (common in bandit models) implies that successes perfectly
reveal that the agent is the good type. As we will discuss below, this assumption is deliber-
ately stark (we do not require it for our main insights). It is intended to highlight that rela-
tionship breakdown can arise even though the good type can separate perfectly at histories
where he receives good project ideas and, hence, one might expect screening to be possible.

If either the principal does not experiment (x; = 0) or the agent does not act (a; = 0),
the stage game ends with the agent generating neither a success nor failure. We denote this
outcome by 0; = 0y. Note that the extensive form implies that the agent does not receive
project ideas or get to move if the principal does not experiment; to simplify notation, we
define a; = 0 and i; = i, when x; = 0.

We use the shorthand notation h; = (xt,at,0¢), hy € {%,hqo,ﬁ,h} to describe the (public)

outcome of the stage game. Here,

f:=(x=0,a=0,0=0y), hy:=(x=1,a=0,0=0,),

h:=(x=1a=10=0), h:=(x=1a=1,0=0).

In words, /i denotes the case where principal chooses not to experiment, the remaining three
correspond to the separate outcomes that can occur after the principal experiments. h, de-
notes the case where the agent does not act, and h, h denote the cases where the agent acts
and a success, failure respectively are observed.

We use time superscripts to denote vectors. Thus, it = (hy,..., k) and i* = (iy,...,i).
Additionally, 1! (and analogously for other vectors) denotes the ' + t length vector where
the first ' elements are given by h and the # 4 1% to t' + ™ elements are given by K.

Stage Game Payoffs: The agent wants to maximize the duration of experimentation. Formally,
his normalized payoff is u(x;) = x;, so he receives a unit payoff whenever the principal

experiments.
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The principal wants to maximize (minimize) the number of successes (failures). Her payoff

v is given by

1—c¢ if I’lt = E,
—x—c ifhy=h,
U(ht) = )
—c if hy = h(,,,
0 if hy = .

In words, gross of cost, the principal realizes a normalized payoff of 1 for every success, a loss
of x > 0 for every failure and 0 otherwise.
Payoff Assumptions: We assume that risky projects yield a net loss for the principal: g, <
(1 — g,)x. This assumption creates one of the key tradeoffs in the model: absent signaling
value, the principal wants to prevent the agent from running risky projects.

Additionally, we assume that the cost of experimentation is sufficiently low to make the
model nontrivial, that is, ¢ < A,. If this assumption is not satisfied, the principal has no

incentive to experiment even if the agent is known to be the good type.

1.2. The Repeated Game

Histories: h'=' € {}f,hy,h,h}'~1 denotes the public history (henceforth, simply a history) at
the beginning of period t. This contains all the previous actions of and outcomes observed by
both players. The good type agent’s private history additionally contains all previous project
ideas i'~! and the period-t project idea i; when he is deciding whether or not to act (the bad
type only receives bad project ideas and therefore has no additional private history). We use
the convention that 1% = ¢ denotes the start of the game. We use # and J#¢ to respectively

denote the set of histories and the set of the good type agent’s private histories.?

Agent’s Strategy: We denote the agent’s strategy by dy. When the agent is the bad type,
dg,(h'™1) € [0,1] specifies the probability with which the agent acts at each period t as a
function of the history #'~! € .. When the agent is the good type, ag, (1'~',i') € [0,1] spec-
ifies the probability with which he acts at each period ¢ as a function of his private history
(ht_l, ity € 8. Since the agent can only act when x; = 1, this is implicitly assumed in the

notation and we do not add this as an explicit argument of 4y for brevity.

3Note that 7’8 only contains histories where the outcomes for the stage game are compatible with the project
ideas received by the good type; recall that successes cannot arise when the good type implements bad projects.

10
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Principal’s Strategy: The principal’s strategy %(h!~1) € [0, 1] specifies the probability of exper-

imenting in each period ¢ as a function of the history.

On- and off-path Histories: Given strategies & and dy, a history h'~! € J# is said to be on path
(off path) if it can (cannot) be reached with positive probability for either (both) of the agent’s
possible types 6 € {6,,0,}. Similarly, a private history (h'~!,i’) € % is said to be on path
(off path) if it can (cannot) be reached with positive probability when 6 = 0,.

Beliefs: A belief  is associated with a pair of strategies ¥, 4y (we suppress explicit dependence
on the strategies for notational convenience). f(h'~!) is principal’s belief that the agent is
the good type at history h'~1. If this history is on-path, f(h!~1) is derived from the agent’s
strategy dy by Bayes’ rule. In the entirety of what follows, we impose no restriction on how

off-path beliefs are formed.

Expected Payoffs: We use Ueg(ht_l, it~ %, g, ), Up, (W1, %,dg,), V(h'™1, %,d9) to denote the ex-
pected payoff of the good, bad type agent and principal respectively at histories h'~! € 7,
(h'=1,i*"1) € #% given strategies ¥, . Note that the principal’s payoff implicitly depends

on her belief #(h'~1) at this history.

Nash Equilibrium: A Nash equilibrium (henceforth referred to as NE) consists of a pair of

strategies X, ig such that they are mutual best responses. Formally, this implies that Uy, (W0, %, d,)

Uy, (h°,1°, %, . ) Uy, (H°, %,dg,) > Uy, (h°,%,ap ) and V (KO, %,a9) > V(h,&',dp) for any other

strategies ¥/, .

Nontrivial NE: A NE is nontrivial if there is an on-path history (i) where the principal experi-
ments with positive probability (£(h') > 0).

We similarly will also use the phrase “nontrivial” to describe strategies and equilibria (with
our refinement in place). It always refers to the fact that the principal experiments on path.

Before beginning the analysis, it is worth discussing the main assumptions of the model:
(i) the monitoring structure mapping project type to outcomes, (ii) the lack of transfers, (iii)
actions being costless and (iv) ideas arriving for free. The first is probably the least controver-
sial because it is common in bandit models to assume a “good news” information structure.
As mentioned above, successes in our model perfectly reveal that the agent is the good type.
This assumption is deliberately stark. It is intended to highlight that relationship breakdown

can arise even though the good type can separate perfectly at histories where he receives good
1
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FIGURE 1. Flow chart describing the repeated game; the rectangle contains the
stage game.

project ideas and, hence, one might expect screening to be possible. We argue below that our

main insight is unaffected if we dispense with these assumptions.

2. TWO BENCHMARKS AND THE EQUILIBRIUM REFINEMENT

We begin by considering two simple benchmarks which provide context for our main re-
sult. Section 2.1 considers a setting where there is no incomplete information. This motivates
the refinement that we define in Section 2.2. Finally, we consider a “static” benchmark in

Section 2.3 that provides a foundation for the key parameter values that we focus on.

2.1. The First-Best Complete Information Benchmark

The purpose of this section is to show that the key friction in the model is the principal’s
need to screen the good from the bad type. To do so, we consider a benchmark in which the
agent’s type is publicly known; formally, this corresponds to the case where the prior belief
po € {0,1}. The theorem below characterizes the “first-best” NE under complete information.
As we often do in the paper, formal statements are presented in words sans notation to make
them easier to read. Where we feel it is helpful to the reader, we additionally describe the

strategies using the notation in footnotes and /or appendices.

12
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THEOREM 1. If the agent is known to be the bad type, there is a unique NE in which the principal
never experiments.* Conversely, if the agent is known to be the good type, then, in the unique Pareto-

optimal NE outcome the principal always experiments and the agent only implements good projects.’

This result is obvious so the following discussion serves as the proof. The principal never
experiments when the agent is known to be the bad type since experimentation is costly and
this type cannot generate any successes which are the only outcomes that yield a positive
payoff to the principal. Conversely, if the agent is known to be the good type, there are no
frictions. As long as the agent only runs good projects, it is always profitable for the principal
to experiment. Since actions are costless, the agent is indifferent between all strategies and
so, in particular, always choosing the principal optimal action is a best response. In what
follows, whenever we describe the behavior of either player as efficient, we are referring to the

strategies described in Theorem 1 above. We use

M= 227C g
1-94
to denote the first-best payoff that the principal obtains from the good type. This is clearly an

upper bound for the payoff that the principal can achieve in any NE for py € [0, 1].

2.2. The Equilibrium Refinement

Despite the lack of frictions when the agent is known to be the good type, there exist other,
inefficient Nash equilibria where the principal does not always experiment because the agent
acts inefficiently at certain histories. Indeed, complete relationship breakdown is also a NE:
the principal never experiments and, in response, the agent never acts—these strategies are
mutual best responses. As our main insight is the importance of such on-path maximal inef-
ficiency for relationship functioning, we will show that the market can breakdown when we

impose the following refinement that rules out these (and only these) strategies on path.

Equilibrium Refinement: An equilibrium (with no additional qualifier) is a NE in which, at all on-

path histories where the principal’s belief (first) jumps to 1, the continuation play is nontrivial.

4Formally, the principal’s unique NE strategy when pg = 0is £(h'~1) = 0 for all i*~! € J#. The agent’s strategies
can be picked arbitrarily.

SFormally, the Pareto-optimal NE strategies when py = 1 are Z(h'~1) = 1, ag,(h'~1) = 0 for all '~1 € # and
ag, (h'=1,i'"1iy) = 1(0) for all (h'~1,i*~1iy) € 8 where iy = (#)ig.

