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UNIFORMLY BRANCHING TREES

MARIO BONK AND DANIEL MEYER

ABSTRACT. A quasiconformal tree T is a (compact) metric tree that is dou-
bling and of bounded turning. We call T trivalent if every branch point of
T has exactly three branches. If the set of branch points is uniformly rela-
tively separated and uniformly relatively dense, we say that T is uniformly
branching. We prove that a metric space T is quasisymmetrically equivalent
to the continuum self-similar tree if and only if it is a trivalent quasiconformal
tree that is uniformly branching. In particular, any two trees of this type are
quasisymmetrically equivalent.
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1. INTRODUCTION

In this paper we study the quasiconformal geometry of a certain fractal space
and solve the related quasisymmetric uniformization problem. In general, quasi-
conformal geometry refers to geometric properties of a metric space that are of a
robust scale-invariant nature. These properties are mostly characterized by condi-
tions that do not involve absolute distances, but rather relative distances, that is,
ratios of distances. These conditions appear naturally when one investigates the
geometry of self-similar fractals, in particular fractals that arise in some dynamical
settings such as limits sets of Kleinian groups, Julia sets of rational maps, or at-
tractors of iterated function systems. One wants to characterize these spaces up to
a natural equivalence given by homeomorphisms with good geometric control.

A relevant class of mappings in this context are homeomorphisms that distort
relative distances in a controlled way, namely quasisymmetric homeomorphisms (for
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a review of the relevant definition see Section Bl general background on quasisym-
metries and related concepts can be found in [He(I]). Properties of a space related
to its quasiconformal geometry are often invariant under quasisymmetries.

We call two metric spaces S and T quasisymmetrically equivalent if there exists
a quasisymmetric homeomorphism from S onto 7. This notion of equivalence is
stronger than topological equivalence, since it respects features of quasiconformal
geometry.

The problem of quasisymmetric equivalence has been studied for various types
of spaces (see [Bo06] for a general overview). For example, David and Semmes
[DS97] gave a characterization of the standard 1/3-Cantor set up to quasisymmet-
ric equivalence. A similar characterization for the unit interval [0,1] or the unit
circle is due to Tukia and Véiséld [TV80] (see also [Ro01MelIl[HMI2]). The prob-
lem of characterizing the standard 2-sphere up to quasisymmetric equivalence is
particularly interesting because of the connection of this problem to questions in
complex dynamics and geometric group theory (see [BM17] for more discussion on
the background and references to the literature).

One can see the underlying questions as instances of the quasisymmetric uni-
formization problem: Suppose we consider a metric space S that is homeomorphic
to a “standard” space T. Under what conditions is S actually quasisymmetrically
equivalent to T'7

The goal of the present paper is to investigate the quasiconformal geometry of
a particular tree-like space with a self-similar structure and very regular branch-
ing behavior, namely the continuum self-similar tree T (abbreviated as CSST). We
will characterize T up to quasisymmetric equivalence. This can be seen as a solu-
tion to the quasisymmetric uniformization problem where T plays the role of the
“standard” space.

Under this name, the CSST was introduced in [BT21] and defined as the attractor
of an iterated function system in the complex plane (see Figure[Il for an illustration).
One motivation to take T as a standard space for the quasisymmetric uniformization
problem is that sets homeomorphic to T were considered in the literature before in
various contexts (see [BT21] for more discussion and references). For example, the
Julia set J(P) of the quadratic polynomial P(z) = 22 + i is homeomorphic to T.
Actually, one can show the stronger result that J(P) is even quasisymmetricaly
equivalent to T. The original proof of this fact (unpublished) was based on an ad
hoc approach by H. Tran and the first author, but can be streamlined by the results
in this paper.

There are other interesting tree-like fractals whose characterization up quasisym-
metric equivalence may be interesting. We refer to Section [9 for more discussion.

In order to characterize the CSST up to quasisymmetry, we need a way to quan-
titatively describe the separation and density of branch points in a (metric) tree.
We formulate the relevant conditions precisely in Definitions[[.T]and L2l Trees sat-
isfying these conditions are called uniformly branching (see Definition [[3)). A major
theme of this paper is the study of uniformly branching trees from the perspective
of quasiconformal geometry.

To state our main result, we will now discuss some concepts in more detail. We
first turn to the CSST. Up to bi-Lipschitz equivalence, one can define an abstract
version of T as follows. We start with a line segment Jy of length 2. Its midpoint ¢
subdivides Jy into two line segments of length 1. We glue to c one of the endpoints
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FIGURE 1. The continuum self-similar tree T

of another line segment s of the same length. Then we obtain a tripod-like set J;
consisting of three line segments of length 1. The set J; carries its natural path
metric. We now repeat this procedure inductively. At the n-th step we obtain a
simplicial tree J,, consisting of 3™ line segments of length 2!=". To pass to J, 1,
each of these line segments s is subdivided by its midpoint ¢, into two line segment
of length 2™ and we glue to ¢s one endpoint of another line segment of length
27", One can actually realize J,, as a subset of the complex plane (equipped with
the induced path metric). See [BT2I| for more discussion and Figure [ for an
illustration of Js.

In this way, we obtain an ascending sequence Jy C Ji C ... of (simplicial) trees
equipped with a geodesic metric, i.e., a metric such that any two points in the
underlying space can be joined by an arc whose length is equal to the distance of
the points (see ([3.I) below). The union J = J,,cy, Jn carries a natural path metric
o that agrees with the metric on J,, for each n € Ny. As an abstract space one can
now define T as the completion of the metric space (J, ¢). Taking the completion
here is necessary to obtain a compact space and strictly enlarges J. Indeed, the
Hausdorff dimension of J is 1 (as a countable union of intervals), while the Hausdorff
dimension of T is log 3/log2 > 1 (this easily follows from [Fa03| Theorem 9.3]).

There is an alternative way to define the CSST as the attractor of a suitable
iterated function system in the complex plane C (see Section [B)). Then it inherits
the Euclidean metric as a subset of C. The two versions of the CSST are bi-
Lipschitz, and hence quasisymmetrically, equivalent. This means that for our given
goal, namely the characterization of the CSST up to quasisysmmetric equivalence,
we may choose any version of the CSST. For concreteness, we prefer to consider T
(the CSST) as the attractor of an iterated function system and a subset of C.

In order to describe the topological properties of T, we have to recall some termi-
nology. By definition a metric tree is a compact, connected, and locally connected
metric space T that contains at least two distinct points and has the following

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



3844 MARIO BONK AND DANIEL MEYER

Bk i o ﬁ
_ fr F—%

FIGURE 2. The set J5

property: if x,y € T, then there exists a unique (possibly degenerate) arc in T with
endpoints z and y. We denote this unique arc in T by [z, y].

Let T be a metric tree, and p € T. The closure B of a connected component
U of T'\ {p} has the form B = U = U U {p} and is called a branch of p in T. A
point p € T can have at most countably many branches. If there are at least three
branches of p in T, then p is called a branch point and a triple point if there are
exactly three branches. We say that the metric tree T is trivalent if every branch
point of T is a triple point.

In [BT21] it was shown that the CSST is a trivalent metric tree with a dense set
of triple points. This seems obvious from the abstract definition of T outlined above,
but is harder to show if one introduces T as the attractor of an iterated function
system. The CSST T is characterized by these properties up to homeomorphism
[BT21, Theorem 1.7]: a metric space T' is homeomorphic to T if and only if T is
a trivalent metric tree with a dense set of triple points. This gives an essentially
complete understanding of the topological properties of the CSST.

In order to describe the quasiconformal geometry of the CSST, we have to recall
some relevant concepts. The following two are well known.

We say that a metric tree T is of bounded turning if there exists a constant K > 1
such that

(1.1) diam(z,y] < K|z — y|

for all z,y € T. Here and elsewhere in this paper we use Polish notation |z — y|
to denote the distance of two points x and y in a space with a given underlying
metric.
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A metric space T is doubling if there exists a constant N € N such that every
ball in T' of radius r > 0 can be covered by N or fewer balls of radius /2.

The CSST has these properties (see Section []), and they are invariant under
quasisymmetries. Accordingly, they are necessary conditions for a tree T to be
quasisymmetrically equivalent to the CSST. It is useful to introduce a name for
such trees. We call a metric tree T a quasiconformal tree if it is doubling and of
bounded turning.

Quasiconformal trees were considered before in our paper [BM20]. There we
showed that every quasiconformal tree is quasisymmetrically equivalent to a tree
with a geodesic metric.

Our discussion shows that a necessary condition for a metric space T to be
quasisymmetrically equivalent to the CSST is that T is a trivalent quasiconformal
tree with a dense set of branch points. It is easy to see that this is only necessary,
but in general not sufficient. For a sufficient condition one would expect a more
quantitative version of the density of branch points. As we will see momentarily, one
also has to stipulate that branch points are quantitatively separated in a suitable
sense.

To formulate this precisely, we need a quantitative measure of the size of a
branch point p in a (not necessarily trivalent) metric tree T. Only finitely many
of the branches of p can have a diameter exceeding a given positive number (see
[BT21] Section 3] for more details). This implies that we can label the branches
B,, of p by numbers n =1,2,3,... so that

diam(B;) > diam(Bg) > diam(Bs) > ... .
Then we define the height Hr(p) of p in T as
(1.2) Hyp(p) = diam(Bs).

So Hrp(p) is the diameter of the third largest branch of p.
Note that when T is trivalent, we have

(1.3) Hr(p) = min{diam(B) : B is a branch of p in T'}.
We can now define the relevant concepts.

Definition 1.1 (Uniform relative separation of branch points). A tree T is said to
have uniformly relatively separated branch points if

lp — ¢l 2 min{Hr(p), Hr(q)}
for all distinct branch points p,q € T with C(2) independent of p and q.

The reference C'(2) to the implicit multiplicative constant here is explained in
the subsection on notation (see (ILH])).

Definition 1.2 (Uniform relative density of branch points). A tree T is said to
have uniformly relatively dense branch points if for all z,y € T, = # y, there exists
a branch point p € [z, y] with

Hr(p) Z |z = yl,
where C'(2) independent of = and y.

These definitions lead to the most important concept of this paper.

Definition 1.3 (Uniformly branching trees). A tree is called uniformly branching if
its branch points are uniformly relatively separated and uniformly relatively dense.
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Now our main result can be formulated as follows.

Theorem 1.4. A metric space T is quasisymmetrically equivalent to the continuum
self-similar tree T if and only if T is a trivalent quasiconformal tree that is uniformly
branching.

An immediate consequence is the following fact.

Corollary 1.5. Let S and T be two trivalent quasiconformal trees that are uni-
formly branching. Then S and T are quasisymmetrically equivalent.

