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Abstract
Predicting rain from large-scale environmental variables remains a challenging problem for climate
models and it is unclear howwell numericalmethods can predict the true characteristics of rainfall
without smaller (storm) scale information. This study explores the ability of three statistical and
machine learningmethods to predict 3-hourly rain occurrence and intensity at 0.5° resolution over
the tropical PacificOcean using rain observations theGlobal PrecipitationMeasurement (GPM)
satellite radar and large-scale environmental profiles of temperature andmoisture from theMERRA-2
reanalysis.We also separated the rain into different types (deep convective, stratiform, and shallow
convective) because of their varying kinematic and thermodynamic structures thatmight respond to
the large-scale environment in different ways.Our expectationwas that the popularmachine learning
methods (i.e., the neural network and random forest)would outperform a standard statisticalmethod
(a generalized linearmodel) because of theirmore flexible structures, especially in predicting the
highly skewed distribution of rain rates for each rain type.However, none of themethods obviously
distinguish themselves fromone another and eachmethod still has issues with predicting rain too
often and not fully capturing the high end of the rain rate distributions, both of which are common
problems in climatemodels. One implication of this study is thatmachine learning toolsmust be
carefully assessed and are not necessarily applicable to solving all big data problems. Another
implication is that traditional climatemodel approaches are not sufficient to predict extreme rain
events and that other avenues need to be pursued.

1. Introduction

Rainfall is fundamental towater resources, agriculture, and ecosystems and can causemassive damage in the
formof too little or toomuch rain. However, rainfall can vary strongly in space and timemaking it hard to
measure and even harder to predict. The rain rate distribution ofmost global climatemodels (GCMs) is far
different than observed, with toomuchweak rain and not enough heavy rain (e.g., Stephens et al 2010, Fiedler
et al 2020), which hinders predictions of extreme events. The goal of this study is to analyze the ability of
advanced statistical andmachine learning techniques to predict the occurrence and rain rate distribution of
tropical rainfall using environmental temperature and humidity profiles as predictors. A salient question is if any
of these techniques can improve upon existingGCMparameterizations in producing accurate rain
characteristics from large-scale variables.

Rain is produced twomainways inGCMs. Convective rain is output from the convective parameterization,
which typically involves a trigger function to activate the convection and a closure assumption to determine the
intensity of the convection; convective parameterizations are used to represent the aggregate effect ofmany
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subgrid-scale convective clouds (Arakawa 2004). Some convective parameterizations have shallow and deep
schemes, while somemodels produce shallow convection in the boundary layer parameterization, although
these clouds are often non-precipitating (e.g., Bretherton and Park 2008). The rest of the rain in aGCM is
produced explicitly at the grid scale as large-scale rain using amicrophysical scheme (e.g., Dai 2006). Recent
studies have shown that themanner inwhich aGCMdistributes rain between the convective and large-scale
components strongly impacts themodel’s climate projections (e.g., Kooperman et al 2018, Stephens et al 2019,
Norris et al 2021). Thus, it is important to analyze rain types separately when assessing aGCM’s efficacy in
producing realistic total rain fields, especially when considering changes to precipitation extremes in awarming
climate.

The real world does not produce rain the sameway asGCMs, but it is possible to separate observed rainfall
into types that have some analogies toGCMconvective and large-scale rain. In particular, we focus on the
separation of rain into deep convective, stratiform, and shallow convective components using radar
measurements. Figure 1 shows an example convective systemobserved by theGlobal Precipitation
Measurement (GPM;Hou et al 2014) spaceborne radar over the tropicalWest Pacific. Themost intense
reflectivity in the horizontal and vertical indicates regions of active deep convection, while themoremoderate
andmore horizontally homogeneous reflectivity indicates regions of less convectively-active stratiform rain
(Houze 1997, Schumacher andHouze 2003a). Together, these rain types cover a region greater than 100 km that
can spanmultiple GCMgrid boxes. It has been shown that over half of the total rainfall in the tropics andwarm
seasonmid-latitudes comes from large, organized rain systems like this one (Nesbitt et al 2006, Schumacher and
Rasmussen 2020). Shallow convection is ubiquitous over the tropical ocean and occurs regularly over some
continental locations, but ismuchmore isolated and does not produce nearly asmuch rain (Schumacher and
Houze 2003b, Funk et al 2013).

