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RESEARCH NOTE

Race to the bottom: Spatial aggregation and
event data

Scott J. Cooka and Nils B. Weidmannb

aTexas A&M University; bUniversity of Konstanz

ABSTRACT
Researchers now have greater access to granular georefer-
enced (i.e., spatial) data on social and political phenomena
than ever before. Such data have seen wide use, as they offer
the potential for researchers to analyze local phenomena, test
mechanisms, and better understand micro-level behavior. With
these political event data, it has become increasingly common
for researchers to select the smallest spatial scale permitted
by the data. We argue that this practice requires greater scru-
tiny, as smaller spatial or temporal scales do not necessarily
improve the quality of inferences. While highly disaggregated
data reduce some threats to inference (e.g., aggregation bias),
they increase the risk of others (e.g., outcome misclassifica-
tion). Therefore, we argue that researchers should adopt a
more principled approach when selecting the spatial scale for
their analysis. To help inform this choice, we characterize the
aggregation problem for spatial data, discuss the consequen-
ces of too much (or too little) aggregation, and provide some
guidance for applied researchers. We demonstrate these issues
using both simulated experiments and an analysis of spatial
patterns of violence in Afghanistan.

Los investigadores tienen ahora un acceso como nunca antes
a datos georreferenciados granulares (es decir, espaciales)
sobre fen�omenos sociales y pol�ıticos. Estos datos se han uti-
lizado ampliamente, ya que ofrecen a los investigadores la
posibilidad de analizar fen�omenos locales, probar mecanismos
y comprender mejor el comportamiento a nivel micro. Con
estos datos sobre acontecimientos pol�ıticos, es cada vez m�as
frecuente que los investigadores seleccionen la escala espacial
m�as peque~na que permitan los datos. Sostenemos que esta
pr�actica requiere un mayor escrutinio, ya que las escalas espa-
ciales o temporales no necesariamente mejoran la calidad de
las inferencias. Si bien los datos altamente desagregados
reducen algunas amenazas para la inferencia (por ejemplo, el
sesgo de agregaci�on), aumentan el riesgo de otras (por ejem-
plo, la clasificaci�on err�onea de los resultados). Por lo tanto,
sostenemos que los investigadores deber�ıan adoptar un enfo-
que bas�andose m�as en principios a la hora de seleccionar la
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escala espacial para su an�alisis. Para contribuir a realizar esta
elecci�on, caracterizamos el problema de la agregaci�on de los
datos espaciales, analizamos las consecuencias de una
agregaci�on excesiva (o insuficiente) y ofrecemos algunas ori-
entaciones para la investigaci�on aplicada. Demostramos estas
cuestiones utilizando tanto experimentos simulados como un
an�alisis de los patrones de violencia en Afganist�an.

Les chercheurs ont maintenant un meilleur acc�es �a des
donn�ees granulaires g�eor�ef�erenc�ees (c-�a-d, spatiales) sur les
ph�enom�enes politiques et sociaux que jamais auparavant. Ces
donn�ees ont �et�e largement utilis�ees, car elles offrent aux cher-
cheurs le potentiel d’analyser des ph�enom�enes locaux, de
tester des m�ecanismes et de mieux comprendre les comporte-
ments au niveau micro. Avec ces donn�ees sur les �ev�enements
politiques, il est devenu de plus en plus courant pour les cher-
cheurs de s�electionner la plus petite �echelle spatiale permise
par les donn�ees. Nous soutenons que cette pratique exige un
examen plus approfondi, car des �echelles spatiales ou tempor-
elles plus petites n’am�eliorent pas n�ecessairement la qualit�e
des d�eductions. Bien que les donn�ees tr�es d�esagr�eg�ees
r�eduisent certains risques pour les d�eductions (p. ex. biais
d’agr�egation), elles accroissent le risque d’autres facteurs (p.
ex. mauvaise classification des r�esultats). Par cons�equent, nous
soutenons que les chercheurs devraient adopter une approche
plus raisonn�ee lorsqu’ils choisissent l’�echelle spatiale pour leur
analyse. Afin d’�eclairer ce choix, nous caract�erisons le
probl�eme de l’agr�egation des donn�ees spatiales, nous discu-
tons des cons�equences d’une trop grande (ou trop faible)
agr�egations des donn�ees et nous fournissons quelques con-
seils aux chercheurs appliqu�es. Nous d�emontrons ces
probl�emes en utilisant �a la fois des exp�erimentations simul�ees
et une analyse des sch�emas spatiaux de la violence en
Afghanistan.