Proof. Indeed, by Theorem [[4] there exist quasisymmetries ¢: S — T and ¢: T —
T. Then 1~! o ¢ is a quasisymmetry of S onto 7', and so S and T are quasisym-
metrically equivalent. ([l

One can outline the proof of Theorem [[4] as follows. The “only if” part of the
statement is not hard to show, because the CSST is a trivalent quasiconformal tree
that is uniformly branching (see Proposition[5.4]). Moreover, the relevant conditions
are invariant under quasisymmetries. This is well-known for the doubling and the
bounded turning conditions which are the basis for the definition of a quasiconfor-
mal tree. It is also true that uniform relative separation and uniform relative density
of branch points are invariant under quasisymmetries (see Lemmas 3] and [A.H).
This is not surprising, because these are conditions in terms of relative distances:
heights of branch points versus distances of points, both of which are measured in
“units” of length. A quasisymmetry gives good control for the distortion of such
relative distances. As we will see in Section [ it is completely straightforward to
implement these ideas rigorously.

It is much more difficult to prove the “if” part of Theorem[[.4l The basic strategy
is very similar to ideas in the recent papers [BT21] and [BM20]. For the given tree
T one wants to create a “subdivision” by finer and finer decompositions of 7'. This
subdivision is represented by a sequence {X"},en, of decompositions of T given
by finite covers X", n € Ny, of T' by compact subsets. We call the sets X € X"
the tiles of level n of the decomposition. We will obtain these tiles by cutting T'
at the set V™ of all branch points with heights > §™, where § € (0,1) is a small
parameter. More precisely, the tiles in X" are the closures of the components of
T\ V™. Since V" C V"1 the tiles of level n are subdivided into smaller tiles of
level n + 1.

If we assume that T is a uniformly branching trivalent quasiconformal tree, then
the tiles in our subdivision have very good geometric properties. For example, if
X is a tile of level n, then diam(X) =< §™. Moreover, X" for n € Ny is an edge-like
decomposition of T" in the sense that each tile X € X" has at most two boundary
points (see Proposition [61)). It implies that the incidence relations of the tiles
X € X" are the same as the incidence relations of the edges in a suitable finite
trivalent simplicial tree (which explains our terminology).

One wants to realize a similar subdivision with the same combinatorics for the
CSST T. Once this is achieved, then under some mild extra conditions there exists
a homeomorphism F': T' — T that maps the tiles in the subdivision of T to cor-
responding tiles in the subdivision of T. One can show that this homeomorphism
is a quasisymmetry if the tiles in the corresponding subdivisions satisfy suitable
geometric conditions. We condense the relevant conditions into the concept of a
quasi-visual approzimation and quasi-visual subdivision of a space (see Section [2] for
precise definitions).
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Roughly speaking, if we have quasi-visual approximations for two spaces that
correspond under a homeomorphism, then this homeomorphism is a quasisymme-
try. Related ideas have been used by us and other authors before to prove that a
homeomorphism is a quasisymmetry (see for example [BM17, Proposition 18.8 and
Lemma 18.10], [Me02, Lemmas 4.4 and 4.5], [Kil4l Theorem 3.4]). We formulate
this in a general setting in Section Pl We hope that it clarifies some of the earlier
approaches and may be of independent interest.

In view of this, one would like our subdivision {X"} of T to be quasi-visual.
This is always the case under the given hypotheses (see Proposition G11((ii)). In
order to find a quasi-visual subdivision of T corresponding to the subdivision {X"}
of T', one uses an inductive process. The decomposition of T on level n is given by
the image sets F"(X), X € X", of an auxiliary homeomorphism F": T — T. Note
that we use the superscript n here to indicate the level (and not the n-th iterate of
some map F'). For the inductive step, we subdivide the tile F"(X) of T for each
X € X" in the same way as X is subdivided by tiles in X"t

In this way, one obtains a subdivision {F"™(X"™)} of T with the same combina-
torics as the subdivision {X"} of T. As we will see, one can realize the isomorphism
between {X"} and {F"(X™)} by a single homeomorphism F: T — T such that
F(X) = F"(X) for all X € X". Then {X"} and {F"(X")} = {F(X")} are in a
suitable sense isomorphic subdivisions of 7" and T, respectively. The subdivision
{X"™} is quasi-visual, and one can show that with careful choices in the inductive
process {F(X™)} is a quasi-visual subdivision as well (for more details see Propo-
sition [[J] and its proof). Hence the homeomorphism F' is a quasisymmetry, and T
and T are quasisymmetrically equivalent.

Organization of this paper. We first introduce quasi-visual approximations and
quasi-visual subdivisions in Section Pl These are sequences of decompositions of
a space that approximate it in a geometrically controlled way. They are closely
connected to quasisymmetries (see Proposition 2.7 and Proposition 2T3)). In Sec-
tion Bl we collect some facts about the topology of trees and their decompositions.
In Section @l we show that quasisymmetries preserve the property of a trivalent tree
to be uniformly branching.

The CSST and some of its properties are reviewed in Section Bl There we show
that the CSST is uniformly branching (Proposition [(.4]). In Section [6l we consider
specific subdivisions of trees and introduce edge-like subdivisions. We will show
that each uniformly branching quasiconformal tree admits edge-like subdivisions
with good geometric control (see Proposition G.1]).

Section [7 is the technical core of the paper. There we show that if a uniformly
branching quasiconformal tree T" has an edge-like subdivision as in Proposition (.11
then there exists a subdivision of the CSST with the same combinatorics (see Propo-
sition [Z1]). For the proof we use an inductive process based on an existence result
for homeomorphisms F': T'— T with good properties (see Lemma [7.3]).

Our argument is wrapped up in Section [§] where we assemble the considerations
of the earlier sections for the proof of Theorem [[4l We conclude with Section
where we make some additional comments and formulate open problems related to
the investigations in this paper.

Notation. We denote by N = {1,2,...} the set of natural numbers and set Ny =
NU{0}. We write #X € Ny for the cardinality of a finite set X.
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Given two non-negative quantities a and b, we write
(1.4) a=b

if there is a constant C' > 0 depending on some ambient parameters such that
a/C < b < Ca. In this case, we refer to the constant as C = C'(x). Similarly, we
write

(1.5) asb or bZa

if there is a constant C' > 0 such that a < Cb. We refer to the constant as
C=C(x)=0CR):

Let (X, d) be a metric space. If A C X, we denote by A the closure, by int(A)
the interior, and by 0A the boundary of A. Moreover,

diam(A) = sup{d(z,y) : z,y € X}
is the diameter of A. If B C X is another set, then we use the notation
dist(A, B) = inf{d(z,y) : x € A, y € B}

for the distance of A and B.

Let T be a metric tree, z,y € T, and [z,y] be the unique arc in T joining x
and y. Then we write diam|[z, y] instead of diam([z,y]) for the diameter of the arc
[, y]; so we omit the parentheses in our notation for better readability. Similarly,
we denote by length[z, y] the length of [z, y] with respect to the given metric on T'.

If F: X — Y is a map between sets X, Y, and A C X is a subset of X, then we
write F'|A for the restriction of F to A. The identity map on X is denoted by idx,
or simply by id if X is understood.

2. QUASI—VISUAL APPROXIMATIONS AND SUBDIVISIONS

In this section, we provide a general framework to describe a space by approzima-
tions and subdivisions. Our main result here gives a method to prove quasisymmet-
ric equivalence of two metric spaces based on these concepts (see Proposition 2T3).
Very similar ideas have recently been formulated by Kigami [Ki20, Section 3.6].
We will first recall the definition of a quasisymmetric homeomorphism and then
consider quasi-visual approzimations of metric spaces.

Let (S,d) and (T, p) be metric spaces. A homeomorphism F': S — T is called
a quasisymmetric homeomorphism or a quasisymmetry if there exists a homeomor-
phism 7: [0,00) — [0,00) such that for all ¢ > 0 and all z,y,z € S the following
implication holds:

(2.1) d(z,y) < td(z,z) = p(F(z), F(y)) < n(t)p(F (), F(2)).
If we want to emphasize the distortion function 7 here, then we call F' an 7-
quasisymmetry.

If a bijection F: S — T satisfies the implication (Z1I), then F is continuous,
and F~! satisfies a similar implication. Hence F~! is also continuous, and F
is a homeomorphism. So once we have (21 for a bijection F': S — T, it is a
quasisymmetric homeomorphism.

If F: S — T is a quasisymmetry, then F~': T — S is also a quasisymmetry.
If R is another metric space, and F': S — T and G: T — R are quasisymmetries,
then Go F': S — R is a quasisymmetry (see [He0ll Proposition 10.6]).

As we will see, the following concept is relevant in connection with quasisymme-
tries.
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Quasi-visual approximations.

Definition 2.1 (Quasi-visual approximations). Let S be a bounded metric space.
A quasi-visual approzimation of S is a sequence {X"},cn, of finite covers X",
n € Ny, of S by some of its non-empty subsets. Here we assume X° = {S} and
make the following requirements for all n € Ny with implicit constants independent
of n, X, Y:
(i) diam(X) < diam(Y) for all X,Y € X" with X NY # 0.
(ii) dist(X,Y) > diam(X) for all X, Y € X" with X NY = (.
(iii) diam(X) = diam(Y) for all X € X", Y € X"! with X NY # 0.
)

(iv) For some constants kp € N and A € (0,1) independent of n we have
diam(Y) < Adiam(X) for all X € X" and Y € X"tko with X NY # (.

For simplicity, we will usually just write {X"} instead of {X"},en, with the
index set Ny for n understood. We call the elements of X" the tiles of level n, or
simply the n-tiles of the sequence {X"}.

Condition in the previous definition can be expressed in a slightly different
form.

Lemma 2.2. Let {X"} be a sequence of finite covers of a bounded metric space S

satisfying condition in Definition I Then {X"} satisfies if and only if
there exist constants C > 0 and p € (0,1) such that

(iv’) diam(X"%) < Cp* diam(X™)
for all k,n € Ny, X™ € X", Xtk e Xtk ith X7 Xtk £ 0.

Proof. Assume first that condition in Definition 2] holds with kg € N and
A€ (0,1). Let kyn € No, X™ € X7, and X"+F € X"F with X 0 X"k £
be arbitrary. We pick a point z € X" N X"** Fori=n+1,...,n+k—1, we
choose X* € X' with € X*. We write k in the form k = jko + ¢ with j € Ny and
(€ {0,...,ky—1}. Finally, let C; = C(<) > 1 be the constant in condition (iii)] of
Definition 2.l Then by repeated applications of and we see that
diam(X"*) = diam(X "R+t < O diam (X ™ 0)
< CEN diam(X™) < CFo~t(AV/ko)iko diam (X ™).
If we define p == A% ¢ (0,1) and C = Cfo~I\=(ko—1)/ko > Cho=1 )=t e can
write this as
diam(X"+k) < cFo~1piko diam(X™) < CpI*ot diam(X™)
= COpF diam(X™),

as desired.