Radar-observed deep convectionmost closely alignswith rain produced by amodel’s convective
parameterization. A similar argument can bemade for radar-observed shallow convection if a shallow
convective scheme is included in theGCM formulation. GCM large-scale rainmay also be equated to radar-
observed stratiform rain that forms in the extratropics when large-scale lifting (like awarm front) is themain
synoptic forcing and convection isminimal. In the tropics andwarm-seasonmidlatitudes, radar-observed
stratiform rain forms as a result of the deep convection (Houze 1997), so is not equivalent toGCM large-scale
rain produced by amicrophysics scheme that acts separately from the convective parameterization. Despite this
physical disconnect over large swaths of the globe, radar-observed stratiform rain is often compared toGCM
large-scale rain, but should only be donewithin the framework of comparing precipitation processes not
produced by the strongest convection (either in themodel or real world). As discussed byMapes et al (2006),

Figure 1.GPMradar reflectivity observations at 01UTCon 4 February 2017. (a)Black lines represent theGPM radar swath, red box is
the bounds of the study area over theWest Pacific. (b)Horizontal cross section of reflectivity at 2 kmAMSLnear the red line in (a).
(c)Vertical cross section of reflectivity taken along the black line in b). Stratiformprofiles are labeled as 1, convective profiles are
labeled as 2. The far right cell in the vertical cross section is considered shallow convection because its top is below the 0 °C level
(typically about 5 km in the tropics).
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these three rain types form the building blocks of larger convective systems ranging frommesoscale convective
systems (with scales on the order of 100 kmand 12 h) to theMadden-JulianOscillation (with scales on the order
of 1000 kmandmanyweeks), so predicting each of these rain types is important to studies of weather and
climate. However, the ability of GCMs to simulate these building blocks and their interactions remains a
challenge, whichwas themainmotivation of this work.

There are currently a number of efforts to use tools fromdata science to improve the representation of
subgrid processes in climatemodels. Since there is often a very limited amount of data available for unresolved
processes, especially in situmeasurements,many of these efforts applymachine learning techniques to
conventionalmodel parameterizations or a large ensemble of higher resolution simulations (Brenowitz and
Bretherton 2018,O’Gorman andDwyer 2018, Rasp et al 2018). Training on conventional parameterizations can
improve computational efficiency but does not address the physical deficiencies. The higher resolution
simulations also have their own built-in assumptions about a different set of smaller scale unresolved processes.

Yang et al (2019) considered a data-centric approach, using a large satellite rainfall data set and reanalysis
fields to show that a generalized linearmodel (GLM) can performwell at predicting the occurrence of different
rain types in the tropics, but it fails at capturing the tail of the rain rate distributions. This ismainly due to the
restriction of parametric probability distributions used for the rain rates. Although distributions such as
Gamma, log-normal, orWeibull are commonly used for rain rates due to their shape of density curves with long
tails, they are often notflexible enough to capture the heaviest rain rates. This study builds onYang et al (2019) by
applying twomachine learning techniques, i.e., a random forest (RF) and deep feedforward neural network
(NN), to a similar data set to determine howwell thesemethods compare to one another and theGLM in
predicting rain occurrence and capturing the high rain rate end of the distribution formultiple rain types. RL
andNNcan potentially handle nonlinearities better, and are not constrained to follow a specific probability
distribution likeGLM. The purpose of the next section is to provide general background on eachmethod so that
readers can better understand the implications of the results shown in section 4.

2. Statistical andmachine learningmethods

2.1. Generalized linearmodel
GLMs (McCullagh andNelder 1989) are a popular class of statisticalmodels used to predict a response variable
whosemean is assumed to be some parametric function of covariates. It is amore generalmodeling framework
thanmultiple linear regression in that response variablesmay not follow aGaussian distribution. Furthermore,
unlikemultiple linear regressionmodels, which often use the least squaresmethod formodel fitting, GLMs are
fitted using amaximum likelihood estimation (MLE)method. TheMLEmethod utilizes the distribution
function of the response, thus giving generally better statistical properties of estimators than the least squares
method. AGLMdoes not necessarily assume a direct linear relationship between the response and covariates,
and often their nonlinear relationship is introduced by a link function. For instance, a common log-link function
assumes that the log transformedmean of the response can bewritten as a linear combination of covariates.
Widely used examples for distributions and link functions for GLMs include logistic regression (a Bernoulli
distribution for the response and log link), loglinear regression (a Poisson distribution for the response and log
link), andPoisson regression (a Poisson distribution for the response and log link).