Introduction

Observational data in political science are often wedded to a particular unit of
analysis, with measurement and analysis occurring on the same scale. For
example, electoral results are usually measured at the precinct level, unemploy-
ment insurance information is often reported by federal states, and GDP data
is typically available for entire countries. In these instances, the unit of analysis
is a (or the) political actor of interest, offering a natural correspondence
between the data and analysis. In other issue areas, however, there is no
“natural” unit of analysis, and researchers have considerable flexibility when
selecting the spatial scale. For example, in conflict studies, researchers often use
fine-grained event data on political violence and social movements as for
example the UCDP’s Geo-referenced Event Dataset (H€ogbladh 2019; Sundberg
and Melander 2013) or the Social Conflict Analysis Database (Salehyan et al.
2012), which contain unique spatial coordinates for each event. Since each
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event is linked to a single point, researchers can conduct analyses at various
(theoretically infinite) levels of analytical resolution. They simply (pre-)select
the scale of the units and then summarize the event-level information con-
tained within.
While this flexibility affords the possibility for greater insights into polit-

ical processes, it also risks researcher-induced error in these evaluations.
Historically, data were often only available at highly aggregated levels (e.g.,
state-level), thereby preventing researchers from “drawing meaningful infer-
ences about the underlying political relationships” (Freeman 1989, 61).
With granular event data researchers are freed from these constraints and
applied for work at sub-national scales has become commonplace. For
example, several studies analyze political violence at sub-national adminis-
trative regions (e.g., municipalities, see Weidmann 2011) or geospatial units
(e.g., grid cells, see Buhaug et al. 2011). The rapid proliferation of these
studies reflects the belief that sub-national political processes cannot be
effectively analyzed with highly aggregated data. However, it is not obvious
to us that researchers are giving equal attention to whether sub-national
processes can be effectively analyzed with existing sub-national data. More
generally, it is not clear whether in considering the benefits of disaggre-
gated data analysis, researchers are also considering its costs.
In this paper, we consider one problem related to the choice of spatial

resolution that has received little attention in applied research: geolocation
accuracy. Since event data are usually drawn from secondary sources, loca-
tion information on events is often imprecise or inaccurate.1 As such, even
though testing a particular theoretical mechanism oftentimes implies a fine-
grained analytical resolution, our data are often not sufficiently accurate to
allow for effective analysis of processes at these levels. For example, in the
UCDP Geo-referenced Event Dataset, data only about half of the events in
Afghanistan can be located precisely within a 25 km radius; an area of
almost 2,000 km2 (Weidmann 2015). As a consequence, in their attempt to
resolve bias due to aggregation, researchers induce bias due to measure-
ment error in using smaller spatial scales.
Adjudicating the relative costs of this inferential trade-off in applied

empirical research is not possible without ground truth data. Instead, we
utilize Monte Carlo experiments to examine how data accuracy and the
level of aggregation jointly affect the quality of our inferences. In our
experiments, we contrast “local” (i.e., high resolution) and “regional” (i.e.,
low resolution) models, under different levels of local-level variation and
random measurement error in both the outcome and predictor. As
expected, local-level (i.e., disaggregated) analysis performs well when there

1Researchers constructing event data have considered this issue more directly, see Lee, Liu, and Ward (2019) for
a recent discussion on improving the extraction of event locations from media reports.
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is local-level variation in the process and no measurement error in the
data. However, any deviation from these ideal conditions causes the per-
formance of this model to diminish dramatically. For example, even under
relatively low levels of random measurement error, regional-level analysis
of aggregated data often provides estimates closer to the true values. These
results were obtained without considering even more severe threats to
inference with disaggregated event data, such as systematic geolocation
error (Hammond and Weidmann 2014) and underreporting of events
(Cook et al. 2017).
To be clear, we are not arguing that researchers should never analyze

data at disaggregated levels. Rather, we recommend that extreme disaggre-
gation should not be adopted as the default without further consideration
of possible trade-offs. Much of the literature has focused primarily on the
consequences of over-aggregation, without considering the additional chal-
lenges that arise with imperfect real-world spatially disaggregated data. Our
simulation studies demonstrate that under plausible (and relatively benign)
conditions, analysis of disaggregated data can actually decrease the quality
of our inferences. Therefore, instead of always preferring the highest
level of resolution, both theory and data quality—and not simply data
availability—should inform one’s choice of spatial scale.

Analytical Resolution in Political Science Research

The question of the “right” degree of analytical resolution for empirical
work has a long history in geography (Openshaw and Taylor 1979;
Openshaw 1984) and the social sciences (Achen and Shively 1995; King
1997). Much of this research has highlighted the shortcomings—ex. aggre-
gation bias and ecological fallacy—of analyzing aggregate data to assess
individual behavior (Robinson 1950). For example, a researcher seeking to
understand the micro-level behavior of individuals may draw false conclu-
sions when using country-level data (Achen and Shively 1995). Recognizing
these limitations, applied researchers interested in political behavior now
increasingly use individual-level data and multilevel models (Gelman et al.
2007; Glynn and Wakefield 2010).
More broadly, concerns of aggregate data analysis have inspired a shift

