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Abstract

Predicting rain from large-scale environmental variables remains a challenging problem for climate
models and it is unclear how well numerical methods can predict the true characteristics of rainfall
without smaller (storm) scale information. This study explores the ability of three statistical and
machine learning methods to predict 3-hourly rain occurrence and intensity at 0.5° resolution over
the tropical Pacific Ocean using rain observations the Global Precipitation Measurement (GPM)
satellite radar and large-scale environmental profiles of temperature and moisture from the MERRA-2
reanalysis. We also separated the rain into different types (deep convective, stratiform, and shallow
convective) because of their varying kinematic and thermodynamic structures that might respond to
the large-scale environment in different ways. Our expectation was that the popular machine learning
methods (i.e., the neural network and random forest) would outperform a standard statistical method
(a generalized linear model) because of their more flexible structures, especially in predicting the
highly skewed distribution of rain rates for each rain type. However, none of the methods obviously
distinguish themselves from one another and each method still has issues with predicting rain too
often and not fully capturing the high end of the rain rate distributions, both of which are common
problems in climate models. One implication of this study is that machine learning tools must be
carefully assessed and are not necessarily applicable to solving all big data problems. Another
implication is that traditional climate model approaches are not sufficient to predict extreme rain
events and that other avenues need to be pursued.

1. Introduction

Rainfall is fundamental to water resources, agriculture, and ecosystems and can cause massive damage in the
form of too little or too much rain. However, rainfall can vary strongly in space and time making it hard to
measure and even harder to predict. The rain rate distribution of most global climate models (GCMs) is far
different than observed, with too much weak rain and not enough heavy rain (e.g., Stephens et al 2010, Fiedler
et al 2020), which hinders predictions of extreme events. The goal of this study is to analyze the ability of
advanced statistical and machine learning techniques to predict the occurrence and rain rate distribution of
tropical rainfall using environmental temperature and humidity profiles as predictors. A salient question is if any
of these techniques can improve upon existing GCM parameterizations in producing accurate rain
characteristics from large-scale variables.

Rain is produced two main ways in GCMs. Convective rain is output from the convective parameterization,
which typically involves a trigger function to activate the convection and a closure assumption to determine the
intensity of the convection; convective parameterizations are used to represent the aggregate effect of many
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Figure 1. GPM radar reflectivity observations at 01 UTC on 4 February 2017. (a) Black lines represent the GPM radar swath, red box is
the bounds of the study area over the West Pacific. (b) Horizontal cross section of reflectivity at 2 km AMSL near the red line in (a).

(c) Vertical cross section of reflectivity taken along the black line in b). Stratiform profiles are labeled as 1, convective profiles are
labeled as 2. The far right cell in the vertical cross section is considered shallow convection because its top is below the 0 °Clevel
(typically about 5 km in the tropics).

subgrid-scale convective clouds (Arakawa 2004). Some convective parameterizations have shallow and deep
schemes, while some models produce shallow convection in the boundary layer parameterization, although
these clouds are often non-precipitating (e.g., Bretherton and Park 2008). The rest of the rain ina GCM is
produced explicitly at the grid scale as large-scale rain using a microphysical scheme (e.g., Dai 2006). Recent
studies have shown that the manner in which a GCM distributes rain between the convective and large-scale
components strongly impacts the model’s climate projections (e.g., Kooperman et al 2018, Stephens et al 2019,
Norris et al 2021). Thus, it is important to analyze rain types separately when assessinga GCM’s efficacy in
producing realistic total rain fields, especially when considering changes to precipitation extremes in a warming
climate.

