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A Spatio-temporal Track Association Algorithm
Based on Marine Vessel Automatic Identification

System Data
Imtiaz Ahmed1, Mikyoung Jun2 and Yu Ding3

Abstract—Tracking multiple moving objects in real-time in a
dynamic threat environment is an important element in national
security and surveillance system. It helps pinpoint and distinguish
potential candidates posing threats from other normal objects
and monitor the anomalous trajectories until intervention. To
locate the anomalous pattern of movements, one needs to have
an accurate data association algorithm that can associate the se-
quential observations of locations and motion with the underlying
moving objects, and therefore, build the trajectories of the objects
as the objects are moving. In this work, we develop a spatio-
temporal approach for tracking maritime vessels as the vessel’s
location and motion observations are collected by an Automatic
Identification System. The proposed approach is developed as
an effort to address a data association challenge in which the
number of vessels as well as the vessel identification are purposely
withheld and time gaps are created in the datasets to mimic the
real-life operational complexities under a threat environment.
Three training datasets and five test sets are provided in the
challenge and a set of quantitative performance metrics is devised
by the data challenge organizer for evaluating and comparing
resulting methods developed by participants. When our proposed
track association algorithm is applied to the five test sets, the
algorithm scores a very competitive performance.

Index Terms—AIS, online clustering, threat detection, track
association, trajectory tracking.

I. INTRODUCTION

IN modern days we are blessed with technologically ad-
vanced, sophisticated position tracking systems that can

transmit the positions and movement of multiple objects in
real time. However, we still lack effective spatio-temporal
algorithms that can process this large amount of information
gathered over time, helping us build, group and predict trajec-
tories, and in some cases, associate tracking points to their
true tracks in the absence of object identification informa-
tion. The idea of associating or assigning unlabeled moving
objects to their true tracks is known as track association,
extremely important for identifying threats in the form of
anomalies. Tracking moving objects using both space and time
information to detect anomalous trajectory patterns has far
reaching safety implications for maritime security. Towards
this end, the National Geospatial-intelligence Agency (NGA),
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in collaboration with the National Science Foundation (NSF)’s
Algorithms for Threat Detection (ATD) program, recently
launched data association challenges [1], and design a set
of challenge problems using the maritime vessel tracking
data, collected by the vessels’ Automatic Identification System
(AIS). The research reported in this paper is an algorithm
developed to address the ATD data association challenge
problems. We want to stress that the focus of this work is on
associating the AIS measurements/detections to true vessels
while the measurements have already been collected by the
AIS. We will explain the datasets in more detail in Section II.

AIS is an automated maritime vessel locating, tracking, and
monitoring system. Each ship is equipped with a transponder
and uses a common very-high-frequency radio channel to
communicate with other vessels, the shore-based stations,
and some global positioning satellites. AIS was developed
under the guidance of the International Maritime Organization
(IMO) and is required on most ocean-going commercial ships.
According to IMO 2002 convention, international voyaging
ships, with 300 or more gross tonnage, and all passenger
ships regardless of size require installation of AIS. The pri-
mary purpose of AIS used to be helping avoid unwanted
collisions among vessels and thereby enhance maritime safety.
Nowadays, however, AIS is increasingly used as a monitoring
system to track vessel movements at the open sea or near a port
[2], because AIS can locate another vessel more effectively
under reduced or zero visibility than the radar detection
system, and thus enable watch guards to prepare in advance
[3]. For this reason, AIS also helps with maritime traffic
management and the maintaining of coastal security.

AIS data transmitted by each vessel are in the form of
time-sequenced nodes. Each node represents a row or a data
point in the AIS data file and contains the timestamps (times-
tamps marking the signal receiving time of the AIS receiver),
coordinates (latitude and longitude), speed (in knots), and
direction of a vessel (in degrees). Time sequenced nodes
enable receiving groups of messages from an input source,
and preserve the order in which the messages in each group
arrived. AIS data also include the vessel’s maritime mobile
service identity (MMSI) number, unique for each ship. Despite
the technological advancement, in the reality of AIS data
transmission, collection, and retrieval, the MMSI number
could be missing or messed up. When MMSI is absent, it
presents a particular challenge for track association. Simply
put, the question is that when the MMSI number is removed or
missing, could one still associate these time-sequenced nodes
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correctly in an AIS dataset to recreate the trajectories of the
vessels?

Apart from the absence of MMSI, there exist other issues
further complicating track association. One such issue is the
presence of time gaps in the vessel reporting system. A vessel
can randomly stop sending signals for various reasons, ranging
from sudden equipment failure to deliberate hiding of the
current trajectory. It would be much difficult to associate the
nodes to the right track after a long absence of its signal,
because during this period, a ship can alter its direction
completely, increase the speed dramatically, or even stop
altogether. Another difficulty in track association arises when
the vessels are near a port. In a port, lots of vessels are
parked nearby, making them hard to be differentiated. They
also maneuver frequently for parking or for making space for
other vessels. Therefore, tracking individual vessels near ports
needs special care.

The academic contributions of this work can be summarized
as follows:

o We propose a spatio-temporal track association algorithm
that can associate vessel measurements collected from the
AIS to their true tracks in real-time.

o We propose a novel dissimilarity score metric that com-
pares the predicted location of existing vessels with the
current AIS measurement in hand and decides between
opening a new track versus assigning the node to an
existing track in a complete online fashion. We develop
our location prediction algorithm based on Vincentry’s
direct geodesic framework [4].

o To address the sensitivity of the online, real-time associ-
ation to some complex tracking phenomena (e.g., abrupt
direction change, parking maneuver near the parking
port, absence of AIS signal for a significant period of
time etc.), we propose a post-hoc track merging step to
prevent the creation of unnecessary new tracks. These
thresholds are empirically learned and tuned using the
training datasets provided by the challenge organizers.

o We also propose a spatially varying track generation and
merging policy. It divides the underlying surveillance area
into three spatial regions and accordingly approves new
track generation or suggests possible merging.

Our proposed approach has the following strengths. First,
it is online in nature, meaning that it associates each time
stamped node with a vessel on the fly. Second, it makes
use of the spatial information to increase its effectiveness for
tracking vessels in the open sea and near a port. Third, it can
track vessels when there are time gaps in the AIS signals.
Fourth, it embodies a provision for offline correction of some
difficult-to-separate tracks. Our proposed method is applied to
the five data sets provided by the data association challenge
organizers. The performance metrics, as also designed by the
challenge organizers, are calculated for the proposed method.
There were more than ten teams participating in the ATD
data challenge. According to the information made available
to us, our algorithm performs the second best as compared
with those teams. But we are not authorized to disclose the
full list of performance statistics of other teams. In Section V,

we therefore present the performance of our proposed method
together with that of a sample baseline algorithm provided by
the challenger organizers. We also present the tracking and
association performance of two popular multi-object tracking
approaches and compare their performances with our proposed
approach.

