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A B S T R A C T

Approximate dynamic programming (ADP) is a promising approach for power system scheduling and dispatch
under uncertainties. This paper presents an innovative ADP-based dispatch method for a microgrid with
intermittent renewable generation, battery energy storage systems, and controllable distributed generators.
The proposed ADP algorithm is based on a double-pass value iteration approach and takes advantage of the
underlying properties of the microgrid dispatch problem. In the forward pass, decision variables are updated
moving forward in time using an 𝜖-greedy strategy to balance exploitation and exploration. In particular, an
approximate optimization method is proposed to speed up exploitation. In addition to random exploration, a
policy is designed to guide the algorithm to explore some promising solution space in a probabilistic manner.
In the backward pass, the value function is updated moving backward in time using the trajectory of states,
decisions, and outcomes of the sample path in the forward pass. The proposed method is evaluated through
numerical experiments in both deterministic and stochastic environments. Case study results show that the
proposed method demonstrates improved performance in both optimization gap and computation time in
comparison to conventional methods.
1. Introduction

The recent development of distributed energy resources, including
renewable generation (RG), battery energy storage systems (BESS),
and dispatchable distributed generators (DG), makes them valuable
assets in microgrids [1]. These emerging resources not only provide
economic benefits, but also help to improve system resilience [2]. On
the other hand, the variability and uncertainty associated with RG
present challenges to system operation, requiring advanced methods
for microgrid dispatch [3]. Scenario-based stochastic programming
(SBSP) is a popular approach for microgrid scheduling and dispatch
under uncertainties [4]. Scenarios can be generated using the roulette
wheel mechanism or Monte Carlo simulation [5]. The performance
of SBSP methods highly depends on the training set of scenarios and
the associated probabilities [6]. Often, a large number of scenarios
are required to capture the stochasticity well, making the problem
computationally intensive and sometimes even infeasible to solve [7].
cenario reduction techniques can help simplify the problem [8], but
ay neglect low-probability yet high-impact scenarios. In addition, the
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existing SBSP approaches are limited to fixed scheduling plans and may
not respond to unexpected variations in real-time.

The stochastic microgrid dispatch can also be formulated as dy-
namic programming (DP) problems with uncertainties [9]. For exam-
ple, an optimization framework based on stochastic DP is developed
in [10] to simultaneously address uncertainties in loads and prices as
well as risk consideration and energy hub operational constraints. Be-
cause of the widely known ‘‘curse of dimensionality’’, classical DP has
limited application to practical stochastic engineering problems [11].
Approximate dynamic programming (ADP) is a broad umbrella for
a modeling and algorithmic strategy for solving large and complex
stochastic sequential decision-making problems approximately [12].
Central to ADP is making decisions based on value function approxi-
mation (VFA)—a collection of function representations, techniques, and
methods aimed at providing a scalable and effective approximation to
exact value functions [13]. In ADP algorithms, the temporal difference
with forward-in-time and/or backward-in-time fashion is used to up-
date values and decision variables through an iterative process [14].
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Based on the path taken to search for an optimal policy, there are two
categories of ADP algorithms: value iteration and policy iteration [15].
Policy iteration algorithms explicitly estimate the value of the current
policy to some level of accuracy within an inner loop and the estimated
value function is used to compute a new, improved policy within an
outer loop. On the other hand, value iteration algorithms iteratively
search for the approximated value function [16].

Various ADP algorithms have been proposed during the past few
years for optimal scheduling and dispatch of energy storage and mi-
crogrid. Some of them are based on the policy iteration strategy. For
example, an ADP approach is developed in [17] to generate an optimal
bidding strategy for RG paired with storage participating in day-ahead
markets, where least squares policy evaluation is used to estimate the
weights of a polynomial VFA. In [18], an ADP algorithm is proposed to
solve high dimensional optimization problems for an integrative home
energy system consisting of energy storage and electric vehicles. The
authors in [19] propose a dynamic energy management mechanism
for economical operation of microgrids in real-time, where a deep
recurrent neural network is employed to learn the value function.

Value iteration is the most widely used method and often tends to
be the most natural way of updating an estimate of the value of being
in a state. As a result, a large amount of literature on ADP-based storage
and microgrid dispatch is based on value iteration. Many of them are
pure forward-pass algorithms. Just to name a few, the authors in [20]
propose an ADP approach with a look-up table for VFA to dispatch BESS
in an islanded microgrid, considering potential impacts on battery life.
In the ADP-based microgrid dispatch presented in [21], a new method
is proposed to calculate the sample observation of the marginal value
of the energy stored in the battery, and thereby to update the slope
of the piecewise linear function. A data-driven hybrid method using
model predictive control and ADP is proposed in [22] to study real-
time stochastic operation of microgrids, where the empirical knowledge
obtained from the historical data used for offline training and piecewise
linear functions are used to approximate value functions. To address
long-term load growth uncertainty and short-term power fluctuation,
the authors in [23] propose an ADP-based flexible distribution system
expansion planning model, where the value table is initialized using
historical observations. In [24], an ADP algorithm is proposed for real-
time dispatch of an integrated heat and power system, where the high
dimensional state variables are aggregated into the state of charge
(SOC) of the battery and available heat in heat storage. Double-pass
ADP algorithms have also been proposed for microgrid and storage
dispatch. For example, a computationally efficient smart home energy
management system is proposed in [25], considering stochastic energy
consumption and photovoltaics (PV) generation models over a horizon
of several days. In [26], a double-pass ADP based on a structured
lookup table is proposed for optimal scheduling of wind paired with
storage and benchmarked against the optimal solution on a library of
deterministic and stochastic problems.

When the states and actions become large and problems become
complicated without preferrable convex or concave structure, existing
ADP methods may become less efficient [27]. The empirical knowledge
obtained from the historical data can help to improve the learning
performance [28]. However, this approach may require extra efforts
to collect the historical data, and the learning performance of the
ADP algorithm may highly be influenced by the expert demonstra-
tion. One promising solution is to develop customized ADP taking
advantage of the underlying properties of the problems to improve per-
formance. In fact, knowledge and information about problem structure
and characteristics have been used in designing analytical approxima-
tion functions to map states to actions without solving an embedded
optimization problem. For example, a policy function approximation
(PFA) method is proposed in [29] to solve the stochastic dispatch
problem of a grid-connected microgrid, where developing analytical
approximation functions using the problem characteristics was the key
2

concept. In [30], a PFA algorithm is proposed based on the problem
knowledge obtained from the data-driven supervised learning approach
to develop an effective control mechanism for the PV storage sys-
tems. Although these approximation functions or heuristic rules alone
may not perform well for complex problems [31], incorporating these
approximate control policies into ADP could help enhance learning
efficiency.