toward smaller spatial units in research across the social sciences. This
includes quantitative work in the study of contentious politics and political
violence, which has increasingly relied on “disaggregated” approaches
(Cederman and Gleditsch 2009). Disaggregated studies try to increase the
resolution of the empirical data and tests used in a study, such that it better
matches the causal process under examination. Most of the work required
for this has gone into the creation of new event-level datasets (Schrodt
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2012). For example, rather than using aggregate indicators of political
events at the country level, researchers have collected geographically disag-
gregated data on civil war violence (Sundberg and Melander 2013), protest
(Salehyan et al. 2012; Klein and Regan 2018; Weidmann and Rød 2019),
and militarized interstate disputes (Braithwaite 2010).
These datasets provide incident-level information on discrete events,

including time, location, actors, and other characteristics. As such, each
observation corresponds to a specific spatial point, often identified by geo-
graphic coordinates (often latitude and longitude). Research in political sci-
ence, however, is often not concerned with the precise location of specific
events, but instead in accounting for the occurrence or frequency of events
within an area. To analyze that, researchers often aggregate these individual
events into area summaries and then include these in their models. In this
aggregation step, researchers using event data have considerable flexibility
in selecting the resolution for their subsequent analysis. This is because
these individual events can be aggregated in literally infinite ways, ranging
from very small (such as grid cells or small administrative units), to much
larger spatial units (such as provinces or entire countries).
Reflecting this flexibility, we have seen event data aggregated in a variety

of ways. While some studies use real-world administrative boundaries at
low levels (Weidmann and Ward 2010; Weidmann 2011), most researchers
have preferred artificial grid cells as units of analysis, which allows them to
freely choose the size of these cells. The preferred dimensions of grids can
vary, with common use ranging from quite small cells (<10 km, see
Raleigh and Hegre 2009; Hegre, Østby, and Raleigh 2009) to relatively large
cells with a size of 100 by 100 km (Buhaug and Rød 2006). Yet, the vast
majority of spatial work on conflict and contention uses the default dimen-
sions of the PRIO-Grid dataset (Tollefsen, Strand, and Buhaug 2012). With
a resolution of 0.5� (55 km at the equator) and several pre-computed varia-
bles, this dataset has become a new standard for small-scale, spatially disag-
gregated analyses. Work using the PRIO-Grid has been highly influential,
including highly-cited research by Pierskalla and Hollenbach (2013) on cell-
phones and violence, Fjelde and Hultman (2014) on violence against civil-
ians, and von Uexkull (2014) on drought and violence.
While this degree of flexibility can be advantageous, it is not clear to us

whether careful enough attention is being paid when making these aggrega-
tion choices. Failing to meaningfully consider the level of resolution can be
problematic for at least two reasons. First, as is well-known from the vast
literature on the Modifiable Areal Unit Problem (MAUP), different aggre-
gation and zoning choices can dramatically affect results (Openshaw 1984).
In short, Openshaw (1984) points out that there are an infinite number of
ways to aggregate “non-modifiable” units (i.e., individual people) into
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higher-order units (e.g., households, counties, states, etc.). This is problem-
atic since, like widely-known issues from ecological inference (King 1997),
relationships found at aggregate levels of analysis (ex. county-level demo-
graphics and vote totals) differ from relationships found at individual levels
of analysis (ex. individual characteristics and vote choice). Relationships of
interest in event data analysis (ex. population and conflict) are also scale-
dependent. Schrodt (2012) even highlights this as one of the open issues in
event data research, since aggregation choices influence the results
we obtain.2

Second, even if researchers knew the optimal spatial scale for their ana-
lysis—enabling them to evade MAUP-related concerns—it may be that
available data do not support credible analysis at this level of resolution.
For example, expert knowledge may suggest that a disaggregated research
design would help us get closer to micro-level mechanisms driving violent
behavior. However, if data at that level are missing or of low quality, then
little would be gained from such an analysis. In extreme cases, low data
quality may even cause us to draw incorrect inferences on these relation-
ships of interest. This is especially problematic if researchers believe that
higher-resolution analysis (on poor-quality data) necessarily improves upon
prior lower-resolution analyses (on higher-quality data) since it would
cause us to incorrectly update our prior understanding. In sum, researchers
need to consider both theory and data quality when selecting their level
of analysis.
As we summarize in Table 1, the event data utilized in applied research

is often limited in different ways. First, event data sets do not often contain
an exhaustive list of all real-world events (Earl et al. 2004). Moreover, this
underreporting is often systematic, with the severity or location of the
event affecting the probability of reporting (Salehyan 2015; Weidmann
2016; Cook et al. 2017). Secondly, even when events are included in our
data, the characteristics of these events may be inaccurate. For example, the
timing and location of the events reported in a given data set may be
incorrect due to imprecise (i.e., events only located in a broad area) or
inaccurate (i.e., events located in the incorrect area) media reports on the

Table 1. Event data: promise vs. practice.
Ideal type event data Real-world event data

Completeness All events included Incomplete list of events
Time and location of event Accurately coded Coding often inaccurate
Covariate data availability Available at high resolution Missing or poorly measured