The real world does not produce rain the same way as GCMs, but it is possible to separate observed rainfall
into types that have some analogies to GCM convective and large-scale rain. In particular, we focus on the
separation of rain into deep convective, stratiform, and shallow convective components using radar
measurements. Figure 1 shows an example convective system observed by the Global Precipitation
Measurement (GPM; Hou et al 2014) spaceborne radar over the tropical West Pacific. The most intense
reflectivity in the horizontal and vertical indicates regions of active deep convection, while the more moderate
and more horizontally homogeneous reflectivity indicates regions of less convectively-active stratiform rain
(Houze 1997, Schumacher and Houze 2003a). Together, these rain types cover a region greater than 100 km that
can span multiple GCM grid boxes. It has been shown that over half of the total rainfall in the tropics and warm
season mid-latitudes comes from large, organized rain systems like this one (Nesbitt et al 2006, Schumacher and
Rasmussen 2020). Shallow convection is ubiquitous over the tropical ocean and occurs regularly over some
continental locations, but is much more isolated and does not produce nearly as much rain (Schumacher and
Houze 2003b, Funk et al 2013).

Radar-observed deep convection most closely aligns with rain produced by a model’s convective
parameterization. A similar argument can be made for radar-observed shallow convection if a shallow
convective scheme is included in the GCM formulation. GCM large-scale rain may also be equated to radar-
observed stratiform rain that forms in the extratropics when large-scale lifting (like a warm front) is the main
synoptic forcing and convection is minimal. In the tropics and warm-season midlatitudes, radar-observed
stratiform rain forms as a result of the deep convection (Houze 1997), so is not equivalent to GCM large-scale
rain produced by a microphysics scheme that acts separately from the convective parameterization. Despite this
physical disconnect over large swaths of the globe, radar-observed stratiform rain is often compared to GCM
large-scale rain, but should only be done within the framework of comparing precipitation processes not
produced by the strongest convection (either in the model or real world). As discussed by Mapes et al (2006),
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these three rain types form the building blocks of larger convective systems ranging from mesoscale convective
systems (with scales on the order of 100 km and 12 h) to the Madden-Julian Oscillation (with scales on the order
of 1000 km and many weeks), so predicting each of these rain types is important to studies of weather and
climate. However, the ability of GCM:s to simulate these building blocks and their interactions remains a
challenge, which was the main motivation of this work.

There are currently a number of efforts to use tools from data science to improve the representation of
subgrid processes in climate models. Since there is often a very limited amount of data available for unresolved
processes, especially in situ measurements, many of these efforts apply machine learning techniques to
conventional model parameterizations or a large ensemble of higher resolution simulations (Brenowitz and
Bretherton 2018, O’Gorman and Dwyer 2018, Rasp et al 2018). Training on conventional parameterizations can
improve computational efficiency but does not address the physical deficiencies. The higher resolution
simulations also have their own built-in assumptions about a different set of smaller scale unresolved processes.

Yang et al (2019) considered a data-centric approach, using a large satellite rainfall data set and reanalysis
fields to show that a generalized linear model (GLM) can perform well at predicting the occurrence of different
rain types in the tropics, but it fails at capturing the tail of the rain rate distributions. This is mainly due to the
restriction of parametric probability distributions used for the rain rates. Although distributions such as
Gamma, log-normal, or Weibull are commonly used for rain rates due to their shape of density curves with long
tails, they are often not flexible enough to capture the heaviest rain rates. This study builds on Yang et al (2019) by
applying two machine learning techniques, i.e., a random forest (RF) and deep feedforward neural network
(NN), to a similar data set to determine how well these methods compare to one another and the GLM in
predicting rain occurrence and capturing the high rain rate end of the distribution for multiple rain types. RL
and NN can potentially handle nonlinearities better, and are not constrained to follow a specific probability
distribution like GLM. The purpose of the next section is to provide general background on each method so that
readers can better understand the implications of the results shown in section 4.

2. Statistical and machine learning methods

2.1. Generalized linear model

GLMs (McCullagh and Nelder 1989) are a popular class of statistical models used to predict a response variable
whose mean is assumed to be some parametric function of covariates. It is a more general modeling framework
than multiple linear regression in that response variables may not follow a Gaussian distribution. Furthermore,
unlike multiple linear regression models, which often use the least squares method for model fitting, GLMs are
fitted using a maximum likelihood estimation (MLE) method. The MLE method utilizes the distribution
function of the response, thus giving generally better statistical properties of estimators than the least squares
method. A GLM does not necessarily assume a direct linear relationship between the response and covariates,
and often their nonlinear relationship is introduced by a link function. For instance, a common log-link function
assumes that the log transformed mean of the response can be written as a linear combination of covariates.
Widely used examples for distributions and link functions for GLMs include logistic regression (a Bernoulli
distribution for the response and log link), loglinear regression (a Poisson distribution for the response and log
link), and Poisson regression (a Poisson distribution for the response and log link).