To show the reverse implication, assume that (iv’)) holds for constants C' > 0 and

€ (0,1). We can then choose ky € N sufficiently large such that A = CpFo < 1.
With these choices, condition in Definition 21l is clearly satisfied. ]

A very similar argument shows that condition in Definition 2.1l implies an
inequality opposite to ([’). Namely, there exists a constant 7 € (0, 1) such that

(2.2) diam (X" *) > 7% diam (X ™)
for all k,n € Ng, X" € X", X"+k ¢ X"+k with X" 0 X"k £ (.
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The previous lemma implies that the diameters of tiles in a quasi-visual approx-
imation approach 0 uniformly as their levels tend to infinity.

Corollary 2.3. Let {X"} be a quasi-visual approzimation of a bounded metric
space S. Then
max{diam(X): X € X"} =0 as n — oo.
Proof. Indeed, by Lemma we know that there exist constants C' > 0 and p €
(0,1) with
diam(X™) < Cp™ diam(X?)

for all n € Ny and X" € X". Here X" = S is the only O-tile. The statement
follows. O

We record a special situation when a sequence of coverings forms a quasi-visual
approximation.

Lemma 2.4. Let S be a bounded metric space, and let {X"}nen, be a sequence of
finite covers X", n € Ny, of S by some of its subsets. Suppose that X° = {S}, and
that there exists a constant § € (0,1) such that the following conditions are true:

(i) diam(X) =< ™ for alln € Ny and X € X"™.

(ii) dist(X,Y) Z 6™ for alln € Ny and X, Y € X" with X NY = 0.
Here we require that the implicit constants are independent of n, X, and Y. Then
{X"}nen, s a quasi-visual approzimation of S.

It is natural to call {X"™} as in this lemma a visual approzimation of S, because
its tiles have properties that are analogous to properties of tiles of an expand-
ing Thurston map with respect to a wvisual metric (see [BM17, Proposition 8.4]).
We chose the term quasi-visual approrimation in Definition 2.1l because there the
conditions are more relaxed in comparison to the more stringent ones for a visual
approximation.

Proof of Lemma [2Z4 'We have to verify conditions |(i)| in Definition 2.1l In the
following, all implicit constants are independent of the tiles under consideration
and their levels.

Fix n € Ny, and consider arbitrary tiles X,Y € X". Then

diam(X) =< §" < diam(Y'),

by Thus condition [(i)| in Definition 2] is satisfied.
If X NY =0, then by [(ii)| we have

dist(X,Y) 2 0" = diam(X),

and so condition in Definition 7] is satisfied.
Let Z € X"*! be arbitrary. Then

diam(Z) < 6" =< § diam(X),

by Condition in Definition 2I] immediately follows (with a constant de-
pending on § in addition to the other ambient parameters).
Similarly, if Z € X"** for some k € Ny, then

diam(Z) = 6"** = §* diam(X)

by [(i)} This implies that condition () in Lemma is true, which is equivalent
to [(iv)| in Definition 211
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The statement follows. O

The covers X" in a quasi-visual approximation provide a discrete approximation
of S that improves with larger n. We introduce a quantity that records at which
level this approximation allows us to distinguish two distinct points.

Definition 2.5. Let {X"},cn, be a quasi-visual approximation of the bounded
metric space S. For two distinct points z,y € S we define
m(z,y) := max{n € Ny : there exist sets X, Y € X"
withz € X,y €Y, and X NY # 0}.
Note that by Corollary 23] we have

lim max diam(X) =0,
n—oo XeXn

which implies that m(z,y) € Ny is well defined for z,y € S with x # y.
Lemma 2.6. Let {X"},en, be a quasi-visual approzimation of the bounded metric
space (S,d). Then there is a constant C(x) such that for all distinct x,y € S we
have
d(z,y) < diam(X™),
where m = m(x,y) and X™ € X™ is an arbitrary m-tile that contains x.
Proof. Let x,y € S with x # y be arbitrary, and m = m(x,y) € Ny be given as in
Definition This means that there are m-tiles X, Y € X" with x € X, y € Y,
and X NY # . Let X™ € X™ be an arbitrary m-tile that contains xz. Then
d(z,y) < diam(X) + diam(Y) = diam(X) < diam(X™),

where we used condition |(i)| in Definition 211

On the other hand, we can find X', Y’ € X™*! with z € X’ and y € Y’'. The
definition of m(z,y) now implies that X’ and Y’ must be disjoint. Thus

d(z,y) > dist(X’,Y’) 2 diam(X’) < diam(X™).

Here we used and in Definition 21 The statement follows. O

Quasi-visual approximations and quasisymmetries. The following proposi-
tion relates quasi-visual approximations and quasisymmetries. This is the main
reason why we consider such approximations.

Proposition 2.7. Let (S,d) and (T, p) be bounded metric spaces, the map F: S —
T be a bijection, and {X"}nen, be a quasi-visual approzimation of (S,d). Then
F: S — T is a quasisymmetry if and only if {F(X™) }nen, @S a quasi-visual approz-
imation of (T, p).

Here we use the obvious notation F/(X") := {F(X): X € X"}.

The proof of Proposition 27 requires some preparation. We first remind the
reader of the following well-known fact (it follows immediately from [He0ll Propo-
sition 10.8]). We include a proof for the sake of completeness.

Lemma 2.8. Let (S,d) and (T, p) be bounded metric spaces, and the map F: S — T
be an n-quasisymmetry. Let A C S be a subset of S, and x,y € A be points satisfying
d(z,y) < diam(A) with a constant Cy = C(<). Then

diam(F(A)) = p(F(z), F(y)),
where C(x) = C(C1,7).
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Proof. Under the given assumptions, let z € A be arbitrary. Then
d(z,z) < diam(A) < Chd(z,y).

We write 2’ = F(z), v = F(y), 2 = F(z), and A’ = F(A). Since F is an
n-quasisymmetry, we have p(z’, 2’) < ( 1)p(x’,y"). Tt follows that
diam(4') < 2 sup p(a',2') < 20(Cr)pla’, ).
z'eA!
On the other hand, p(z’,y’) < diam(A’). The statement follows with Cy = C(x) =
max{1,2n(Cy)}. O

Quasi-visual approximations are invariant under “quasisymmetric changes” of
the metric.

Lemma 2.9. Let di and do be bounded metrics on a set S. Suppose that a se-
quence of finite covers {X"} of S is a quasi-visual approximation of the metric
space (S,d1) and that the identity map id: (S,d1) — (S,dz2) is a quasisymmetric
homeomorphism. Then {X"} is also a quasi-visual approzimation of (S,ds).

Proof. Under the given assumptions, we need to show that {X"} is a quasi-visual
approximation of (S, dz), meaning that it satisfies the conditions |(i) in Defini-
tion Il For i = 1,2 we denote the diameter of a set M C S with respect to the
metric d; by diam;(M).

Let n € Ngand X,Y € X" with XNY # () be arbitrary. Then there are points
ze€XNY,ze X, and y € Y with dy(x, z) < diam; (X) and dy (y, z) < diam;(Y),
where C (<) = 3. Since condition [(i)| of Definition [Z1] is satisfied for d;, we know
that

dy(z, z) =< diam; (X) =< diam; (V) =< d (y, 2).
The quasisymmetric equivalence of d; and ds together with Lemma 2.8 now implies
that

diams(X) < da(z, 2) < da(y, 2) =< diamy(Y).
So {X"} satisfies |(1)| in Definition 1] for (S, ds).

The verification of this condition is very similar to the one for|(i){and so we
will skip the details.

LetnENo and X, Y € X" with X NY =0, aswellaszx € X and y € Y
be arbitrary. We denote the distance of X and Y with respect to the metric d; by
dist;(X,Y) for ¢ = 1,2. We can choose 2/ € X with d;(z,2’) < diam;(X), where
C(x) = 3. Since holds for d;, we know that

di(z,2") < diam(X) < disty(X,Y) < dy(z, ).
Quasisymmetric equivalence of dy and ds together with Lemma [Z8 now implies
diamy (X) < da(z,2") < da(x,y).
Taking the infimum over x € X and y € Y yields
diamy (X)) < dista(X,Y),

which is condition for ds.

Let A € (0,1) and kg € N be constants as in condition of Definition 1]
for the metric space (S,d1). Let n,¢ € Ny, X™ € X" and X" ¢ X" +tko with
X" X"+ £ () be arbitrary. Then we can choose z € X™ N X" %0 and 2/ € X"
with diam; (X") < 3d;(z,2'). Finally, let y € X"+ be arbitrary.
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By repeated application of in Definition 1] for (S, d;), we see that
dyi(z,y) < diam; (X" Hho)
< Xdiam; (X™) < 3Mdy (o).
If we assume that id: (S,dy) — (S, d2) is an 7-quasisymmetry, then it follows that
diamgy (X" T0) < 2sup{dy(z,y) : y € X"}
< 20(3\Y)dy(, ') < 2n(3A\F) diamy (X ™).

Since 7: [0,00) — [0,00) is a homeomorphism, there exist ¢, € N such that A =
2n(3A%) < 1. It follows that with this number A and ko = foko condition in
Definition 211 holds for (S, da). O

The following result is a converse of the previous lemma.

Lemma 2.10. Let dy and da be bounded metrics on a set S. Suppose that a sequence
of finite covers {X™} of S is a quasi-visual approzimation of both metric spaces
(S,dy) and (S, dz2). Then the identity map id: (S,dy) — (S, d2) is a quasisymmetric
homeomorphism.

Proof. We have to find a homeomorphism 7: [0, 00) — [0, c0) such that for all ¢ > 0
and z,y, z € S we have the implication

(2.3) dy(z,y) < tdi(z,2) = do(z,y) < n(t)da(z, 2).

So let t > 0 and z,y,z € S with dy(z,y) < tdi(x,z) be arbitrary. We may
assume that x # y. Then also = # z.

In the following, we denote by X* € X* k-tiles that contain the point x for
various k € Ny. We also use the notation diam; and diams for the diameters of
sets for the metrics d; and ds, respectively.

By condition () in Lemma and by ([22) there are constants p,7 € (0,1)
and C' > 0 independent of ¢, x,y, z such that

(2.4) diam; (X*+%) < Cp* diam;(X*)
and
(2.5) diam; (X*+%) > 7% diam, (X*)

for all k,¢ € Ny and 7 € {1,2}.