2While much of the existing discussion on aggregation choices has focused on the frequency (i.e., temporal
aggregation) of the data (Freeman 1989; Shellman 2004), the spatial aggregation choices discussed here
present related challenges. Even in a single time series, the selection of the spatial scale is important. For
example, patterns of unemployment over time will be different for a county vs. a state vs. a country.
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event. As noted above, Weidmann (2015) finds that in the UCDP GED for
Afghanistan, only about half of the events can be located precisely within a
25 km radius. Finally, even when the event data itself is accurate, research-
ers may not have high-quality data on the correlates of these events. Since
we are often interested in understanding the detriments of political events,
having high-quality input data (to use as covariates) is as important as
high-quality output data.
While the first problem (completeness) is an issue no matter the level of

resolution, the severity of the second (time and geolocation accuracy) and
the third (covariate data availability) are often increasing in the resolution
of the data. That is, as we analyze increasingly disaggregated units, the like-
lihood of inferential errors due to these data limitations increases.3

Consider geolocation accuracy: it is widely appreciated that we have limited
spatial accuracy for a subset of the incidents in most event datasets. For
example, we find that roughly 20–40% of events cannot be spatially refer-
enced more precisely than second-order administrative units:

� Social Conflict in Africa Database (SCAD): 24% of events (4,172/17,644)
can only be located at “Province/region”, “Nationwide”, or
“location unknown,”

� UCDP Geo-referenced Event Dataset (GED): 41% of events (58,353/
142,902) are only known at the “second-order administrative division”
or lower,

� Global Terrorism Database (GTD): 20% of events (36,689/181,685) can
only be located at the second-order administrative unit or lower.

Attempting to locate events into smaller units than those supported by
the original report necessarily increases the magnitude of geolocation error.
This induces a form of misclassification in discrete outcomes, which biases
coefficient estimates even when the error is random (Carroll et al. 2006).
As these errors are likely not random—since the accuracy of reporting
accuracy increases for events near cities, violent events, etc.—this bias is
not even necessarily attenuating.
The magnitude of these biases grows further still when we consider that

the quality of covariate information also diminishes as we further disaggre-
gate the data. For example, Nordhaus (2006) provides a widely-used meas-
ure of sub-national economic activity. However, the quality of these data
varies considerably both within and across countries, ranging from

3Some researchers instead choose to subset the event data and focus only on high-precision incidents using
geolocation accuracy indicators. There are two problems with this. First, as shown by Weidmann (2015) there is
still substantial geolocation error even among these incidents. Second, this trades off measurement error for
selection bias by actively omitting incidents from the analysis.
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government-supplied measures of economic production for second-order
administrative units (as for the US states) to no regional economic data at
all (as in Nigeria). At best, this measurement error in the covariates will
attenuate the coefficient estimates. However, given that the sub-national
data quality does not vary at random and correlates with the quality of out-
come data (e.g., both covariates and outcomes will be measured less pre-
cisely in low-income countries), the direction of the bias cannot
be assumed.
Taken together, it cannot be assumed that disaggregating data always

improves the quality of our inferences. When increasing the resolution of
an empirical analysis, researchers instead face an unavoidable trade-off. On
the one hand, higher-resolution analysis can help them get closer to the
causal mechanism under study and alleviate problems of ecological infer-
ence. On the other, this requires increasingly high levels of precision in
measurement, which is something we often do not have in social science
data. As a result, researchers often introduce measurement error into out-
comes and covariates as they disaggregate their data. Therefore, it is
important for researchers to recognize the costs of undertaking disaggre-
gated data analysis with imperfect data as well as its benefits. In the next
section, we undertake a series of simulation experiments that demonstrate
the magnitude of these biases under different levels of data quality.

Simulation Studies

To demonstrate the small sample consequences of different aggregation
choices, we undertake a series of simulated experiments. For clarity, we
focus on a stylized example where we have 900 observations (N), each
located in 100 low-resolution areas (such as regions), that are further sub-
divided into nine high-resolution units (such as cities, see Figure 1).4 This
enables us to generate both outcome and predictor data at both levels, with
varying degrees of measurement error. Since the terms low resolution and
high resolution may not be familiar to readers—and could be confusing
given that higher-resolution data corresponds to a lower scale in map-
ping—we use the terms “local” (or L) for high-resolution data and
“regional” (or R) for low-resolution data in the following sections.
One thousand realizations (i.e., samples) of the data are generated at the

local (i.e., high resolution) level as:

Pr YL,R ¼ 1ð Þ ¼ logit�1 b0 þ b1XL,Rð Þ, (1)

4These dimensions reflect a hypothetical single-county analysis. For context, Nigeria has 36 states (first-order
administrative units) and 327 PRIO grid cells.
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where we set b0 to –4, b1 to 3, and the input