The rest of the paper unfolds as follows. Section II describes
the data format, variables and characteristics of the training
and test data sets. The performance metrics designed will be
explained later in Section V-A. Section III highlights some
of the existing research areas relevant to the track association
problem based on the AIS or trajectory data. In Section IV,
we present the main idea of our track association algorithm.
Section V explains the performance evaluation criteria and
presents a comparison study of different methods under the
same challenge. Finally, we summarise the paper in Sec-
tion VI.

II. DATA DESCRIPTION

In this section, we describe the AIS data sets [1] used in
the ATD data association challenge. The data comes from the
historical database of the Nationwide Automatic Identification
System supplied by the United States Coast Guard. The
data covers the area around Norfolk, Virginia. Six variables
are provided for track association, namely, VID (vessel ID),
timestamp (in hh:mm:ss format, where hh represent hours,
mm represent minutes, and ss represent seconds), latitude (in
degrees), longitude (in degrees), speed (in tenths of knots),
and course of direction (in tenths of degrees). As speed and
direction are expressed in tenths of their respective units, one
needs to divide the raw data by 10 to get the actual value.
The VID is referred to as the MMSI number in the preceding
section.

When the AIS information is received, a monitoring officer
can pinpoint it to a single, unique vessel using the VID, if
the VID is present and valid. Fig. 1(a) and 1(b) show an
illustration under such circumstance. In Fig. 1(a), each letter
(A, B, C or D) represents a unique vessel and the number (1,
2, 3, etc.) that identify the time stamped nodes. Each of these
nodes has the associated speed, moving direction, and location
in terms of longitude and latitude. Fig. 1(b) presents another
view, where each of the time stamped nodes is classified into
a track associated with a specific vessel. The organization in
Fig. 1(b) clearly shows the number of unique vessels and how
the time stamped information is arranged along each vessel’s
moving trajectory.

The AIS data received by ships and coastal stations are then
transmitted to regional or national data centers. When multiple
receivers are connected into the communication and command
network, a number of issues could happen, including data
intermittency, data redundancy received by multiple receivers,
errors in timestamps assigned by varying receivers, and vessels
erroneously sharing the message identifier [5]. When the VID
information (letter and color code) is missing from the time
stamped nodes (see Fig. 1(c)), the nodes are then numbered
according to the time they are generated. The numbering is
sequential in time, with “1” meaning the earliest reported node
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and “14” meaning the latest reported node in this example.
For example, both A1 and A2 represent the trajectory points
of vessel A but A1 appears or reported earlier than A2. Then
the desire is to develop an algorithm that can analyze the node
information without VID, as in Fig. 1(c), and hopefully group
the nodes as in Fig. 1(d), which, if done so, can reveal the
same vessel and trajectory information as Fig. 1(b) does.

All data files are provided in the comma-separated-values
(CSV) format. There are three training datasets, for which
the VID associated with each timestamp is given, so that the
participants can evaluate the accuracy of their algorithms and
then fine tune them. To test the performance of the algorithms
generated by the participants, five test datasets are provided
by the challenge organizers. The only difference between the
training and test datasets is the absence of VID in the test
sets. The VID information is intentionally removed so that
the competing algorithms can be tested for their association
accuracy.

For the purpose of evaluation, competition participants are
asked to generate a separate column/variable in the reporting
CSV file, known as TRACK ID which provides the numbers
generated sequentially for each timestamp but unique to a
vessel. For example, if we assign the TRACK ID ‘1’ to
the first record/timestamp and it happens to represent vessel
‘100008’, then each timestamp of the same vessel but ap-
pearing later should also be given the TRACK ID of ‘1’, if
an algorithm works successfully. For each test set, participants
are supposed to provide a CSV file with this one extra column
of TRACK ID.

We summarize the characteristics of the training and test
datasets in Table I. The training set is referred to as dataset
0 and is further divided into three datasets, i.e., 0-1, 0-2, 0-3,
each of which consists of four hours worth of data collected
from three separate days. In the training sets, VIDs are known
and available to the participants so that they can tune their
algorithm parameters to set at optimal values.

Test sets, i.e., datasets 1 to 5, are organized in the increasing
order of difficulty. Although the AIS data collection area is
somewhat fixed for all five test sets, the track association
problem becomes more complicated with the increasing num-
ber of vessels and more observations over the five test sets.
To add another layer of intricacy, data gap is intentionally
incorporated in test sets 4 and 5 by the challenge organizers.
This is to mimic the missing data situation often present
in real-life datasets. The presence of data gap implies that
a selected chunk of the data (e.g., a 20-minute period or
several smaller amounts of time for one or more tracks)
are removed. All tracks present immediately prior to a gap
are still present immediately after the gap, i.e., the track
continuity is maintained across each data gap. For the test
sets provided, tracks are expected to keep the same IDs on
either side of the gap, i.e., no swaps, breaks or new tracks
immediately before and after the gaps. Although there are
no track terminations or new initiations immediately across
a given gap, such termination and initiation are possible at
other times.

The gap characteristics are a bit different between test sets 4
and 5. In test set 4, gaps are created for ALL tracks at two fixed

time stamps (not disclosed to the participants), which means
that after these particular timestamps, for a certain amount
of time no data has been reported from any of the existing
vessels. On the contrary, in test set 5, gaps are created only
for a subset of the tracks (we do not know which tracks have
time gaps). Unlike in set 4, set 5’s gaps are not at the same
time. Assumingly, it makes the test set 5 more complex than
the test set 4. Furthermore, for the test sets, the participants
are given a rough estimate of the number of vessels present,
not the exact number, and sometimes, only the lower bound.

We want to stress that the datasets are given to us by the
Data Challenge Organizer (NGA and NSF). We do not include
or incorporate any feature in the dataset by ourselves. We
just applied our algorithm to the test sets and then compute
the performance metrics which are designed by the challenge
oganizers as well. We can guess that they add different features
(e.g., time gap, more vessels, more observations) to the test
data sets to make the challenge problems more complex. In
other words, the Data Challenge specifies strictly what are the
inputs and what are the outputs (performance metrics), and all
they want is a newer and more capable algorithm in between.

The target of the AIS data association challenge algorithm
is to develop new spatio-temporal association algorithms that
can track multiple vessels in a difficult to track scenario and
associate the nodes correctly to their respective tracks. Some
of the challenges discussed above are purposely introduced
so that the existing approaches become much less effective in
the association tasks. To provide a quick summary, we further
list the following characteristics, which are considered as the
bottleneck of the data association challenge:
• Each data point is one real object, not a clutter.
• Vessels can pass each other at a very close distance as

some of the data corresponds to their parking maneuver
in the port.

• The vessel’s tracks can cross each other on multiple
occasions making it harder to associate the nodes to their
corresponding tracks correctly.

• The number of vessels is unknown. Multiple vessels
information can be produced at a single time point. The
frequency of the incoming information is not fixed and
fluctuates through out the information collection period.