In this work, we adopt the two-stepmodeling procedure used in Yang et al (2019). Two separateGLMs, a
logistic regression and aGamma regression, are employed to deal with rain occurrence and rain amount,
respectively. At a given time, let p(s) denote the probability of rain at a grid point s. Then the rain event is
assumed to follow aBernoulli distributionwith
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where zi(s) denotes predictors (i.e. covariates) at the grid point s. If y(s) denotes the rain amount at s, we assume
that y follows aGammadistributionwith

[ { ( )}] ( ) ( ) ( )y z zs s slog E . 2p p0 1 1 h h h= + + +

For bothmodels, parameters, including the coefficientsβi and ηi in (1) and (2), are estimated using theMLE
method.We fit theGLMmodels using data aggregated over space and time altogether, similar to Yang et al
(2019). Althoughmodels (1) and (2) do not have explicit temporal structures in them, the temporal structure of
the covariates effectively account for that of the responses, and it did not seemnecessary to addmore temporal
terms in (1) or (2).

Statistical inference on the estimated parameters, including the significance of coefficients, ismade possible
by usingGLMs, and the estimated coefficients are readily interpretable. On the other hand, a possible drawback
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of the approach outlined above is the linearity assumption given in (1) and (2), as well as the distribution
assumption on rain amount. In particular, theGammadistributionmay be too restrictive to account for some
heavy rain events (Yang et al 2019). Other commonly used distributions such as log-normal andWeibull
distributions have similar problems, due to their particular parametric forms and restrictions. In view of the
potentially restrictive nature ofGLMs, we explore two popularmachine learningmethods, RF and artificial
NNs, which operate undermuchweaker (i.e., non-linear) assumptions compared toGLMs. RF andNNs offer
themost competitive predictive performances inmany applications, and are now standard tools formachine
learning.

2.2. Random forest
Random forest (Breiman 2001) is an ensemble learningmethod thatmakes predictions based onmultiple
decision trees. A random forest is built upon thesemany decision trees. A decision tree is a simplemodel that
predicts the label associatedwith a sample by a series of splitting rules. An example decision tree is shown in
figure 2, where a tree is used to determine if a binary responseY is 1 or 0. The root node has a splitting condition:
‘X1> 0?’ If the observation fulfills this condition, it will be passed to the next condition: ‘X2< 10?’Otherwise,
the tree predictsY= 0. The procedure is applied recursively until the tree reaches a prediction ofY. For the
construction of a decision tree, we refer the readers to Breiman (2001). In the above example, the underlying goal
is classification, where the response is categorical. Decision trees can also bemodified to handle a regression
problem,where the response is quantitative.

The core idea of ensemblemethods like RF is to combineweak predictivemodels to achieve strong predictive
performance. AnRF is usually trainedwith two ‘random’ ideas. Thefirst is bagging—for each tree, the training
set is formed by resampling from the original data set with replacement. The second is feature randomness—
each tree in anRF is trainedwith a random subset of features. Bagging lowers variance while feature
randomization reduces the dependence across trees. They are beneficial to ensemble learning. The prediction of
the RF is obtained by amajority vote over the predictions of the individual trees.

Similar to theGLManalysis, a two-stepmodeling procedure was implemented for RF in ourwork.Namely,
we trained anRFmodel on rain occurrence and another RFmodel on rain amount. For bothmodels, we used
the default setting of the ‘randomForest’ function from the R package‘randomForest’, except that we restricted
the number of decision trees to 100when predicting rain amount in order to alleviate the computational burden.
As opposed toGLM,RF is a nonparametricmethod and can produce a highly nonlinear regression function.On
the other hand, it is significantlymore difficult to interpret the results of the RFmodel, althoughRF provides a
measure of variable importance. In practice, onemight also examine individual classification trees within the
random forest to understand the results.