XL,R ¼ aR þ uL,R, (2)

varies at both the regional, aR�Nð0, 1Þ, and local level, uL,R�Nð0, cÞ:
Differences in c vary the extent of the local-level variation with a region,
with results for c¼ 0 (no local variation) and c¼ 1 (high local variation)
presented below.5

In our simulations, YL,R and XL,R represent the true data. Were these
fully observed by the researcher, standard estimators for model coefficients
and marginal effects would be unbiased and efficient (up to usual sampling
error). However, as we elaborate above, in the Analytical Resolution in
Political Science Research section, this is rarely the case with event data,
either because the researchers do not possess local data (only regional real-
ization) or the local data they have is measured with error. To better
approximate these real-world considerations, we aggregate and/or induce
measurement error into these data.
In each set of simulated conditions, we assume that the researcher has

access to two types of data and, therefore, two possible models at their dis-
posal: a local model and a regional model. In the local model, researchers

Figure 1. Simulation sample, 100 low-resolution (or regional) areas each sub-divided into 9
high-resolution (or local) areas.

5Rather than generating the data via a logistic function, we could also generate these as “presence only” data
from a continuous Poisson process, locate the individual points within each area, and summarize the results.
We do not believe that this would produce meaningfully different results over those we present here. Since it
would also require the introduction of a technology (i.e., continuous Poisson processes) unfamiliar to some
readers, we fear it would distract readers from our main point: spatial aggregation.
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have local-level measures of ~YL,R and ~XL,R, which are proxies for YL,R and
XL,R with varying degrees of error (described below). In the regional model,
researchers have regional-level aggregates of the true local-level data:

Outcome Aggregation:YR ¼ 1
X9
1

YL,R > 0

 !

Predictor Aggregation:XR ¼ aR,

where YR assumes a value of 1 if any of the local units contained within
that region is a 1, and XR reflects the common mean of its local units.6

Notice that there is no additional error in these data, only that induced by
aggregation.7 This reflects situations where researchers are interested in
answering questions on local-level processes, but only possess, or are confi-
dent in, regional, aggregated data. This trades off against possible error
induced from moving to local data, which better reflect the true (local-
level) process, but may do so with noise (as described below). All of the
models reported below are estimated using logistic regression.

Random Measurement Error in X

In our first set of experiments, we assume that the local outcome (YL,R) is
perfectly observed, confining attention to variation in the predictor. First,
we vary the extent of the local-level variation in our input XL,R: As noted
above, we can manipulate this via c in Equation (2), which is the variance
of the local component of XL,R: Second, we vary whether the predictor
used in estimation is measured with error, by inducing non-differential
(i.e., random) measurement error as:

~XL,R ¼ XL,R þ eL,R,

where eL,R�Nð0, dÞ: Differences in d vary the magnitude of the measure-
ment error in ~XL,R:
In our simulations, we allow c and d to be either 0 or 1. This gives us

four possible combinations of ~XL,R : no true variance, no error variance
(c¼ 0, d¼ 0); true variance, no error variance (c¼ 1, d¼ 0); no true vari-
ance, error variance (c¼ 0, d¼ 1); true variance, error variance (c¼ 1,
d¼ 1). While this is a stylized setup since real-world data often have com-
binations of both in different magnitudes, focusing on these limiting cases

6While there are alternative ways of aggregating Y (as for example by summing the events in each region), this
is the usual strategy employed in empirical work and therefore the one we consider here.
7As always with simulated data, we could generalize the model further still and consider scenarios that would
increase (e.g., systematic measurement error, missing outcomes) or decrease (e.g., regional-level measurement
error) the differences between the local- and regional-level models. It is not clear to us, however, that this
additional complexity would help to better clarify our main point: when the magnitude of measurement errors
varies across spatial scales this can have a dramatic effect on inferences.
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both allows for clearer discussion of the problems confronted and easier
extension to geo-coding error in the following section.8

The results are presented in Figure 2.9 Each panel corresponds to a dif-
ferent set of simulated conditions for ~XL,R, where Variance (vs. No
Variance) indicates whether there is local-level variation in the predictor,
and Error (vs. No error) indicates whether there is geo-location error in
the predictor. Within each panel, there are two densities of the estimates of
b1 for the local model (green) and the regional model (orange) across
1,000 trials, and a vertical black line indicating the true value of b1 (3)
used in the simulations. The results are consistent with our expectations.
We observe that the local model does well (is unbiased) when there is no
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Figure 2. Varying High-Resolution X: no true variance, no error variance (upper left panel); true
variance, no error variance (lower left panel); no true variance, error variance (upper right
panel), true variance, error variance (lower right panel). Vertical black line indicates the true
value for b1. There is no geo-coding error in Y in this experiment.