• Time gaps are incorporated in the AIS data which means
that some of the timestamps are purposely removed from
the AIS data. A vessel’s trajectory can undergo significant
changes during this time gap period thus making the job
even harder for the association algorithms.

III. LITERATURE REVIEW

There has been a growing interest over the years to collect
and analyze the AIS and marine surveillance data to extract
important knowledge from the trajectory pattern. These re-
search works can be categorized into a few major schools
of thought, namely route estimation or prediction, trajectory
clustering, anomalous pattern identification and multi-object,
multi-sensor tracking.
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(a) Graphical depiction of the AIS data. Each letter and color code
represent an unique vessel. Direction and width of the arrows

represent vessel course and speed respectively.
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(b) Tracks consisting of nodes grouped by vessels.
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(c) The AIS data when vessel ID is removed. The numbers
represent the objects IDs generated sequentially with respect to their

timestamps.
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(d) Track association in absence of vessel ID.
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Fig. 1: Illustration of the track association problem.

TABLE I: Characteristics of the training and test sets

Problem set VID included AIS data Number of Number of Data gap
duration vessels observations

0-1 (training) Yes 4 hours 20 13,714 No
0-2 (training) Yes 4 hours 26 15,707 No
0-3 (training) Yes 4 hours 23 12,940 No
1 No 4 hours 8-10 3,323 No
2 No 4 hours 8-10 8,056 No
3 No 4 hours >10 16,810 No
4 No 4 hours >10 20,538 Yes
5 No 4 hours >10 24,513 Yes

Route Prediction

Route prediction refers to the prediction of the trajectory
pattern of a vessel over time. It includes the estimation of
future position and other motion characteristics [5]. It is
one of the widely explored research areas involving the AIS
data. Route estimation can be further classified into three
classes based on their estimation approaches: the physics-
based models (motion models) [6, 7, 8], the learning-based
models [9, 10, 11, 12], and the hybrid models [13, 14, 15, 16].
It is important to keep in mind that the movement of maritime
surface vessels have some unique characteristics, differenti-
ating them from land, air, or even underwater vehicles. For
instance, a water surface vessel cannot abruptly stop or change
direction [17]. It spends more time and covers more space
during a motion-changing process. Also, a surface vessel

moves in a two-dimensional horizontal plane more like a land
vessel but unlike air or underwater vessels, which can also
move vertically. For the same reason, the tracking task for
marine vessels is also different from typical image based object
tracking [18] or video tracking [19]. Luckily, some of these
unique characteristics do help predict the route of maritime
surface vessels.

Trajectory Clustering

Trajectory clustering is to group similar trajectories into
clusters. For any clustering model, the single most important
factor is to decide on which similarity measure to be used
for the purpose of clustering [20]. A trajectory is composed
of a series of multi-dimensional spatio-temporal points with
irregular sampling interval. Traditional similarity measures
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somewhat fall short of handling this arbitrary discretization
[21]. As a result, devising various similarity measures, bet-
ter fit to the vessel trajectory problems, have been a main
focus of research effort over the years [22, 23, 24]. Some
popular choices are the principal component analysis (PCA)
plus Euclidean distance, Hausdorff distance, Fréchet distance,
longest common sub-sequence distance (LCSS), and dynamic
time warping (DTW). Different algorithms have been tried
on trajectory data, including K-means [25], balances iterative
and clustering using hierarchies (BIRCH) [26], density-based
spatial clustering of applications with noise (DBSCAN) [27],
and statistical information grid (STING) [28]. These trajectory
clustering methods can be classified into five groups: spatial-
based clustering [29, 30, 31, 32], time-dependent cluster-
ing [33, 34], partition and group-based clustering [35, 36],
uncertain trajectory clustering [37], and semantic trajectory
clustering [38].

Anomalous Pattern Identification

Identification of anomalous patterns from the vessel trajec-
tory data helps locate suspicious activities in the sea [39].
To detect anomalous patterns, the first step is to establish
a normalcy baseline, so that a deviation from the baseline
can be signaled for further investigation [40]. The current
algorithms for anomalous trajectory pattern detection rely
mostly on finding the most representative trajectory from
a pool of trajectories, treating it as the normalcy baseline,
and then comparing each trajectory with the baseline using
a similarity measure [41, 42]. Anomalies can be tracked to
a specific region of the trajectory and features responsible
for them. Understandably, similar to the trajectory clustering
approaches described above, a suitable dissimilarity measure
plays a crucial role in comparing trajectories and signaling
potential deviation.

Multi-object Trackers (MOT)

For maritime security and surveillance, multi-objects track-
ers (MOT) have also been useful which fuses information from
multiple sensors such as radar and sonar rather than directly
utilizing the AIS data. MOTs are capable of estimating the
future position of moving objects using the past positions of
these objects and doing subsequent association. Several track-
ing algorithms are proposed along this line. Global nearest
neighbor (GNN) [43] is the simplest algorithm that assigns
measurement to track by minimizing a cost assignment matrix.
Joint Probabilistic Data Association (JPDA) [44] is another
widely used tracking algorithm where the tracker uses a
soft assignment (track association probability) and therefore
multiple objects can contribute to the update of each track.
Both GNN and JPDA maintain a single hypothesis about
the tracked objects. Multiple Hypotheses Tracking (MHT)
[45] is another popular approach for tracking and association
which generates a tree of hypotheses for each object. The
likelihood of each track is calculated and the most likely
combination of tracks is selected. MOT algorithms generally
rely on Kalman filter [46] to estimate the vessel’s dynamic
states from positional and directional measurements.

However, MOTs, though seemed a good candidate for vessel
tracking and association, are not ideal for handling our AIS
challenge datasets. The first issue is that we have cleaned
and clutter free AIS object (vessel) information in hand
instead of noisy information from sensor(s) that needs to be
processed and fused by the MOTs. Second, we can utilize the
spatial information of the underlying surveillance area which is
different from these conventional MOTs. Third, we believe that
the tracking filters used in MOT algorithms are not capable
of handling the complex tracking phenomena present in these
challenge datasets (e.g., non-linear trajectory, abrupt direction
or velocity change between two updates, parking maneuver
near the parking port, absence of AIS signal for a significant
period of time etc.). When we apply GNN and JPDA to
our challenge datasets, they produce poor track association
performances (detail in Section V-C).

IV. THE PROPOSED TRACK ASSOCIATION ALGORITHM

In this section, we propose our approach for the track associ-
ation problem. Our approach consists of two separate stages:
(1) Online track association and (2) Post-hoc merging. We
want to first elaborate the design of our approach, especially
the thought process behind the two stages. At the high level,
we, in both stages utilize the unique movement features of the
sea vessels (more or less steady course, no abrupt changes in
speed and direction) to create detection conditions, and then
use empirically learned thresholds to check these conditions
and guide track association.