Now let m = m(z,y) € Ny and n = m(z,2) € Ny be as in Definition By
Lemma [2.6] there exists a constant C (<) > 0 independent of z,y, z such that
(2.6) d;(z,y) < diam; (X™) and d;(z, z) =< diam,;(X")

for 4 = 1,2. This means that by enlarging the original constant C' in (24 if
necessary (and thus avoiding introducing new constants) we may assume that

(2.7) %di(x,y) < diam;(X™) < Cd;(z,y)
and
(2.8) édi(ﬂc, z) < diam;(X") < Cd;(z, 2)

for i = 1,2. Together with our assumption d;(z,y) < tdi(z,z), this implies in
particular that

(2.9) diam; (X™) < tC? diam; (X™).
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The idea of the proof is now to translate the previous inequalities for the metric
dy to a relation between m, n, and t. Using this for the metric dy, we will obtain a
bound for diamy (X ™) in terms of diamy(X™). This will lead to the desired estimate
by (7)) and (Z8]). We consider two cases.

Case 1. m < n. Then by ([29) and ([24) we have
diaml (Xm) < tC2 dlaml(X") = tcz diaml(Xm‘i‘(n—m))
< tC3p" ™™ diam, (X™),

and so tC3p"_m > 1. This implies

log(tC?)
(2.10) n—m < r(t) = Toa(1/p)"
Then it follows that
do(z,y) < Cdiama(X™) by 7))
< C(1/7)"™™ diamy (X ™ 7m)) by (3H)
=C(1/7)" ™ diamy(X™)
< C(1/7)"® diamy(X™) by (Z10)
< C*(1/7) Wy (2, 2) by 2.8)

=M (t)d2($7 Z)a

where we set 1, (t) = C?(1/7)"®. If we define 1, (0) = 0, then 7 : [0, 00) — [0, 00)
is a homeomorphism as follows from the expression for r(¢) in (ZI0).

Case 2. m > n. Then by [2Z9) and ([Z3]) we have

tO2 diam1 (Xn) > diam1 (Xm) = djaml (X’ﬂJr(mfn))
> 7" diamy (X7),

and so tC? > 7™~". This implies

(2.11) m—n > s(t) = — 280
log(1/7)
Then it follows that
do(z,y) < Cdiama(X™) = Cdiam2(X”+(m—n)) by @)
< C?p™ " diamy (X ™) by €
< C?p*® diamy(X™) by @I
< C3p*Wdy(z, 2) by E3)

= 772(t)d2($, Z)a

where we set o (t) = C3p*"). If we define 15(0) = 0, then again 7, : [0, 00) — [0, 00)
is a homeomorphism.

If we now set n(t) = max{n; (t),n2(¢t)} for ¢ > 0, then the previous considerations
show that 7: [0,00) — [0,00) is a homeomorphism for which implication (2.3 is
true. The statement follows. ]
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Parts of the previous argument follow ideas from the proof of [BM17, Lemma
18.10] which go back to [Me02, Theorem 4.2]. In an earlier version of this paper,
we only claimed weak quasisymmetry of the identity map (corresponding to Case[ll
in the previous proof). Angela Wu observed that one can actually show that it is
a quasisymmetry.

If one carefully traces through the proof, then one can see that the distortion
function 7 can be chosen to have the form

n(t) = K max{t®,t'/*}

with a constant K > 1 and a = log(p)/log(r) € (0,1] (note that 0 < 7 < p as
follows from (24) and ([23)). Quasisymmetries with such a distortion function
are called power quasisymmetries. It is no surprise that our map is of this type;
essentially, this is implied by [He0ll Theorem 11.3].

Combining Lemma and Lemma [ZT0, we can now establish the main result
of this subsection.

Proof of Proposition 277l We define a distance function d on S by setting

d(z,y) = p(F(z), F(y))
for z,y € S. Since F': S — T is a bijection and p is a bounded metric on T, it is
clear that d is a bounded metric on S. Moreover, the map F: (S,d) — (T, p) is an
isometry.
Now suppose F is a quasisymmetry from (S, d) onto (T, p). If we postcompose
this with the isometry F~': (T,p) — (S, J), then we obtain the identity map

id: (S,d) — (S, d) and see that it is a quasisymmetry. Lemma[Z0implies that {X"}

is a quasi-visual approximation of (S,d). If we map {X"} to T by the isometry

F: (S,d) = (T, p), then it follows that {F(X™)} is a quasi-visual approximation of

(T,p).
Conversely, suppose {F(X")} is a quasi-visual approximation of (7', p). Applying

the isometry F~1: (T, p) — (S,d), we see that {X"} = {F~}(F(X"))} is a quasi-

visual approximation of both metric spaces (S,d) and (S,d). By Lemma [ZT0l the

identity map id: (S,d) — (S,d) is a quasisymmetry. If we compose this with the

isometry F': (S,d) — (T,p), then we obtain the map F': (S,d) — (T,p) and it
follows that this map is a quasisymmetry. (Il

Subdivisions. We now consider quasi-visual approximations of different metric
spaces S and T that are “combinatorially isomorphic” in a suitable sense and hope
to construct a quasisymmetry F': S — T that establishes the correspondence be-
tween these approximations. In order to obtain a positive result in this direction,
we have to impose somewhat stronger assumptions on the approximations. This is
the motivation for the following concept.

Definition 2.11 (Subdivisions). A subdivision of a compact metric space S is a
sequence {X"},en, with the following properties:

(i) X° = {S}, and X" is a finite collection of compact subsets of S for each
n € N.

(ii) For each n € Ny and Y € X" ! there exists X € X" with Y C X.
(iii) For each n € Ny and X € X", we have

X=J{yvex .y cx}.
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Let {X"} be a subdivision of S. Since X = {S}, it follows from induction based

onthat
s= | x

Xexn
for each n € Ny. In particular, each X" is a finite cover of S by some of its compact
subsets. As before, we call a set X € X", where n € Ny, a tile of level n or an n-tile
of the subdivision; we refer to X as a tile if its level is irrelevant.
If k,n € Ng and X € X", then also implies that

(2.12) X=J{yvex . vcx}

So each n-tile X is “subdivided” by tiles of a higher level n + k.
The following concept is of key importance for this paper.

Definition 2.12 (Quasi-visual subdivisions). A subdivision {X"} of a compact
metric space S is called a quasi-visual subdivision of S if it is a quasi-visual approx-
imation according to Definition 2.1

A sequence { X"}, en, of tiles in a subdivision {X"} is called descending if X" €
X" for n € Ny and

(2.13) X°o>Xx'oX?*o....

It easily follows from (2I2) that for each € S there is a descending sequence
{X"}nen, of tiles such that x € [, X™. Note that this sequence is not unique in
general.

Let {X™} and {Y™} be subdivisions of compact metric spaces S and T, respec-
tively. We say {X"} and {Y™} are isomorphic subdivisions if there exist bijections
F": X" - Y™, n € Ny, such that for all n € Ny, X,Y € X", and X’ € X"+ we
have

(2.14) XNY #0 ifand only if F*(X)NF"(Y) # 0
and
(2.15) X' c X ifand only if F"T(X') c F*(X).

We say that the isomorphism between {X"} and {Y"} is given by the family {F"}.
We say that an isomorphism {F"} is induced by a homeomorphism F: S — T if
F"(X)=F(X) for all n € Ny and X € X".

Proposition 2.13. Let S and T be compact metric spaces with quasi-visual sub-
divisions {X"} and {Y™}, respectively. If {X"} and {Y™} are isomorphic, then
there exists a unique quasisymmetric homeomorphism F: S — T that induces the
isomorphism between {X"} and {Y"}.

Proof. Since {X"} and {Y"} are quasi-visual subdivisions of S and T', respectively,
by Corollary 2.3l we know that
(2.16) lim max diam(X)=0and lim max diam(Y) = 0.

n—oo XeXn n—ooYeYn

Now if the isomorphism between {X"} and {Y™} is given by the sequence {F"}
of bijections F™: X™ — Y™, then there exists a unique homeomorphism F: S —
T such that F(X) = F™(X) for all n € Ny and X € X”. This follows from
[BT21l, Proposition 2.1]. The idea for the proof is straightforward: for each z € §
one finds a descending sequence { X"} with X™ € X" for n € Ny and {z} =), X"
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Then {F™(X™)} is a descending sequence so that (), F*(X™) contains a single point
y € T. Here (2I6) is important, because it guarantees that the intersection of a
descending sequence of tiles is a singleton set. One now sets F'(z) = y and shows
that F' is a well-defined homeomorphism that induces the isomorphism given by
{FY.

We then have Y” = F™(X") = F(X") for n € Ny, and so {Y"} = {F(X")}.
Our hypotheses and Proposition 2.7l now imply that F' is a quasisymmetry. O

3. TOPOLOGICAL FACTS ABOUT TREES

In this section we collect some general facts about metric trees that will be useful
later on. There is a rich literature on the underlying topological spaces, usually
called dendrites (a metric space is a tree if and only if it is a non-degenerate dendrite;
see [BM20l Proposition 2.2]). We refer to [Wh63|, Chapter V], [Ku68, Section §51
V1], [Na92, Chapter X], and the references in these sources for more on the subject.

Let T be a (metric) tree (as defined in the introduction), and z,y € T. Then
[z, y] denotes the unique arc in T' with endpoints z and y. If = y, then this arc is
degenerate and [z, y] = {x}. We also consider the half-open and open arcs joining
x and y in T defined as

(z,y] =[x,y \ {z}, [z,y) =[z, 9\ {y}, (z.y)=[z,y]\{z, ¥}
Note that [x,y] = [y, z], [z,y) = (y,z], etc. The given metric on the tree T (or T
itself) is called geodesic if
(3.1) |z — y| = length{z, ]

for all z,y € T. This is a strong assumption that is in general not true for the trees
we consider.

Subtrees. A subset X of a tree T is called a subtree of T if X equipped with the
restriction of the metric on T is also a tree. One can show that X C T is a subtree
of T if and only if X contains at least two points and is closed and connected (see
[BT21 Lemma 3.3]). If X is a subtree of T', then [z,y] C X for all z,y € X.

The following statement is [BM20, Lemma 2.3].

Lemma 3.1. Let T be a tree and V. C T be a finite set. Then the following
statements are true:
(i) Two points x,y € T \'V lie in the same component of T \'V if and only if
[z,9] NV = 0.
(ii) If U is a component of T\ 'V, then U is an open set and U is a subtree of
T with OU C OU C V.

(iii) If U and W are two distinct components of T\'V, then U and W have at
most one point in common. Such a common point belongs to 'V, and is a
boundary point of both U and W .

Let T be a tree and p € T. If U is a component of T\ {p}, then
B:=U=UU{p}

is called a branch of p (in T'). This is a subtree of T' (see [BT21] Lemma 3.2 (ii)
and Lemma 3.4]). In particular, only the point p is added as we pass from U to U.

The set T\ {p} has at least one and at most countably many distinct comple-
mentary components (see [BT2I, Lemma 3.8 and the discussion after its proof]).
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We denote the number of these components by degy(p) € NU {oo}, where we set
degr(p) = oo if T\ {p} has infinitely many components. Note that deg;(p) is equal
to the number of branches of p in T.