8Moreover, modifying the parameters to reflect alternative conditions (e.g., c ¼ 0:9, d ¼ 0:1) would obviously
produce results on the interior of those given here and, therefore, not offer much additional value.
9In the Appendix we provide numerical results for the bias, RMSE, and overconfidence. Note that across the
297,000 simulated samples we consider, a small number (fewer than 500 cases) produce perfect prediction in
one or more of our models. This is not unexpected given that we are simulating small samples of rare events.
However, since these instances are infrequent and it is not the focus of our study, we simply remove these
results from our analysis. Should researchers encounter this issue in their observed data analysis, we
recommend corrections such as those discussed in Zorn (2005).
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measurement error in ~XL,R (the left two panels), and suffers from trad-
itional attenuation bias when there is measurement error (the right two
panels). We also see that true local-level variance in ~XL,R (the lower two
panels) produces expected efficiency gains (as compared to the respective
upper panels). In short, the presence of local-level variance in ~XL,R produ-
ces efficiency gains in the local-level model because the variance of the esti-
mator is inversely related to the variance in the covariate.
On the other hand, we see that the regional model suffers from inflation-

ary bias when there is no variance in ~XL,R: While this may seem odd given
that this is the scenario where the values of ~XL,R are constant within the
region, it is a consequence of the aggregation of YR. In the regional model
(with YR), there is only one outcome to classify in each region, as opposed
to nine varied outcomes in the local-level model. As a consequence, higher
values of �XL,R predict 1 of 1 event perfectly in the regional model, as
opposed to, say, 3 of 9 in the local model. Local variance in XL,R offsets
this bias by introducing measurement error into the regional model, as all
sub-regional variation goes unmodeled.
In mean-square error terms (see Supplementary Appendix), the local

model performs better when there is no error in local X (the left two pan-
els), and the regional model does better when there is (the right two pan-
els). Under error in local X, the local models also perform poorly in terms
of coverage rates: it never overlaps the true population parameter. This sug-
gests that for applied data, we cannot know with certainty which of these
models will perform best; as we do not know the true level of measurement
error in X. We demonstrate above that under error in our predictor varia-
bles, researchers face a bias-variance trade-off when selecting the spatial
scale: higher-resolution models are more efficient and more biased, whereas
lower-resolution models are less efficient and less biased. Since neither
approach generally dominates, researchers instead need to carefully con-
sider the quality of their covariate data when selecting the spatial scale.
With error in covariates, we show that the bias of the estimator is increas-
ing in the spatial resolution of the sample, even when we have perfect
information on our outcome.

Geo-Coding Error in Y

Often, however, we cannot be this confident in our event data. We now
add measurement error to the local outcome data ~YL,R: To induce this
geo-coding error, we select a sub-sample of the regional areas and then
randomly reshuffle the 0 and 1s in its local units (as described in
Algorithm 1 and illustrated in Figure 3). That is, the number of events (1s)
in the region remains fixed, for example, there is no outcome
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misclassification at the regional level—but the events are randomly reas-
signed to new local units.10 This is a relatively benign form of error in
event data: it reflects situations in which we are confident that an event
occurs in a region, but cannot accurately locate it in the higher-dimen-
sional units (e.g., cities). Across the simulations we allow K to vary from 0
to 100—obviously the more regions re-sampled, the greater the error.

Algorithm 1: Geo-coding error in Y

1 [
Input: YL,R as given in Equation (1)
Output: ~YL,R

2 Randomly select K regions
3 if region R is selected then
4 | re-sample ~YL,R from YL,R in R without replacement //Re-shuffling stage
5 else
6 | YL,R

7 end if

The results are presented in Figure 4, where the distribution of b̂ across
the 1,000 simulations is presented on the y-axis, under different levels of
geo-coding error (the x-axis). These experiments reveal several notable pat-
terns. First, if there is no local-level variation in X (the top two panels),
then the extent of the geo-coding error in Y does not matter. Since the
value of the predictor is constant within each region, it does not matter
whether an event is located in one local area or another. Instead, the differ-
ences that we do observe between the local and regional models are entirely
a function of either aggregation or local-level error in X. When there is no

Figure 3. Illustrating geo-coding error. True events in the left grid are re-shuffled and assigned
to new locations in the right grid. As this is random, events can be re-located into local areas
which truly had an event (the black dot) or events that did not have an event (the light
gray dots).

10As always, we could induce greater error still: allow for outcome misclassification (ex. underreporting of
events), allow for non-random geo-coding error, etc. While this may better reflect some real-world data, it
would go beyond the purpose of our analysis.
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error, the local model dominates (it is unbiased and efficient). However, in
the presence of local-level error, the performance is dramatically reduced,
returning estimates less than one-third of the true value. The regional
model, on the other hand, is not affected by local-level error—as it does
not use local-level covariates—and instead overestimates the true value, due
to aggregation (i.e., ecological) bias under either condition.
Second, when there is local-level variation in X (the bottom two panels),

geo-coding error in Y dramatically affects the performance of the local
model. We see that even with no local-level error in X (the best case scen-
ario), the performance of the local model degrades rapidly as the extent of
the geo-coding error in Y increases. If we also add local-level error in X
(the bottom right panel) the performance of the local model is worse still.
Conversely, the regional model does fairly well under these conditions—
with the distribution bounding the true value—since it is unaffected by the
geo-coding error in Y.11 Moreover, the introduction of the true error
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Figure 4. Varying High-Resolution X: no true variance, no error variance (upper left panel); true
variance, no error variance (lower left panel); no true variance, error variance (upper right
panel), true variance, error variance (lower right panel).