2.3. Neural network
In recent years, artificial NNs (especially thosewith deep architecture) have become one of themost prominent
models for complicated functions. ANN is based on a collection of connected nodes. Different ways to connect
the nodes result in differentNNarchitectures, such as fully connected (Hsu et al 1990), sparsely connected
(Ardakani et al 2017), convolutional (Lo et al 1995), and recurrent (Mikolov et al 2010). Nodes are typically
organized into layers, which can be classified as input, hidden and output. Networks withmultiple hidden layers
are said to have deep architectures, and are referred to as deepNNs.Deep architectures are commonly used
nowadays, due to their strong empirical performance inmany areas.

In our analysis, we adopt a deep feedforwardNN inwhich consecutive layers are fully connected (Svozil et al
1997, Schmidhuber 2015) because it is one of themost standard forms of deepNN. Figure 2 depicts an example.
We use ( )X l nlÎ to represent the nodes at layer l, where nl is the number of nodes at layer l. TakeX(0) as the

Figure 2. Illustrations for decision tree (left) and deep feedforward neural network (right).
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input andX( L) as the output. The hidden and output layers are generated as follows. Let ( )xk
l be the node k of layer

l, where l= 1,K, L and k= 1,K,nl. Then
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common to use the same activations within the same layer: ≔( ) ( )l
k
ls s , for k= 1,K,nl.

Similar to the previous twomodels (GLMandRF), we adopted the two-step approach for theNNanalysis.
More specifically, we trained oneNN to perform the binary classification on rain occurrence and anotherNN
using training samples with positive rain values only to predict the rain amount.We considered different
numbers of layers forNN.More specifically, we considered L= 2, 3,K,10. Note that n0= 80 and nL= 1 for all L
since they are representing the input size and the output size. For any existing hidden layer, the number of nodes
are set as follows: n1= 40, n2= 20, n3=L= nL−2= 6 and nL−1= 3. For instance, for L= 1, there is only one
hidden layer and so only n1 is relevant. For l= 1,K,L− 1, the corresponding activation functions ( )

k
ls were

chosen as the rectified linear unit (ReLU) functions ( ( ) ( )x xmax 0,s = ). The activation function for the output
layer had to be chosen based on the response type, i.e., classification or regression.We used

( ) ( ( ))( ) x x1 1 expLs = + - for the classification, while we used the exponential function for the regression
since the response is positive. For the loss functions, we adopted the binary cross entropy loss for the
classification and themean squared error for the regression. As for the estimation of theNN,we adoptedmean
square error as the loss function and trained the network via the popular algorithmAdam (Kingma and
Ba 2015).

To prevent over-fitting, we also adopted the dropout procedure, which is a common regularizationmethod
for training deep neural networks (Baldi and Sadowski 2013, Gal et al 2017). In the dropout procedure, neurons
are stochastically dropped out during the training at each layer. In our implementation, the dropout ratewas set
to be the same at every layer and three possible values 0, 0.2, 0.5were considered. Both the dropout rate and the
number of layers, L, were regarded as the hyper-parameters andwere chosen via a validation procedure—we
randomly separated 20%of the training data as the validation set to select the best combination of dropout rate
and number of layers.

3. Training and test data

Weused two years of observations from theGPMdual-frequency precipitation radar (DPR) to calculate rain
occurrence and rain rates, whichwere the predictands of the study. The full year of 2017was used for training
and the full year of 2018was used for testing. The rain type classifications (i.e., deep convective, stratiform, and
shallow convective; Funk et al (2013)) and associated rain rates were retrieved from2ADPRV6 files. Figure 1
shows an example orbit from theGPMradarwith all three rain types present.We regridded theDPRorbital rain
observations, which aremade at a 5-km footprint scale over a 245-km swath, to 0.5° horizontal resolution and
3-hourly temporal resolution.Note that the 3-hourly rain rate represents an instantaneous value and not a
3-hour average. The predictors for the studywere temperature and humidity fields at 40 pressure levels from the
MERRA-2 reanalysis (Rienecker et al 2011) for 2017 and 2018. TheMERRA-2 datawas regridded to a similar
horizontal and temporal resolution as theDPRdata and points were only analyzed if a DPRorbit occurred in a
grid during the 3-hour period.We limited our domain to the tropicalWest Pacific (130 °E–180 °E, 20 °S–20 °N;
figure 1(a)), but found similar results in the tropical East Pacific (not shown). Overall, we had 569,596 training
samples and 572,968 test samples.