13
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Formally, NE strategies %, 4y are an equilibrium if, at all on-path histories h'~1h; € J# such
that p(h'~1) < 1 and p(h!~'h;) = 1, there exists an on-path continuation history k!~ ';h! €
A such that #(h'~1hht') > 0.

Some readers might view this refinement as natural because it can be thought of as an
extremely weak form of renegotiation proofness. While we are not aware of other papers
that employ this exact refinement, more restrictive versions exist in the literature. Another
natural but stronger alternative would require continuation play to be nontrivial at all on-path
histories h'~! € J# where the belief is fi(h'~!) = 1. An even stronger refinement would be
to impose efficient continuation play (in the sense of Theorem 1) once uncertainty is resolved.
This refinement is employed by EV in whose model similar multiplicity arises; they explicitly
refer to it as renegotiation-proofness.®

Finally, note that the above refinement is, in an informal sense, weaker than standard re-
finements such as Markov perfection. This is, once again, because the refinement only has
bite the first time the principal’s belief jumps to 1 on path, whereas Markov perfection re-
stricts on-path behavior to always be measurable with respect to beliefs. That said, observe
that Markov strategies are not a subset of our refinement. In particular, Markovian strategies

allow for breakdown at all belief 1 histories.”

2.3. The “Static” Benchmark and the Need for Quality Control

In this section, we present, and provide a foundation for, the main parameter values that
we focus on. We are interested in parameter values where there is a tradeoff between the
agent’s short term need to establish reputation and the principal’s value from experimenta-
tion. To do so, we examine a “static” benchmark where the agent only has a single period to
prove himself to be the good type. When parameter values are such that the payoff in this
benchmark is negative, experimentation is only worthwhile to the principal if she can provide

dynamic incentives to prevent the agent from always implementing risky projects.

®To the best of our knowledge, there is no single, accepted renegotiation-proofness refinement in repeated
games with uncertainty. Our refinement (imposed after the agent’s type uncertainty is resolved) is substan-
tially weaker than what is implied by many renegotiation-proofness refinements in the literature for complete
information games. For instance, the consistency requirements in Farrell and Maskin (1989), Abreu, Pearce, and
Stacchetti (1993) and, most recently, the sustainability requirement (without renegotiation frictions) of Safronov
and Strulovici (2017) would yield the efficient outcome when the agent’s type is initially known to be good. All
three are defined for complete information repeated games with normal form stage games but can be applied to
our extensive-form stage game as well.

"That said, the only Markov equilibria that are ruled out by our refinement are uninteresting equilibria where
there is only one success on path following which the game ends.
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Specifically, consider the following strategies:

Principal: Experiment in period one. If no success is generated, stop experimenting.
If a success is generated, always experiment at all future histories.

Good-type agent: Only implement good and risky projects in period 1. If a success is gener-
ated, follow the efficient strategy. If no success is generated, stop acting.

Bad-type agent:  Act with positive probability in period one and then stops acting.

Formally, these “static” strategies are given by

1 ifthy=h,

' foralllhtTle s, t > 1,
0 ifh #h,

(M%) =1 and #(h'™!) =

_ ) 1 ifiy € {ig, i},

aeg(holll) — ' ' 8rtr
0 if 11 =1y,

1 ifhy =handipy = i,
it Iy and 1441 = 1g for all ('™, ity 1) € 8, t > 1.

dg, (b=, iip 1) = {

0 otherwise,

ag,(h°) > 0and dg, (k') =0, forallh' € 2, t > 1.
(1)

To summarize, these strategies correspond to the principal experimenting for a single pe-
riod in the hope that the agent produces a success. A success is followed by the first-best
continuation payoff. If no success is generated, the principal stops experimenting and the
game effectively ends. Faced with this strategy, it is a strict best response for the good type
to implement both good and risky projects because only successes generate positive contin-
uation payoffs. The bad type is indifferent between implementing a bad project or not (as is
the good type), so acting with positive probability is, in particular, a best response. We term
these strategies as static because screening only occurs for one period.

An upper bound for the principal’s payoff from these strategies is given by
I(po) := po(Ag + Argy) (14 6IT) — poAr(1 — gy )x —c.

This is the expected payoff that the principal receives from the actions of the good type; it is
an upper bound because it does not account for the losses from failures generated by the bad
type. The first term corresponds to the payoff after a success (the principal gets a payoff of 1

in period one and the first-best continuation payoff IT) and the second term is the loss from
15
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a failure. It is straightforward to observe that a necessary and sufficient condition for these

strategies to constitute an equilibrium is that this bound is positive.
THEOREM 2. There exists an equilibrium in static strategies (given by (1)) iff IL(po) > 0.

When I1(pg) > 0, there is always a low enough positive probability € > 0 of action by the
bad type (@, (h°) = ¢) such that the principal’s payoff from experimentation is positive. Note
that, as long as the bad type sometimes, but not always, acts (i, (h°) € (0, 1)), the principal’s
belief following both non-success outcomes is interior (since j(h), p(hy) < 1) and thus the
continuation play as prescribed by the above strategies (1) is allowed by the refinement since
it has no bite at these histories.

Conversely, when Il(pg) < 0, it is a strict best response for the principal to not experiment
in period one. This is because her payoff is strictly lower than this upper bound since the bad
type acts with positive probability. Note that there cannot be an equilibrium where the bad
type does not act (g, (h°) = 0). Suppose to the contrary that there was such an equilibrium.
In this putative equilibrium, only the good type acts and so, irrespective of outcome, the
principal’s posterior belief must go to one after an action (5(h;) = 1 for hy € {h,h}). Our
refinement implies that this will result in positive continuation value for the agent. As a result

acting (dg, (h°) = 1) will be a strict best response for the bad type, which is a contradiction.

When I(po) < 0, we say quality control is necessary for experimentation to generate a pos-
itive expected payoff. In this case, the principal must use the dynamics of her relationship
with the agent in order to provide the good type with the necessary incentives to implement
risky projects sufficiently infrequently. Note that the monitoring structure we have chosen
in our model is intentionally stark. By assuming successes are perfectly revealing, it should
be easier for the good type to establish reputation compared to a setting where bad projects
could also generate a success with positive probability. In other words, one might think that
screening would be relatively easier for the principal compared to the case where bad types
too could sometimes produce successes. We argue that reputational forces can be destructive

despite this stark good news monitoring structure.
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3. RELATIONSHIP BREAKDOWN

Our main insight is the minimal efficiency requirement imposed by the refinement can

cause market breakdown.

THEOREM 3. Suppose po € (0,1). Then:

(i) In every nontrivial equilibrium, the good type agent implements risky projects and the bad type
implements bad projects (with positive probability) on path.
Formally, in every nontrivial equilibrium, there exist on-path histories ' € 2 and (h',i''i,) €
A8 such that dg, (h') > 0 and ﬁgg(ht/,it/ir) =1

(ii) If quality control is necessary (I1(po) < 0), the unique equilibrium outcome is that the prin-

cipal never experiments.

Taken together, these results have stark economic implications. The first statement of The-
orem 3 implies that a principal who is willing to experiment will necessarily face inefficient
actions. The second statement of Theorem 3 argues that the payoff implications of this in-
efficiency can be large. Specifically, the agent’s reputational incentives prevent any quality
control whenever it is necessary for experimentation and hence, the principal can never inter-
nalize the long run benefits of experimentation.

A first consequence of this result is that there are two separate discontinuities that arise in
the equilibrium payoff set. First observe that there are parameter values such that I1(1) < 0;
for instance, this can arise when experimentation is costly (high c), failures yield large losses
(high ) or when risky projects are very unlikely to generate successes (low g,). In this case,
I1(po) < 0 forall py € (0,1) and so the principal will never experiment. Thus, both players’
payoffs discontinuously fall from the first-best when py = 1 to zero when py < 1.

Similarly, if we fix the prior po but instead alter the parameter values so that the payoff
upper bound from the static benchmark I1(po) | 0, the agent’s payoff set once again discon-
tinuously shrinks to zero. As long as I1(po) > 0, there always exists at least one nontrivial
equilibrium (described in Section 2.3) where the principal experiments in period one and the
good type can attain the first best continuation payoff with probability Ay + A,qg;.

We end this section by providing some intuition for Theorem 3. Our key theoretical con-
tribution establishes a bad reputation result with two long-lived players and intermediate

discounting by combining two key ideas from separate strands of the reputation literature.
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We first observe that there is a positive belief below which the principal does not experi-
ment in any NE. Experimentation is costly, so there is a belief below which experimentation
is not worth it even if uncertainty about the agent’s type would surely resolve itself with one
period of experimentation (and be followed by the first-best continuation equilibrium).