11As before, additional quantities of interest from the simulation are reported in the Appendix. These are
consistent with the results presented earlier, in the Random Measurement Error in X subsection, except the
local model now performs worse still given the geolocation error in Y. Importantly, under the vast majority of
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variance in local X now offsets the inflationary aggregation bias we
observed previously since the measurement error in the regional X attenu-
ates the coefficient estimate. To be clear, our argument is not that
researches should rely on one form of bias to offset another, as in applied
settings we could not be confident that this would bound the true value as
it has here. Instead, we aim to demonstrate that only addressing one form
of bias (e.g., aggregation bias) does not strictly increase the quality of our
results, and can often make them worse.12

Illustration: Spatial Patterns of Violence in Afghanistan

To demonstrate that our insights from the simulations above are also rele-
vant when analyzing real-world data, we provide a simple study of violence
in Afghanistan. Specifically, we analyze how population density affects the
risk of violence. The outcome variable (Conflict) is measured using event
data from the Uppsala Conflict Data Program’s Geo-referenced Event
Dataset (GED), Version 19.1 (H€ogbladh 2019; Sundberg and Melander
2013). For our predictor, we rely on the Landscan dataset (Bright et al.
2009), a spatial population dataset with an original resolution of 1 arc-
second (�1 km). To keep our illustration simple, we restrict the sample to
2011, one of the most violent time periods in Afghanistan. According to
the GED, there were 630 violent events in Afghanistan during 2011.13

As we are using real-world data, we are not able to manipulate all of the
experimental dimensions we explored earlier in our simulation studies.
Fortunately, however, we are able to consider the most important ones: (i)
the geo-coding error in the outcome, and (ii) the spatial resolution of the
analysis. First, to vary the extent of geo-coding error in the outcome, we
compare results from a sample with no geo-coding error to those from a
sample where the additional error has been intentionally introduced. For
our “no geo-coding error” sample, we use only those events from the GED
with the highest level of geo-coding precision (1), indicating that the “exact
location of the event [is] known and coded” (H€ogbladh 2019).14 To gener-
ate our sample “with geo-coding error” we exploit the fact that additional

11 scenarios considered, the coverage rates of the local model are 0, that is, they never recover the true
population parameter.

12Betz, Cook, and Hollenbach (2020) demonstrate this in a different context, indicating the costs of addressing
one type of endogeneity while neglecting others.

13As detailed later in the paper, this includes only those events classified as a “1” on the where prec variable—
indicating that “exact location of the event [is] known and coded”—in the GED.

14While there may be some uncertainty even in these data (Weidmann 2015), this is the subset we should have
the most confidence in. Put differently, if researchers cannot rely on this subset of data, then it suggests high
resolution analysis should not even be considered.
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(simulated) noise can always be added to a given data set.15 Specifically, we
apply jittering to the coordinates of the original set of events, where the ori-
ginal event location is shifted by a uniform random value between ±0.3� both
horizontally and vertically.16 Here we simply focus on this single comparison
(no error vs. induced error), however, more or less geo-locational uncertainty
could be further explored by manipulating the variance used in the jittering.
Second, to vary the spatial resolution used in the analysis of these data,

we simply vary the grid size. Keeping with existing approaches in spatial
analysis (Tollefsen, Strand, and Buhaug 2012), we create models of different
resolutions by dividing up the study area into grid cells of different sizes.
Our local model uses cells with a resolution of 0.1�, with a total of
N¼ 6,582 cells. The regional model has a cell size of 0.6�, which results in
N¼ 221 cells. These two grids are depicted in Figure 5. We aggregate both
our predictor and the outcome to the grid cell level in the same way as in
our simulations above. The population values for each cell are computed as
the average of all LandScan values that fall within a grid cell. The depend-
ent variable Conflict is coded as 1 if at least one event from the GED
occurs within a cell, and 0 otherwise. Not surprisingly, the distribution of
conflict varies considerably between the two resolutions: in the local ana-
lysis, about 5% of all cells experienced conflict, while the same applies to
about 40% of all cells in the regional dataset.
As in our simulations above, we estimate the model parameters by apply-

ing logistic regression to the local and regional samples, using both the ori-
ginal event locations (i.e., no geo-coding error) and the locations with

(a) Local model, 0.1 degree resolution (b) Regional model, 0.6 degree resolution

Figure 5. Two different grids were used in the Afghanistan analysis.

15Adding simulated uncertainty is used in other measurement error methods, such as simulation
extrapolation (SIMEX).