This paper proposes an innovative ADP-based optimal dispatch of a
remote microgrid consisting of RG, BESS, and DG. In this problem, mul-
tiple BESS and DG assets need to be optimally dispatched at each time
step to minimize the operation cost over time without knowing exactly
the future load and RG. The multi-time-period sequential decision-
making problem is modeled as a Markov decision process (MDP). The
proposed ADP follows the double-pass value iteration strategy with
decision variables updated using an 𝜖-greedy strategy in the forward
pass to balance exploration and exploitation. The main contributions
of this paper are twofold:

• The optimal dispatch problem is nonlinear in general, making the
optimization in exploitation challenging to solve. To speed up
exploitation, instead of solving the optimization problem exactly,
a rule-based dispatch method is proposed to more efficiently and
approximately explore the solution space.

• The underlying properties of the microgrid dispatch problem are
explicitly utilized in the algorithm design. To enhance exploration
capability, in addition to exploring decisions randomly, a cus-
tomized policy is designed to guide the algorithm to explore some
promising decisions and thereby to learn the value function faster
and more accurately.

The rest of this paper is organized as follows. Section 2 presents
ADP preliminaries. The model description and problem formulation are
provided in Section 3. Section 4 presents the proposed ADP approach.
The proposed method is illustrated and evaluated through case studies
in Section 5. Finally, the conclusion and future work are offered in
Section 6.

2. Preliminaries

A sequential decision-making problem in deterministic and stochas-
tic environments can be formalized as an MDP [32]. In an MDP, at each
discrete time step 𝑡, a decision-maker or an agent measures the state 𝑆𝑡
of the environment, and takes a decision 𝑥𝑡 from the feasible set 𝜒𝑡. The
decision results in cost 𝐶(𝑆𝑡, 𝑥𝑡) and the system arrives at a new state
𝑡+1 following the transition function 𝑆𝑀 (⋅):

𝑆𝑡+1 = 𝑆𝑀 (𝑆𝑡, 𝑥𝑡,𝑊𝑡+1), (1)

where 𝑊𝑡+1 is the exogenous information that becomes available be-
tween 𝑡 and 𝑡+ 1. The goal is to find the optimal policy 𝜋 that minimizes
the cumulative sum of cost over the course of interaction:

min
𝜋∈𝛱

E

{ 𝑇
∑

𝑡=0
𝛾 𝑡𝐶(𝑆𝑡, 𝑋

𝜋 (𝑆𝑡))

}

, (2)

here E{⋅} is the expectation operator, 𝛾 is a discount factor, 𝑇 denotes
he planning horizon, and 𝑋𝜋 (𝑆𝑡) is a policy function that returns a
ecision 𝑥𝑡. We need an expectation in (2) because the information
variable 𝑊𝑡+1 is random at times before 𝑡 + 1. Both classical and
approximate DP specifically focus on using Bellman’s equation, which
can be written in the expectation form:

𝑉𝑡(𝑆𝑡) = min
𝑥𝑡∈𝜒𝑡

[𝐶(𝑆𝑡, 𝑥𝑡) + 𝛾E{𝑉𝑡+1(𝑆𝑡+1|𝑆𝑡, 𝑥𝑡)}], (3)

where 𝑉𝑡(𝑆𝑡) is the value function or cost-to-go function of state 𝑆𝑡,
which captures the expected value of being in a state at 𝑡 and fol-
lowing an optimal policy forward. The embedded expectation makes
(3) computationally expensive to solve when the state, action, and
information spaces become large and multi-dimensional. To circumvent

the embedded expectation and overcome the curse of dimensionality,
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the post-decision state 𝑆𝑥
𝑡 is introduced to represent the state instantly

after the current decision 𝑥𝑡 is made, but before the arrival of any new
information [15]. According to the definition, the post-decision state
𝑆𝑥
𝑡 is a deterministic function of 𝑆𝑡 and 𝑥𝑡: 𝑆𝑥

𝑡 = 𝑆𝑀,𝑥(𝑆𝑡, 𝑥𝑡), where
𝑆𝑀,𝑥(⋅) is the transition function, which can be obtained by removing
𝑊𝑡+1 from 𝑆𝑀 (⋅). Thus, the post-decision state updates the physical
state based on the action taken and keeps the information state the
same as 𝑆𝑡 [27].

The value function of the post-decision state captures the expected
downstream costs:

𝑉 𝑥
𝑡 (𝑆

𝑥
𝑡 ) = E{𝑉𝑡+1(𝑆𝑡+1)|𝑆𝑡, 𝑥𝑡}. (4)

Hence, Bellman’s equation can be written in a post-decision formula-
tion:

𝑉𝑡(𝑆𝑡) = min
𝑥𝑡∈𝜒𝑡

[𝐶(𝑆𝑡, 𝑥𝑡) + 𝛾𝑉 𝑥
𝑡 (𝑆

𝑥
𝑡 )]. (5)

Solving the optimization with embedded expectation in (3) requires
making a decision considering all outcomes and is often computa-
tionally intractable. On the other hand, the expectation operator is
replaced by the value function of the post-decision state in (5), and
the deterministic optimization can be used to make decisions. The
optimality equation around the post-decision state can be derived as

𝑉 𝑥
𝑡−1(𝑆

𝑥
𝑡−1) = E

{

min
𝑥𝑡∈𝜒𝑡

(𝐶(𝑆𝑡, 𝑥𝑡) + 𝛾𝑉 𝑥
𝑡 (𝑆

𝑥
𝑡 ))

|

|

|

|

𝑆𝑥
𝑡−1

}

. (6)

The expectation is outside of the minimization operator, which offers
a computational advantage. Mechanisms can be designed to update
the estimate of the post-decision value function based on observations
from individual sample paths, which refer to particular sequences of
exogenous information.

Based on these optimality equations, different value iteration algo-
rithms can be developed to compute or approximate the value function,
from which an optimal policy is then derived. All these algorithms
involve solving the optimality equations using estimates of the down-
stream values iteratively to learn the post-decision value function. Let
𝑛 denote the iteration index, 𝑆𝑛

𝑡 and 𝑥𝑛𝑡 denote the state and decision,
respectively, at iteration 𝑛, and 𝑉 𝑛−1

𝑡 (⋅) denote the estimated value
associated with a post-decision state at iteration 𝑛 − 1. Following (5),
the decision expected to minimize the value of being at state 𝑆𝑛

𝑡 can be
expressed as

𝑥𝑛𝑡 = argmin
𝑥𝑛𝑡

(𝐶(𝑆𝑛
𝑡 , 𝑥

𝑛
𝑡 ) + 𝑉 𝑛−1

𝑡 (𝑆𝑀,𝑥(𝑆𝑛
𝑡 , 𝑥

𝑛
𝑡 ))). (7)

In a double-pass approach, the sample realization of the value of
being in state 𝑆𝑛

𝑡 can be updated using (8) in the backward pass based
on the sample path in the forward pass:

̂𝑛𝑡 = 𝐶(𝑆𝑛
𝑡 , 𝑥

𝑛
𝑡 ) + 𝑣̂𝑛𝑡+1. (8)

Note that with a realized 𝑊𝑡, 𝑣̂𝑛𝑡 is not only a sample of the value
of being in state 𝑆𝑛

𝑡 , but also a sample of the value of being in post-
decision state 𝑆𝑥,𝑛

𝑡−1. Therefore, we can use the observations to update
the estimate of post-decision value function iteratively with respect to
𝑛 using (9) based on the stochastic gradient algorithm [15] and thereby
gradually approximate the expectation in (6):

𝑉 𝑛
𝑡−1(𝑆

𝑥,𝑛
𝑡−1) = (1 − 𝛼𝑛−1)𝑉 𝑛−1

𝑡−1 (𝑆𝑥,𝑛
𝑡−1) + 𝛼𝑣̂𝑛𝑡 , (9)

where 𝛼𝑛−1 ∈ [0, 1] is the step-size that is used to smooth the function
approximation. The smoothing is required to capture the uncertainties
in 𝑣̂𝑛𝑡 and approximately calculate the expectation in (6). The goal is
to use the sample observations (𝑣̂𝑛𝑡 ) to approximate the mean of the
distribution from which the observations are being drawn. Once the
approximate post-decision value function 𝑉𝑡 is obtained for all time
steps, given a state at a time step, a decision can be made by solving
(10):

𝑥𝑡 = argmin(𝐶(𝑆𝑡, 𝑥𝑡) + 𝑉𝑡(𝑆𝑥)). (10)
3

𝑥𝑡 𝑡
Fig. 1. Schematic diagram of the microgrid with power and information flows.

Note that obtaining the approximated value function is the most time-
consuming part, and the time required to solve (10) is relatively
gnorable.

. Model description and problem formulation

In this paper, we consider a remote microgrid that consists of
arious distributed energy resources, including distributed RG such as
V and wind, BESS assets, and dispatchable DGs such as diesel engines.
schematic diagram of the microgrid with power and information

lows is provided in Fig. 1. As can be seen, there are bi-directional
nformation flows between the microgrid resources and the operator,
o the microgrid operator collects resource information and sends back
he dispatch decisions. In the given microgrid model, the power flows
re unidirectional except for BESSs because of their charging and
ischarging operations. The microgrid resources need to be optimally
cheduled and dispatched over a look-ahead time horizon to minimize
he cumulative operation cost subject to system- and component-level
onstraints in the presence of uncertainties in RG and load. This section
irst describes models used for the microgrid dispatch problem and then
resents an MDP formulation of the problem.

.1. Microgrid dispatch problem

Let 𝑀 and 𝐽 denote the numbers of BESSs and DGs, respectively, 𝑚
nd 𝑗 denote the index of BESS and DG, respectively, and 𝑡 denote the
ime step index. The objective is to minimize the expected microgrid
peration cost over a finite horizon of time 𝑇 considering uncertainties
rom RG and load:

minE
[ 𝑇
∑

𝑡=1
𝐶𝑡

]

, (11)

ubject to the power balance at the system level:
𝑀
∑

𝑚=1
𝑝batt𝑡,𝑚 +

𝐽
∑

𝑗=1
𝑝dg𝑡,𝑗 + 𝑟𝑡 − 𝑝dump𝑡 = 𝑙𝑡, ∀𝑡, (12)

here 𝑝batt𝑡,𝑚 is the BESS charging/discharging power (positive when
ischarging), 𝑝dg𝑡,𝑗 is the power output of DG 𝑗, 𝑟𝑡 is the RG output, 𝑝

dump
𝑡

s the dumped RG, and 𝑙𝑡 is the system load. Both 𝑝dg𝑡,𝑗 and 𝑝dump𝑡 are
onnegative. For simplicity, it is assumed that there is always sufficient
ower to meet the load and therefore there is no unserved load. In cases
here unserved load needs to be considered, the dumped renewable
an be replaced by the imbalance power to represent either dumped
enewable or unserved load. The objective function consists of three
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components: BESS degradation cost, DG generation cost, and penalty
on dumped renewable, as expressed in (13):

𝐶𝑡 =
𝑀
∑

𝑚=1
𝐶batt𝑡,𝑚 +

𝐽
∑

𝑗=1
𝐶dg𝑡,𝑗 + 𝜋𝑝dump𝑡 , (13)

where 𝜋 is a penalty price for the dumped renewable. The penalty
term is introduced to avoid the dumped renewable whenever possible.
The individual component models, BESS degradation cost 𝐶batt𝑡,𝑚 , and DG
generation cost 𝐶dg𝑡,𝑗 are detailed as follows.

3.1.1. Battery energy storage system
BESS can be used to shift load and store excessive generation from

renewable energy, and thereby help reduce microgrid operation cost. A
BESS can be modeled as a scalar linear system that resembles simplified
dynamics of energy state parameterized by charging and discharging
power limits, energy state limits, and efficiencies [33]. The dynamics
of SOC can be expressed as

𝑠𝑡+1,𝑚 = 𝑠𝑡,𝑚 −
𝛥𝑒𝑡,𝑚
𝐸𝑚

, ∀𝑚, ∀𝑡, (14)

where 𝑠𝑡,𝑚 is the BESS SOC at time 𝑡, 𝐸𝑚 is the usable energy capacity,
and 𝛥𝑒𝑡,𝑚 is the change of energy stored in the battery 𝑚 at time step 𝑡,
as expressed in (15):

𝛥𝑒𝑡,𝑚 =

⎧

⎪

⎨

⎪

⎩

𝜂−𝑚𝑝
batt
𝑡,𝑚 𝛥𝑡, if 𝑝batt𝑡,𝑚 ≤ 0

𝑝batt𝑡,𝑚
𝜂+𝑚

𝛥𝑡, otherwise
∀𝑚, ∀𝑡, (15)

here 𝜂−𝑚 and 𝜂+𝑚 are the charging and discharging efficiencies of
ESS 𝑚, respectively, and 𝛥𝑡 is the time step size. The BESS power is
onstrained by

− 𝑃−
𝑚 ≤ 𝑝batt𝑡,𝑚 ≤ 𝑃+

𝑚 , ∀𝑚, ∀𝑡, (16)

here 𝑃−
𝑚 and 𝑃+

𝑚 are the maximum charging and discharging power,
espectively. The SOC is constrained by

𝑚 ≤ 𝑠𝑡+1,𝑚 ≤ 𝑠𝑚, ∀𝑚,∀𝑡, (17)

here 𝑠𝑚 and 𝑠𝑚 are the minimum and maximum SOC limits, respec-
ively.
An aging or degradation cost is introduced to capture the loss of life

ssociated with different charging and discharging operations. The bat-
ery degradation cost per kWh of discharged energy can be calculated
ased on the cost of a BESS and the lifetime energy throughput [34].
herefore, the BESS degradation cost can be expressed as

batt
𝑡,𝑚 =

{

𝑔𝑚𝑝batt𝑡,𝑚 𝛥𝑡, if 𝑝batt𝑡,𝑚 > 0
0, otherwise

∀𝑚, ∀𝑡, (18)

where 𝑔𝑚 is the battery degradation cost in $/kWh for BESS 𝑚.