If degp(p) = 1, then we call p a leaf of T; so p is a leaf of T precisely when
T\ {p} has one component or, equivalently, if T'\ {p} is connected.

If deg,(p) > 3, or equivalently, if T\ {p} has at least three components, we call
p a branch point of T. If deg,(p) = 3, or equivalently, if T\ {p} has exactly three
components, p is called a triple point of T. Finally, we call T trivalent, if each
branch point of T is a triple point, or equivalently, if deg;(p) < 3 for all p € T.

Lemma 3.2. Let T be a tree, S C T be a subtree of T, and p € S. Then the
following statements are true:

(i) Every branch B of p in S is contained in a unique branch B’ of p in T.
The assignment B — B’ is an injective map between the sets of branches of
pin S and inT. If p is an interior point of S, then this map is a bijection.

In particular, degg(p) < degp(p) with equality if p € int(S).

(ii) If p is a leaf of T, then p is a leaf of S. Conversely, if p is a leaf of S with
p &€ 0S, then p is a leaf of T.

(i) If B C S is a branch of p in S with BNJS = (), then B is a branch of p in
T.

Proof. This is [BT21, Lemma 3.5].

Suppose p is a leaf of T. Then by |(i)| we have 1 < degg(p) < degy(p) = 1.
Hence degg(p) = 1 and p is a leaf of S.

Conversely, suppose p is a leaf of S with p ¢ 9S. Then p € S\ 95 = int(S), and
so degy(p) = degg(p) = 1 by Hence p is a leaf of T.

The set U = B\ {p} is a connected subset of S\ {p} C T'\ {p}. This set is
relatively open in S, and hence an open subset of T', because U N S = 0.

The set U = U N (S \ {p}) is also relatively closed in S\ {p}. Since S is closed,
every limit point of U in T \ {p} belongs to S\ {p}, and hence to U. This shows
that U is relatively closed in T'\ {p}. Since U is also open and connected, U must
be a component of T\ {p}, i.e., a maximal connected subset of T \ {p}. Indeed, if
UcCMcT\{p} with U # M, then M has U as a non-trivial open and relatively
closed subset, and so M cannot be connected. It follows that B = U = U U {p} is
a branch of pin T. O

Decompositions and subdivisions of trees. We now assume that 7T is a tree
such that each branch point p of T" has only finitely many branches (i.e., deg(p) <
oo or, equivalently, T\ {p} has only finitely many components). This condition is
trivially satisfied in trivalent trees that we will consider later. It is also satisfied in
quasiconformal trees (see Lemma [3.5)).

Let V be a finite (possibly empty) set of points in 7' that does not contain any
leaf of T. We want to decompose T' into pieces by “cutting” T at the points in
V. A tile X (in the decomposition induced by V) is the closure of a component of
T\ V. It follows from Lemma BI[(ii)] that each tile is a subtree of T. The set of
all tiles obtained in this way from V is denoted by X and called the decomposition
induced by V. We will see momentarily that the set X is always a finite cover of T’
(see Lemma [33][(viD)).

Most of the following statements are intuitively clear, but we will include full
proofs for the sake of completeness.
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Lemma 3.3. Let T be a tree such that every branch point of T has only finitely
many branches, and let V.C T be a finite (possibly empty) subset of T' that contains
no leaf of T. Let X denote the decomposition of T induced by V. Then the following
statements are true:

(i) If X € X and v € V, then X is contained in the closure of one of the
components of T \ {v} and disjoint from the other components of T \ {v}.

(ii) Fach tile X € X is a subtree of T with 0X =V NX and int(X) = X\ V.
The closure of int(X) is equal to X .

(iii) If V# 0 and X € X, then 0X # 0 and each point v € 0X is a leaf of the
subtree X.

(iv) Two distinct tiles X, Y € X have at most one point in common. Such a
common point of X andY belongs to V and is a boundary point of both X
and Y .

(v) If v € V and n = degp(v) € N, n > 2, is the number of branches of v in
T, then v is contained in precisely n distinct tiles in X. Fach branch of v
in T contains precisely one of these tiles.

(vi) If X € X and 0X = {v} C V is a singleton set, then X is a branch of v in
T.

(vil) The set of tiles X is a finite cover of T

(viii) Suppose, in addition, that T is a trivalent tree with a dense set of branch
points. Then each X € X is also a trivalent tree with a dense set of branch
points.

Note that if V.= @, then X = {T'}; so X = T is the only tile in X and
0X = 0T = (). In this case, the statements in the previous lemma are vacuously or
trivially true.

Proof. We have X = U, where U is a component of T'\ V. Moreover, since
v € V is not a leaf of T', our hypotheses imply that the set 7"\ {v} has n distinct
components Wi, ..., W, where n = degp(v) € N, n > 2. Since U is a connected
subset of T\'V C T'\ {v}, it is contained in one of these components, say U C Wj.
Then X =U C W, = Wi U {v}, and X is disjoint from Wy U ---UW,, = T\ Wj.

If X € X is a tile, then X = U, where U is a component of 7'\ V. It then
follows from Lemma B:[I that X = U is a subtree of T with 90X = 90U C 0U C V.
Hence 0X C VN X, because X is a closed subset of T

Conversely, if v € VN X, then by what we have seen in v is in the closure
W = W U {v} of at least one component W of T \ {v} disjoint from X. This
implies that v € 90X, and so X = VN X. The last identity also shows that
nt(X)=X\0X=X\V.

Note that U is disjoint from V, and 0U C V by Lemma BII We also have
X =U = U U9U. This implies that

int(X)=X\V=(UUdU)\V =U.

Since U = X and int(X) = U, the closure of int(X) is equal to X.

If V # (, then it follows from |(i)| that X # T. Since T is connected, this
implies that 0X # ); otherwise, the non-empty set X # T would be an open and
closed subset of the connected space T'. This is impossible.
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We have X = U, where U is a component of T\ V. If v € 9X C V, then
X \ {v} is connected, because U C X \ {v} C U = X (every set squeezed between
a connected set and its closure is connected). Hence v is a leaf of X.

This immediately follows from Lemma BII[(iii)}

For n = degy(v) let Wy,..., W, denote the distinct components of T\ {v}.
Here n € N, n > 2. We have W, = W, U {v} andsov € W, for k=1,...,n.

For each k € {1,...,n} we choose a point z,, € Wy, C T \ {v}. Then by
Lemma BI[(7)] we have

(3.2) v € [z, x¢] for all k, £ € {1,...,n} with k # £.

We may assume that each point xy, is so close to v (by replacing the original point
with a point on [z, v) C W}, sufficiently close to v if necessary) that [z, v) contains
no point in the finite set V' \ {v}. Then [z, v) is a non-empty connected subset of
T\ 'V for each k € {1,...,n}, and so it must be contained in a unique component
Uy, of T\ V. These components Uy, ..., U, of T\ V are pairwise disjoint open sets
as follows from [B.2) and Lemma BI[i)] and Then X, ==U for k=1,...,n
is a tile in X that contains the arc [zg,v], and so v € Xj. Moreover, the tiles
X1,...,X, are all distinct, because each tile X contains the non-empty open set
Uy that is disjoint from all the other tiles in this list. So v is contained in at least
n distinct tiles in X.

Suppose Z = U € X is any tile with v € Z, where U is a component of T' \ V.
We choose a point z € U. Then z must be contained in one of the components
Wi,...,W, of T\ {v}, say 2 € Wy. Then [z1,2] C T\ {v} by Lemma B[}
We may assume that x; and z are so close to v that [z, 2] contains no point in
V\{v}. Then [z1,2]NV = {), and so x1 and z are contained in the same component
of T\ V. It follows that U = Uy, and so Z = U = U; = X;. This shows that
X1,..., X, are the only tiles in X that contain v. So v is contained in n distinct
tiles X1,..., X, € X, and in no other tiles in X.

Let k € {1,...,n}. Then the set Uy, is a connected subset of T\'V C T\ {v}, and
so it is contained in a unique component of 7'\ {v}. This component must be Wy,
because z € U, N Wy,. Hence X;, = U, C Wy, which shows that X}, is contained
in the branch W}, of v in T. The tile X cannot be contained in any other branch
Wy = W, U {v} with £ # k, because X}, is disjoint from W, as follows from

Suppose that X = {v} C V. We have X = U, where U is a component of
T\ V. As we have seen in the proof of there is a component W of T \ {v} with
Ucw.

Claim. U = W. To see this, we argue by contradiction and assume that U # W.
Then there exists a point « € U C W, as well as a point y € W \ U. Then
[z,9] NV # 0, because otherwise y € U. So as we travel from x to y along [z, y],
there must be a first point u € [z,y] that belongs to V. Then [z,u) C U, and so
[z,u] CU = X.

Now [(ii)] implies that w € VN X = 0X = {v} and so u = v. Since v = u € [z,y],
Lemma B.11[(i)] shows that z and y lie in different components of T \ {v}; but z
and y lie in the same component W of T'\ {v}, and so this is a contradiction. The
Claim follows.

Since U = W by the Claim, we conclude that X = U = W is the closure of the
component W of T'\ {v}, and so a branch of v in T
If V = 0, this is obvious, because then we have X = {T'}.
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Now suppose V # (). Then each tile in X contains some point in V as follows
from and and each point in V is contained in at most N tiles by where
for N € N we choose some upper bound for the number of branches for the finitely
many points in V. This implies that the number of tiles in X is bounded above by
#V - N, and so X is a finite set.

Each point in 7'\ V lies in a tile in X by definition of tiles; this is also true for
the points in V by Hence X is a finite cover of T

Under the given additional assumptions on 7T, let B denote the set of
branch points of T and Bx C X denote the set of branch points of its subtree X.
If pe 0X =VNX, then p is a leaf of X by

If p € int(X) = X \ 90X, then the number of branches of p in X is the same as
the number of branches of p in T' (see Lemma . This shows that p € X is a
branch point of X if and only if p € int(X) and p is a branch point of T'; in this case,
p is a triple point of X. In particular, X is a trivalent tree and Bx = B Nint(X).

Since B is dense in T, the set Bx = B Nint(X) is dense in int(X), and hence
dense in X, because the closure of int(X) is equal to X by It follows that X
is a trivalent tree with a dense set Bx of branch points.

We will now record some relations of two tile decompositions of a tree T" induced
by a set V and a larger set V'.

Lemma 3.4. Let T be a tree such that every branch point of T has only finitely
many branches. Let V.C V' C T be finite (possibly empty) subsets of T that contain
no leaf of T. Let X and X' denote the decompositions of T induced by V and V',
respectively. Then the following statements are true:

(i) Each tile X' € X' is contained in a unique tile X € X.
(ii) Each tile X € X is equal to the union of all tiles X' € X' with X' C X.
(i) Let X € X, Vx = V'Nint(X), and Xx be the decomposition of X induced
by Vx. Then Xx = {X' € X' : X' C X}.
(iv) Let X' € X!, and X € X be the unique tile with X’ C X. If dx X' denotes
the relative boundary of X’ in X, then Ox X' = 0X'\ V.