The first stage works in an online manner. It associates each
node with a track as it appears along the process. For each
node, our online track association algorithm either chooses to
open a new track or assigns the node to an existing track. It
is built upon a location prediction framework which enables
us to estimate the next node location of an existing track
and thereby helps anticipate the current node position for
deciding its track association. This prediction fits perfectly
into the famous Vincenty’s direct geodesic problem framework
[4]. For that, we make use of a recent solution [47] of
the geodesic problem to estimate the node location. For the
association task, we develop a novel dissimilarity metric that
helps us to find the right association between a track and the
underlying AIS measurement. The solution works quite well
when the AIS data is collected at a higher frequency, i.e., the
distance traveled by a vessel before the receipt of its next AIS
measurement is small, so having this competent solution adds
the first competitive edge to our online association approach.

Furthermore, to make our approach robust to real-life op-
erational complexity, we devise a varying threshold policy
which takes into consideration the sensitivity of the prediction
formula conditioned on the distance a vessel has recently
traveled. We find that this conditional threshold policy injects
the second competitive edge to our online association.

Despite the much enhanced capability of our online associ-
ation approach, it is apparent to us that the online algorithm
could still make a number of mistakes, especially in terms
of creating unnecessary new tracks, due to its myopic nature.
This observation motivates us to design a second stage, after
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completing the online stage, for deciding whether some of the
tracks should be merged. Particular attention in the second
stage is given to the spatially varying pattern of new track
generation. We adopt policies, learned from the training data,
to treat special cases, e.g., significant time gap between two
nodes from the same track, and vessels getting in or out of
parking locations. The inclusion of this location-sensitive post-
hoc merging in the second stage is the third reason behind the
success of our overall track association algorithm.

A. Online Track Association

Let us represent the set of true tracks as I , the set of associ-
ated tracks as J , and the set of incoming nodes/timestamps as
K. Understandably, the size of set I and that of set J may not
be equal. Each node/timestamp, k ∈ K, comes with the AIS
measurements, namely the time of measurement (tk), current
position (pk, which has two components, the latitude, φk, and
the longitude, λk), speed (vk), and course of direction (θk).
Note that we convert all speed values from knots to meters
per second (m/s).

The online track association stage starts off by opening an
associated track (j = 1) and assigning the very first node (k =
1) to this track. From this point onward, for each incoming
node, k, we either assign it to one of the existing tracks in set
J or open a new track, i.e., add a new element to J . We use
the notation, kj , to indicate that node k is on an associated
track j. Following the notation, the AIS measurements of this
node k on track j are denoted by tkj , pkj := (φkj , λkj ), vkj ,
θkj . When both an associated track and a true track appear,
we usually use j to denote the associate track and i to denote
the true track. Because of this, unless otherwise indicated, ki

is reserved for node k on a true track i.
To carry out this online evaluation, we calculate an indi-

vidual dissimilarity score, denoted by sjk as in (1), to assess
the similarity between an existing associated track j and the
current node k in consideration. A low score implies high
similarity and therefore indicates a possible association to an
existing track. For each existing associated track, j ∈ J , its
estimated next node measurements are indexed by nj , where
n implies next. The most recent AIS measurements on track
j is one step back from n and thus represented by nj − 1.

Using these notations, we propose the following dissimilar-
ity score:

sjk = cdist(pk, pnj ) + cang(θk, θ(nj−1)). (1)

The two terms, cdist and cang , denote changes in distance and
angle, respectively, and they are calculated as

cdist(pk, pnj ) = 2r× (2)

arcsin

√
sin2

(φk − φnj

2

)
+ cosφk cosφnj sin2

(λk − λnj

2

)
and

cang(θk, θ(nj−1)) =
180−

∣∣180− |θk − θ(nj−1)|
∣∣

|tk − t(nj−1)|
, (3)

where r denotes the Earth’s radius. The cdist, in (2), captures
the spatial distance between the predicted location and the

position of the current node based on the Haversine distance
[48], whereas the cang , in (3) measures the angular change
of direction over time between the associated track’s last
known direction and the direction of the current node and it is
devised so as to account for the circular nature of the angular
measurements, i.e., the 0 and 360 degrees are the same. The
spatial proximity (cdist) of the current node and the predicted
location of existing vessels helps us to decide whether they
belong to the same track or not. On the other hand, cang
tracks the required change in course per unit time to reach
to the current location for each existing vessel and thereby
indicates the feasibility of grouping them under the same track.
It is normally assumed that a vessel does not abruptly change
its direction. Together they provide a complete picture of the
similarity between the current node and existing tracks.

While most of the variables in (2) and (3) are readily
available from the AIS measurements, the location coordinates
associated with nj , i.e., pnj := (φnj , λnj ), need to be
predicted using its last node’s location, p(nj−1), and bearing,
θ(nj−1). This is done by solving the Vincenty’s direct geodesic
problem [4]. We skip the details of the derivation but present
a graphical illustration in Fig. 2. The final formula for the two
coordinates are:

φnj =arcsin(sinφ(nj−1) cos δjk + cosφ(nj−1) sin δjk

× cos θ(nj−1)) (4)

and

λnj = λ(nj−1) + arctan( sin θ(nj−1) sin δjk cosφ(nj−1),

cos δjk − sinφ(nj−1) sinφnj ). (5)

In the above two equations, to measure the angular distance,
δjk, we let

δjk =
djk
r
, (6)

where djk represents the distance traveled along the shortest
path on an ellipsoid (the geodesic). We further estimate this
djk through

djk =
vk + v(nj−1)

2
× |tk − t(nj−1)|. (7)

Note that, the use of the average speed in (7) is an approx-
imation, since the vessel’s speed during the time traveled
may be quite different (e.g., acceleration, deceleration etc.).
Without any additional information to inform us of the vessel’s
behavior between the two measurements, we find that the use
of the average speed provides a good approximation when the
distance traveled is small. In this paper, we use a R package
called geosphere [49] to generate the values of pnj and
calculate the Haversine distance (cdist). The package only
needs the last known measurements of each vessel, current
AIS measurement and the distance traveled to reach to the
current location.

Finally, we calculate an overall dissimilarity score for node
k,

sk := min
j∈J

sjk, (8)
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Fig. 2: Illustration of predicting the new node location. The
green segment represents the geodesic path followed to reach

the new location.

which is the minimum of the individual dissimilarity scores
sjk as in (1) over all j’s in the set of J . We initially decide
to compare sk against a threshold of β. If sk > β, a new
track would open, and otherwise the node would be assigned
to an existing track, say z ∈ J , which returns the lowest
dissimilarity score. That is, z = argmin

j∈J
sjk for each k.

We find that using the dissimilarity score, sk as in (8), there
are a couple of complexities that need to be taken are of.
The first issue is a result of having sk as a summation of
both the distance change and the direction change. But recall
that the maritime surface vessels are not supposed to change
its course of direction abruptly, yet sk, due to its design, is
not always sensitive to an angular change alone. For instance,
near a port, when vessels are passing each other in close
distance with similar speed, then only directional difference
can separate these vessels, not the distance and speed. To
handle this complexity, we decide to add a threshold, α, only
on the directional change, cang , in addition to checking sk.
When cang > α, then open a new track, regardless of what sk
is; otherwise, chose one of the existing tracks based on sk.