In this work, we adopt the two-step modeling procedure used in Yang et al (2019). Two separate GLMs, a
logistic regression and a Gamma regression, are employed to deal with rain occurrence and rain amount,
respectively. Ata given time, let p(s) denote the probability of rain at a grid point s. Then the rain event is
assumed to follow a Bernoulli distribution with

log {%} = Bo + Biz(s) + -+ Bpzp(s), (1)

where z;(s) denotes predictors (i.e. covariates) at the grid point s. If y(s) denotes the rain amount at s, we assume
that y follows a Gamma distribution with

log[E{y()}] = 1y + mai(s) + -+ 1,2p(s). (@)

For both models, parameters, including the coefficients 5;and »;in (1) and (2), are estimated using the MLE
method. We fit the GLM models using data aggregated over space and time altogether, similar to Yang et al
(2019). Although models (1) and (2) do not have explicit temporal structures in them, the temporal structure of
the covariates effectively account for that of the responses, and it did not seem necessary to add more temporal
termsin (1) or (2).

Statistical inference on the estimated parameters, including the significance of coefficients, is made possible
by using GLMs, and the estimated coefficients are readily interpretable. On the other hand, a possible drawback
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Figure 2. [llustrations for decision tree (left) and deep feedforward neural network (right).

of the approach outlined above is the linearity assumption given in (1) and (2), as well as the distribution
assumption on rain amount. In particular, the Gamma distribution may be too restrictive to account for some
heavy rain events (Yang et al 2019). Other commonly used distributions such as log-normal and Weibull
distributions have similar problems, due to their particular parametric forms and restrictions. In view of the
potentially restrictive nature of GLMs, we explore two popular machine learning methods, RF and artificial
NNs, which operate under much weaker (i.e., non-linear) assumptions compared to GLMs. RF and NN offer
the most competitive predictive performances in many applications, and are now standard tools for machine
learning.

2.2.Random forest

Random forest (Breiman 2001) is an ensemble learning method that makes predictions based on multiple
decision trees. A random forest is built upon these many decision trees. A decision tree is a simple model that
predicts the label associated with a sample by a series of splitting rules. An example decision tree is shown in
figure 2, where a tree is used to determine if a binary response Yis 1 or 0. The root node has a splitting condition:
‘X1 > 07 If the observation fulfills this condition, it will be passed to the next condition: ‘X, < 10?” Otherwise,
the tree predicts Y = 0. The procedure is applied recursively until the tree reaches a prediction of Y. For the
construction of a decision tree, we refer the readers to Breiman (2001). In the above example, the underlying goal
is classification, where the response is categorical. Decision trees can also be modified to handle a regression
problem, where the response is quantitative.

The core idea of ensemble methods like RF is to combine weak predictive models to achieve strong predictive
performance. An RF is usually trained with two ‘random’ ideas. The first is bagging—for each tree, the training
set is formed by resampling from the original data set with replacement. The second is feature randomness—
each tree in an RF is trained with a random subset of features. Bagging lowers variance while feature
randomization reduces the dependence across trees. They are beneficial to ensemble learning. The prediction of
the RF is obtained by a majority vote over the predictions of the individual trees.

Similar to the GLM analysis, a two-step modeling procedure was implemented for RF in our work. Namely,
we trained an RF model on rain occurrence and another RF model on rain amount. For both models, we used
the default setting of the ‘randomForest’ function from the R package‘randomForest’, except that we restricted
the number of decision trees to 100 when predicting rain amount in order to alleviate the computational burden.
As opposed to GLM, RF is a nonparametric method and can produce a highly nonlinear regression function. On
the other hand, it is significantly more difficult to interpret the results of the RF model, although RF provides a
measure of variable importance. In practice, one might also examine individual classification trees within the
random forest to understand the results.

