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Abstract

We show that for given four points in the Riemann sphere and a given isotopy class
of two disjoint arcs connecting these points in two pairs, there exists a unique con-
figuration with the property that each arc is a hyperbolic geodesic segment in the
complement of the other arc.
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In the recent paper [7], Peltola and Wang made a remarkable restatement of results
in [3,4] about the existence and uniqueness of a real rational function with prescribed
real critical points. To formulate this precisely, we consider chord diagrams in the
closure D of the unit disk D = {z € C : |z| < 1} in the complex plane C. Such a
chord diagram has prescribed points ay, . .., a2g—2,d > 2, on the unit circle and d — 1
disjoint crosscuts ey, . .., eq_; in D connecting pairs of these points. We call such a
chord diagram canonical if every crosscut ey is a hyperbolic geodesic in the unique
component of D\ _J j#k €] that contains the interior points of e.

Theorem 1.1 in [7] states that for any prescribed points ay, ..., axg—> there is a
unique canonical chord diagram in every combinatorial class. This canonical chord
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diagram can be obtained from the preimage of the real line under a real rational
function of degree d with critical points at ay, . .., axg—2. This theorem has important
applications for the study of the Stochastic Loewner Evolution (SLE).

The number of combinatorial classes of chord diagrams with prescribed vertices
is finite: it is the Catalan number. In this note we give a simple example of a similar
problem with four prescribed points and infinitely many canonical configurations.

Our configurations consist of four distinct points ag, ai, az, a3 in the Riemann
sphere C = C U {o0o} and two disjoint arcs g and y|, where jq has the endpoints
ap and ay, and y; has the endpoints a and a3. We say that two such configurations
are equivalent if the points are the same, and the arcs of the first configuration can
be deformed into the arcs of the second configuration by an isotopy of the sphere
that keeps the endpoints of the arcs fixed. A configuration is called canonical if for
each k € {0, 1} the arc yy is a hyperbolic geodesic segment in the simply connected
hyperbolic region C\ yj_.

Theorem For every equivalence class of configurations, there exists a unique canon-
ical configuration.

Our proof will show that one can obtain an explicit description of canonical con-
figurations as follows. We may assume without loss of generality that

(ao, a1, a2, az) = (00, ey, €2, €3), (D
where ey, €3, e3 € Cand e; +er+e3 = 0. Let g be the Weierstrass function satisfying
() =4(p — e (p — e2)( — e3). )

We denote the line segment joining two points z, w € Cby [z, w]. Then each canonical
configuration for the points as in (1) has the form

vo =@ ([0, 01/2]), 1 = p(w2/2, (01 + @2)/2]), 3

where the pair w; and w, generates the period lattice of g, and e = g (w1/2),
er = p(w2/2), and e3 = p (w1 + w2)/2).

In order to prove our theorem, we first state some auxiliary facts. An anti-conformal
involution of aregion D in the Riemann sphere Cis an anti-conformal homeomorphism
o of D onto itself such that o o 0 = idp, where idp denotes the identity map on D.

We will use the following well-known facts about anti-conformal involutions.

Lemma1 Let D be a simply connected hyperbolic region in C, and o be an anti-
conformal involution of D. Then the set of fixed points of o is a hyperbolic geodesic.
Conversely, for every hyperbolic geodesic there exists a unique anti-conformal invo-
lution of D that fixes all points on this geodesic.

Proof By the Riemann mapping theorem, we may assume that D is the unit disk .
If C is a hyperbolic geodesic in I, then C is an arc of a circle or a line segment that is
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orthogonal to the unit circle dID. Then reflection in C is an anti-conformal involution
oc of D that fixes every point of C.

Note thatif C = I = (-1, 1), then 0;(z) = Z and so the anti-conformal involution
oy is a hyperbolic isometry.

Now let o be an arbitrary anti-conformal involution of D. Then o is also a hyperbolic
isometry. Indeed, T = o ooy is a conformal automorphism of D and hence a hyperbolic
isometry. This implies that 0 = t o o7 is a hyperbolic isometry as well.

This in turn implies that o has a fixed point wog € D, namely, for wg we can take
the midpoint of the hyperbolic geodesic segment S joining some point zg € D with
o (z9) € D. To see this, note that o is an isometry on S = o (S) that interchanges the
endpoints of S.

By conjugating with an auxiliary automorphism, we may assume that wy = O.
Then T = o ooy is an automorphism of D that fixes 0. Hence 7 (z) = ez with9 € R.
It follows that o (z) = (t 0 07)(z) = €'?Z, and so o is equal to the reflection o¢ in the
hyperbolic geodesic C = {¢/?/?t : —1 <t < 1}. In particular, o fixes the points in C
and no other points.