The training and test data are generally similar to the observational data sets used in Yang et al (2019).
However, we used rain observations from theGPMDPR instead of the Tropical RainfallMeasuringMission
(TRMM) precipitation radar (PR) because of theDPR’s higher sensitivity toweaker rain rates and thus better
shallow convective rain retrievals (Hamada andTakayabu 2016).We also used a slightly higher time resolution
(3 hours vs 6 hours) to better isolate environment-rain relationships andwe used all times of day instead of just
0–6UTC to capture the full range of diurnal conditions (e.g., Hirose et al 2008).We chose awarmocean region
with only small land amounts (i.e., NewGuinea and the northwest coast of Australia) as a baseline test for our
techniques, but a natural follow-on studywould be over a tropical land region such as theAmazon orCongo.
Finally, we only used temperature and humidity as predictors because they accounted for themajority of the
predictive performance by theGLM inYang et al (2019), who also tested other environmental variables such as
horizontal wind profiles and surfacefluxes.We further utilized the full temperature and humidity profiles rather
than just the first three empirical orthogonal functions so that themachine learning techniques hadmore
flexibility in determining the vertical relationship of the predictors to the surface rain rate.
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4. Prediction results

4.1. Rain occurrence
When solving for occurrence, we treat grids with extremely small rain amounts as no-rain cases to avoid
retrievals from the radar likely associatedwith clutter or noise. For each rain type, we selected a rain rate cutoff
that accounts for less than 1%of the total rain amount in the training data. The cutoff values are 0.056, 0.0395,
and 0.0087mm/hr for deep convective, stratiform, and shallow convective rain, respectively. Aswill be
illustrated in the next section, the three rain types produce different ranges of rain rate intensity, which is why
separate cutoff values are needed for each rain type.

Rain does not very occur often at the time and space scales being considered in this study (i.e., 3 hourly and
0.5°), so there are significantlymore no-rain cases than rain cases. To deal with this imbalanced classification
problem,we created a ‘balanced’ training data set by using a randomunder-sampling procedure. That is, we
randomly sample the no-rain cases until we have the same number of no-rain and rain samples in our training
data set. Note that we classify rain/no-rain cases for each rain type separately.

The top four rows of table 1 showhowwell the three statistical andmachine learningmethods described in
section 2 predict no-rain and rain cases for each rain type. The actual time theGPMradar observed each rain
type over theWest Pacific is indicated by adding the false negative and true positive values (i.e., about 16%, 24%,
and 35% for deep convective, stratiform, and shallow convective rain, respectively). All threemethods do a
reasonable job at distinguishing truly raining cases, withGLM slightly outperforming the other twomethods.
However, all methods suffer from a relatively high false positive rate (i.e., predicting rain too often), which is a
persistent problem inmost climatemodels as well (Fiedler et al 2020).While GLMhad the best true positive
predictions, it had theworst true negative predictions (i.e., predicting no rainwhen no rain is observed). RF had
the best true negative prediction andNN fell between the two other techniques. The results discussed above are
obtained by taking the cutoff probability as 0.5 for the threemethods.More specifically, when the predicted
probability for a test case is larger or equal to 0.5, we treat it as ‘rain’; otherwise, it is considered as ‘not rain’. One
may also choose different cutoffs.We provide the receiver operating characteristic (ROC) curves infigure 4 in
the Appendix, which illustrates the performance of the threemethodswith respect to different cutoffs.