2.3.Neural network
In recent years, artificial NN (especially those with deep architecture) have become one of the most prominent
models for complicated functions. A NN is based on a collection of connected nodes. Different ways to connect
the nodes result in different NN architectures, such as fully connected (Hsu et al 1990), sparsely connected
(Ardakani et al 2017), convolutional (Lo et al 1995), and recurrent (Mikolov et al 2010). Nodes are typically
organized into layers, which can be classified as input, hidden and output. Networks with multiple hidden layers
are said to have deep architectures, and are referred to as deep NNs. Deep architectures are commonly used
nowadays, due to their strong empirical performance in many areas.

In our analysis, we adopt a deep feedforward NN in which consecutive layers are fully connected (Svozil et al
1997, Schmidhuber 2015) because it is one of the most standard forms of deep NN. Figure 2 depicts an example.
Weuse X! € R to represent the nodes at layer /, where ;is the number of nodes at layer I. Take X' as the
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input and X'" as the output. The hidden and output layers are generated as follows. Let x{" be the node k of layer
Iwherel=1,...,Landk=1,...,n. Then

n_
! 1 I N,.(1-1
) = o000 + 3 wilaf

i=1

where ag) is the activation function, and b,f’ )and wflk) are parameters to be trained by the data. For simplicity, it is
common to use the same activations within the same layer: 0" := ofcl), fork=1,...,m.

Similar to the previous two models (GLM and RF), we adopted the two-step approach for the NN analysis.
More specifically, we trained one NN to perform the binary classification on rain occurrence and another NN
using training samples with positive rain values only to predict the rain amount. We considered different
numbers of layers for NN. More specifically, we considered L = 2, 3,...,10. Note that ny = 80 and n; = 1 forall L
since they are representing the input size and the output size. For any existing hidden layer, the number of nodes
are set as follows: n; = 40,1, =20,n3 = --- =n;_, =6and n; _, = 3. For instance, for L = 1, there is only one
hidden layer and so only #; is relevant. For [ = 1,...,L — 1, the corresponding activation functions ag) were
chosen as the rectified linear unit (ReLU) functions (¢ (x) = max(0, x)). The activation function for the output
layer had to be chosen based on the response type, i.e., classification or regression. We used
oD (x) = 1/(1 + exp(—x)) for the classification, while we used the exponential function for the regression
since the response is positive. For the loss functions, we adopted the binary cross entropy loss for the
classification and the mean squared error for the regression. As for the estimation of the NN, we adopted mean
square error as the loss function and trained the network via the popular algorithm Adam (Kingma and
Ba2015).

To prevent over-fitting, we also adopted the dropout procedure, which is a common regularization method
for training deep neural networks (Baldi and Sadowski 2013, Gal etal 2017). In the dropout procedure, neurons
are stochastically dropped out during the training at each layer. In our implementation, the dropout rate was set
to be the same at every layer and three possible values 0, 0.2, 0.5 were considered. Both the dropout rate and the
number of layers, L, were regarded as the hyper-parameters and were chosen via a validation procedure—we
randomly separated 20% of the training data as the validation set to select the best combination of dropout rate
and number of layers.

3. Training and test data

We used two years of observations from the GPM dual-frequency precipitation radar (DPR) to calculate rain
occurrence and rain rates, which were the predictands of the study. The full year of 2017 was used for training
and the full year of 2018 was used for testing. The rain type classifications (i.e., deep convective, stratiform, and
shallow convective; Funk et al (2013)) and associated rain rates were retrieved from 2ADPR V6 files. Figure 1
shows an example orbit from the GPM radar with all three rain types present. We regridded the DPR orbital rain
observations, which are made at a 5-km footprint scale over a 245-km swath, to 0.5° horizontal resolution and
3-hourly temporal resolution. Note that the 3-hourly rain rate represents an instantaneous value and not a
3-hour average. The predictors for the study were temperature and humidity fields at 40 pressure levels from the
MERRA-2 reanalysis (Rienecker et al 2011) for 2017 and 2018. The MERRA-2 data was regridded to a similar
horizontal and temporal resolution as the DPR data and points were only analyzed if a DPR orbit occurred ina
grid during the 3-hour period. We limited our domain to the tropical West Pacific (130 °E-180 °E, 20 °S-20 °N;
figure 1(a)), but found similar results in the tropical East Pacific (not shown). Overall, we had 569,596 training
samples and 572,968 test samples.