The argument also shows that each anti-conformal involution of o of D has the
form o = o¢ for some hyperbolic geodesic C. This implies that the fixed point set of
o uniquely determines o. O

Lemma 2 An anti-conformal involution o of an annulus A = {z € C : 1 < |z] < R}
with R > 1 that leaves each boundary component invariant is of the form o (z) = €'z

with 6 € R.

Note that a priori the involution o is not defined on the boundary of A; so by
invariance of the boundary components we mean that o (z) — dtAasz € A — A
for each boundary component 4 A = {z € C: |z] = R¥} of A fork =0, 1.

Proof Lett(z) = Z.Then p = o o1 is a conformal automorphism of A that preserves
the boundary components of A. It is well-known that then p(z) = ¢z with 6 € R.
Hence o(z) = (p o 7)(z) = €'7Z. o

Proof of the Theorem We assume that we have some canonical configuration. We will
analyze the situation and will obtain an explicit description from which existence and
uniqueness will be evident. R

So suppose the disjoint arcs y; and y» in C form a canonical configuration. Then
by Lemma 1, there exists an anti-conformal involution oy : @\m —k — @\m — fixing
the points in y; for k € {0, 1}.

If we restrict these maps to the ring domain D = @\(yo U y1), then we obtain anti-
conformal involutions of D fixing the boundary components. Now D is conformally
equivalent to an annulus A = {z : 1 < |z| < R} with R > 1. Then by Lemma 2, each
anti-conformal involution o} on D corresponds to a reflection i in a line through the
origin on A.

Conversely, suppose that 7y and t; are two reflections in lines through the origin.
Then we can identify or “weld” the points on each boundary component d;y A of
A together by using the map 7 for k = 0, 1. The quotient space carries a natural
conformal structure, and is hence conformally equivalent to the Riemann sphere by
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the uniformization theorem. This sphere will carry two distinguished arcs yx, k = 0, 1,
corresponding to each boundary d; A after the welding. Note that each reflection 7
passes to the quotient of A U d; A as an anti-conformal involution fixing the points
corresponding to points on d; A. This induces an anti-conformal involution of (/C\\)q —k
fixing the points on ;. By Lemma 1, the arc y4 is a hyperbolic geodesic segment in the
hyperbolic region @\yl_k. It follows that yp and y; form a canonical configuration.

We have shown that the canonical configurations are precisely those that can be
obtained from an annulus A = {z € C: 1 < |z] < R}, R > 1, by welding the points
in each boundary component d; A together by using a reflection 74 in a line through
the origin for k = 0, 1.

Now a (closed) annulus A = {z € C : 1 < |z| < R} carries an essentially unique
(up to scaling) flat conformal metric in which the circles {z € C : |z| = R¥},k =0, 1,
are geodesics. It has length element -

Z

[

“)
The annulus A equipped with this metric is isometric to the cylinder
{(x1,x2,x3) € R3 :)cl2 +x§ =1, 0<x3<logR}

with the Riemannian metric induced from R3.

For the proof of the essential uniqueness of such a metric on A, one extends it to
C* = C\ {0} by successive reflections and then lifts it to the universal cover C by
the exponential map. The resulting conformal metric on C will be complete and flat,
and hence equal to the Euclidean metric up to a scaling (see Huber [6] for an analytic
approach). A representation of the conformal metric on A as in (4) follows.

After the welding of the boundary components d; A by each reflection tz, the flat
metric in (4) descends to a flat metric on the quotient space with possible singularities
in the points of yy U y;. Since d; A is a geodesic in the flat metric (4), y; will be a
geodesic arc in this metric with conic singularities at the endpoints and the angles at
these singularities are 7.

So we obtain the following geometric description of canonical configurations: to
each canonical configuration corresponds a flat metric on the sphere with four conic
singularities at ag, ai, az, az with cone angle 7 such that yy and y; are geodesic
segments.

The converse is also true: given a flat metric on the sphere with four conic singu-
larities ag, a1, a2, a3 with cone angles 7, any pair of disjoint geodesics j( connecting
ap with ay, and y connecting a> with a3 is a canonical configuration.

To see this, note that we can cut open the sphere along the arcs yp and y;. Then up
to scaling, D = C\(yp U y1) equipped with the flat metric is isometric to an annulus
A={ze€C:1<|z] < R} with R > 1, equipped with the metric (4). Here each
geodesic yy is doubled and represented by two circular arcs o and o of equal length
that have common endpoints and whose union is a boundary component of A. We
may assume that y; corresponds to 3 A = ax U o) for k = 0, 1. The sphere C with
the flat metric and the geodesic arcs y and y; can be recovered from A if we identify
correspond points on oy and «; by an isometry fixing the common endpoints of oy
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and ;. But such an isometry is necessarily given by a reflection 74 in a line though the
origin. So we are back to our first description of canonical configurations as a quotient
space of an annulus A.