Proof. If X’ € X/, then there exists a component W of 7'\ V’ with X’ = W.
Since V C V', the set W is a connected subset of T\ V > T'\ V' and so contained
in a unique component U of 7'\ V. Then X' is contained in the tile X := U € X,
because X’ = W C U = X. There can be no other tile in X containing X', because
by Lemma B:{I the set X’ is a subtree of T' and hence an infinite set, but distinct
tiles in X can have at most one point in common by Lemma B:{I

If X € X, then X = U, where U is a component of T\ V. Since U
is connected, this set cannot contain isolated points. This implies that the set
U\ V' C X is dense in U and hence also dense in X = U.

If z € U\ V' is arbitrary, then there exists a component W of T\ V' with z € W.
Since W is a connected subset of T\ V' C T'\ V, this set must be contained in a
component of 7'\ V. Since z € U NW, it follows that W C U. Then X' := W is a
tile in X’ with z € X’ and X' =W Cc U = X.

This shows that if we denote by Y the union of all tiles X’ € X’ with X’ C X,
then Y C X contains the set U \ V'. By Lemma applied to V' there are
only finitely many tiles in X', and so Y is closed. Since U \ V' is dense in X and
U\V' CY, it follows that X =Y as desired.
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We first verify the hypotheses of Lemma [B.3] for the tree X and its finite
subset Vx. First note that X is a subtree of T, and hence a tree. If p € X is
arbitrary, then the number of branches of p in X is bounded by the number of
branches of p in T (see Lemma B2[()]), and hence finite.

IfveVyx Cint(X) =X\ 90X, then v is not a leaf of X; otherwise, v € Vx
is a leaf of T' by Lemma but Vx C V’ contains no leaves of T by our
hypotheses. This shows that Vx C X contains no leaf of X; so we can apply all
the statements from Lemma for the decomposition X x of the tree X induced
by Vx.

We first show that {X’ € X' : X’ € X} € Xx. To this end, let X’ € X’ with
X’ C X be arbitrary. Then there exists a component U of T'\ V’ with X’ = U.
Since U is a connected subset of X \ V' C X \ Vx, there exists a component W of
X\Vx withUCW C X.

Claim. W C U. In order to see this, we argue by contradiction and assume that
there exists a point 2 € W\ U. Since W is a relatively open subset of the tree X (as
follows from Lemma le, we may assume (by moving x slightly if necessary)
that « does not belong to the finite set V.

We choose y € U, and consider the arc [z,y] C X. Since z € W\ (U UV’) and
y € U lie in different components of T'\ V', there exists a point v € [z,y]NV' C X
by Lemma B:[I Here v # x,y. We cannot have v € int(X), because then
v € V' Nint(X) = Vx; so z and y would lie in different components of X \ Vi,
but these points lie in the same component W of X \ Vx. It follows that v € 0X.
By Lemma IBEI this implies that v is a leaf of X. This leads to a contradiction,
because we have v € [x,y] and so z and y lie in different components of X \ {v}
by Lemma BII[(i)] but X \ {v} is connected, because v is a leaf of X. The Claim
follows.

By the Claim, we have U ¢ W C U, and so X’ = U = W. This shows
that X’ is the closure of the component W of X \ Vx, and so X’ belongs to
the set of tiles X x of the decomposition of X induced by Vx. We have proved
{X'eX: X' Cc X} CXxy.

To show the other inclusion Xx C {X' € X’ : X' C X}, first note that Xx is
a finite cover of X by Lemma IBEI Moreover, each tile in X x has non-empty
interior relative to X (as follows from the definition of tiles in combination with
Lemma B:[I and this interior of a tile is disjoint from all the other tiles in X x
(as follows from Lemma B3[(iv))).

Now let Y € X x be arbitrary. Then we can choose a point x in the interior of
Y relative to X. By there exists X’ € X’ with X’ € X and z € X’. By what
we have seen, X’ € Xx. Since x cannot belong to any tile in X x except Y, we
conclude that Y = X’. This shows the other inclusion Xy C {X' € X : X’ C X}.
It follows that these two sets are equal, as desired.

Let X’ € X’ be arbitrary. Then by [(i)| there exists a unique tile X € X
with X’ C X. To identify the relative boundary dx X', we can apply the results
from Lemma 3.3 to X and its decomposition Xx induced by Vx = V' Nint(X),
because the relevant hypotheses of Lemma [3.3] are true as was pointed out in the
proof of In particular, by repeated application of Lemma B:{I we see that

IxX'=X'NVx =X'"NnV' Nnint(X)
=9X'Nint(X) =X ' N(X\V)=08X"\V.
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In the last equality, we used that 0X’ C X’ C X. The statement follows. O

Let T be a tree such that every point in T has only finitely many branches (as
in Lemmas B3 and BA)). Let {V"},en, be an increasing sequence of finite subsets
of T, meaning that

(3.3) Vlicvicvic....

In addition, we require that VY = (), and that no set V" for n € N contains a
leaf of T'. We denote by X" the decomposition of 7" induced by V™. Then it
immediately follows from Lemma [3.3] and Lemma [3.4] and that the
sequence {X"},en, is a subdivision of the tree T according to Definition XTIl We
call {X"} the subdivision of T induced by {V"™}. Subdivisions of T obtained in
this way are one of the main ingredients in the proof of the “if” implication in
Theorem [[L4l We will discuss this in detail in Sections [6] and [7

We now show that in a quasiconformal tree T there is a uniform bound on
degy(p) for p € T. Recall from the introduction that a quasiconformal tree is a
metric tree that is doubling and of bounded turning.

Lemma 3.5. Let T be a quasiconformal tree. Then there is a constant M € N
such that
degr(p) < M

forallpeT.

As the proof will show, M depends only on the doubling constant N of T and
the constant K appearing in the definition of bounded turning (see (I])).

Proof. Let p € T be arbitrary, and suppose B, ..., B, are distinct branches of p
in T, where n € N. It is enough to find a uniform upper bound on n independent
of p. For this we choose a point x}, € By \ {p} for k = 1,...,n. By considering
points on (p,x}] C By, sufficiently close to p, we can then find a (small) constant
0 >0 and x € B, with |y —p|=dfork=1,...,n.

Then for k.4 € {1,...,n} with k # ¢ we have p € [z, x¢], which implies
diam[z, 2¢] > 6. Since T is of bounded turning, it follows that

1
|z — x| > Ediam[xk,xg] >0/K,

where K > 0 is the constant from (IT). Hence the set {z1,...,z,} is 6/ K-separated
and contained in the closed ball of radius § centered at p. It is well-known that in a
doubling metric space, the number of such points is bounded by a number M € N
depending only on the doubling constant N and the ratio §/(6/K) = K. Thus
n < M with M only depending on N and K, and independent of p. This implies
degy(p) < M and the statement follows. O

Height and center. Let T be a tree and p € T be a branch point of T. Then
there are points z,y,z € T that lie in distinct branches of p. Conversely, we often
want to find p when z,y,z € T are given. In addition, when z,y, z are branch
points, we want to relate their heights Hr(z), Hr(y), Hr(z) to the height Hr(p) of
p. We remind the reader that height was defined in (I2)).

Lemma 3.6. Let T be a tree, and x,y,z € T.
(i) Then [z,y] N[y, 2] N[z, 2] is a singleton set.
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(ii) If z,y,z are branch points of T, and {c} = [z,y] N[y, z] N [z, z], then c is a
branch point of T with

Hr(c) = min{Hr(z), Hr(y), Hr(2)}.

We call the point ¢ € [x,y] N [y, 2] N [z, 2] the center of x,y,z (in T).

Proof. As we travel from z to x along the arc [z,x], there exists a first point
¢ € [z, ] that lies on [z,y]. Then ¢ € [z,y] N[z, z] and [z,y] N [z,¢) = 0. Moreover,

(3-4) [z,y] = [z,0) U{c} U (e, 9]

is a decomposition of [z, y| into pairwise disjoint sets. Note that [z, ¢) or (¢, y] could
be empty, but this does not affect this statement. It follows that the sets

(3.5) [x,¢), [y,¢), [2,¢), {c} are pairwise disjoint.

This implies that [z, ¢) U {c} U (¢, 2] is an arc in T joining x and z. Since [z, z]
is the unique such arc, we conclude that

[z,2] = [z,¢) U{c} U (c, 2],

and similarly,
[y, 2l = ly,c) U{c} U (c,2].

Together with (4] and ([B3]), this implies that the arcs [z, y], [y, 2], [z, 2] have the
point ¢ in common, but no other point.

We may assume that ¢ # x,y, z, because otherwise the statement is obvious.
Then the sets [z, ¢), [y, ¢), [z, ¢) are non-empty, connected, and pairwise disjoint by
[B3). It follows from Lemma BI[(i)| that each of these sets must lie in a different
component of T'\ {c}. In particular, T \ {c¢} has at least three such components,
and so c is a branch point of T'. Let B, By, B, be the distinct branches of c that
contain [z, c), [y, ¢), [z, ¢), respectively.

Since (x,¢] is a connected subset of T'\ {z}, it must be contained in a branch
of z in T. Since z is a branch point of T, there exists another branch B, of x
in T distinct from the branch of z containing (x,¢]. We can choose B, so that
diam(B,) > Hy(z) (by definition of Hy(z), there are actually at least two such
choices).

Then B, N[z, d = {z}, and so B, U[z, ¢) is a connected subset of T'\ {c}. Hence

B, D B, Ulz,¢) D By,

which implies that

diam(B,) > diam(B;) > Hr(x).
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Similarly, diam(B,) > Hr(y) and diam(B,) > Hr(z). It follows that
Hr(c) > min{diam(B,), diam(B,), diam(B,)}
> min{Hr(x), Hr(y), Hr(2)},

as desired. O

4. QUASISYMMETRIES PRESERVE UNIFORM BRANCHING

After the preparations in the previous two sections, we now start the proof of
Theorem [[4l We will show that uniform relative separation and uniform relative
density of branch points of a tree are preserved under quasisymmetries. Note that
we do not assume that the trees under consideration are trivalent, doubling, or of
bounded turning.

We first need some auxiliary facts.

Lemma 4.1. Let F: T — T’ be a quasisymmetry between trees T and T'. Suppose
By and By are two branches in T of a point x € T, and

diam(B;) > diam(Bs).

Let B} == F(By) and B} == F(Bsg) be their images in T'. Then
diam(B]) = diam(B5),

where C(2) depends only on the distortion function n of F.

If z is a leaf, this is trivially true, because then By = Bs. In general, we will not
necessarily have diam(Bj) > diam(Bj5), but the lemma says that this is true “up
to a fixed constant”.