The training and test data are generally similar to the observational data sets used in Yang et al (2019).
However, we used rain observations from the GPM DPR instead of the Tropical Rainfall Measuring Mission
(TRMM) precipitation radar (PR) because of the DPR’s higher sensitivity to weaker rain rates and thus better
shallow convective rain retrievals (Hamada and Takayabu 2016). We also used a slightly higher time resolution
(3 hours vs 6 hours) to better isolate environment-rain relationships and we used all times of day instead of just
0-6 UTC to capture the full range of diurnal conditions (e.g., Hirose et al 2008). We chose a warm ocean region
with only small land amounts (i.e., New Guinea and the northwest coast of Australia) as a baseline test for our
techniques, but a natural follow-on study would be over a tropical land region such as the Amazon or Congo.
Finally, we only used temperature and humidity as predictors because they accounted for the majority of the
predictive performance by the GLM in Yang et al (2019), who also tested other environmental variables such as
horizontal wind profiles and surface fluxes. We further utilized the full temperature and humidity profiles rather
than just the first three empirical orthogonal functions so that the machine learning techniques had more
flexibility in determining the vertical relationship of the predictors to the surface rain rate.
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Table 1. The top four rows describe the performance of the occurrence predictions for each rain type by each method. The
values in each column are the fraction of the total cases that fall into each prediction category and sum to one, while bold
values are the highest correct predictions. The bottom two rows quantify the accuracy of the rain rate (mm/hr) prediction
in terms of root mean square error (RMSE) and mean absolute error (MAE), with bold values representing the smallest
errors among the three methods.

Deep convective Stratiform Shallow convective

GLM RF NN GLM RF NN GLM RF NN

True Negative 0.485 0.568 0.536 0.474 0.529 0.502 0.325 0.415 0.323
False Negative 0.036 0.054 0.054 0.052 0.069 0.076 0.084 0.137 0.106

True Positive 0.122 0.103 0.103 0.188 0.171 0.164 0.267 0.214 0.245
False Positive 0.357 0.275 0.387 0.286 0.231 0.306 0.324 0.234 0.325
RMSE 0.758 0.975 0.749 0.624 0.730 0.619 0.095 0.105 0.094
MAE 0.405 0.504 0.385 0.295 0.367 0.275 0.058 0.062 0.059

4, Prediction results

4.1. Rain occurrence

When solving for occurrence, we treat grids with extremely small rain amounts as no-rain cases to avoid
retrievals from the radar likely associated with clutter or noise. For each rain type, we selected a rain rate cutoff
that accounts for less than 1% of the total rain amount in the training data. The cutoff values are 0.056, 0.0395,
and 0.0087 mm/hr for deep convective, stratiform, and shallow convective rain, respectively. As will be
illustrated in the next section, the three rain types produce different ranges of rain rate intensity, which is why
separate cutoff values are needed for each rain type.

Rain does not very occur often at the time and space scales being considered in this study (i.e., 3 hourly and
0.5%), so there are significantly more no-rain cases than rain cases. To deal with this imbalanced classification
problem, we created a ‘balanced’ training data set by using a random under-sampling procedure. That is, we
randomly sample the no-rain cases until we have the same number of no-rain and rain samples in our training
data set. Note that we classify rain/no-rain cases for each rain type separately.