The second issue is how to choose the threshold for sk.
When sk is very small or very big, the decision of choosing
an existing track (sk small) or opening a new track (sk large) is
reasonably robust, much as expected. When sk is in between,
we observe that a single threshold on sk, as we originally
envisioned, is not robust enough. Another factor, which is
the distance traveled, i.e., dzk as in (7), affects the track
association decision. Generally speaking, a large value of dzk
usually leads to a relatively less accurate location prediction,
and as such, needs a higher sk value for reaching a better
decision.

In light of the above discussion, we create a global minimum
value of β, denoted as βsmall, and a global maximum value,
denoted as βlarge, so that if sk ≤ βsmall, we are going to
assign node k to track z, i.e., using an existing track, whereas
if sk > βlarge, we are going to open a new track. When
βsmall < sk ≤ βlarge, we devise another layer of decision,

Receive the next AIS data 

point for track 

assignment

No

Assign the data point to the track with 

lowest dissimilarity score

Yes

No 

Predict the future location of existing 

track(s) with feasible heading differences

Calculate the dissimilarity scores

by comparing the unassigned AIS 

measurements with the predicted 

measurements

Dissimilarity scores 

lower than a 

threshold?

Yes 

Use the first AIS data point to 

open a new track

Open a new 

track 

Heading differences 

lower than a 

threshold?

Compare the heading differences of existing 

tracks and new heading

Fig. 3: A schematic flow diagram of the online track
association process.

conditioned on dzk. To do that, we introduce another threshold
of µ. When βsmall < sk ≤ βlarge, we open a new track if
dzk ≤ µ, otherwise the node would be assigned to the existing
track, z.

All of these thresholds, i.e., βsmall, βlarge, µ, and α are
determined empirically from the training datasets. For better
understanding, a schematic flow diagram of the online track
association process is summarized in Fig. 3.

B. Post-hoc Merging

The purpose of the post-hoc analysis is to handle the
situations that the online clustering does not handle adequately,
often due to the need for the online training to keep up with the
ongoing process and the limitation of not seeing all the data.
Our online clustering method tends to produce more tracks
than the number of true tracks, so that our post-hoc analysis
does mostly merging than splitting.
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To consider the possibility of merging, we create a set
of candidate tracks, A(j) for each associated track j, where
A(j) ⊂ J and j /∈ A(j). Let us represent the start and end
node of an associated track j ∈ J as sj and ej , respectively;
again the superscript j here signifies the association of s and
e with track j. Given a track a ∈ A(j), the end node of track a
is thus denoted by ea. For the subsequent analysis, we restrict
the tracks in A(j) to be those that stopped before track j, i.e.,
tsj > tea for a ∈ A(j).

Our post-hoc merging targets two major problems. The first
problem is the wrongful track association due to the presence
of time gap. In the presence of such time gap, our location
prediction becomes less accurate, and consequently, the online
clustering step tends to open a new track whenever a new node
appears after the gap, even if it is from an existing track. We
consider the following situation as candidates for merging—a
candidate track whose last node appeared more than τ seconds
apart from the first node of the new track, yet the two nodes
are close than a distance threshold γ. The condition is formally
stated below:

tsj − tea ≥ τ and cdist(psj , pea) ≤ γ, for a ∈ A(j). (9)

The second issue to handle is when a vessel changes its
direction abruptly, i.e., when cang(θk, θ(nj−1)) is large, which
leads the online step to open a new track (recall the cang > α
criterion used in the online clustering step). While we institute
the angular change condition to open a new track, it could open
too many new tracks. But with the angular condition in the
online step, the algorithm will miss genuine new tracks. So it is
a balance act between over-detection and under-detection. We
find a simpler approach, which is to have the online angular
condition as it is but do a post-hoc correction. The correction
is to merge tracks which have their start and end nodes too
close to each other, expressed below:

cdist(psj , pea) ≤ η. (10)

Note that whatever issue arises, merging will always take
place with a single candidate track, a. If there are multiple
choices, we will always select the nearest track.

We observe that the likelihood of a post-hoc merging
depends heavily on the nature of the locations where a new
track emerges. For the datasets provided to the participants,
they cover a finite area nearby the Norfolk port. The vessel
locations are truncated, so that there is a clear boundary
surrounding the area under monitoring where the AIS data
are available; please see Fig. 4. We notice that three types
of locations provides important clues for merging likelihood:
the boundary locations (in the open sea), the middle locations,
and the parking location (which is the boundary locations on
land). We devise the following rules of thumb to guide the
post-hoc merging based on some common understanding:
• Middle locations: New tracks cannot appear suddenly

out of nowhere. When a new track appears here, it is
either the result of a time gap or due to an abrupt direction
change in the course of an existing track. We must merge
such tracks with the nearby track.

Fig. 4: Illustration of boundary, parking and middle locations
for track initiation using test set 5. Black line indicates the
boundary and the red lines indicates the vessel positions.

Fig. 5: A block diagram to summarize the proposed
framework.

• Boundary locations: New tracks could emerge any time
at the boundary points. As there is no information dis-
cerning where the new track comes from, we cannot rule
out the possibility of a genuine new track, so such tracks
will not be evaluated for merging.

• Parking locations: New tracks can initiate from the
parking locations but the historical data show that the
initial timestamps of such tracks are always within the
first 30 minutes. So we will test a new track for merging
only when it emerges after 30 minutes.

Combining all the elements, the whole algorithm is summa-
rized in Algorithm 1. We also summarized the key components
of the entire association process in Fig. 5.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our pro-
posed track association algorithm on five test datasets. In
Section V-A, we describe the performance metrics used for
the performance evaluation. In Section V-B, we provide the
detailed performance of our approach, together with the
sample baseline algorithm provided for the data association
challenge. In Section V-C, we evaluate the performance of two
traditional MOT approaches with respect to our proposed track
association algorithm. Finally, in Section V-D, we evaluate the
performance of our proposed approach on an open-source AIS
dataset.
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Algorithm 1: The proposed track association algo-
rithm
Input : The set of nodes/timestamps, denoted by K

and the initial track set J = ∅, and six
thresholds: βsmall, βlarge, µ, α, τ , γ, η .

Output: Associated track IDs, j, for each node
1 Stage 1: Online track association
2 Open an associated track (j = 1), and append j to J .