Now suppose the principal were myopic (6§ = 0) so her payoff in every period of the game
must be non-negative. Then, at any history, the principal would only indulge in costly exper-
imentation if the agent generated a success with at least probability c. As a result, the prin-
cipal’s posterior belief following one of the two non-success outcomes—failure or inaction—
must not only fall (because beliefs follow a martingale) but must fall at a minimal rate. It is
then possible to show that every nontrivial equilibrium must eventually have a “last” on-path
history at which the principal’s belief p is less than py and at which the agent must generate a
success or otherwise the principal stops experimenting (because her belief will fall below the
above mentioned cutoff). But note that both types of agent’s incentives at such a last history
are identical to their incentives in the static benchmark. Here, it will be a best response for the
good type to run risky projects and for the bad type to act. To see the latter, note that if the bad
type did not act, then acting alone will take the principal’s posterior belief to one. Under our
refinement, the agent is then guaranteed a positive continuation value, and hence, not acting
cannot be a best response. Since I1(pg) < 0 implies I1(p) < 0 for all p < pg and 9, it therefore
cannot be a best response for the principal to experiment at such a history contradicting the
existence of a nontrivial equilibrium.

This is essentially the insightful inductive argument developed by EV adapted to our
model. Note that this argument cannot be employed when the principal is forward look-
ing (0 > 0). Simply, this is because the principal is willing to bear periodic losses in order
to generate a positive average payoff. A forward looking principal can slow down the rate
of learning by experimenting even when the agent is generating successes with low proba-
bilities. In particular, she could continue to experiment along a path where beliefs drop but
asymptote to a level that is not low enough to generate breakdown. If so, there would be no
last on-path history and the above inductive cannot be applied.

We argue in the proof that this cannot happen. We derive an upper bound for the princi-
pal’s payoff that captures the fact that, were beliefs to asymptote, there must be an on-path
history where the principal’s payoff from successes drops below the cost of experimentation.

This argument, that links the uninformed player’s continuation payoffs to her learning, bears
18
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some resemblance to a fundamental insight from the reputation literature with two long-
lived players. For instance, Schmidt (1993) studies games of “conflicting interests” where the
commitment optimal action of the player trying to establish reputation holds his uninformed
opponent down to her minimax value. Intuitively, the informed player can guarantee himself
the commitment payoff when patient because there cannot be another equilibrium where the
uninformed player attempts to learn by playing an action that is not a best response to the
commitment action in any period. Because best-responding to the commitment action yields
the minimax value to the uninformed player, she will never choose an action in response that
makes her worse off or, in other words, learning is too costly in these games. Similarly, in our
setting, the principal wants to avoid last histories by prolonging experimentation (to learn the

agent’s type) but cannot do so because it eventually becomes exceeding costly.

3.1. Allowing Transfers

For some applications, it is unrealistic to rule out transfers. For instance, in addition to a
fixed wage, firms can choose to pay contingent bonuses to experts they employ. We introduce
transfers by altering the stage game to allow the principal to make payments to the agent
after the public outcome is observed. We assume that the principal can only make transfers in
periods where she experiments. This assumption is not required for our result (Theorem 4).
We impose it because we feel it is realistic for our applications and it shortens the proof.
Formally, we denote the transfer in period t by 7; > 0. These transfers are observed by both
players and so become part of the public history. For easy reference, Figure 2 below describes
how this alters the stage game. The formal description of histories and strategies can be
found in the appendix. The equilibrium refinement applies verbatim. Importantly, note that
the refinement applied to this version of the game does not restrict transfers in any way.

Theorem 3 extends verbatim to the game with transfers.

THEOREM 4. Suppose po € (0,1). Then:

(i) In every nontrivial equilibrium of the game with transfers, the good type agent (surely) imple-
ments risky projects and the bad type implements bad projects (with positive probability) on
path.

(ii) If quality control is necessary (I1(po) < 0), the unique equilibrium outcome of the game with

transfers is that the principal never experiments.
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FIGURE 2. Flow chart describing the repeated game with transfers (the rectan-
gle contains the stage game)

Transfers do not help the principal avoid inefficient actions or relationship breakdown. In
a nutshell, inefficiency is the result of the agent’s desire to generate successes and one-sided
transfers from the principal can only further reward successes instead of punishing failures.
To see this, first note that, once again, every nontrivial equilibrium must have a last on-path
history at which the principal experiments (for similar reasons to the case without transfers).
Transfers do not help prevent the agent from running risky projects at this last history. Any
payment after a success only exacerbates the problem. Moreover, the principal can never
credibly promise payments after a failure since she stops experimenting and thus her contin-
uation payoff is 0 which, in turn, implies that she has no reason to honor the promise. Thus,
II(po) remains an upper bound for the principal’s payoff at such last period histories since
one-sided transfers can only lower her continuation utility.

We end this subsection by observing that inefficiency can trivially be eliminated by allow-
ing transfers from the agent to the principal. For example, the principal could ask the agent
to reimburse her for the costs of failures; this would align incentives between the principal
and the good type by disincentivizing risky actions. Observe that the payments need not
necessarily come at the moment of failure and could potentially be moved to later dates, like
after the agent proves themselves to be the good type. More generally, the agent could simply

buy the experimentation technology from the principal. As is the case in many contracting

20



REPUTATION IN RELATIONAL CONTRACTING

problems, this complete removes any frictions because only the good type will be willing to

pay a sufficiently high amount.

4. CORRECTING (BAD) REPUTATIONAL INCENTIVES

In this section, we theoretically demonstrate how maximally inefficient behavior on path
can help relationship functioning.

First observe that, despite quality control being necessary, there are NE in which both play-
ers receive positive payoffs. At the most basic level, this can be seen from strategies that ig-
nore outcomes and therefore, in particular, do not condition on (type-revealing) successes. The
principal experiments for the first T periods and the agent acts efficiently. At all subsequent
periods, the principal never experiments (irrespective of outcomes in the first T periods) and
the agent never acts.® It is easy to see that there exists a T > 1 such that these strategies
constitute a NE whenever pgA, > c. This is possible even when quality control is necessary
because failures never arise on path. As the outcomes in the first T periods have no effect on
continuation play from period T + 1 onwards, both types of the agent are indifferent between
all strategies (irrespective of project ideas) and so acting efficiently is, in particular, a best re-
sponse. The principal on the other hand has an incentive to experiment for the first T periods
as long as her belief fi(h~!) never satisfies Agp(h'~!') < ¢ for any on-path history h'~! € 7,
1 <t < T (by assumption, at least T = 1 satisfies this).

However, such Nash equilibria have the feature that both players’ average payoff, while
positive, might be very small. This is because, for any prior py, there is a maximal T for
which the above strategies can be a NE because the principal’s belief falls if the agent does
not generate a success. Therefore, the average payoff for the agent approaches 0 as he be-
comes arbitrarily patient (8 — 1). EV show that, in their model, the agent’s average payoff
vanishes in this way in every NE. A natural question in our setting is whether there exist Nash
equilibria such that quality control is necessary but even patient players get positive average

payoffs? The following result shows that this is indeed the case.

8Formally, %, @ are defined as follows. Forall 0 < t < T — 1,k € 22, (h',i'i; 1) € S#8, strategies are
N S 1 iy =g, Sty
x(h) =1, dg (I, i"it11) = { 0 otherwise, and 4, (h') = 0.

When t > T, strategies are
%(h') = dg (h',i"") = ag,(h') =0 forall K' e, (W,i"h) e #3.
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THEOREM 5. There are cutoff values Q,BO,Ag,Xg,E € (0,1) withc < Ag < Xg < %for which the
following holds: forall 5 € (6,1), B € (0,1), po € (Eo’l)’ Ag € <Ag,xg), A€ (0,3),9r € (0,Ag)
and ¢ € (0,¢), there exists a nonempty interval (x, ) such that for any x € (x, ), quality control is
necessary but there nonetheless exists a Nash equilibrium in which the payoff to the principal and the

good type are at least poAI1 — c and Mg/ (1 — B) respectively.

In words, this result states that it is possible to hold the prior py, the arrival rates Ag, A,, the
success probability from risky projects g, and the cost c fixed (as long as they lie in a particular
range) but nonetheless find NE in which both players” average payoff is bounded from below
when they become patient despite quality control being necessary. Before providing intuition
for the result, it is worth making a brief comment about the order of the quantifiers. Note that
we provide a range for all parameters except x, the choice of which depends on the remaining
parameters. This is because as § — 1 (holding the other parameters fixed), we need « to also
grow to ensure that quality control remains necessary (Il(po) < 0). Importantly, raising x
does not affect the payoff bounds for either player.”

The proof of Theorem 5 is constructive and we describe the NE strategies informally below:
in Figure 3 and in words. The formal definitions of the strategies are in Appendix B. Unlike
the NE described at the beginning of this section in which outcomes are ignored, the strategies
we construct have the feature that both players move to the efficient continuation equilibrium

following successes at some histories.

The principal’s strategy is the following: Experiment in period one and experiment forever
(stop experimenting) if a success (failure) is observed. If the agent does not act in period one,
experiment in period two. If a success is observed, experiment at all subsequent periods. If
the agent does not act in period one and no success is observed in period two, experiment in
period three. Stop experimenting from period four onward.

In response,the bad type never acts. The good type agent acts as follows: Only run good
projects in period one. If a success is generated, follow the efficient strategy. If a failure is
generated (off path), stop acting. If no project was run in period one, implement both good
and risky projects in period two. If a success is generated, follow the efficient strategy. If no
project was run in period one and no success is observed in period two, only implement good

projects in period three. Agent stops acting thereafter regardless of the period three outcome.