The top four rows of table 1 show how well the three statistical and machine learning methods described in
section 2 predict no-rain and rain cases for each rain type. The actual time the GPM radar observed each rain
type over the West Pacific is indicated by adding the false negative and true positive values (i.e., about 16%, 24%,
and 35% for deep convective, stratiform, and shallow convective rain, respectively). All three methods do a
reasonable job at distinguishing truly raining cases, with GLM slightly outperforming the other two methods.
However, all methods suffer from a relatively high false positive rate (i.e., predicting rain too often), which is a
persistent problem in most climate models as well (Fiedler et al 2020). While GLM had the best true positive
predictions, it had the worst true negative predictions (i.e., predicting no rain when no rain is observed). RF had
the best true negative prediction and NN fell between the two other techniques. The results discussed above are
obtained by taking the cutoff probability as 0.5 for the three methods. More specifically, when the predicted
probability for a test case is larger or equal to 0.5, we treat it as ‘rain’; otherwise, it is considered as ‘not rain’. One
may also choose different cutoffs. We provide the receiver operating characteristic (ROC) curves in figure 4 in
the Appendix, which illustrates the performance of the three methods with respect to different cutoffs.

4.2. Rain rate distributions

We next apply the statistical and machine learning methods to predict the rain rate distribution of the three rain
types. Figure 3 compares the prediction of each method to the ‘True’ distribution observed by the GPM DPR.
Note that the GPM-observed 99.9% rain rate varies by rain type with values of 14, 10, and 1.1 mm/hr for deep
convective, stratiform and shallow convective rain, respectively. Even though shallow convective rain has the
highest occurrence, it has much smaller rain amounts over a 0.5° grid because shallow convection doesn’t cover
much of a grid and is composed of more lightly raining cells. Stratiform rain is also normally less intense than
deep convective rain on a pixel-by-pixel basis but because it tends to cover more area than deep convective cells,
stratiform rain amounts approach deep convective values at 0.5° resolution. Figures 3(a) and b show that all
three methods (indicated by different green lines) tend to underestimate weaker rain rates (i.e., around the 50%
quantile or first tick mark) in the deep convective and stratiform distributions, shifting to overestimations
around the 90% quantile (or second tick mark). Between the 90 and 99% quantiles, there is a rapid drop off in
prediction counts compared to the true distribution with NN and GLM showing the most rapid decrease. RF is
the only technique to produce predictions past the 99% quantile for deep convective rain, the category
associated with the most extreme rain amounts. All methods do better predicting the shallow convective rain
rate distribution (figure 3(c)) with the drop-off in counts not occurring until after the 99% quantile.
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Figure 3. GPM-observed and model-predicted 3-hourly, 0.5° rain rate distributions over the tropical West Pacific for (a) deep
convective, (b) stratiform, and (c) shallow convective rain. Values in parentheses are the total cases in the testing data that rain. Values
on the x-axis for the three plots are the 50, 90, 99, and 99.9% quantiles of the rain rate distribution, respectively.

To provide context on how the observed and predicted rain rate distributions in figure 3 compare to
standard GCM output, we obtained a year of data from the NCAR Community Atmospheric Model, version 5
(CAMS5; Neale et al 2013). We use the model output for 2003 instead of 2018 because it was readily available.
While there may be small year-to-year variations in the rain rate distributions over the West Pacific, we do not
expect them to be large, especially since neither 2003 or 2018 experienced strong El Nifio or La Nifia events. The
original rain rate data had a 25 x 25 km resolution so we aggregated rain rates to 0.5° grids to match our analysis.
Hourly total precipitation (PRECT) and convective (PRECC) precipitation rates were also aggregated into
3-hourly rain rates. We use PRECC to represent deep convective rain and the difference between PRECT and
PRECC (PRECT-PRECC) to represent the large-scale rain (i.e., rain that is produced from the grid-scale
microphysics parameterization rather than via the subgrid-scale convective parameterization). GCMs do not
typically calculate a separate shallow convective rain rate, but there are only small differences between the GPM
convective deep rain rate distribution compared to when we combine the observed deep and shallow convective
rain rate distributions (i.e., deep convective rain dominates the convective rain rate distribution in the tropical
West Pacific). In addition, we included the MERRA-2 convective and large-scale + anvil rain rate distributions
in figure 3. Like CAMS5, MERRA-2 does not provide a separate shallow convective rain rate.