Assign the first node (k = 1) to this track;
3 Starting from k = 2, for each node k ∈ K do
4 for each opened associated track j ∈ J do
5 Predict the track’s next node location, pnj

using (4) and (5);
6 Calculate the dissimilarity scores, sjk using (1)

;
7 Calculate the distance traveled, djk using (7);
8 end
9 Calculate the overall dissimilarity score, sk using

(8);
10 Record the track index that return the smallest

dissimilarity score, z = argmin
j∈J

sjk;

11 if (βsmall < sk ≤ βlarge and dzk ≤ µ) or (sk >
βlarge) or (cang > α) then

12 Open a new associated track, append it to J
and assign the current node, k, as the first
element of this new track;

13 Go to step 3;
14 else
15 Assign the current node, k, to track z;
16 end
17 end
18 Stage 2: Post-hoc merging
19 for each associated track j ∈ J do
20 if Starts near the boundary in the open sea or first

member appears within initial 30 minute time
window then

21 Leave the track as is and return to step 19;
22 else
23 Find candidate tracks that came before j and

save them in A(j), such that A(j) ⊂ J and
tsj > tea for a ∈ A(j);

24 if (tsj − tea ≥ τ and cdist(psj , pea) ≤ γ) or
(cdist(psj , pea) ≤ η) then

25 Merge track j with track a;
26 Update the set of associated tracks J ;
27 Go to step 19;
28 else
29 Merging is not feasible and go back to step

19 ;
30 end
31 end
32 end
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Fig. 6: A sample scenario of true and associated tracks,
where the start and end states of each track are marked.

A. Performance Metrics

To assess and quantify the performance of a tracking
algorithm, the ATD data challenge organizers provided three
performance metrics [1], which are described in the sequel.

1) Counts of erroneous tracks: The purpose of this metric
is to measure the quality of track association by counting
the number of instances of different errors that could happen
during the association. To provide a clear understanding, a
simple track association example is presented in Fig. 6. It has
four true tracks (Track 1, Track 2, Track 3, Track 4). Each
track consists of multiple nodes, where a pair of consecutive
nodes form a segment, e.g., A1 and A2 are the two nodes
from Track 1 and A1-A2 is a segment. There are 14 nodes in
total, which are distributed into the four tracks. There are also
four associated tracks (Track M, Track N, Track O, Track P),
resulted from a track association algorithm. As this example
is generated to depict different errors, the track association is
arbitrarily set and understandably made imperfect. The start
and end states of each of these tracks are specifically marked
as they play a major role in defining different errors.

We use five error categories to check the quality of a track
association algorithm: missed track, extra track, merged track,
broken track, and swapped track. Other than the aspect of
swapped tracks, we use only the start and end states of the
associated tracks to measure these errors. They are defined
below:
• Missed track: A true track’s start state that is not captured

by any of the associated track’s start states. In the sample
example, node B1 corresponds to a missed track.

• Extra track: An associated track’s start state that does
not match with any of the true track’s start states. In the
sample example, node C2 corresponds to an extra track.

• Merged track: A true track’s end state that is not captured
by any of the associated track’s end states. In the sample
example, node A3 corresponds to a merged track.

• Broken track: An associated track’s end state that does
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not match with any of the true track’s end states. In the
sample example, node B2 corresponds to a broken track.

As one only needs the start and end states, these four error
categories are also applicable when the number of true and
associated tracks are not the same. We do not use the internal
nodes in counting these four errors to keep the evaluation
process as simple as possible.

To count the number of swapped tracks we have to use the
information of track segments. A track swap occurs when a
segment on a true track is not on any of the associated tracks.
From Fig. 6, ten true track segments can be identified: A1-A2,
A2-A3, B1-B2, B2-B3, B3-B4, C1-C2, C2-C3, C3-C4, D1-
D2, and D2-D3. Similarly, ten associated track segments can
be defined: A1-A2, A2-B2, D1-D2, D2-A3, A3-D3, C1-B1,
B1-B3, B3-B4, C2-C3, and C3-C4. We can see that there are
five true track segments (A2-A3, B1-B2, B2-B3, C1-C2, and
D2-D3) which are not on any of the associated tracks. So, the
number of track swaps in this case is five. The lower bound for
all these errors is zero, which represents a perfect association.
Note that using the five errors, as described above, does not
present a clear indication of track matching or association.
Track association will be done using the completeness score,
to be described in Section V-A3.

2) Continuity score: A continuity score is conceptually the
mirror of track swapping. It is defined as the ratio of the
distance of all the correct associated track segments to the
distance of all the true track segments:

Continuity score =

∑
j∈J

n(kj)∑
kj=2

g(p(kj), p(kj−1))

∑
i∈I

n(ki)∑
ki=2

cdist(p(ki), p(ki−1))

(11)

with

g(p(kj), p(kj−1))

=

{
cdist(p(kj), p(kj−1)) if [kj , (kj − 1)] ∈ T
0 if [kj , (kj − 1)] 6∈ T

.

(12)

Here, ki and kj denote running indices for the nodes of true
track i and associated track j, respectively. Furthermore, n(ki)

and n(kj) represent numbers of total nodes available under
true track i and associated track j, respectively. The term T
represents the set of true track segments. We use the Haversine
distance measure, cdist, for each true segment as defined in
(2). The continuity score is normalized between 0 and 1, where
1 means perfect. Similar to the preceding five error counts,
using the continuity score does not lead to track matching or
association, either.

3) Completeness score: Completeness of a true track with
respect to an associated track is measured by taking the ratio of
the number of nodes that are present in both the concerned true
and associated tracks over the number of nodes that are in the
true track. If there are multiple such associated tracks available
for a true track, then the completeness score of that true track

is measured by taking the maximum of all the completeness
values, that is,

Completeness score of true track i = max
j∈J

bij
n(ki)

. (13)

Here, bij represents the number of nodes on true track i
that are also present in associated track j. The completeness
measure also helps one decide track matching or association, if
one uses the associated track attaining the maximum complete-
ness value as the representation of the true track. When track
association is done, all the following scenarios are possible: a
true track matched to multiple associated tracks, an associated
track matched to multiple true tracks, and an associated track
not mapped to any true tracks.

B. Comparative Performance Evaluation

To apply our algorithm on the test sets, at first, we tune the
parameters adopted in our algorithm using the three training
datasets for which we know the true VIDs. To summarize,
the parameters used in the algorithms are: µ = 20 meters,
βsmall = 40, βlarge = 550, α = 25 degrees/second, τ = 300
seconds, γ = 3, 000 meters and η = 20 meters. We use the
same settings for all five test sets. After we ran our algorithm
on the test sets, the challenge organizers provided us the true
track information for the test sets [1], so that we can compute
the performance metrics described in the preceding section.
We did not change any aspect of our algorithm once we
received the true track information of the test sets.

At the end of the data association challenge, the challenge
organizers provided us the values of the performance metrics
generated by more than ten participating teams, so that we
can compare our performance to the best teams. We are not
given the identities of these participants nor the specifics of the
approaches used by them. Through this comparison, we know
that our method performs overall the second best. However,
we are not authorized to disclose the performance statistics of
other teams. Readers who wish to get this information will
need to reach out directly to the NSF ATD Program and make
a request.