9Note that we could also raise ¢ to ensure TI(po) < 0but doing so causes the first-best payoff IT to shrink.
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FIGURE 3. A NE with two screening periods when I1(po) < 0.

The proof in Appendix B shows that these strategies are a NE for parameters that satisfy the

conditions in Theorem 5.

Given the above strategies, the payoff bounds can be computed readily by adding the first
period payoff with the continuation value from a success being generated (and ignoring the
continuation value from other outcomes). Now observe that it is possible to construct an
even simpler NE in which the agent gets a positive fraction of the first-best payoff: simply
remove the first period and consider the strategies from period two onwards. The reason we
add the first period is to guarantee a lower bound for the principal’s average payoff as well.
The lack of an on-path failure in period one guarantees the principal a minimal fraction of
the first-best payoff; if we only considered the NE that started at period two, there would
be parameter values that satisfy these conditions but would yield the principal a vanishingly
small payoff. Intuitively, if we did not have the first period, then the principal is only getting
one period of positive payoff (period three) since quality control is necessary and the agent

runs risky projects in period two.

Taken together, Theorems 3 and 5 provide the cleanest comparison of our results with those
of EV. They consider a model in which a principal faces an agent whom they want to induce
to take an action that matches an underlying stochastic state. The good-type agent observes

the state and his payoff function is identical to that of the principal’s; conversely, the bad
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type does not receive any information and, irrespective of the state, strictly prefers to take
one of the two actions. In order for experimentation to be profitable for the principal, the
good type must always do the “right thing” with a sufficiently high probability: thus their
payoff structure inherently captures the parameter restrictions that we explicitly impose via
the quality control condition. Importantly the principal can only observe the agent’s past
actions but neither the realizations of the state nor the past payoffs. EV show that, when
the agent in their setting gets arbitrarily patient, either (i) the agent’s average payoff goes to
0 in every NE when the principal is completely myopic or (ii) first-best payoffs (their folk
theorem) can be attained when the principal is also arbitrarily patient.

By contrast, we simultaneously demonstrate the destructive strength of reputational incen-
tives and identify a necessary condition that NE strategies must satisfy if the relationship is
to function. We feel that our environment allows us to speak to numerous applications (some
described below) that cannot be modeled by standard reputation theorems that require either
myopic or fully patient players or both and a monitoring structure that prevents players from
observing their payoffs.

Specifically, our insights require that the principal is long lived but impatient and cannot be
obtained if the principal was either myopic or fully patient. First note that quality control be-
ing necessary (II(po) < 0) implies an upper bound on the principal’s level of patience (wWhen
all other parameters are fixed). Then observe that, if the principal were myopic (§ = 0), the
strategies constructed in this section would not be a NE (because her period two payoff would
be negative). Moreover, it is easy to show that, if the principal is myopic, an analogue of EV’s
main bad reputation result (Theorem 1 in their paper) also arises in our model. Conversely,
we too get a folk theorem if the principal becomes patient.!’ Finally, unlike EV, the agent’s
discount factor f does not play an important role in our setting.

There are a number of key modeling differences that drive these distinct implications.
Our agent only cares about extending the relationship (and not about the outcomes from the
projects) but this assumption alone would not generate our results in EV’s model. It would be
impossible to screen such an agent (even with a patient principal) in their setting since their
monitoring structure is such that the principal would never learn anything. Conversely, al-
tering their monitoring structure so the principal could observe her past payoffs would make

their bad reputation result disappear. This is because rewarding the agent when her action

10These results are available in the working paper version of this paper.
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matches the state ensures that “doing the right thing” is a best response for the good type
and is a strategy that cannot be mimicked by the bad type (since he receives no information).
Instead, our good type has the ability to produce one additional outcome that cannot be mim-
icked by the bad type but projects that can generate this outcome only arrive stochastically. It

is this modeling choice combined with the agent’s payoff that generates our novel insights.

5. APPLICATIONS

The bad reputation force we identify (in Theorems 3 and 4) arises in a variety of different
settings. In this section, we discuss how market functioning can be restored in three differ-
ent applications by altering various assumptions of the model. First, we demonstrate that a
consequence of Theorem 5 is that term limits can result in better policy making by reelection
seeking politicians. Second, we argue that introducing some commitment for the principal
(via subscriptions) can improve the quality of online content. Finally, in the context of or-
ganizations, we discuss the role played by an expert’s outside option and how the form of

transfers matters to provide incentives.

5.1. Term Limits for Politicians

We now argue that our results provide one explanation for why term limits can improve
policy making by reelection seeking politicians.'! To do so, we describe a slight variant of our
model that allows for reelection but contains essentially the identical forces to the framework
we have analyzed above.

A representative voter (the principal) needs a politician (the agent) to represent her in each
period. In each period t, experimentation for the voter is compulsory and costless (¢ = 0),
she simply decides whether or not to retain the politician (x; = 1) or to irreversibly replace
him (x; = 0) with another ex-ante identical candidate (who is the good type with probability
po)."? A good type elected politician stochastically receives policy ideas that can either be
good or risky; a bad type politician can only enact policies that result in failures. Payoffs
to both players are as in our model and have obvious interpretations in this context. The
refinement applies almost verbatim: a politician who reveals himself to be the good type

cannot be replaced for sure in the next period.

e are grateful to Navin Kartik for pointing out this application of our result.
1255 previously mentioned, our results are not affected by assuming the irreversibility of stopping experimenta-
tion.
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The necessity of quality control in this application implies that the voter will get a negative
utility if the politician always enacts risky policies.!* Consider symmetric equilibria in which
every politician follows the same strategy once elected. An implication of our main result is
that, if quality control is necessary, every elected politician never implements any projects in
the voter-optimal symmetric equilibrium."

This result is easy to see. As far as an individual politician is concerned, the reputational
incentives are identical to the original model. So suppose, to the converse, that there was a
symmetric equilibrium where the voter received a positive payoff. Then, the ex ante expected
value of electing each politician must be positive. This introduces an implicit opportunity cost
in retaining a current politician as the voter could always get positive utility by replacing him.
This opportunity cost would then play an identical role to the cost of experimentation (¢ > 0)
in our model and we would then get the same contradiction as that driving Theorem 3.

The above argument demonstrates that reelection incentives can have an extremely per-
verse effect on policy choices. As we have already argued, reputational incentives can be
weakened by strategies that feature maximally inefficient play on path. In this context, such
strategies can be interpreted as term limits; the politician is replaced even though he has
proven himself to be good. Indeed, our analysis is instructive precisely because this is al-
most always presented as an argument against imposing term limits."> The voter’s strategy
can easily incorporate such term limits: every politician is always replaced after a fixed num-
ber T of periods but can additionally be replaced before. The argument in Section 4 implies
that, despite quality control being necessary, the voter can get a positive payoff from higher

quality policy making if she follows such a strategy.

5.2. Online Content Markets and the Role of Commitment

In the introduction we described how our framework can be applied to model the incen-
tives of online content providers. When the consumer demands a minimal quality of report-
ing (that is, she wants the provider to not always publish poorly vetted content), Theorem 3

demonstrates that the need to generate clicks can make the market function extremely poorly.

BFormally, po(Ag + Argr) (14 (8/(1—6))Ag) — porr(1 — gr)x < 0.
USince there must be an elected representative even if they generate a negative voter payoff, there will be other
equilibria in this model.

150ne (of many) recent such instances is the fourth of “Five reasons to oppose congressional term limits” by Casey
Burgat published in Brookings Blog on January 18, 2018.
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An alternate payment model for online content is subscriptions. A natural way to capture a
T period subscription in our model is via partial commitment: whenever the principal de-
cides to experiment, she commits to experimenting for T > 1 periods and sinks the T period
discounted cost of experimentation ((1 —67)/(1 — 6))c up front. Thus the stage game now
consists of the principal’s experimentation decision followed by the agent receiving project
ideas and acting for T periods. Note that our refinement applies verbatim since the only re-
striction on the principal’s strategy is to force her to experiment at histories where she might
otherwise not.

It is possible to show that such partial commitment for the principal to T periods of exper-
imentation implies that the good type does not need to always run risky projects and this in
turn can generate a positive average profit for the principal.'® Indeed, when II(po) is nega-
tive but small, we can construct simple equilibria in which the principal receives a positive
expected payoff from experimentation in every period (not just a positive total payoff) gross
of the sunk cost. This latter observation is important because otherwise the principal could
choose to “ignore” the agent’s action in period T (that is, not visit the website despite having
paid for the subscription).

To summarize, having been paid a subscription fee, a provider can be more judicious about
his choice of content as he does not need to incentivize each additional click. Indeed, a recent
article (“We Launched a Paywall. It Worked! Mostly.” by Nicholas Thompson on May 3, 2019)
from the editor-in-chief of technology publication Wired highlights exactly this mechanism
in work after they instituted their paywall. One of the lessons they learned was that the
content that drove subscriptions (“long-form reporting, Ideas essays, and issue guides”) was
typically harder and more time consuming to produce (akin to good projects in our model).