Asseen in figure 3(a), MERRA2 and CAMS5 perform similarly and do not provide a good density estimation
for deep convective rain (and are, in fact, close to the GLM and NN distributions). Recent work has shown that a
stochastic version of the Zhang-McFarlane convective parameterization used in CAM5 can improve the deep
convective rain rate distribution (Wang et al 202 1), but stochastic techniques are still not regularly implemented
in standard GCM runs. CAM5 and MERRA? large-scale rain appears to better characterize the GPM stratiform
rain distribution (figure 3(b)), although as discussed in the introduction, large-scale rain from GCMs and

7



10P Publishing

Environ. Res. Commun. 3 (2021) 111001 W Letters

stratiform rain from the radar are not considered to be produced the same way in the tropics so caution must be
taken in this comparison. Our CAM5 results are consistent with Kysely ef al (2016) who showed that a suite of
regional climate models highly underestimated extreme convective rain rates over central Europe, with a much
better representation of extreme rain in the large-scale rain field.

To further assess predicted rain amounts using GLM, RF, and NN, we calculated the following metrics to
measure the performance of the techniques:

1. Root mean squared error (RMSE) = / Zfil()?i - J’i)z/N and

2.Mean absolute error (MAE) = YN || — y|/N,

where y;is the observed rain amount for the i-th sample, and . is the predicted rain amount for the i-th sample,
fori=1,...,N. Here samples are aggregated over space and time, and thus there are a total of N samples for each
rain type. Note that MAE is in general less sensitive to large values compared to RMSE. Table 1 shows that RF has
the highest (and thus worst) RMSE and MAE among the three techniques for each rain type. NN usually provides
the smallest errors among the three methods, and GLM usually performs only slightly worse than NN.

5. Conclusions

Because of persistent GCM biases in rain occurrence and intensity, there is strong motivation to use empirical
data to help understand and fix these biases. While training and testing data can come from higher resolution
models, we chose to use a multi-year data set of rain observations from satellite radar along with temperature
and humidity fields derived from a model constrained by observations (i.e., reanalysis). There are also a number
of advanced statistical and machine learning techniques with which to analyze the available data. We chose a
representative set that ranged in ease of implementation and interpretability: a generalized linear model, random
forest, and deep feedforward neural network.

All three methods performed reasonably well in predicting the occurrence of each of the three tropical
building block rain types: deep convective, stratiform, and shallow convective. Each method still predicted rain
too often, although at moderate to strong rain rates instead of at the lightest rain rates more typically
overpredicted by GCMs. Due to the high complexity of the model structure, regularization is usually needed for
NN. With the dropout regularization, NN performed similarly to GLM in predicting the rain rate distributions
of each rain type, while RF was somewhat more flexible in modeling the true response. However, RF produced
the largest root mean square and mean absolute errors, and the very highest rain rates were still underpredicted
by all methods.

Our original goal was to determine the best overall method in order to implement it in a GCM to improve
the representation of the full spectrum of tropical rain types. However, the results of each method were mixed
and would require some sort of trade-off in more accurately characterizing the occurrence and intensity of each
rain type. While there are other statistical and machine learning methods that could still be tested, we feel that
this study highlights innate limitations in trying to deterministically predict rainfall probability distributions
from standard grid-scale variables. That is, convection and its organization are simply not as parameterizable as
we would like it to be, especially when attempting to predict extreme events. It has been argued that higher
resolution climate models (on the order of a few km) may be necessary to solve this problem by voiding the need
for the convective parameterization (e.g., Fiedler et al 2020), but this path is computationally intensive and
doesn’t guarantee better solutions because of the remaining uncertainties in unresolved microphysics and
turbulence. Thus, we advocate the continued exploration of creative, less resource-intensive solutions that
include stochastic elements and unified schemes that don’t isolate rain types from one another (e.g., Cardoso-
Bihlo etal 2019, Hagos et al 2020).
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Figure 4. Receiver operating characteristic (ROC) curves obtained by GLM, RF and NN for (a) deep convective, (b) stratiform, and
(c) shallow convective rain.
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Appendix. ROC curves

Figure 4 presents the ROC curves of the three methods for different rain types. ROC curves are created by
plotting the true positive rate (TPR) against the false positive rate (FPR) at various cutoff probabilities. The
performance of the three methods is similar. GLM and RF have slightly larger TPRs than NN given the
same FPRs.
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