Proof. Under the given assumptions, we can find a point z; € By with |21 — 2| >
%diam(Bl). It follows that for each 25 € Ba,

|21 — 2| > 1 diam(B;) > § diam(By) > 1|22 — .

Let o' == F(x), 21 == F(#1), 25 = F(z2) € T'. Since F is a quasisymmetry, we
conclude that

|21 — 2’| 2 |25 — 2],
where C(2) depends only on the distortion function n of F, but not on the other
choices. Now 29 € By was arbitrary, and so we obtain

diam(B]) > |z — 2’| 2 supl|zé —2'| > 1 diam(B}).

zhLeB)
The statement follows. O
We record the following immediate consequence.

Corollary 4.2. Let F: T — T’ be a quasisymmetry between trees T and T', let
x € T be a branch point of T, and B be a branch of x in T with Hy(z) = diam(B).
If we set ' == F(x) and B' .= F(B), then

Hp/(2') < diam(B’).
Here C(x) depends only on the distortion function n of F.
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Proof. The branches By, By, B3, ... of x in T can be labeled such that
diam(B;) > diam(Bs) > diam(Bs) > ...

and B3 = B.

Let B], := F(B,) for all n € N for which B,, is defined. Since F: T — T’ is
a quasisymmetry, and in particular a homeomorphism from 7' onto 7”, the point
x' = F(z) is a branch point of T’, and By, BS, B, ... are the branches of 2’ in T".
Note that B/ = F(B) = F(B;) = B,

By Lemma [£1] we know that

diam(B]) 2 diam(Bj), diam(Bj) > diam(Bj), and
diam(Bj) 2 diam(B,,) for all n > 4,
where C(2) depends only on the distortion function n of F.

Therefore, the three branches Bj, B}, Bj of 2’ in T" have diameter > diam(Bj%),
and so Hrp/(2') 2 diam(Bj5). On the other hand, we also see that all other
branches have diameter < diam(B%), and so Hr (2') < diam(Bj%). Hence Hr/ (z') <
diam(B%) = diam(B’), and the statement follows. O

We now consider uniform relative separation of branch points.

Lemma 4.3 (Qs-invariance of uniform relative separation). Suppose F: T — T’
1s a quasisymmetry between trees T and T'. If T has uniformly relatively separated
branch points, then the same is true for T'.

Proof. Suppose T has uniformly relatively separated branch points. By definition,
this means that

(4.1) |z —y| 2 min{Hr(z), Hr(y)}

for all distinct branch points x,y € T with C'(2) independent of z and y. Since F
is a quasisymmetry and hence a homeomorphism, the branch points of T and T"
correspond to each other under the map F'. So in order to establish the statement,
it is enough to show an estimate analogous to (&I]) for the image points of = and
y under F. Without loss of generality, we may assume that Hr(z) < Hr(y), i.e.,
that the minimum in @1]) is attained for x.

Let B be a branch of z in T with diam(B) = Hy(x), and consider an arbitrary
point z € B. Then

|z —y| 2 Hy(z) = diam(B) > |z — z|.

Let ' .= F(x),y = F(y),2 = F(z) € T, and B’ := F(B) be the images under
F. Since F is quasisymmetry, the previous inequality implies that

2" —y| 2 |2 = ),

where C(2) only depends on the implicit constant in (@I]) and the distortion func-
tion n of F. Now z € B was arbitrary, and so

|2 —y/| 2 sup |2’ — 2| > L diam(B’)
2EB
= $Hp/(2'), by Corollary
> 5 min{Hr (a"), Hr (y)}-

Here the implicit constants are independent of 2’ and 3'. The statement follows. [
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Let us now consider uniform relative density of branch points. This condition is
equivalent to the following, seemingly stronger, property.

Lemma 4.4. A tree T has uniformly relatively dense branch points if and only if
forallx,y € T, x #£ vy, there is a branch point z € [x,y] with

Hyp(z) 2 diam|z, y],
where C(2) is independent of x and y.

Proof. Since we always have diam[z,y] > |z — y|, it is obvious that the above
condition implies uniform relative density of branch points.

Conversely, assume that T has uniformly relatively dense branch points. Let
x,y € T with x # y be arbitrary. Then there is a point w € [z,y] with |z — w| =
1 diam[z, y]. Uniform relative density of branch points now implies that there is a
branch point z € [z, w] C [z, y] with

Hrp(z) 2 |z — w| = 1 diam[z, y].
The statement follows. ]

After these preparations, we are now ready for the second main result of this
section.

Lemma 4.5 (Qs-invariance of uniform relative density). Let F: T — T’ be a
quasisymmetry between trees T and T'. If T has uniformly relatively dense branch
points, then the same is true for T'.

Proof. Suppose T has uniformly relatively dense branch points. Let z,y € T with
x # y be arbitrary. Then by Lemma [£4] there is a branch point z € [z, y] of T with
(4.2) Hr(z) Z diam[z, y].

Since F' is a homeomorphism, the branch points and arcs in 7' and T” correspond
to each other under F'. This implies that in order to establish the statement, it is
enough to show an inequality analogous to (2] for the image points of z, y, and
z under F'.

To see this, let B C T be a branch of z in T with Hr(z) = diam(B). Then there
is a point w € B with

|z — w| > L diam(B) = $Hy(z) 2 diam[z, y].
Thus, for each point ¢ € [z, y] we obtain
|z — w| 2 diam[z,y] > |z — ¢|.

Let 2/ .= F(z), ¥ = F(y), # = F(2), v = F(w), ¢ = F(q), and B’ .= F(B).
Note that 2/ € F([z,y]) = [¢/,4']. Using Corollary and the fact that F' is a
quasisymmetry, we see that

Hp/(2') < diam(B') > |2/ —w'| 2 |2 — ¢].

Since ¢ € [z, y] was arbitrary, this gives

Hri(2') Z sup |2/ —¢'| > §diam[a’,y'] > 3|2’ — /.
q'€lz’y’]

Here 2/ = F(z) € [2/,y'] in a branch point of 7", and C(2) is independent of z’, v/,
and 2. The statement follows. (]
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Our considerations show that uniform branching of a tree is invariant under
quasisymmetric equivalence. To complete the proof of the “only if” implication
in Theorem [[.4] we need to show that the continuum self-similar tree is uniformly
branching. Naturally, this means that first we have to define it precisely. We
address this in the next section.

5. THE CONTINUUM SELF-SIMILAR TREE

The continuum self-similar tree (abbreviated as CSST) is a standard model for a
quasiconformal tree that is trivalent and uniformly branching. It was studied in the
paper [BT21]), to which we refer for more details and references to the literature.

For the definition of the CSST we consider the maps gx: C — C, k = 1,2, 3,
given by
(5.1) 91(2):%2—%, 92(2):%54'%, 93(2) = 52+ 3.

Then the continuum self-similar tree is the attractor T of the iterated function

system {g1, 92,93} (see [Fa03, Theorem 9.1] for a general result in this direction).
In other words, it is the unique non-empty compact set T C C satisfying

(5.2) T = g1(T) U g2(T) U g3(T).
See Figure [l for an illustration of the set T.

We summarize some properties of the CSST. Since T C C, the CSST inherits
the Euclidean metric from C. Then T is a trivalent metric tree [BT21], Propositions
1.4 and 1.5]. Tt is a quasi-convez subset of C in the following sense: there exists a

constant L > 0 such that if z,y € T are arbitrary and [z, y] is the unique arc in T
joining x and y, then

(5.3) |z —yl| < length[z, y] < Lz —y|
(see [BT21, Proposition 1.6]). In particular, T is of bounded turning, since
diam[z, y] < length[z,y] < L|x — y|.

As a subset of C, the space T is also doubling. Thus, T is a quasiconformal tree.
In Proposition (.4l below, we will see that T is uniformly branching.
Inequality (B3] implies that if we define

(5.4) o(z,y) = length|x, y]

for x,y € T, then (T, p) is a geodesic tree that is bi-Lipschitz equivalent to T
equipped with the Euclidean metric (by the identity map on T). The space (T, o)
is isometric to the abstract version of the CSST as defined in the introduction (see
the discussion at the end of Section 4 in [BT21]).

Considering T as a subset of C has the advantage that we have the simple
characterization (0.2)) of T with explicit maps gy as in (5.I)). On the other hand, we
never consider points in C\ T. Therefore, we think of T as the ambient space when
we discuss topological properties of a set M C T. For example, we denote by OM
the (relative) boundary of M in T. Naturally, this is in general different from the
boundary of M as a subset of C. Similarly, the interior of M is always understood
to be relative to T.

The CSST can be decomposed into subtrees in a natural way. These subtrees
will be labeled by words in an alphabet. Here we use the set A := {1,2,3} as our
alphabet. Tt consists of the letters 1,2,3. For each n € N, let A" = {w;...w, :
wj € Afor j =1,...,n} be the set of all words of length n. We set A° :== {0}; so
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the empty word ) is the only word of length 0. If n € Ng and w € A", we denote
by ¢(w) = n the length of w. Finally, we denote by A* := UnGNo A" the set of all
finite words.

Fu=uy...up € A¥ and w = wy ... w, € A" with k,n € Ny, then

W = Uy .. uRWY ... Wy, € AR

denotes the concatenation of the words u and w.

For a finite word w = wy ... w, € A" of length n € Ny, we define the map
gw: C— C by

Gw = Gw; © Gws © O Gw,,

where g, for i = 1,...,n is as in (5]) and it is understood that gy = id¢ is the
identity map on C for the empty word w = (). The map g, is a Euclidean similarity
that scales distances by the factor 2—¢(@).

For each w € A* we now set

(5.5) Ty = gw(T).
It follows from repeated application of (B.2]) that T,, C T. Hence Ty, = ¢,,(T) is a
subtree of T, because T,, is a tree as the image of T under the homeomorphism g,,.
We use the same notation for the restriction of g, to T and consider this as a map
guw: T — g,(T)=T, CT.

Since diam(T) = 2, we have
(5.6) diam(T,,) = 2~ ¢w)+1
(see [BT21l, (4.15)]). We call the sets of the form T,, = g.,(T) the tiles of T and
denote by
(5.7) X*:={Ty : w e A"}

the set of all tiles. One can easily show (based on (GI0) below) that these are
tiles in a subdivision of T. We will not discuss this in more detail here as other
subdivisions of T will be important in the proof of Theorem [[.41

If T,, € X*, then we call n = ¢(w) € Ny the level of the tile, which we also denote
by £(T,) = n. We then say that T,, is a tile of level n, or simply an n-tile. By
(E6) the level of a tile is well defined. The set Ty = T is the only 0-tile, and there
are three 1-tiles, namely T, T3, T5. For an illustration see Figure ] which shows
the 1-tiles, and Figure @] which shows some of the 2-tiles (note that here the dotted
lines indicate tiles, but are not part of the CSST).