3.1.2. Dispatchable DG
At any time 𝑡, the output of a DG depends on its ON/OFF status and

is limited by the minimum loading level and rated power [28]:

⎧

⎪

⎨

⎪

⎩

𝑘dg𝑗 𝑝rated𝑗 ≤ 𝑝dg𝑡,𝑗 ≤ 𝑝rated𝑗 , if 𝑑𝑡,𝑗 > 0

𝑝dg𝑡,𝑗 = 0, otherwise
∀𝑗, ∀𝑡, (19)

where 𝑘dg𝑗 is the minimum load level as a percentage of rated power
𝑝rated𝑗 of DG 𝑗, and 𝑑𝑡,𝑗 is the state of DG 𝑗 that counts the time of
continuous ON (if >0) or OFF (if <0) operation.

The DG generation cost can be modeled as a quadratic function of
power output when a DG is ON:

𝐶dg𝑡,𝑗 =

{

𝑎𝑗 (𝑝
dg
𝑡,𝑗 )

2 + 𝑏𝑗𝑝
dg
𝑡,𝑗 + 𝑐𝑗 , if 𝑑𝑡,𝑗 > 0

∀𝑗, ∀𝑡, (20)
4

0, if otherwise
where 𝑎𝑗 , 𝑏𝑗 , and 𝑐𝑗 are the coefficients of the quadratic function for
DG 𝑗. Let 𝑦𝑡,𝑗 denote an integer variable that indicates the switching
operation of DG 𝑗 at the end of time step 𝑡: 1 for startup (switching
from OFF to ON), −1 for shutdown (switching from ON to OFF), and
0 for maintaining the same ON/OFF status. The feasible switching
operation of the DG is determined considering the startup/shutoff time
constraints:
⎧

⎪

⎨

⎪

⎩

𝑦𝑡,𝑗 ∈ {−1, 0}, if 𝑑𝑡,𝑗 ≥ 𝑇𝑔,ON
𝑦𝑡,𝑗 ∈ {1, 0}, if 𝑑𝑡,𝑗 ≤ −𝑇𝑔,OFF
𝑦𝑡,𝑗 = 0, otherwise

∀𝑗, ∀𝑡, (21)

where 𝑇𝑗,ON and 𝑇𝑗,OFF are the minimum on and off time of DG 𝑗,
respectively.

The DG transition function is given by (22):

𝑑𝑡+1,𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, if 𝑦𝑡,𝑗 = 1
−1, if 𝑦𝑡,𝑗 = −1
𝑑𝑡,𝑗 + 1, if 𝑦𝑡,𝑗 = 0 & 𝑑𝑡,𝑗 ≥ 1
𝑑𝑡,𝑗 − 1, if 𝑦𝑡,𝑗 = 0 & 𝑑𝑡,𝑗 ≤ −1

∀𝑗, ∀𝑡. (22)

The DG startup and shutdown costs can be readily expressed as a
function of the switching operation, but are excluded from this paper
for simplicity without affecting the nature of the microgrid dispatch
problem from the perspective of ADP algorithm design.

3.1.3. Renewable generation and load
RG is assumed to be operated in the maximum power point tracking

(MPPT) mode to maximize the environmental and economic benefits
unless the excess power cannot be taken by the load and BESSs [35].
The RG output depends on weather conditions and cannot be accurately
forecasted. The actual RG power output in MPPT mode 𝑟𝑡 is the sum
of the forecast 𝑟̂𝑡 and random forecast error 𝜀𝑟, and should always be
non-negative and capped at the rated power 𝑟rated [36]:

𝑟𝑡 = min{max{𝑟̂𝑡 + 𝜀𝑟,𝑡, 0} , 𝑟rated} . (23)

When the excess power cannot be stored in BESSs, RG power needs to
be dumped, as can be captured by 𝑝dump𝑡 .

Similar to the RG, a random forecast error is introduced to capture
the uncertainty in load forecast:

𝑙𝑡 = min{max{𝑙𝑡 + 𝜀𝑙,𝑡, 𝑙min}, 𝑙max}, (24)

where 𝑙𝑡 and 𝑙𝑡 are the actual and forecast load, respectively, 𝜀𝑙 is
the forecast error, 𝑙min and 𝑙max are the minimum and maximum load,
respectively.

3.2. MDP formulation

The microgrid dispatch problem can be formulated as an MDP
following the canonical model in [37]. First, we need to build up a
set of state variables to capture all information that is necessary and
sufficient to make decisions, calculate costs, and simulate process over
time. In this problem, the set of state variables includes both physical
and information states:

𝑆𝑡 = (𝑠𝑡,𝑚, 𝑑𝑡,𝑗
⏟⏞⏟⏞⏟
physical

, 𝑟𝑡, 𝑙𝑡
⏟⏟⏟

information

). (25)

The set of decision variables is

𝑥𝑡 = (𝑝batt𝑡,𝑚 , 𝑝dg𝑡,𝑗 , 𝑦𝑡,𝑗 , 𝑝
dump
𝑡 ), 𝑥𝑡 ∈ 𝜒𝑡. (26)

A decision must be made from the feasible space 𝜒𝑡 defined by (12),
(14)–(17), (19), (21), (23), and (24). The corresponding cost 𝐶(𝑆𝑡, 𝑥𝑡)
s determined according to (13), (18), and (20). The set of exogenous
information is the forecast errors:
𝑊𝑡 = (𝜀𝑟,𝑡, 𝜀𝑙,𝑡), (27)
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Algorithm 1 The proposed ADP algorithm.
1: Initialization
2: while 𝑛 < 𝑁 do
3: Choose a sample path 𝜔𝑛

4: for 𝑡 = 1 ∶ 𝑇 do ⊳ Forward Pass
5: if 𝑟𝑎𝑛𝑑 > 𝜖1 then ⊳ Exploitation
6: Solve (7) using the proposed approx. opt.
7: else ⊳ Exploration
8: if 𝑟𝑎𝑛𝑑 ≤ 𝜖2 then
9: Execute the proposed policy:

𝑥𝑛𝑡 = 𝑋expl(𝑆𝑡|𝜃)
10: else
11: Take a decision 𝑥𝑛𝑡 ∈ 𝜒𝑡 randomly
12: end if
13: end if
14: Post-decision state: 𝑆𝑥,𝑛