A flat metric on the sphere C with four prescribed conic singularities with angles
gives C the structure of a parabolic orbifold. The corresponding flat metric is unique
up to scaling, and obtained by pushing the Euclidean metric in the plane forward
by the universal orbifold covering map ®: C — C. For a parabolic orbifold with
four conic singularities with angles 7 this universal orbifold covering map © is a
Weierstrass g-function followed by a Mobius transformation. With the normalization
(1), we actually have ® = g, where g is as in (2). Then the len/gth element of the flat
metric is given by ds = |¢'(z)||dz| and geodesic segments on C in the flat metric are
given by images of Euclidean geodesic segments under g (for a thorough discussion
of the relevant facts about orbifolds see [2, Sections 3.5, A.9, A.10]).

For the given normalization (1), the arc yy in a canonical configuration lifts under
g to a Euclidean line segment [z0, z1] € C such that g is an isometry of [zg, z1] onto
y0. Here we may assume that o (zg) = oo and o (z1) = ej.

LetI" € Cbe the period lattice of . Since we have translation invariance of g under
I' and gfl (00) = I', we may further assume that zg = 0. Since g (z1) = ey, the point
z1 must be a half-period of g, i.e., 71 € %F. Now g is injective on [zg, z1] = [0, z1],
and so the point z; must be of the form z; = w;/2, where w1 # 0 is a primitive
element of I', i.e., w| cannot be represented in the form w; = ny withn € N, n > 2,
and y € I'. It follows that yy = g ([0, w1/2)] as in (3).

Since wq is a primitive element of I', there exists an element w, € I' such that o
and w; form a basis of I'. For given w1, the choice of w3 is not unique, but if we make
one choice for wy, then all other choices a)’2 are of the form

)y = twy + nw 5)

with n € Z. Note that g maps the half-periods w)/2 to e, or e3. With suitable choice
of wy we may assume that © (w2/2) = e3.

We now lift the second arc y; in our canonical configuration under g to a line
segment [z, 73] € C starting at zo = wy /2. Here g (z3) = e3, and so z3 € %I‘ isa
half-period.

We can say more here. Since the gp-function satisfies

p(Fz4+a)=gp(z) forzeCanda €T, (6)

it is invariant under reflections in half-periods. This implies that g ~! () contains the
full line passing through zo = 0 and z; = w;/2. Similarly, p~!(y;) contains the full
line passing through z2 = w»/2 and the half-period z3. Since yp and y; are disjoint,
these lines cannot meet and hence must be parallel. It follows that z3 necessarily has
the form z3 = (nw; + wy)/2 with n € Z. Since g (z3) = e3, the integer n must be
odd, and since g is injective on the lift [z2, z3], we must have z3 = (£w1 + w2)/2.
By reflection symmetry of g in the half-period zo = w»/2 and replacing the original
lift [z, z3] by its reflection image in z,, we may assume that z3 = (w1 + w2)/2.

We conclude that under the normalization (1), arcs in a canonical configuration yy
and y; have the form (3). Conversely, arcs as in (3) form a canonical configuration
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as follows from our geometric description of canonical configuration in terms of flat
metrics on C.

It remains to show that under the assumption (1) we obtain exactly one canonical
configuration of arcs in each isotopy class.

Our previous analysis shows that in (3) the arcs yp and y; are uniquely determined
once we know the primitive element @ up to sign. Indeed, it is clear that this determines
¥0. Moreover, the choice of @1 up to sign does not determine w; uniquely, but it follows
from (5) and (6) that the arc y» = [p (w2/2, (w1 + wy)/2] is uniquely determined
independent of the choice of the sign of w; and the choice of w>.

Now suppose we have chosen a fixed basis “)(1) and a)g of the period lattice I". Then
the primitive elements w; of I" are precisely the elements of the form

w| = rw(l) + sa)g,

where r, s € Z are relatively prime. By choosing the appropriate sign of w;, we may
assume thats > O and thatr = 1 if s = 0. Theratior/s € @ = QU{o0o} describes the
slope of the line in C passing through 0 and ) and we have a bijective correspondence
between slopes r/s € QQ and primitive elements +w; of T" up to sign.

Now it is a well known fact that isotopy classes of arcs in a sphere with four marked
points are in one-to-one correspondence with these rational slopes r /s € @ (see [,
Ch. 2] for a related discussion). In our case, £ < ¢ ([0, w1 /2]) induces a bijective
correspondence between primitive elements &w; of I" up to sign and isotopy classes
of arcs yp in C with marked points as (1) (see [1, Sect. 2.6] for a thorough discussion
in the spirit of the present considerations). Note that the isotopy class of yy uniquely
determines the isotopy class of the pair (yp, y1). The statement follows. O
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