16In several instances, violent events occur at exactly the same location according to the GED. Shifting each of
these independently would lead to major differences in the distribution of events between the jittered and
the non-jittered data. As such, for these events apply a common jitter to ensure that all events sharing a
location in the original sample also share a (new) location in the new sample.
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induced geo-coding error. The results from these four models are reported
in Table 2. The main conclusion from our simulations above was that in
the presence of geo-coding error, the quality of inferences from the local
model can degrade quickly. While we do not know the true values here,
the results from our applied example exhibit similar patterns. To see this,
first compare the estimates for the samples without geo-coding error (the
first two results columns of Table 2). Here we observe very little difference
between the local and regional models in terms of the coefficient of popula-
tion, implying roughly the same effect of population density on violence.17

This changes considerably once we introduce error into the location of our
events (right two columns in Table 2). First, there is a greater divergence
between the local and regional models’ results, as the coefficient on popula-
tion is considerably larger (roughly 1.7 times) in the regional sample.
Second, the results from the regional model (with error) are also more con-
sistent with the results from the samples without error. Specifically, the
estimate from the regional model decreases by only 20% due to random
geo-coding error, whereas for the local model there is a drop of about 60%
as compared to the same model without geo-coding error.
In sum, the results indicate that the level of spatial aggregation selected

by the researcher is more important when there is geo-location error in the
data. They also suggest that in the presence of geo-location error, a model
with a high resolution may perform worse as compared to one with a lower
resolution, consistent with the results from our earlier simulation study.

Conclusion

The production of georeferenced, sub-national data on political and social
events has transformed social science research. Researchers are no longer
forced to analyze processes at highly-aggregated levels due to data

Table 2. Population density and violence in Afghanistan, 2011.
Dependent variable: Conflict

No geo-coding error With geo-coding error

Local Regional Local Regional

Population (log) 2.719��� (0.124) 2.509��� (0.373) 1.158��� (0.080) 1.987��� (0.313)
Constant –6.979��� (0.234) –3.652��� (0.525) –4.198��� (0.127) –2.623��� (0.420)
Observations 6,582 221 6,582 221
Log likelihood –891.096 –110.292 –1,332.669 –123.519
Akaike Inf. Crit. 1,786.193 224.585 2,669.339 251.038
���p< 0.01.

17As anticipated earlier, the constant changes noticeably across the two models due to the different base rates:
5% of all cells experience conflict in the local sample, where 40% of all cells experience conflict in the
regional dataset.
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availability. Now researchers are freed to choose the level of analysis that
best suits their theory. However, as we have shown here, the move to dis-
aggregated data analysis is not cost-free. Because the locations (in addition
to other characteristics) of events are often measured imperfectly, the qual-
ity of inferences can quickly degrade as one move to lower levels of ana-
lysis. Specifically, we demonstrate that even when geo-coding errors are
random and geographically confined, there is substantial bias in coefficient
estimates. Therefore, we recommend that researchers should not pursue
disaggregated data analysis as a default strategy.
Instead, we encourage researchers to recognize that the flexibility

afforded by events data is more profound than simply analyzing fixed-
dimension grid cells. While data-specific variation precludes us from
offering a single ready-made strategy, we suggest that researchers consider
the following when selecting their spatial scale. First, researchers should
carefully consider the spatial scale of the political process and the quality
of the data when selecting the scale for analysis. For the latter, compari-
sons to ground truth data (e.g., Weidmann 2015) allow us to gauge the
overall magnitude of geo-location accuracy. When researchers have mul-
tiple reports or multiple data sets, they can also use this additional infor-
mation to reduce measurement errors in event data (Cook et al. 2017;
Cook and Weidmann 2019). Second, in the absence of a “natural” spatial
scale, researchers should evaluate models at different spatial resolutions.
Beyond just looking for consistency across levels—which is not guaran-
teed for even high-quality data—researchers should evaluate cross-reso-
lution differences for evidence of potential biases. For example, do
coefficient results attenuate at higher levels of resolution, as expected
under aggregation bias, or do we observe some other pattern? Finally,
researchers should be conservative about inferences from disaggregated
data. As we have shown here, these are not inherently more sound than
analysis of aggregate data. When different inferences obtain across these
different levels, it is not clear that the micro-level analysis is closer to the
truth. Instead, all the evidence should be taken into account when evalu-
ating support for theories.
While beyond the scope of this note, an alternative strategy for

researchers to consider is simply analyzing events data using point pro-
cess models (Johnson et al. 2018; Schutte et al. 2017), as is commonly
done with spatial data in other fields (Renner et al. 2015). Zhu, Cook,
and Jun (2021) elaborate on the benefits of applying these methods to
political science events data. First, researchers are no longer forced to
pre-select the spatial scale. Second, because point process models analyze
individual events, it is easier to accommodate event-specific measurement
errors in locations. Taken together, this would help researchers to address
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concerns about aggregation bias and measurement error directly in a uni-
fied framework.
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