Importantly, Thompson observes that when

“your business depends on subscriptions, your economic success depends on
publishing stuff your readers love—not just stuff they click. It's good to align
one’s economic and editorial imperatives! And by so doing, we knew we’d
be guaranteeing writers, editors, and designers that no one would be asked to
create clickbait crap of the kind all digital reporters dread.”

16There are numerous dynamic mechanism design problems (for instance, Guo (2016) and Deb, Pai, and Said
(2018)) where full commitment for the principal does not yield a higher payoff relative to the principal-optimal
NE. In our model, commitment makes the principal strictly better off and details of this argument are in the
working paper version.
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5.3. Relational Contracting in Firms

Our results also have numerous implications for relational contracting in organizations.
Consider the hiring of experts. When failure is very costly, for instance for failed drug trials
in the biotech sector, firms may benefit from hiring in house researchers as opposed to biotech
consultants (for the same reasons that subscriptions were effective in Section 5.2). This is
because the latter typically have shorter contracts and have stronger incentives to prove ex-
pertise to extend employment duration. Additionally, our model provides one rationale for
hiring brand name experts who may have higher outside options. The model can easily be
generalized to give the agent an outside option 0 < u < 1/(1 — ¢) and give him the ability
to unilaterally resign at the beginning of any period. A higher outside option can ensure that
the agent would rather resign than enter a continuation equilibrium where the likelihood of
termination is high. Since our refinement does not force the principal to permanently hire the
agent even after she knows the agent is the good type for sure, fixed term contracts can arise
as equilibrium outcomes when u > 0 but not when u = 0 since in the former case the agent is
happy to leave once the likelihood of being retained is sufficiently low. Note that in this case,
the agent not the principal ends the relationship.

Our model also speaks to how experts should be compensated; the extension which accom-
modates transfers can be found in Section 3.1. We show (in Theorem 4) that bonuses alone
cannot correct bad reputation forces. Instead, it might be more effective to link the compen-
sation of experts directly to firm performance—importantly, they need to be exposed to both
the upside and downside—via stock options as this will make it failures costly to the agent. It
should be pointed out that there are many papers that describe a variety of different benefits
of giving agents “skin in the game;” our dynamic model highlights the trade-offs inherent in
determining the optimal vesting period for stock options. If the vesting period is too long,
this may create perverse incentives for the agent to prove his worth and extend the duration
of his employment at the expense of the firm. Conversely, a short vesting period may end up
giving away a share of the firm to an unqualified expert.

The maximal inefficiency we highlight also arises in many employment relationships. Note
that our model allows for different types of firm-worker separations. Firing after a failure
disincentivizes the agent from implementing risky or bad projects. Such separations can be

interpreted as firing “with cause.” Even in the absence of failures, information is acquired
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about the quality of the firm-worker match as the relationship matures and the firm’s belief
that the worker is the good type may drop over time. This may lead to separation of the sort
common in the labor literature that incorporates learning about match value (an early work
is Jovanovic (1979)). Such a “without cause” separation often legally requires a notice period;
this appears in the form of the third period employment in the example of Section 4. Indeed,
such grace periods are a feature of academic contracts in which professors who are denied
tenure are typically given an additional year of employment. Importantly, in the academic
context, separation is typically irreversible and the professor’s performance in the grace year

does not lead to reversals of tenure decisions.

6. CONCLUDING REMARKS

In this concluding section, we address the robustness of our main insight. The model we
described in Section 1 makes some assumptions that may give the impression that our main
result (Theorem 3) is knife-edged. This is not the case and we briefly describe some natural
extensions here; formal statements and proofs are in the working paper version.

Perhaps the most stark is that we assumed costless actions; so instead suppose that the
agent has to pay a cost C > 0 to implement a project irrespective of quality. As should be
unsurprising, we need to impose a stronger version of our refinement. Recall that Theorem 3
leveraged the observation that, if the principal stops experimenting following inaction, the
agent would always act if doing so resulted in a nontrivial continuation play (irrespective
of magnitude of the continuation payoff). Of course, when actions are costly, this will only
happen if, at the very least, the continuation payoff from the latter compensates the agent for
the cost of the action.

Consider the following stronger version of the refinement. For any u € (0,1/(1—p)), a
u-equilibrium is a NE in which, at all on-path histories where the principal’s belief (first) jumps
to one, the continuation payoff for the good type is at least u.

With costly actions, we say that quality control is necessary when
c —C
IT* (po) := po(Ag + Argr) (1 +6IT7) — poAs(1 —gr)x —c <0,

where TT° < I1is the highest NE payoff that the principal can obtain when the agent is known
to be the good type (po = 1). Note that this is a weaker condition because the principal cannot
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achieve payoff IT even when uncertainty is resolved because of the moral hazard problem
introduced by costly actions.

Our main insight extends to this environment. Specifically, we can show that, for any
u € (0,1/(1— B)), there exists a cost C > 0 such that, when the cost of actions C € (0,C) is
lower, the unique u-equilibrium outcome is that the principal never experiments whenever
quality control is necessary.

Now suppose that, instead of costly actions, the good type needs to pay a small cost to
draw good, risky ideas (with the same probabilities A, A, respectively). Here too, we can
show that, forany u € (0,1), relationship breakdown is the unique u-equilibrium outcome for
sufficiently small costs of information acquisition. As in the case with costly actions, the good
type will need to be incentivized to acquire information even when uncertainty is resolved.

Finally, we can also allow for successes to not be perfectly revealing: implementing bad
projects can also generate successes with a (small) positive probability and so successes can
be generated by both agent types. Consequently, there need not be on-path histories where
the principal’s belief jumps to one. Hence, we will once again require a stronger variant of
our refinement: when the principal belief first jumps above a threshold, the continuation play

must be nontrivial. Our main insight extends to this monitoring structure.
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APPENDIX A. PROOFS OF THEOREM 3 AND THEOREM 4

We prove Theorem 4 for the game with transfers and then argue that it implies Theorem 3.
Before we proceed with the proofs, we want to formally define histories and strategies for the

game with transfers which we chose to omit from Section 3.1.

Transfers: After the public outcome is realized in period t, the principal makes a one-sided

transfer ; € R4 to the agent.

Histories: A (public) history (hy...hi—1,T1...T—1) at the beginning of period t > 2 satisfies
hi...hy—1 € s and v > (=)0 when hy # (=) forall 1 < # < t. In addition to the
previous actions and outcomes, it also contains the previous transfers (that are zero whenever
the principal does not experiment). (1% 1°) denotes the beginning of the game. We denote
the set of histories using 7.

As before, the good type agent’s period-t private history (h'~!,7!~1,i") additionally con-
tains the current and previous project ideas i'. We use .7¢ to denote the set of the good type
agent’s private histories.

We use 7! where t > 1 to denote the set of on-path histories at the beginning of period ¢ + 1.

The notation reflects the fact that this set depends on the (equilibrium) strategies (X, T, dp).

Agent’s Strategy: The bad type’s strategy g, (h'~1,7071) € [0,1] specifies the probability of
acting at each period ¢ public history (h'~!, 7'~!) € .7. Similarly, a4 (h'~', 7'~1,i") € [0,1] for

each private history (h~1,7'71,i) € 78,

Principal’s Strategy: The principal’s strategy consists of two functions: an experimentation de-
cision £(h!~1,7'71) € [0,1] and a transfer strategy 7(h!~1h;, '~1) € A(R; ) which specifies the
distribution over transfers for each (h‘~1, thl) €7, h € {E, h, h(p}. Note that, by definition,

#(h'~'hs, ') is the Dirac measure at 0 when h; = /.
Beliefs: Finally, the principal’s beliefs fi(h'~!, t'~1), p(h!~*h;, t'~!) at the moment she makes

her experimentation and transfer decision respectively also depend on the past history of

transfers. These beliefs are derived by Bayes’ rule on path and are not restricted off path.

Expected Payoffs: Expected payoffs now additionally also have as an argument the history of
transfers and are denoted by Uy, (=1, 71,00, Uy, (W1, v171), V('L 7671) to denote the ex-

pected payoff of the good, bad type agent and principal respectively. We sometimes also refer
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to the agent’s expected payoff Up, (hf, 71710, Uy, (', T71) after the outcome but before the
principal’s transfer in period-t is realized. For brevity, we suppress dependence on strategies.
Last History: A last history is an on-path history at which the principal experiments such
that, if no success is generated, the principal stops experimenting (almost surely) at all fu-
ture histories. Formally, a last history is an on-path (h!,tf) € ' such that %(h!, ') > 0,
p(ht, ") < 1and Uy, (h'hsy1,7") = 0 for all on-path hi1 € {h, hy}. Note that this also implies
Ug, (h'hyq, i) = 0 for hyyq € {, by}

Note that we define a last history in terms of the agent’s payoff (as opposed to the princi-
pal’s experimentation decision) so that we can avoid qualifiers about the principal’s actions at
on-path continuation histories that are reached with probability 0 (after the principal’s trans-
fer is realized via her mixed strategy). Also observe that Uy, (h'hiiq, T'141) = 0 implies that
Ti+1 = 0 since it cannot be a best response for the principal to make a positive transfer to the
agent in period t + 1 when her continuation value is 0.

We now argue that every nontrivial NE must have such a last history.