𝑡 = 𝑆𝑀,𝑥(𝑆𝑛
𝑡 , 𝑥

𝑛
𝑡 )

5: if 𝑡 < 𝑇 then
6: Next state: 𝑆𝑛

𝑡+1 = 𝑆𝑀 (𝑆𝑛
𝑡 , 𝑥

𝑛
𝑡 ,𝑊𝑡+1(𝜔𝑛))

7: end if
8: end for
9: for 𝑡 = 𝑇 ∶ 1 do ⊳ Backward Pass
0: Compute 𝑣̂𝑛𝑡 using (8) with 𝑣̂𝑛𝑇+1 = 0.
21: Update VFA 𝑉 𝑛

𝑡−1(𝑆
𝑥,𝑛
𝑡−1) using (9)

22: end for
23: 𝑛 ← 𝑛 + 1
24: end while
25: Return the post-decision value function (𝑉 𝑁

𝑡 )𝑇𝑡=1

which becomes available at time 𝑡. Given the current state 𝑆𝑡, the deci-
sion 𝑥𝑡, and the exogenous information 𝑊𝑡+1, the system arrives at the
next state 𝑆𝑡+1 following the transition function 𝑆𝑡+1 = 𝑆𝑀 (𝑆𝑡, 𝑥𝑡,𝑊𝑡+1),
which is defined by (14) and (15) for BESS SOC, (22) for DG ON/OFF
status, (23) for RG output, and (24) for system load. Note that RG
output and load are independent of state and decision variables and
only depend on the exogenous information and the forecast that is
given and remain unchanged throughout the planning horizon.

4. Proposed approximate dynamic programming approach

This paper presents an innovative ADP approach for the microgrid
dispatch problem. The proposed approach follows a double-pass value
iteration process using a lookup table (also referred to as tabular
function) with discretized states for VFA. Note that when microgrid
size becomes extremely large with hundreds to thousands of distributed
energy resources, the lookup table method may not be sufficient and
can be replaced by parametric and non-parametric models (e.g., neural
network-based models).

• The forward pass updates the microgrid dispatch decisions mov-
ing forward in time using the 𝜖-greedy strategy to balance ex-
ploitation and exploration. The underlying properties of the mi-
crogrid dispatch problem are explicitly utilized for designing (i)
an approximate optimization to speed up exploitation and (ii) a
customized policy to enhance exploration capability, and thereby
to learn the dispatch policy over iteration in a more efficient
manner.

• The backward pass updates the value function moving backward
in time using the trajectory of states, decisions, and outcomes of
the sample path in the forward pass.

The proposed method is detailed in Algorithm 1. To start the
algorithm, a number of initial values and parameters need to be set,
including the value table, maximum iteration number, initial states,
5

exploration parameters, and parameters used in the policy-based explo-
ration. Note that the post-decision values table is a matrix of estimated
value with respect to discretized state (row) and time step (column).
For RG and load, as forecasts are given and not updated over time, there
is only one value for these two post-decision states, which are their
forecasts. Therefore, the combinations of discretized states degenerate
to the combinations of BESS SOC and DG ON/OFF status. Often, the
policy-based decision-making technique comes with parameters that
need to be tuned properly to achieve acceptable performance. The
tuning parameters for the proposed policy-based exploration are 𝜃 =
(𝜃ℎ, 𝜃𝑙), where 𝜃ℎ and 𝜃𝑙 represent net load thresholds that activate BESS
discharging and charging, respectively.

At each iteration 𝑛, a sample path 𝜔𝑛 is first generated to represent a
realization of exogenous information. Forward pass and backward pass
are then executed in sequence:

• In the forward pass, at each time step 𝑡, a random number is first
generated and compared with 𝜖1 to determine whether decisions
are updated by exploitation or exploration. If exploitation is
selected, a decision is made by solving (7) using the proposed
approximate optimization. If exploration is selected, another ran-
dom variable is generated and compared with 𝜖2 to determine
whether to take a decision randomly or using the proposed policy
based on current states. The post-decision state and the state
at the next time step are then obtained using transition func-
tions, where 𝑊𝑡+1(𝜔𝑛) denotes the realization of the exogenous
information at time step 𝑡 + 1 contained in sample path 𝜔𝑛.

• In the backward pass, the sampled realizations 𝑣̂𝑛 are calculated
using (8) and the post-decision value functions 𝑉 𝑛 are updated
using (9).

This procedure repeats until the maximum iteration number 𝑁 is
reached. The final output is a trained post-decision value table for
making dispatch decisions in real time by solving (10). The proposed
approximate optimization for exploitation and policy for exploration
are detailed as follows.

4.1. Approximate optimization for exploitation

Eq. (7) can be solved exactly by discretizing all decisions and
exploring all possible combinations at a high computational cost. A
method is proposed herein to solve the optimization approximately and
thereby speed up the exploitation. The main idea is to first find all
feasible BESS power solutions based on the current SOC and feasible
SOC at the next time step. A rule-based dispatch is then designed to
more efficiently and approximately explore DG operations for each
feasible BESS power solution. The DG dispatch strategy is proposed
to avoid high computation costs to solve the given microgrid dispatch
problem. The proposed approach is applicable for microgrids with DGs,
and it guarantees the dispatch solution. Detailed steps are provided as
follows.

1. First, given the current BESS SOC 𝑠𝑡,𝑚, we find all feasible BESS
SOC at the next time step. A feasible SOC must satisfy (17) to
meet the SOC limits. In addition, considering the power limits,
a feasible SOC also needs to satisfy (28), which can be derived
from (14)–(16):

𝑠𝑡,𝑚 −
𝑃+
𝑚 𝛥𝑡

𝜂+𝑚𝐸𝑚
≤ 𝑠𝑡+1,𝑚 ≤ 𝑠𝑡,𝑚 +

𝜂−𝑚𝑃
−
𝑚 𝛥𝑡

𝐸𝑚
. (28)

For each feasible BESS SOC 𝑠𝑡+1,𝑚, the corresponding BESS power
can be calculated using (29):

𝑝batt𝑡,𝑚 =

⎧

⎪

⎨

⎪

(𝑠𝑡,𝑚−𝑠𝑡+1,𝑚)𝐸𝑚
𝛥𝑡𝜂−𝑚

, if 𝑠𝑡,𝑚 ≤ 𝑠𝑡+1,𝑚
(𝑠𝑡,𝑚−𝑠𝑡+1,𝑚)𝐸𝑚𝜂+𝑚 , if 𝑠 ≥ 𝑠 .

(29)
⎩
𝛥𝑡 𝑡,𝑚 𝑡+1,𝑚
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Algorithm 2 Optimal DG dispatch.
1: Initialization:
Define a set  to list all DGs that are ON. Let 𝑖 denote the i-th
permutation of  to represent a dispatch order, and 𝑁𝑝 denote
the number of permutation of . Initialize 𝐶(𝑆𝑡, 𝑥𝑡) = ∞.