In this section, in addition to present the performance
of our proposed method, we include the performance of
a sample algorithm [1], which was made available by the
challenge organizers to all participants at the beginning of the
competition. We mark our performance values in bold font
whenever it comes out as the best (or tied for the best) in a
particular category relative to all participating teams, including
that of the sample algorithm. This allows us to demonstrate
the competitiveness of our method without breaching the
confidentiality constraint.

Table II summarizes the count of erroneous tracks represent-
ing the number of missing, extra, merged, broken and swapped
tracks, produced by our algorithm in five test sets. Inside each
parenthesis, it is the corresponding count of erroneous tracks
obtained by using the sample baseline algorithm. Here, having
a lower count indicates a better performance and zero is the
lowest (best) possible value for these counts.

Our algorithm achieves the best performance in four out of
five test sets in terms of missed tracks and five out of five
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cases in terms of extra tracks. On these two error categories,
our method outperforms other participating approaches and
ranked the first. As the counts of both missed and extra
tracks depend on correctly detecting the opening node of a
track, we can say that our approach is the most successful
in capturing the start of the tracks. In terms of the counts of
merged and broken tracks, which, on the other hand, depends
on the capability of marking the end node of a track, our
approach again produces superior outcomes and becomes the
best method in three test sets and remains very close to the
best in the other two sets. In the case of swapped tracks, our
approach is the best in two test sets and remains competitive in
other three sets (we can confirm our method is in fact ranked
the second). In all cases, our method outperforms the sample
algorithm comprehensively and by a large margin.

In Table III, we summarize the continuity scores and com-
pleteness scores generated by our algorithm and the sample
algorithm in five test sets. A higher value of the completeness
scores indicates a better performance with ‘1’ being the best. A
continuity score of ‘1’ indicates that all the true track segments
are perfectly captured by the associated track segments.

We further breakdown the completeness score into the mean
completeness scores and the median completeness scores.
Both completeness scores represent the central tendency of
the completeness scores across the numerous tracks in a test
set. Because the distribution of the completeness score is not
symmetric, the two values do not agree. Their disagreement
suggests a skewness towards the high end of the score, i.e.,
completeness = 1. Moreover, a mean completeness score
of ‘1’ indicates that all of the nodes from each true track
are perfectly captured by an associated track, and a median
completeness score of ‘1’ indicates that more than half of the
true tracks are completely captured by the associated tracks.
In the category of median completeness scores, our algorithm
produces the best result in all five test sets. In the continuity
scores and mean completeness scores, our algorithm produces
the best result in two test sets and very competitive results in
the other three test sets (again we confirm that ours is ranked
the second). Also, we again comprehensively outperform the
sample algorithm in all categories across all five test sets and
our performance is on top with a comfortable margin.

Finally, in Table IV, we show the number of associated
tracks identified by our algorithm and the sample algorithm,
as compared to the actual number of tracks. Here, our approach
identified the number of tracks correctly for all five test cases.

To visualize the track association outcome of our approach,
we highlight the tracking performance of our algorithm for
five test datasets in Fig. 7. The true tracks are represented
by thicker black dots whereas the associated tracks are repre-
sented by thinner multicolored dots.

Overall, we can say that our algorithm achieved superior
performance across all metrics which are specifically designed
to evaluate the performance of a track association approach in
different aspects of association (i.e., identifying a new track,
marking the end of a track, avoid mixing two different but
close tracks that often cross each other, correctly identifying
each segment of a track, etc.). We believe, it portrays the
strength of our approach in dealing with complicated track

association problems.

C. Performance Comparison with MOTs

We also implemented two popular MOT approaches, namely
GNN (Global nearest neighbor) and JPDA (Joint Probabilistic
Data Association) to evaluate their performances with respect
to our association approach. We summarized their perfor-
mances in Table V- VII to highlight their competitive edge.
Among all the comparison cases, there is not a single instance
that these MOT methods outperform our proposed method.
In many (albeit not all) cases, they are even worse than the
sample algorithm (the baseline method) provided by the data
challenge organizers.

According to our observation, these MOTs lose their edge
when the vessels are very close to one another, when tracks
cross each other and when data collection frequency is high.
They severely under-perform in the presence of time gaps and
when the number of vessels to track is high (density of vessels
in the surveillance area). These factors explain their poor
association performance in test sets #3, #4 and #5. In fact, all
these characteristics made the challenge problems harder, and
thus difficult for the existing algorithms to associate vessels to
the true tracks correctly. The data challenge organizers, NGA,
in collaboration with NSF, purposely included these tough
characteristics in the challenge datasets in order to identify
the most competent track association algorithms.

D. Performance Comparison with an Open Source AIS
Dataset

To further evaluate the efficacy of our proposed approach,
we apply it to an additional open source AIS dataset [50].
The dataset contains an extra variable named ‘heading’, as
compared to the AIS datasets used earlier. To be consistent, we
discard this extra variable, so that our existing algorithm can be
used without any further modification. To make the dataset size
similar to what we have processed so far, we downsample this
new dataset by considering first 25,000 instances. The down-
sampled dataset contains 186 vessels, much more than the
number of vessels included in any datasets in the Data Associ-
ation Challenge. We apply our algorithm to this downsampled
dataset and compute the performance metrics. We summarize
this performance evaluation in Table VIII, where we also
listed the performance of the sample algorithm designed by
the competition organizers. Our algorithm achieved the best
performance across all metrics and outperformed the sample
algorithm by a large margin. We want to mention particularly
that our algorithm detected 182 vessels, 2% different from the
true number (186), whereas the sample algorithm detected 259
vessels, 40% more than the true number.

VI. CONCLUSION

In this paper, we propose a track association algorithm
that associates the AIS data points to true tracks/clusters. Our
research found that for the surface vessels, one can reasonably
anticipate the next node location based on the AIS measure-
ments taken at the last location of the vessel. Contrasting the
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TABLE II: Counts of erroneous tracks produced by our algorithm. Values in the parenthesis are the corresponding count
produced by the sample algorithm. Bold indicates the best performance among all participants.

Categories Test Set-1 Test Set-2 Test Set-3 Test Set-4 Test Set-5
Missed Tracks 0 (1) 0 (1) 0 (7) 2 (7) 1 (7)
Extra Tracks 0 (0) 0 (0) 0 (11) 2 (12) 1 (14)
Merged Tracks 0 (6) 0 (5) 1 (15) 0 (13) 1 (15)
Broken Tracks 0 (5) 0 (4) 1 (91) 0 (18) 1 (22)
Swapped Tracks 0 (729) 0 (1,296) 169 (6,484) 44 (7,953) 1,250 (8,452)

TABLE III: Continuity and completeness score produced by our algorithm. Values in the parenthesis are the corresponding
scores produced by the sample algorithm. Bold indicates the best performance among all participants.