LEMMA 1. Suppose po € (0,1). Every nontrivial NE (X, T, dg) of the game with transfers must have

a last history.

PROOF. We first define,

~

p :inf{ﬁ (fzt/,ftl) ’ (R, 2"y e T, ¢ > o} <1,

to denote the infimum of the beliefs at on-path histories. We will now assume to the converse
that there is no last history. With this assumption in place, the following steps yield the
requisite contradiction.

Step 1: Experimentation at low beliefs. For all & > 0, there exists an on-path history (h*,t") €
Ft such that the principal experiments %(h*, ") > 0 and the belief is close to the infimum

/

p(ht', ) <1, p(h*, ") -p<e

By definition, there exists a history (A, #!) € 7! such that the belief satisfies fi(h!, ) < 1
and p(ht, %) — p < ¢ It remains to be shown that there is such a history at which the principal
experiments. We consider the case where #(fif, t!) = 0 as otherwise (h',7") = (I, ) would

be the required history.

33



DEB, MITCHELL, AND PAI

If U, (!, #*) > 0, then this implies that there is an on-path continuation history (h'/*, #/%°) €
T, = (K,...,h), % =(0,...,0),s > 1 where the principal eventually experiments f(fltfls, tes) >
0; this is because the principal is not allowed to make transfers unless she experiments first.
But since the belief does not change without experimentation, this implies that p(f'h*, t1£5) =
p(ht,#t) and thus (k' ") = (h'h®, 1%%) is the requisite history.

So suppose instead that Uy, (7!, %!) = 0. Let 0 < s+ 1 < t be the last period in the
history (/!,#!) at which the principal experiments. Formally, #(#*,%%) > 0 and (%, %!) =
(IPhs 1 ht=51,25¢1=%) where it —~' = (J,..., ) whens < t —1and '~ = (0,...,0). Such a
history (/°,#°) must exist because the NE is nontrivial. If principal’s realized choice was not
to experiment at period s + 1, then we have k1 = /. Since the principal’s belief could not
have changed without experimentation being realized, this implies f(/*, %) = p(ht, ') and
(ht', 7"y = (h°, %) is the requisite history.

So finally suppose that the realized action of the principal was to experiment at s + 1.
Then we must have fi,,; € {h, he} (note that if hsi1 = h, this would imply p(h!, ) = 1
which is a contradiction). If Ugb(flsflsﬂ, %) > 0, this would imply the existence of a first
continuation history (75hs 1k, #5¢+1) € F5+9'+1 such that %(hhe, 1k, #°t°*+') > 0 and
p(hhg b8, 2515HY) = p(hthyq, ) = p(ht, 1) and so (k' ) = (Bhs B, ¢ +1) would
be the requisite history.

Therefore the only remaining case to analyze is when Ueb(flsflsﬂ, t°) = 0. Since we have
assumed that there is no last history, it must be the case that the principal experiments after
the other non-success outcome or that Uy, (hey1,1%) > 0 for higyq € {h, fl(p}, figp1 # hsyq. But
then it cannot be a best response for type 6, to reach history (/°fi; 1, °) since he can always
reach history (°hs,1, %) costlessly with probability 1. This implies that (i, 1,7°) = 1
(since this history is on path) which once again yields the contradiction (%, %) = 1. Thus
fst € {h, hq,} is not possible and the proof of this step is complete.

Step 2: Upper bound for the principal’s payoff. Fix an ¢ > 0 and a history (h!,t!) € 7" such that
the principal experiments #(h', t') > 0 and the belief satisfies p(h', ) < 1, (', ") —p < e.

For any integer s > 1,

1_ps—c—i—5sﬁ > V(K, ) 2)

is an upper bound for the principal’s payoff at history (', t*).
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For the remainder of this step, we assume that the principal’s realized action choice is to
experiment at (h!,t"). Since ¥(h!, ') > 0, experimenting at (h, t') must be a (weak) best
response and so it suffices to compute an upper bound for the principal’s payoff assuming
she experiments for sure at (h!, T*).

We use g to denote the probability that at least one success arrives in the periods between
t +1and t +s. Now consider the principal’s beliefs at on-path histories (h'h*, T'7°%) € J'+.
Since the beliefs follow a martingale, they must average to the belief #(h/, t*). This immedi-

ately yields an upper bound for g since

g+1—q)p < p(',v") = q <

Since the belief jumps to 1 after a success, the maximal probability of observing a success (sub-
ject to Bayes’ consistency) can be obtained by assuming that the belief is the lowest possible
(p) when a success does not arrive (which happens with probability 1 — g).

We can write the principal’s payoff V (h!, t!) by summing three separate terms: (i) the ex-
pected payoff from the outcomes in the s periods following t, (ii) the expected cost of experi-
mentation and transfers in the s periods and (iii) the expected continuation value at t +s + 1.

To derive the upper bound for the principal’s payoff from (2), we label each of the terms of

£ s — ¢ +6°11,
l—p

——r =
) (i) (iii)

so that they individually correspond to a bound for each component (i)-(iii) of the payoffs.

(i) gs is an upper bound for the expected payoff that the principal can receive from out-
comes in the s periods following history (kf, *). This corresponds to getting a success
in every one of the s periods (with no loss from discounting) whenever at least one
success arrives (which occurs with probability g < e/(1 — p)) and no losses from fail-
ures.

(ii) Since the principal experiments for sure at (h', T*) her expected cost of experimentation
must be greater than c. Additionally, her cost from transfers must be at weakly greater

than 0.
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(iii) The principal’s expected continuation value must be less than IT since this is the first-
best payoff corresponding to the case where the agent is known to be the good type

for sure.

Step 3: Final contradiction. By simultaneously taking s large and es small, we can find a history
(ht,t') € I where the principal experiments %(h, ') > 0 but the maximal payoff she can
get (given by the bound (2)) is negative. Since this cannot be true in any NE, this contradicts

the assumption that there is no last history and completes the proof of the lemma. u
We are now in a position to prove Theorem 4.
PROOF OF THEOREM 4. We prove each part in turn.

Part (i). Suppose (%, T, dg) is a nontrivial equilibrium. Then Lemma 1 shows that there must
be a last history. At this history, implementing risky projects dg, (', 7', i'i;) = 11s a strict best

response for type 6, since our refinement implies that
q:Ug, (h'h, T) + (1 — g, )Up, (W'h, T") > g, Ug (h'h, ") > 0 = Uy, (h'hy, T").

This additionally implies that failure at this history (h'l, ') must be on path. A final con-
sequence is that we must have dg, (h', t') > 0 as otherwise p(h'h, ') = 1 which, due to the
refinement, would contradict the fact that (h', ') is a last history. This proves the first part of

the theorem.

Part (ii). Suppose (%, T,dp) is a nontrivial equilibrium. Then Lemma 1 implies that there must
be a last history. Since the principal’s expected payoff at any on-path history must be non-
negative, this implies that her beliefs at all last histories must be strictly greater than py (since
I1(po) < 0). We will show this is not possible via the following sequence of steps.

We first define 77(7|h!, ') which denotes the probability of reaching the set of histories
T C 7 starting at history (I, t') € .7 via equilibrium strategies (¥, 7, dp).
Step 1: Partitioning the histories. We can partition the set of on-path period-t + 1 histories .7

into three mutually disjoint sets:

(1) The set £t C 7! of all histories that follow from a last history: this consists of all

histories (hh!~%, T°t!~%) € J* such that (h%, T°) is a last history for some 1 < s < .
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(2) The set #* C 7" of all histories that follow from a success being generated in a non-
last history: this consists of all histories (kf, ') € 7! such that hs = h for some 1 <
s<thy #hforalll <s' <sand (K}, 757!) ¢ Z5!isnota last history.

(3) All other remaining histories Z' = 7"\ (%' U.Z"). Note that for all (i', ") € %', we
must have i # hforall1 <s < t.

Step 2: The lowest belief amongst histories in the set %" is less than po. Formally, for all t, %' is
nonempty and there is a history (h!, t!) € %' such that p(h!, ") < po.

Since beliefs follow a martingale, the expected value of the beliefs at the beginning of period
t + 1 must equal the prior at the beginning of the game,i.e. py = E[p(h!, t')]. Note that the
expectation above and those that follow in the proof of this step are taken with respect to the
distribution 7(-|ho, T9) over period t + 1 histories induced by the equilibrium strategies. We

can rewrite this expression as

po = (S |W°, )E[p(R', ') | (W, 7') € 7]+ A(L' |0, )E[p(K', ') | (', 7') € ]

+ (@O, OVE[p(rt, T | (W, 1) € #).

Since p(h!, t*) = 1 for all (h!, T!) € .7, the above equation becomes
po =A(F |0, 70) + (2|0, ©)E[p(H, ) | (K, 7') € 2]
) N (3)
+ #2(Z' W, TVE[p(H, ) | (W', ") € #').