2: for 𝑖 = 1 ∶ 𝑁𝑝 do
3: Set the required power: 𝑝𝑎 = 𝑙𝑡 − 𝑟𝑡 −

∑𝑀
𝑚=1 𝑝

batt
𝑡,𝑚

4: for 𝑔 = 1 ∶ || do
5: Determine power output of DG 𝑗 = 𝑖(𝑔):

𝑝dg,𝑖𝑡,𝑗 = min(max(𝑘dg𝑗 𝑝rated𝑗 , 𝑝𝑎𝑡 ), 𝑝
rated
𝑗 )

6: Update the required power: 𝑝𝑎 ← 𝑝𝑎 − 𝑝dg,𝑖𝑡,𝑗
7: end for
8: Calculate 𝑝dump,𝑖𝑡 based on (12)
9: Calculate 𝐶 𝑖(𝑆𝑡, 𝑥𝑡) using (13)
10: if 𝐶 𝑖(𝑆𝑡, 𝑥𝑡) < 𝐶(𝑆𝑡, 𝑥𝑡) then
11: 𝐶(𝑆𝑡, 𝑥𝑡) = 𝐶 𝑖(𝑆𝑡, 𝑥𝑡), 𝑝

dg
𝑡,𝑗 = 𝑝dg,𝑖𝑡,𝑗 , and 𝑝dump𝑡 = 𝑝dump,𝑖𝑡

12: end if
13: end for

2. We then determine optimal DG outputs for each feasible BESS
power solution. For DGs that are OFF, we simply set their power
output and generation cost to zero. The remaining DGs need
to be optimally coordinated to serve the net load minus BESS
power. This can be achieved by searching different dispatch
schemes for the lowest cost solution following a rule-based
dispatch, as detailed in Algorithm 2.

3. In the value table, there are multiple states with the same BESS
SOC combinations but different DG ON/OFF combinations at the
next time step. The one with the least cost-to-go is chosen. The
corresponding switching operations can be determined based on
the current DG status and transition function given by (22).

4. Following steps 1–3, we obtain a pool of screened feasible
decisions and the corresponding post-decision states. Using the
current estimates from the value table, a decision can then be
made by solving (7) to complete the exploitation.

4.2. Proposed policy for exploration

The design of the policy function (𝑋expl(𝑆𝑡|𝜃)) is the key to enhanc-
ing the exploration capability of the algorithm. A properly designed
policy function can guide the ADP algorithm to explore some promis-
ing space in addition to making a decision randomly and thereby to
learn the value function faster and more accurately. For the microgrid
dispatch problem, BESS operation is critical to minimize the operation
cost and therefore is determined first. Once the BESS operation is deter-
mined, the remaining decisions in 𝑥𝑡 can be made following steps 2–3
in Section 4.1. When determining BESS operation, the proposed pol-
icy determines charging/discharging status first and then BESS power
level, which are described as follows.

• BESS charging/discharging status
We introduce two thresholds 𝜃ℎ and 𝜃𝑙 for the net load, which
is 𝑢𝑡 = 𝑙𝑡 − 𝑟𝑡. Because 𝑢𝑡 increases with load and decreases with
RG, its comparison with the thresholds can be used to indicate
whether the net load is relatively high or low, which can be used
to assist BESS charging/discharging decision-making. Herein, 𝑡
is called a high-load time step if 𝑢𝑡 > 𝜃ℎ and a low-load time
step if 𝑢𝑡 < 𝜃𝑙. Note that the charging/discharging status should
not be determined only based on the net load in comparison
to the thresholds at the current time step. The temporal inter-
dependency of BESS operation and the SOC constraint should
also be considered. Without reasonably considering the temporal
interdependency, BESS may be poorly dispatched, increasing the
cumulative microgrid operation cost. For example, if we discharge
6

Fig. 2. Flowchart for determining BESS operation status.

a BESS whenever the net load exceeds the higher threshold 𝜃ℎ,
we may later find that the BESS runs out of energy and cannot
be discharged when the net load is even higher and discharging
is more valuable. Therefore, potential future needs should also be
taken into account when determining the current BESS operating
status.
The proposed policy follows a simple strategy to determine BESS
operating status. If the current time step 𝑡 is a high-load time
step, we consider putting BESS in discharging or standby mode,
depending on whether a BESS has enough energy to be discharged
for all future high-load time steps before a low-load time step
becomes available for charging. Given the current SOC of BESS
𝑚, assuming the BESS is discharged at the rated power, the maxi-
mum number of time steps for discharging 𝑁

dis
𝑚 can be calculated.

Let 𝑡𝑐 be the first low-load time step after 𝑡 within the planning
time horizon, and  dis denote a set that contains all high-load
time steps between 𝑡 and 𝑡𝑐 .

– If | dis
| ≤ 𝑁

dis
𝑚 , there is enough energy in BESS 𝑚 to be

discharged for all high-load time steps between 𝑡 and 𝑡𝑐 .
Therefore, we set 𝑏𝑡,𝑚 = 1, which indicates that BESS 𝑚 is
discharged at time step 𝑡.

– If | dis
| > 𝑁

dis
𝑚 , we sort  dis by net load in descending

order and let 𝑞𝑡 denote the rank of time step 𝑡. BESS 𝑚 is
discharged if 𝑞𝑡 ≤ 𝑁

dis
𝑚 and on standby otherwise.

If the current time step 𝑡 is a low-load time step, charging or
standby decisions can be made similarly and are omitted here to
conserve space. This procedure is summarized in Fig. 2.

• BESS power level
Once BESS operating status is determined, the power level is set
to zero for all BESSs with 𝑏𝑡,𝑚 = 0 and we only need to determine
the power level for those that are not in standby mode.
If 𝑡 is a high-load time step, BESSs to be discharged (𝑏𝑡,𝑚 = 1)
are first sorted by degradation cost 𝑔𝑚 in ascending order to
determine discharging power level to serve the net load. In this
way, a BESS with a lower degradation cost has a higher priority
to be discharged. The discharging power is the minimum of three
values: (i) the rated power, (ii) the power corresponding to an
SOC equal to the lower limit at the end of time step, and (iii) the
remaining net load, as expressed in (30):

𝑝batt𝑡,𝑚 = min
(

𝑃+
𝑚 ,

(𝑠𝑡,𝑚 − 𝑠𝑚)𝐸𝑚𝜂+𝑚 , 𝑝𝑎𝑡

)

. (30)

𝛥𝑡
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Algorithm 3 Policy for determining BESS discharging power level.
1: Initialization:
Set the required power: 𝑝𝑎 = 𝑙𝑡 − 𝑟𝑡. Generate a queue  by sorting
BESSs with 𝑏𝑡,𝑚 = 1 by degradation cost 𝑔𝑚 in ascending order.