Performance Measures Test Set-1 Test Set-2 Test Set-3 Test Set-4 Test Set-5
Continuity Score 1.000 (0.839) 1.000 (0.935) 0.945 (0.636) 0.988 (0.755) 0.998 (0.699)
Completeness Score (mean values) 1.000 (0.807) 1.000 (0.845) 0.984 (0.604) 0.883 (0.628) 0.916 (0.613)
Completeness Score (median values) 1.000 (0.843) 1.000 (1.000) 1.000 (0.546) 1.000 (0.575) 1.000 (0.648)

TABLE IV: The number of associated tracks recovered by our algorithm and the sample algorithm. Our algorithm recovered
perfectly all true track numbers which were unknown to us prior to the application of our method.

Algorithms Test Set-1 Test Set-2 Test Set-3 Test Set-4 Test Set-5
True Number 8 10 25 25 25
Our Algorithm 8 10 25 25 25
Sample Algorithm 7 9 29 30 32

TABLE V: Counts of missed and broken tracks (separated by a “;”) produced by the competing algorithms. Smaller the
better. Bold indicates the best performance.

Algorithms Test Set-1 Test Set-2 Test Set-3 Test Set-4 Test Set-5
Our Algorithm 0;0 0;0 0;0 2;2 1;1
Tracker GNN 3;12 10;179 7;470 11;284 11;174
Tracker JPDA 3;708 10;2233 3; 5775 8;5308 5; 6007
Sample Algorithm 1;0 1;0 7;11 7;12 7;14

anticipated location and the current observed location is an
effective strategy to carry out online track association. But a
pure trajectory anticipation is not sufficient. In order to have
a robust track association, one has to deal with a number of
operational complexities. For instance, as the geodesic distance
between the anticipated and current locations gets greater, the
effectiveness of the anticipation-based association deteriorates.
To tackle these complexities, we spatially divide the area under
consideration and devise adaptive policies that generate tracks
depending on vessel locations. We also turned certain unique
characteristics of maritime vessels and their movement into a
set of guidelines that ensure a high success rate of the track
association process. Using five test datasets provided by the
NSF ATD data association challenge, we demonstrate that
our algorithm produces superior tracking performance. Our
approach also comes superior when compared with two state
of art MOT approaches and evaluated on an open source AIS
dataset.

The proposed approach is one of the very first attempts
to associate trajectory observations to their tracks in real
time using a spatio-temporal framework. We are confident
that it will advance the trajectory analytics field beyond the
regime of the traditional trajectory clustering approaches. The
proposed approach can be used for the purpose of dynamic
threat detection involving simultaneous movement of multiple
objects. In the future study, more than using only the last
node location in a number of decision steps, one can consider
a small sequence of nodes, or the latent features extracted

from them, to perform the track association process. Doing so
could possibly help fix the residual problems associated with
the accuracy of node location prediction.
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[38] R. Fileto, A. Raffaetà, A. Roncato, J. A. Sacenti, C. May,
and D. Klein, “A semantic model for movement data
warehouses,” in Proceedings of the 17th International
Workshop on Data Warehousing and OLAP, 2014, pp.
47–56.

[39] K. Wolsing, L. Roepert, J. Bauer, and K. Wehrle,
“Anomaly detection in maritime ais tracks: A review
of recent approaches,” Journal of Marine Science and
Engineering, vol. 10, no. 1, p. 112, 2022.

[40] P. Fu, H. Wang, K. Liu, X. Hu, and H. Zhang, “Find-
ing abnormal vessel trajectories using feature learning,”
IEEE Access, vol. 5, pp. 7898–7909, 2017.

[41] C. Chen, D. Zhang, P. S. Castro, N. Li, L. Sun, S. Li,
and Z. Wang, “iBOAT: Isolation-based online anomalous
trajectory detection,” IEEE Transactions on Intelligent
Transportation Systems, vol. 14, no. 2, pp. 806–818,
2013.

[42] P.-R. Lei, “A framework for anomaly detection in mar-
itime trajectory behavior,” Knowledge and Information
Systems, vol. 47, no. 1, pp. 189–214, 2016.

[43] S. Blackman and R. Popoli, Design and Analysis of
Modern Tracking Systems. Norwood, MA: Artech
House, 1999.

[44] Y. Bar-Shalom and X.-R. Li, Multitarget-multisensor
Tracking: Principles and Techniques. YBs Storrs, CT,
1995, vol. 19.

[45] D. Reid, “An algorithm for tracking multiple targets,”
IEEE Transactions on Automatic Control, vol. 24, no. 6,
pp. 843–854, 1979.

[46] G. Bishop, G. Welch et al., “An introduction to the
kalman filter,” Proceedings of SIGGRAPH, Course,
vol. 8, no. 27599-23175, p. 41, 2001.

[47] C. F. Karney, “Algorithms for geodesics,” Journal of
Geodesy, vol. 87, no. 1, pp. 43–55, 2013.

[48] H. Goodwin, “The Haversine in nautical astronomy,” in
US Naval Institute Proceedings, vol. 36, no. 3, 1910, pp.
735–746.

[49] R. J. Hijmans, E. Williams, C. Vennes, and M. R. J.
Hijmans, “Package geosphere,” Spherical Trigonometry,
vol. 1, p. 7, 2017.

[50] “Marine traffic automatic identification system
(AIS): Open research maritime vessel tracking
dataset,” (Date Accessed: 01/16/2022). [Online]. Avail-
able: https://www.marinetraffic.com/research/dataset/
marinetraffic-automatic-identification-system-ais/

Imtiaz Ahmed received B.Sc. and M.Sc. in In-
dustrial & Production Engineering from Bangladesh
University of Engineering & Technology, Dhaka,
Bangladesh in 2012 and 2014 respectively. He re-
ceived his Ph.D. in Industrial Engineering from
Texas A&M University in 2020. He is currently
working as an Assistant Professor in the Department
of Industrial & Management Systems Engineering
at West Virginia University. His research interests
are in data analytics, machine learning and quality
control.

Mikyoung Jun received her Ph.D. in Statistics from
University of Chicago (2005). She is currently a
Professor and also a ConocoPhillips Data Science
Professor of the Department of Mathematics at the
University of Houston. One of her main research
areas is spatio-temporal modeling for environmental
and climate applications, especially development of
parametric non-stationary and non-separable covari-
ance functions for univariate, as well as multivariate
processes. Dr. Jun is a fellow of ASA, and an elected
member of ISI.

Yu Ding (M’01, SM’11) received B.S. from Univer-
sity of Science & Technology of China (1993); M.S.
from Tsinghua University, China (1996); M.S. from
Penn State University (1998); received Ph.D. in Me-
chanical Engineering from University of Michigan
(2001). He is currently the Mike and Sugar Barnes
Professor of Industrial & Systems Engineering and
a Professor of Electrical & Computer Engineering
at Texas A&M University. His research interests are
in quality and data science. Dr. Ding is a fellow of
IIE, a fellow of ASME, a senior member of IEEE,

and a member of INFORMS.

This article has been accepted for publication in IEEE Transactions on Intelligent Transportation Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TITS.2022.3187714

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.