Now recall that the beliefs at all last histories must be strictly greater than po. This implies
that E[p(K', ") | (K, T") € 2] > po whenever 7&(Z!|h°, ) > 0 since these are the histories
that follow last histories and beliefs follow a martingale. Of course, this in turn implies that
7(%'|h°,7°) > 0 and that E[p (K, T!) | (h',T!) € %#'] < po, which shows that %' is nonempty
and that there must be a history (!, t*) € %' such that p(h!, t*) < po.
Step 3: The principal experiments following a history in %" where the belief is low. Formally, for all
t and e > 0, there is a history (h!, ") € %' such that

p(ht,th) < " lgfej p(ht, ") ¢ p(ht, ) <py and x(h'H', ') >0,
ezt

for some (h'h, ttt!') € T, ¢ > 0.
First suppose inf(flt,%t)egt ﬁ(fzt,%t) = po. Then, for all histories (fzs,’?s) € 75,0<s<t we
must have j(/*,%%) = po which implies (i°, %) € %°. Suppose this were not true. Take an
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earliest history (flsfzs+1, #5%,,1) € 7°T! (with the smallest s < t) such that ﬁ(fzsfzsﬂ, T5%,41) #
po. Then, by definition, we must have j(/°,%°) = pg and (#%,%%) € %" since (I°,%°) ¢ Z*
because the beliefs at all last histories are strictly greater than po. Then, by Bayes’ consistency,
there must be a continuation history (#°fs,1,t5%,1) € %°t! such that p(h*hs 1, t5%,1) <
p0,17 which would be a contradiction.

Now note that, if the principal does not experiment at any continuation history following
(it, %) € #' = F*, it cannot be a best response for her to experiment at any history before
period t + 1 either because no successes are ever generated on path. This contradicts the fact
that the equilibrium is nontrivial.

Next suppose inf j, +) g PR, #) < po. We define

to be the last period amongst the low belief histories where the principal observes a non-
success outcome after experimenting. Let the set of period-t + 1 histories that yield the above
maximum be R. Note that, by definition, i~ = (/,..., /) for all (i°h'~%, ') € R!. Observe
that the maximum is well defined because %' is nonempty (from Step 2) and the principal
experiments before ¢ (otherwise the infimum of the beliefs cannot be strictly lower than py).

We now show that, for any history (if,#) € R!, we must have %(F*h5—%, 5~ 1¢55+1) = 0
foralls <s < t, (F*h*—%,#-145°+1) € F*. In words, this says that the principal does not ex-
periment between periods s + 1 and t at any on-path continuation history following (%, °~1).
A consequence of this statement is that the principal’s belief does not change until period ¢ + 1
and, since the beliefs at all last histories are strictly greater than po, (F°h!5, ¥~ 1¢t=5+1) ¢ F!
implies (A5h!=5, ¥~ 1¢1—5+1) ¢ RL

Suppose this were not the case, and consider the smallests < s < t such that there is an on-
path history (7°4°~%, ¥~ 145-5t1) € .75 where the principal experiments ¥ (%, 5~ 145541 >
0. Then, there must be an on-path continuation history (hshS_SH, F1psT5H2) ¢ st fs_s4q €

{h, hy} such that

Clearly, if p(hs i1, #5%541) < po, then (AShgyq, 75t 11) = (A%hsyq, #5%,41) is such a history.
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The first inequality follows from Bayes’ consistency and the equalities follow from the facts
that there is no experimentation from periods 5 4 1 to s and the transfer in period 5 does
not change the belief at period 5 + 1. This combined with the fact that (7°~1,¥~1) € %°°1,
implies that (F°h5—51,#5-1455+2) ¢ 45+1 since the beliefs at all last histories are strictly
greater than po. But then, we can once again use the argument in Step 2 starting at the
history (F°h*—5+1,¥°-1455+2) with associated belief f(F°hs—5*1, ¥~ 125-5+2) (instead of the
beginning of the game (1%, ) and belief pp) to conclude that there must be a period-t + 1
history (F°h!=5, ¥~ 1¢t-5+1) ¢ 4! satisfying

ﬁ(flgflt_g, ~§—1ft—§+1) < ﬁ(ﬁ§ﬁs—§+1,%§—lfs—§+2)

which would contradict the maximality of s.

So finally suppose, to the converse, that the principal stopped experimenting after all his-
tories (i, t') € RL. An implication is that Up, (7%, 2°~!) = 0. The equality follows from the
above argument which shows that the principal does not experiment between periods 5 + 1
and t after history (i°,7°~!) and that the transfer in period § must be 0 since the principal’s
continuation value after this history is 0. Then it must be the case that the history correspond-
ing to the other period s non-success outcome (flg_lilg, ), hs € {h, hy}, hs # hs must either
be off-path or we must have Up, (fzg_lflg, fg_l) = 0. To see this, note that if this was not the
case, then it is a strict best response for the bad type to costlessly reach history (715, °°1)
which is not possible since this would imply (%%, ¥°) = 1.

But then %(7°~1,#5-1) > 0 is not possible as otherwise we would get the contradiction that
(P, #1) € Z°1is a last history. Thus, the principal must experiment after at least one
history (i, #') € RL and the proof of this step is complete.

Step 4: Final contradiction. We define

p” =inf {p(', ') | (W',7") € &', t 20} < po,

to be the lowest belief that can arise at a history that does not follow a last history. For ¢ > 0,
we pick an (h', ') € %' such that j(h', ') < p” +eand %(h', ') > 0, and we will argue that

the principal’s payoff must be negative at such a history if ¢ is small enough.
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First observe that a consequence of Step 3 is that such a history must exist. We now define

a few additional terms for any arbitrary s > 1:
g7 = a(STL T, 7 = A(LTEN, ) and p? = E[p(KRS, T'2%) | (KRS, T11%) € 2.

The first two terms are the probabilities that, after s periods, the players reach a history that
follows from a success being generated in a non-last history or a history that follows a last
history respectively. The third term is the expected belief at the latter set of histories where
the expectation is taken with respect to the distribution 7(-|hf, ).

The martingale property of beliefs implies
ﬁ(ht, Tt) — qy + qui” + (1 o qy o qg)E[ﬁ(htfls,Tt’fs) | (htfls, ths) € @H_S]
>q7 +q7p" + (1 —q” —q")p”,

where, once again, the expectation is taken with respect to the distribution 7(-|h!, *). This

implies that
S
<

97 < ;5 andq?p? <p(n, 7, 4)

p,@
where the first inequality follows from the fact that either g2 p? = 0 or p? > py > E’%
(because beliefs follow a martingale and the beliefs at all last histories are strictly greater than
po) and j(h', ') — p” <e.

Now note that at any last history (', "), we must have I1(#(h, ")) > 0 (because other-
wise #(h,7) > 0 cannot be an equilibrium action by the principal) and

H(ﬁ(ht/’ Tt/)) _ H (IE |:ﬁ(ht/i\ls/_t/, Tt/’fs/_t,) | (ht/i/\ls/_t/’ Tt/’fs/_t/) c js/:| )
Il / / / / Il / / ! / / (5)
—F [H (ﬁ(hthsft/,ft,i.sft )) ’ (hthsftl,[t,i.sft) c js} ,

where the expectation is taken with respect to 7(-|h, ). The first equality is a consequence
of the martingale property of beliefs and the second follows from the fact that I(-) is linear.

We can write the principal’s payoff at (!, "), for a s > 1 when her realized action choice
is to experiment by summing four separate terms: (i) the expected continuation value af-
ter a success arrives from a non-last history in these s periods, (ii) the expected continua-
tion value at last histories, (iii) the cost of experimentation, transfers and failures at histories

(hhs, i) € 19,0 < s’ <s—1and (iv) the expected continuation value at all remaining

period-t + s + 1 histories (h'h®, T'7%) € %' **.
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We can now derive a simple upper bound

g7 (1 4 oT0) +5qi”na[ (p(hhs AS)) | (e, T %) € jfﬂ— ¢ + &I,

~—
@ (ii) (iii) (iv)

for the principal’s payoff when she experiments at (h!, t') and each term is labeled to individ-
ually correspond to a bound for each above mentioned component (i)-(iv) of the principal’s

payoff. The expectation is taken with respect to the distribution 7(-|h!, T*).

(i) This term is an upper bound because it assumes that the successes from non-last his-
tories that arrive between periods ¢t + 1 and t + s arrive immediately.

(ii) This term upper bounds the sum of payoffs at last histories by assuming that these
payoffs are not discounted beyond period ¢ + 1. Consider a last history (h'h, t'7%),
1 < s’ <'s. From the perspective of period t + 1, the payoff from this history is
bounded above by

0 <& m(n'n®, i !, ) (;a (i, ')
:(Sslﬁ(hths, ‘ht ) E[p(h hshs s Tt s 5 S)‘ (hhshs s Tt STS S)Ejf+si|>
§577[(hths/,’rth/|ht,Tt)IE [ (p(h hs WS~ s t s 578 )) | (l’l hs W s t s 5~ s) c jt—&-s} ,
where the expectations are taken with respect to 7(-|h'h*, 7'7%). Summing over all
last histories and using the law of iterated expectations gives us the required bound.
(iii) This term only accounts for the cost of experimentation at (h!, ) but no subsequent
costs of experimentation, transfers or losses due to failures.

(iv) This term is trivially an upper bound for the continuation payoff as it assumes that the

principal gets the first best payoff at period ¢ + s + 1 for sure.