4.2. Rain rate distributions
Wenext apply the statistical andmachine learningmethods to predict the rain rate distribution of the three rain
types. Figure 3 compares the prediction of eachmethod to the ‘True’ distribution observed by theGPMDPR.
Note that theGPM-observed 99.9% rain rate varies by rain typewith values of 14, 10, and 1.1 mm/hr for deep
convective, stratiform and shallow convective rain, respectively. Even though shallow convective rain has the
highest occurrence, it hasmuch smaller rain amounts over a 0.5° grid because shallow convection doesn’t cover
much of a grid and is composed ofmore lightly raining cells. Stratiform rain is also normally less intense than
deep convective rain on a pixel-by-pixel basis but because it tends to covermore area than deep convective cells,
stratiform rain amounts approach deep convective values at 0.5° resolution. Figures 3(a) and b show that all
threemethods (indicated by different green lines) tend to underestimate weaker rain rates (i.e., around the 50%
quantile orfirst tickmark) in the deep convective and stratiformdistributions, shifting to overestimations
around the 90%quantile (or second tickmark). Between the 90 and 99%quantiles, there is a rapid drop off in
prediction counts compared to the true distributionwithNNandGLM showing themost rapid decrease. RF is
the only technique to produce predictions past the 99%quantile for deep convective rain, the category
associatedwith themost extreme rain amounts. Allmethods do better predicting the shallow convective rain
rate distribution (figure 3(c))with the drop-off in counts not occurring until after the 99%quantile.

Table 1.The top four rows describe the performance of the occurrence predictions for each rain type by eachmethod. The
values in each column are the fraction of the total cases that fall into each prediction category and sum to one, while bold
values are the highest correct predictions. The bottom two rows quantify the accuracy of the rain rate (mm/hr)prediction
in terms of rootmean square error (RMSE) andmean absolute error (MAE), with bold values representing the smallest
errors among the threemethods.

Deep convective Stratiform Shallow convective

GLM RF NN GLM RF NN GLM RF NN

TrueNegative 0.485 0.568 0.536 0.474 0.529 0.502 0.325 0.415 0.323

FalseNegative 0.036 0.054 0.054 0.052 0.069 0.076 0.084 0.137 0.106

True Positive 0.122 0.103 0.103 0.188 0.171 0.164 0.267 0.214 0.245

False Positive 0.357 0.275 0.387 0.286 0.231 0.306 0.324 0.234 0.325

RMSE 0.758 0.975 0.749 0.624 0.730 0.619 0.095 0.105 0.094

MAE 0.405 0.504 0.385 0.295 0.367 0.275 0.058 0.062 0.059

6

Environ. Res. Commun. 3 (2021) 111001



Toprovide context on how the observed and predicted rain rate distributions infigure 3 compare to
standardGCMoutput, we obtained a year of data from theNCARCommunity AtmosphericModel, version 5
(CAM5;Neale et al 2013).We use themodel output for 2003 instead of 2018 because it was readily available.
While theremay be small year-to-year variations in the rain rate distributions over theWest Pacific, we do not
expect them to be large, especially since neither 2003 or 2018 experienced strong ElNiño or LaNiña events. The
original rain rate data had a 25× 25 km resolution sowe aggregated rain rates to 0.5° grids tomatch our analysis.
Hourly total precipitation (PRECT) and convective (PRECC) precipitation rates were also aggregated into
3-hourly rain rates.We use PRECC to represent deep convective rain and the difference between PRECT and
PRECC (PRECT-PRECC) to represent the large-scale rain (i.e., rain that is produced from the grid-scale
microphysics parameterization rather than via the subgrid-scale convective parameterization). GCMs do not
typically calculate a separate shallow convective rain rate, but there are only small differences between theGPM
convective deep rain rate distribution compared towhenwe combine the observed deep and shallow convective
rain rate distributions (i.e., deep convective rain dominates the convective rain rate distribution in the tropical
West Pacific). In addition, we included theMERRA-2 convective and large-scale+ anvil rain rate distributions
infigure 3. Like CAM5,MERRA-2 does not provide a separate shallow convective rain rate.