2: for 𝑖 = 1 ∶ || do
3: 𝑚 = (𝑖)
4: Determine 𝑝batt𝑡,𝑚 using (30)
5: Update the required power: 𝑝𝑎 ← 𝑝𝑎 − 𝑝batt𝑡,𝑚
6: end for

Fig. 3. Microgrid load, renewable generation, and net load.

The dispatch policy is detailed in Algorithm 3. If 𝑡 is a low-load
time step, the charging power can be determined similarly, with
(30) in the algorithm replaced by (31):

𝑝batt𝑡,𝑚 = max
(

− 𝑃−
𝑚 ,

(𝑠𝑡,𝑚 − 𝑠𝑚)𝐸𝑚

𝛥𝑡𝜂−𝑚

)

. (31)

. Case study and simulation results

Case studies have been designed and carried out to validate and
valuate the proposed ADP approach in both deterministic and stochas-
ic environments. To better demonstrate the performance in terms
f optimization gap and computation time, we compared the pro-
osed ADP with four existing algorithms: (i) classical DP [15], (ii)
olicy-iteration-based ADP [27], (iii) double-pass ADP [38], and (iv)
orward-pass ADP [28].
The test system is a remote microgrid with two BESSs and three DGs

n addition to PV and wind generation. A typical residential load profile
n Phoenix, Arizona, from [39] was scaled to represent a residential
icrogrid load with a peak of 375 kW. The rated power of PV and
ind are 150 kW and 200 kW, respectively, with their normalized
utput profiles generated using the System Advisory Model [40]. Fig. 3
lots the microgrid load, total power output from PV and wind, and
he corresponding net load on a typical summer day, which is used for
umerical experiments in this paper. Table 1 lists the DG parameters,
hich were adopted from [41] and slightly modified to match the
ystem load. The parameters 𝑇𝑗,ON and 𝑇𝑗,OFF are assumed to be 1 h for
ll DGs. The BESS parameters were obtained and derived from [42],
nd are listed in Table 2. In particular, the 2-h BESS 1 and 6-h
ESS 2 correspond to lithium-ion and vanadium redox flow battery
echnologies, respectively.
The parameters used for the ADP algorithms are listed in Table 3.
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Table 1
DG parameters.

Range 𝑎𝑗 𝑏𝑗 𝑐𝑗
(kW) ($∕kW2) ($/kW) ($)

DG 1 [10,60] 0.00024 0.0267 0.38
DG 2 [20,60] 0.00052 0.0152 0.65
DG 3 [50,200] 0.00042 0.0185 0.40

Table 2
BESS parameters.

Energy Rated Round-trip Degradation
capacity power efficiency cost
(kWh) (kW) (%) ($)

BESS 1 100 50 83.7 0.069
BESS 2 240 40 68 0.070

Table 3
ADP parameters.
Param. Value Param. Value

𝜖init1 0.7 𝜖final1 0.05
𝜖2 0.5 𝛼 0.5
𝜃𝑙 0 kW 𝜃ℎ 120 kW

Fig. 4. Microgrid operation cost after 100 iterations for different 𝜖2 values.

• Inspired by the decayed 𝜖-greedy strategy in [43], a decaying
𝜖1 was used to balance between exploitation and exploration. In
particular, 𝜖1 is initialized at 0.7 (𝜖init1 ) and divided by 1.7 every
20 iterations until it reaches 0.05 (𝜖final1 ).

• The parameter 𝑁 is a heuristic parameter that controls when to
terminate the iteration. Theoretically, increasing the value of the
exploration parameter 𝜖1, more iteration is required to achieve
the same level of solution accuracy, but the average time per
iteration decreases. In practice, 𝑁 should be determined based
on desired solution accuracy and computation time. Note that
Algorithm 1 runs offline. Therefore, when the solution accuracy
is not satisfied, the user can continue the iteration to obtain
improved solutions. For the system studied in this paper, the
proposed approach shows around 1% of the optimization gap at
100 iterations, and we set 𝑁 = 100 for the deterministic case
study.

• We use the grid search method to find a suitable 𝜖2 for the given
microgrid dispatch problem and set 𝜖2 to be 0.5. The microgrid
operation cost over different exploration rates is plotted in Fig. 4.
As can be seen, the operation cost is maximum when there is no
policy-based exploration. With the increment of 𝜖2, the microgrid
operation cost drops significantly as the policy-based exploration
shares knowledge of some promising solution spaces with the
algorithm. The plot shows that the operation cost keeps increasing
after 𝜖2 = 0.5, which indicates that a balance between policy-
based and random explorations is required to obtain a promising
approximate solution.

• The thresholds used in the policy-based exploration are heuristic.
We just need some net load values at which the difference in
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Fig. 5. Convergence performance of the proposed versus conventional ADP approaches.

DG marginal cost can overcome BESS losses and degradation
cost. These values can be determined by analytical or iterative
searching methods.

• Finally, a fixed step-size of 𝛼 = 0.5 was used to strike a bal-
ance between observations and update the value functions in the
backward pass.

We use the same 𝜖-greedy strategy for decision-making while training
the existing ADP approaches. For the policy-iteration-based ADP ap-
proach, we use a neural network to approximate the value function
with a sample size of 10. All numerical experiments were performed in
MATLAB 𝑅2020𝑏 on a computer with an Intel Core i7-8665U 1.90 GHz
CPU and 16 GB RAM.

5.1. Deterministic environment

In this simplified case, it is assumed that we have a perfect forecast
of system load and RG with uncertainties ignored. The deterministic
problem can be solved exactly using the classical DP to serve as a
benchmark. ADP algorithms are mainly used to handle uncertainties,
but can also be applied to deterministic problems. In addition to
computation time, another important performance metric for ADP is
the optimization gap in percentage, which is defined as

𝐺𝑎𝑝 =
|𝑉 − 𝑉 ∗

|

𝑉 ∗ , (32)

here 𝑉 ∗ is the exact value or cost and 𝑉 is an estimate obtained using
an ADP algorithm.