Now observe that

g (1+5H)+5qf1E[ (

h
—
=
3‘
w
F‘W
>
195)
SN—
N~
~
=
k‘
v
)
19))
SN—
T
wv
| I
o
+
>,
o

=¢7 (1+6T0) + 6q7IL(p?) — ¢ + &°T1

=q7 (14 6T1) + 6 (g7 p?) + 6(1 — g7 )c — c + &°T1

< —(1+0T1) — (1=56(1 — g%))c + 6°T],

1=p
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where the inequality follows from (4) and the fact that g% p? < p(h!, ") < po, I1(pg) < 0.
This last term is negative is we take ¢ sufficiently small and s sufficiently large. This shows
that there must exist an on-path history (i*, #!') € %! where #(h",#") > 0 and the principal’s
payoff is less than 0 which contradicts the existence of a nontrivial equilibrium and completes

the proof. u
We now show that Theorem 4 implies Theorem 3.

PROOF OF THEOREM 3. Take a NE (&, dy) of the original game and consider the following

strategies (%', 7/, ;) in the game with transfers:

£(ht, ") ifht € #tand t = (0,...,0),

0 otherwise,

#(h'*1,7') =0 (the Dirac measure at 0),

5 ag, (ht, ) ifht € #'and ' = (0,...,0),
algb(ht’ Tt) N b 0 otherwise

ﬁ'eq(ht,’rt,it) _ dg, (W', ©',i") ifh' € 1‘%” and ' = (0,...,0),
‘ 0 otherwise,
where 7! is the set of period-t + 1 histories that are on path when players use strategies
(%,dp) in the game without transfers. In words, these strategies are identical to (%,4dy) at
histories where the principal has not made a transfer in the past. Hence, the only on-path
histories .7 when players use strategies (¥, 7/,4)) in the game with transfers will be those
where the principal never makes a transfer. Note that (%', ¥/, 4) will be a NE because, if either
player deviates off path, they receive a payoff of 0 since the principal stops experimenting and
the agent stops acting. Finally, note that every equilibrium outcome of the original game is
also an equilibrium of the game with transfers; indeed we can use the identical construction
above. This is because the refinement does not restrict transfers after a success is generated.

Thus, Theorem 3 is an immediate consequence of Theorem 4. u

APPENDIX B. PROOF OF THEOREM 5

Before proving the result, we first formally define the strategies that were informally de-

scribed in Figure 3.
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The principal follows the following strategy.

e Experiment in period one and experiment forever (stop experimenting) if a success
(failure) is observed. Formally, £(h°) = 1, #(hh') = 1 and %(hh') = 0 for all it € 7.

o If the agent does not act in period one, experiment in period two. If a success is ob-
served, experiment at all subsequent periods. Formally, #(h,) = 1, and %(hyhh') =
1forall it € s7.

o If the agent does not act in period one and no success is observed in period two, ex-
periment in period three. Stop experimenting from period four onward. Formally,
X(hohy) =1, X(hghyh') =0  for hy € {hy,h} and forall h' € #, t > 1.

In response, the good type’s strategy is the following.

e Only run good projects in period one. If a success is generated, follow the efficient

strategy. If a failure is generated (off-path), stop acting. Formally,

1 ifip =i,
g, (H°,i1) = P
0 if ih € {ir,ib},

1 ifipg = i,

dg, (hh' ™", i'ip 1) = { for all (hh'~1, i, 1) € 253,

0 otherwise,

dg, (hh'~1,i"*1) =0 forall (hh'~1,i"*1) € 3.

e If no project was run in period one, implement both good and risky projects in period

two. If a success is generated, follow the efficient strategy. Formally,

1 ifiy € {ig,ir},

0 ifip =i,

g, (hoha, iniz) = {

1 ifipg =g,

ﬁgg(hq,ﬁht’z, inigi' %iy ) = { for all (hphh' ™2, iyizi' i;yq) € H3.

0 otherwise,

e If no project was run in period one and no success is observed in period two, only
implement good projects in period three. Stops acting thereafter regardless of the
period three outcome. Formally,

g, (hohs, i*i3) = { forall hy € {h, hy} and (hoho,i%i3) € 3,

0 otherwise,
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dg, (hphaht',i'*7) = 0 forall by € {h hy} and (hyhoh',i'*%) € 3, t > 1.

Finally, the bad type never acts or, formally, that dg, (h') = 0 forall ' € 2.
We now proceed to proof of the result.
PROOF OF THEOREM 5. Fix any § € (0,1) and Ag < Xg < % First, observe that we can

always find a low enough ¢ € (0, 1) to satisfy

(1— (g +1/2)) (A — ) > 1;% (C1)

Note that the above expression implies that Ag > c. In the remainder of the proof, we implic-
itly assume that § € (4,1), A; € (Ag,xg), As € (O, %) and c € (0,0).

Now note that there is always a set of values of , (k, ¥ that satisfy the condition
0 < (Ag+Agy) (1+6IT) — A (1 — g, )k < c. (C2)

Observe that, when the above condition holds, quality control is necessary irrespective of the

initial belief pg. This is because
(po) = po(Ag+Argy) (14 0IT) — poAr(1—gp )k —c < (Ag+ Argy) (14 011) — Ar(1—gy)x —c < 0.

Note, (C2) also implies I1(pg) > —c. Henceforth, we implicitly assume that « satisfies (C2).

We now derive the belief bound p 0 such that the principal’s strategy defined in Figure 3
is a best response for all prior beliefs py € (E o 1). Clearly, her continuation strategy is a
best response to a success being observed in either periods one or two and to a failure being
observed in period one. It remains to be shown that experimenting is a best response in each
of the remaining histories in periods one to three.

First observe that the principal’s payoff in period three when the agent does not take an
action in the first two periods satisfies

po(1 — /\g)(l —A)
po(1 —Ag)(1=A) + (1 - po)

Pl -A)( - (Rg+1/2)

plhohy)Ag —c = po(1—Ag)(1— (Ag+1/2))+ (1—po) ¢

Clearly, there exists a p’ € (0,1) such that

po(1—Ag)(1— (Ag +1/2)) B
po(l—Ag)(1— (R +1/2)) + (1—po) 8 <70
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for all pg > p’ or, in words, that the principal’s payoff at this history is positive for high
enough initial belief.
The principal’s expected payoff in period two when the agent does not act in period one is

positive if

We now argue that this condition will be true for sufficiently high p. First, observe that

_ po(1 — /\g)
po(1 = Ag) + (1= po)’

is increasing in po and is 1 when pg = 1. Then note that

p(hg)

Bhy) (1= (Ag +4:A0)) (Mg — ©) > plhy) (1 — (Ag +1/2))(Ag — )

—_
_|_

59
a

1+6(1—p(hy)) — L(p(hy))

> c>(1—=p(hy))c+ <> c—

>

) )

for sufficiently high po. To see this, note that the second inequality holds when py is high
because of (C1) and the last inequality is a consequence of the fact that IT(po) > —c. Let p" be
a value of pg such that the second inequality is satisfied and note that the principal’s expected
payoff in period two when the agent does not act in period one is positive for all pg > p".

Finally, the principal’s expected payoff in period one is positive since her period one stage
game payoff is positive: observe that the prior belief pg > p(hyhy) and the latter was assumed
above to be sufficiently high to make the period three stage game payoff positive.

So set p, = max{p’, p"”} and note that for all values py € (Bo’l)’ gr € (0,1),9 € (4,1),
Ag € (Ag, Xg), Ar € (0,3), ¢ € (0,¢), there is a range of values of «x (satisfying C2) such that

the principal’s strategy is a best response.

It remains to be argued that the agent’s strategy is a best response. First, note that the
bad type never has an incentive to act since he can never generate a success and this is the
only way to get the principal to experiment after period three. The good type is indifferent
between acting or not in period three and strictly prefers to run both good and risky projects

in period two (while being indifferent about whether or not to implement a bad project).
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Finally, we argue that when g, € (0, ;) the good type strictly prefers to not run a risky
project in period one; clearly, he strictly ;efers to not run a bad project. To see this, observe
that his expected continuation payoff from running a risky project is g,/ (1 — ). If he chooses
to not run a project in period one, his expected continuation payoff is

Ag + qrAr
1-p

In words, the good type has the option value of waiting till period two and, if he generates

+ (1= (A +4:2:)) (1 + B).

a success he receives the efficient continuation payoff (if not, the principal experiments for
one more period). Clearly this option value is strictly greater when q, < A, irrespective of his
discount factor B.

To summarize, the above argument derives bounds such that for any pg € ( Py 1),6 € (5,1),
Be(0,1),A; € (Ag,xg), A € (0,%), g, € (O,Ag> and ¢ € (0,¢), there exist values of x such
that the proposed strategies constitute a NE.

We complete the proof by noting that the principal’s payoff satisfies
V(h°,%,d9) = poAg(1+6I1) — c + 0(1 — poAg) V(hy, X, d9) > polg(1+ 0I1) —c
and the good type’s payoff satisfies

A A
0.0 o~ ~ _ g . g
Up, (h°,1°, %, dg, ) = -5 + (1= Ag)(1 + BUp, (hy, i1, %, dg,)) > -8
where i; = i} (we can equivalently plug in i; = i, since the good type’s strategy is identical in

both cases). |
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