As seen infigure 3(a),MERRA2 andCAM5perform similarly and do not provide a good density estimation
for deep convective rain (and are, in fact, close to theGLMandNNdistributions). Recent work has shown that a
stochastic version of the Zhang-McFarlane convective parameterization used inCAM5 can improve the deep
convective rain rate distribution (Wang et al 2021), but stochastic techniques are still not regularly implemented
in standardGCMruns. CAM5 andMERRA2 large-scale rain appears to better characterize theGPMstratiform
rain distribution (figure 3(b)), although as discussed in the introduction, large-scale rain fromGCMs and

Figure 3.GPM-observed andmodel-predicted 3-hourly, 0.5° rain rate distributions over the tropicalWest Pacific for (a) deep
convective, (b) stratiform, and (c) shallow convective rain. Values in parentheses are the total cases in the testing data that rain. Values
on the x-axis for the three plots are the 50, 90, 99, and 99.9%quantiles of the rain rate distribution, respectively.
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stratiform rain from the radar are not considered to be produced the sameway in the tropics so cautionmust be
taken in this comparison.OurCAM5 results are consistent with Kyselỳ et al (2016)who showed that a suite of
regional climatemodels highly underestimated extreme convective rain rates over central Europe, with amuch
better representation of extreme rain in the large-scale rainfield.

To further assess predicted rain amounts usingGLM,RF, andNN,we calculated the followingmetrics to
measure the performance of the techniques:

1. Rootmean squared error (RMSE)= ( ˆ )y y Ni
N

i i1
2å -= and

2.Mean absolute error (MAE)= ∣ ˆ ∣y y Ni
N

i i1å -= ,

where yi is the observed rain amount for the i-th sample, and ŷi is the predicted rain amount for the i-th sample,
for i= 1,K,N. Here samples are aggregated over space and time, and thus there are a total ofN samples for each
rain type. Note thatMAE is in general less sensitive to large values compared to RMSE. Table 1 shows that RF has
the highest (and thusworst)RMSE andMAE among the three techniques for each rain type. NNusually provides
the smallest errors among the threemethods, andGLMusually performs only slightly worse thanNN.

5. Conclusions

Because of persistentGCMbiases in rain occurrence and intensity, there is strongmotivation to use empirical
data to help understand and fix these biases.While training and testing data can come fromhigher resolution
models, we chose to use amulti-year data set of rain observations from satellite radar alongwith temperature
and humidityfields derived from amodel constrained by observations (i.e., reanalysis). There are also a number
of advanced statistical andmachine learning techniqueswithwhich to analyze the available data.We chose a
representative set that ranged in ease of implementation and interpretability: a generalized linearmodel, random
forest, and deep feedforward neural network.

All threemethods performed reasonably well in predicting the occurrence of each of the three tropical
building block rain types: deep convective, stratiform, and shallow convective. Eachmethod still predicted rain
too often, although atmoderate to strong rain rates instead of at the lightest rain ratesmore typically
overpredicted byGCMs.Due to the high complexity of themodel structure, regularization is usually needed for
NN.With the dropout regularization,NNperformed similarly toGLM in predicting the rain rate distributions
of each rain type, while RFwas somewhatmore flexible inmodeling the true response. However, RF produced
the largest rootmean square andmean absolute errors, and the very highest rain rates were still underpredicted
by allmethods.

Our original goal was to determine the best overallmethod in order to implement it in aGCM to improve
the representation of the full spectrumof tropical rain types. However, the results of eachmethodweremixed
andwould require some sort of trade-off inmore accurately characterizing the occurrence and intensity of each
rain type.While there are other statistical andmachine learningmethods that could still be tested, we feel that
this study highlights innate limitations in trying to deterministically predict rainfall probability distributions
from standard grid-scale variables. That is, convection and its organization are simply not as parameterizable as
wewould like it to be, especially when attempting to predict extreme events. It has been argued that higher
resolution climatemodels (on the order of a few km)may be necessary to solve this problemby voiding the need
for the convective parameterization (e.g., Fiedler et al 2020), but this path is computationally intensive and
doesn’t guarantee better solutions because of the remaining uncertainties in unresolvedmicrophysics and
turbulence. Thus, we advocate the continued exploration of creative, less resource-intensive solutions that
include stochastic elements and unified schemes that don’t isolate rain types fromone another (e.g., Cardoso-
Bihlo et al 2019,Hagos et al 2020).
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Appendix. ROC curves

Figure 4 presents the ROC curves of the threemethods for different rain types. ROC curves are created by
plotting the true positive rate (TPR) against the false positive rate (FPR) at various cutoff probabilities. The
performance of the threemethods is similar. GLMandRF have slightly larger TPRs thanNNgiven the
same FPRs.
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