The performance results using the classical DP, the proposed ADP,
and the conventional ADP approaches are summarized in Table 4,
where the optimization gap is calculated based on the exact cost
obtained using the classical DP. As can be seen, it takes 805 min
(more than 13 h) to solve the microgrid dispatch problem exactly
using the classical DP. With 100 iterations, the proposed ADP solves
the problem in 6 min (more than 130 times faster than the classical
DP), with an optimization gap of around 1%. On the other hand, the
existing policy-iteration-based ADP approach shows a 2.5 times larger
optimization gap with 67 times longer computation time. With the
same number of iterations, the conventional double-pass and forward-
pass ADP approaches result in much higher costs, showing optimization
gaps of more than 27%. Note that the computation time reported in
the table for the ADP approaches is the time required for training,
and online decision-making time is almost the same for all the ADP
approaches, at around 1 s.
8

Table 4
Performance comparison for deterministic microgrid dispatch.
Approach Cost ($) Gap Time (min)

Classical DP 81.9 – 805
Proposed ADP 82.8 1.1% 6
Policy-iteration-based ADP 84.3 2.9% 403.8
Double-pass ADP 104 27% 6
Forward-pass ADP 105.2 28.5% 5.3

To better see the convergence process, the cost obtained from the
proposed ADP approach is compared with other ADP approaches in
terms of number of iterations and computation time. The performance
of the proposed ADP approach is compared with the double-pass and
forward-pass ADP approaches in terms of the number of iterations due
to their competitive training time. On the other side, the computation
time of the existing policy-iteration-based ADP approach is consider-
ably higher than the proposed ADP approach, and they are compared
in terms of computation time. The results are plotted in Fig. 5. As can
be seen, the proposed policy-based exploration strategy significantly
improves learning efficiency, approaching the value function faster and
more accurately compared to the double-pass and forward-pass ADP
approaches. The proposed ADP approach can be trained and used to
get a solution much faster than the existing policy-iteration-based ADP
approach and provides the minimum operation cost in the comparative
study. Key observations are highlighted as follows:

• Compared with the double-pass and forward-pass ADP
approaches, the proposed ADP with customized exploration ex-
hibits significantly improved performance even at the beginning
of the iteration process. After one iteration, the optimization gap
of the proposed method is 58% lower than the conventional
ADP approaches without customized exploration. This difference
increases to 90% after eight iterations.

• In general, the value or cost improvement speed decreases as
the optimization gap becomes smaller. With the conventional
ADP approaches, after 75 iterations, the cost reduces to around
$104, representing more than a 27% optimization gap. The per-
formances of conventional ADP approaches are also evaluated
by increasing the number of iterations. We observe that even at
such a large gap, the cost curve becomes flat for many iterations,
and only another 12% reduction is achieved after another 925
iterations. On the other hand, even with a smaller value after
eight iterations, the optimization gap decreases at a much faster
speed using the proposed method and arrives at 1% after another
92 iterations.

• In comparison between the proposed ADP and policy-iteration-
based ADP approaches, the existing policy-iteration-based ADP
approach takes 48 times more computation time to output a
solution (zeros in initial time steps represent no solution). In
5 min of training, the proposed ADP approach shows a 14%
improvement in operation costs.

Dispatch results from the proposed ADP are plotted in Fig. 6,
ncluding DG and BESS power as well as BESS SOC. As can be seen, DGs
re only dispatched in the early morning and from evening to midnight,
hen RG is not enough to meet the load. BESSs are charged when the
et load is negative, and are mainly discharged around the evening time
hen the net load is the highest to maximize the benefits of energy
hifting, considering losses and degradation cost. In particular, because
G 1 is the most cost-effective among the three DGs, it is always
ispatched first and operated at or close to the rated power when it
s ON. For the same power output, DG 2 is the most expensive but with
lower minimum loading level compared with DG 3, and therefore can
e dispatched when the desired power output is beyond the operating
ange of DG 3. DG 3 is only dispatched from evening to midnight, when
he net load is high enough. BESS 1 has a lower degradation cost and a
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Fig. 6. Microgrid dispatch results with the proposed ADP approach.

Table 5
Distributions of forecast errors.
No. Load Renewable

1 𝑈 (−3, 3) 𝑈 (−5, 5)
2 𝑁(0, 3) 𝑈 (−5, 5)
3 𝑈 (−3, 3) 𝑁(0, 1)
4 𝑁(0, 1.5) 𝑁(0, 2)

higher round-trip efficiency, but shorter duration. It is typically used
for intraday energy shifting for the microgrid. With a larger energy
capacity, BESS 2 can be used for both intraday and interday energy
shifting, as long as the benefits are large enough compared to the
energy losses and degradation cost. With the limited energy to shift
on the example day, BESS 1 is utilized first. It is charged until the
maximum SOC is reached at the beginning of the day and discharged
around the evening time. BESS 2 is charged with the remaining excess
energy from RG and the energy capacity is not fully used on the
example day. Note that BESSs can also be charged using DG power in
addition to RG if the benefits from energy shifting are high enough
compared to losses and degradation cost, which is not the case in
this particular example. With the conventional ADP, BESSs and DGs
are poorly dispatched, as indicated by the high optimization gaps. For
example, some RG is dumped instead of being used to charge BESSs. In
some hours, one BESS is discharging while the other one is charging,
causing unnecessary losses. These results are not very meaningful and
therefore are omitted here to conserve space.

5.2. Stochastic environment

The proposed and conventional ADP algorithms were also evaluated
and compared in a stochastic environment, considering uncertainties
from load and RG. The load and RG forecasts are given in Fig. 3. We
designed four test cases with different probability distribution functions
and parameters for load and RG forecast errors, as listed in Table 5,
where 𝑈 (𝑔, ℎ) represents a uniform distribution between 𝑔% and ℎ% of
the forecast value, and 𝑁(𝑝, 𝑞) represents a normal distribution with a
mean value of 𝑝% and a standard deviation 𝑞% of the forecast value.
These distributions were used to generate samples for both training
and testing. Due to the high computation cost, we exclude the policy-
iteration-based ADP approach for comparison in this case study. For
training, 2000 iterations were used for the proposed and conventional
ADP approaches to generate the post-decision VFA. For testing, 500
9

simulations were performed in each case.
Fig. 7. Box plots of microgrid operation costs for the proposed ADP, double-pass ADP,
and forward-pass ADP approaches.

The computation time is about the same for both algorithms. Fig. 7
provides the box plots of the microgrid operation cost to compare the
proposed ADP with the conventional ADP approaches in a statistical
manner. As can be seen, the proposed ADP results in lower microgrid
operation cost than the conventional ADP approaches in all four cases.
With the proposed ADP, the mean values of the cost are between
$90 and $93. With the conventional ADP approaches, these values are
between $121 and $145, about 40–50% higher. It is quite obvious that
the proposed method shows much better performance compared with
the conventional ADP without the customized exploration.

6. Conclusion and future work

This paper presented an innovative ADP approach with policy-based
exploration for microgrid dispatch under uncertainties. Based on the
underlying properties of the microgrid dispatch problem, we proposed
an approximate optimization to speed up exploitation and a policy-
based exploration to enhance exploration capability, and thereby to
learn the value function faster and more accurately. The proposed
method was validated and evaluated through case studies in both
deterministic and stochastic environments. The results showed that the
proposed approach outperforms the existing ADP approaches in terms
of both optimization gap and solution time. One area of future work
is to design parametric and nonparametric models for value function
approximation and incorporate them into the proposed ADP. Another
interesting research direction is to develop ADP based on the policy
iteration strategy for microgrid and battery energy storage system
dispatch.
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