We record some properties of 1-tiles for later use.

Lemma 5.1. The following statements are true:
(i) The point 0 € C is a branch point of T with the three branches Ty, Ta, Ts.
(ii) The points —1 and 1 are leaves of T with

—1e€T; and —1 ¢ Ty, Ts;
1Ty and 1¢T1,T3.

(iii) Let x,y € T be contained in distinct 1-tiles. Then

lz =yl 2 =] + lyl,
where C(2) is independent of  and y.
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1;3233 T,

FiGURE 3. The CSST and its subtrees Ty, Ty, T3

In particular, [(i)| means that the set T \ {0} has precisely three distinct com-
ponents Uy, k = 1,2,3, and with suitable labeling we have Uy = Uy U {0} = Tj.
Hence Lemma B3)[(ii)| implies that

(5.8) OTy = 0T, = 9T5 = {0}.

Moreover, the subtrees Tq, Ty, T3 of T are pairwise disjoint except for the common
point 0. In other words,

(5.9) T, N Ty = {0} for k, € € {1,2,3} with k # ¢.

Proof of Lemma [B.11

(1)| This follows from [BT21), Lemma 4.5 (i)].

By Proposition 4.2 and Lemma 4.4 (ii)] the points —1 and 1 belong
to T and are leaves of T. Moreover, —1 = g1(—1) € Ty and 1 = g2(1) € Ty (see
(E1D). Since 0 is the only common point of two distinct 1-tiles, we also know that
1 ¢ TQ,Tg and —1 ¢ Tl,Tg.

Let 2,y € T be contained in two distinct 1-tiles. Then 0 € [z,y] by If
L > 0 is the constant in (53], then we obtain

Lz — 3| > length{r, ] = lengthlz, 0] + length0,] > Je] + |y,
and follows. O

If we A* and n = ¢(w) € Ny, then g, : T — T, is a homeomorphism that
maps the 1-tiles Ty, T, T3 C T onto the (n + 1)-tiles Ty1, Ty, Tws C Typ. So the
statements in Lemma [5.1] can be translated via the map g, to statements about
T, . For example, g,,(0) is a branch point of T,, with three branches given by the
(n + 1)-tiles Ty, Toyo, Tyws. In particular,

(5.10) Tew = Top1 U Tz U Tas.

Since this is true for all w € A*, it is easy to see that if m,n € Ny with n > m and
X is an n-tile, then there exists an m-tile Y with X C Y.
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Branch points of T and boundaries of tiles. In order to show that T is uni-
formly branching (see Proposition [5.4]), we need to locate the branch points of T
and understand their height. The key observation is that a point p is a branch
point of T if and only if it is a (relative) boundary point of some tile in T (see
Lemma and Lemma [5.3[(i)).

As we will see, there are two ways to describe (relative) boundary points of tiles:
as images of the leaves —1 or 1 of T under some map g,, or as images of the branch
point 0 of T.

Lemma 5.2 (Boundaries of tiles). The following statements are true:

(i) Let T,, with w € A™ be a tile of level n € N. Then T,, has one or two
boundary points and 0T, C {gw(—1),g.(1)}.
Moreover, if w = u3 with u € A", then OT,, consists of a single point.

(ii) For n € N the set of all boundary points of all n-tiles is equal to
V" i={gu(0): u e A", 0<m <n-—1}.

Proof. We prove this by induction on n = ¢(w) € N.
For n =1 the statement follows from (B.8]) and

(5.11) 0=g1(1) = g2(—1) = gs(—1).

Suppose the statement is true for all words of length n € N, and let w € A™+!
be arbitrary. Then w = uk with u € A™ and k € A = {1,2,3}. The map g, is a
homeomorphism that sends T onto T, and the 1-tile T, onto the (n + 1)-tile Ty,
for £ = 1,2,3. Tt follows from (E8), (59), and (BI0) that the sets Typ \ {g.(0)},
¢ € {1,2,3}, are pairwise disjoint, but that every neighborhood of g, (0) contains
points from each of these sets. This implies that g, (0) is a boundary point of T,
for £ = 1,2,3. In particular, ¢,(0) € 9T, = Tk, and so IT,, contains at least
one point.

Let p € 9T, be arbitrary. Then p € T,, C T,, is contained either in the interior
of T, or in dT,. In the first case, each sufficiently small neighborhood U of p is
contained in T, = T,1 U Ty, U Ty3; so U must contain a point in T, \ T,,, because
p € OT,. Applying the homeomorphism g, !, we see that every neighborhood of
9. t(p) € Ty contains points from the set T \ Ty, and so g, *(p) € OTx. Hence
9. ' (p) = 0 by (58), and so p = g,(0).

In the second case, p € 9T, C {gu(—1),9.(1)}, since is true for T, by
induction hypothesis. Lemma IBEI shows that each 1-tile contains at most one
of the points —1 and 1; namely, Ty contains only —1, Ty contains only 1, and Tj
contains neither —1 nor 1. We conclude that T,, = g, (T) contains at most one
of the points g, (—1) and g¢,(1) (in its boundary). So 9T, consists of at most two
points, namely the point g,(0) and at most one of the points g,(—1) and g,(1).
More precisely, our discussion shows that we have the following alternatives for
ke {1,2,3}.

If £ = 1, then we have 9T, = 9Ty1 C {gu(—1),9.(0)}. Since

9u(=1) = gu(91(=1)) = gw(=1) and g,(0) = gu(91(1)) = gu (1),

it follows that 0T, = 0Ty1 C {gu(—1), 9u(0)} = {guw(—1), guw(1)}.
If £ =2, then 0T, = T2 C {gu(0), gu(1)}. Now

9u(0) = gu(92(—1)) = guw(—1) and gu(1) = gu(92(1)) = guw(1),
which implies 0Ty, = 0Tw2 C {94(0), 9u(1)} = {guw(—1), 9w (1)}
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If & = 3, then 9T, = 9Tus = {9.(0)}. In particular, T,, has precisely one
boundary point in this case. Moreover, we have

9u(0) = gu(g3(=1)) = guw(-1),

and so 0T, = 0Ty3 = {g.(0)} = {guw(—1)}.

This shows that the statement is true for the tile T,,. This completes the induc-
tive step and follows.

For n € N we denote by

B" = U OT,,
weA™

the set of all boundary points of all n-tiles. We have to show that B™ = V. We
prove this by induction on n € N.

Let n = 1. Then (5.8)) shows that B! = {0} = {gg(0)} = V! as desired.

Suppose the statement is true for some n € N. To show that it is also true for
n + 1, we first verify that V*+! ¢ B"*!. To this end, let p € V**! be arbitrary.
Then p = ¢,(0) for some u € A™ with 0 < m < n. If m = n, then p is in the
boundary of the (n + 1)-tiles Ty, Ty2, Tus, as have seen in the proof of So
p € Bl

If m <n-1, we have p € V", and so p € 9T, C T,, for some w € A" by
induction hypothesis. By (510) there exists k € {1,2,3} such that p € Ty, C T,.
Then every neighborhood of p contains points in T\ T,, C T \ Ty. This implies
that p € 0Tk, and so p € B™*1 also in this case. Thus V**+1 ¢ B+l

To see the reverse inclusion B"+! € V**1 let p € B"*! be arbitrary. Then p is
a boundary point of an (n + 1)-tile, say p € 9Ty, where u € A" and k € {1, 2, 3}.
In the proof of |(i)| we have seen that either p = ¢,,(0) or p € 9T,. In the first case,
p € V"1 while in the second case, p € V* C V**! by induction hypothesis. This
shows B"t! Cc V**! and so B! = y"+l,

This completes the inductive step and the statement follows. O

For n € N let V" be as in Lemma and define
V= U V" ={g,(0) : w € A*}.

neN
Then V* = [Jycx- 0X (note that for the only 0-tile X = T, we have 0X = ()). So
V* is equal to the set of all boundary points of all tiles of T.
Lemma 5.3 (Branch points of T). The following statements are true:
(i) The set V* is equal to the set of all branch points of T.
(ii) The points g, (0), w € A*, are all distinct. More precisely, if v,w € A*,
v # w, then
195(0) = 9w (0)] Z min{2~ "), 274"} > 0
with C(2) independent of v and w.
(iii) If w € A* and By, B2, Bs are the three branches of the branch point
p = guw(0) of T, then with suitable labeling we have
9w1(T) C B1, gu2(T) C Bz, gus(T) = Bs.
In particular, Hy(p) = 274w,
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Proof. This was proved in [BT21, Lemma 4.7].
(i)] We have ¢1(0) = —1, g2(0) = 3, g3(0) = %, and so |gx(0)| = L for ke A =
{1,2,3}. It follows that if u € A* and k € A are arbitrary, then

19u(0) = guk (0)] = |9u(0) — gu(gx(0))] = 27 |gx (0)]
— 27Z(u)71'
Soifu=a;...a, € A" with n € N, then
(512) |gu(0)‘ > |ga1 (0)| - |ga1 (0) —Ya;...an, (0)|

1 =
> 9 Z|ga1-~a1 (0) = 9as...a;a;4: (0)]
j=1

1 n—1
=5 d ot =or =27,
j=1

Now let v,w € A* with v # w be arbitrary, and let © € A* be the longest
common initial word of v and w. Then v = wv’ and w = ww’ with v/,w’ € A*,
where either v/ or w’ is the empty word, or both v" and w’ are non-empty, but have
a different initial letter. Accordingly, we consider two cases.

Case 1. Either v/ = 0 or w’ = ). We may assume w’ = (). Then v' # (), and so
£(v) > £(w). Moreover, by (G.12) we have

190(0) = 9w (0)| = [gu (g0 (0)) = gu(gu (0))]
— 27€(u)‘gv/ (0)| > 272(11,)7[(1)')
=274 = min{2~¢) 2=¢w)y,

Case 2. v',w’ # (. Then v' and w’ necessarily start with different letters, say
v' = kv"” and w' = mw” with k,m € A={1,2,3}, k # m, and v"",w” € A*. Then
v (0) € Ty and g, (0) € T,,, i.e., these points are contained in distinct 1-tiles.
Then Lemma [11[(iii)] and (512 imply that

190/ (0) — 9ur (0)] 2 19w ()] + e O)
Z 27((’0') _|_ 27@(10/) 2 min{sz(v/)’ 27@(10/)}
with C(2) independent of v and w. We conclude that
190(0) = 9w(0)| = |9u (g (0)) = gu(gu (0))]

=279,/ (0) = gur (0)|

> 9—4(u) min{gff(v/), Q*Z(w')}

= min{274) 274w,
The statement follows.

If w € A*, then p = ¢,,(0) is a branch point of T,, with the three (distinct)
branches T,,1, T2, Tws. Hence there exist unique distinct branches By, By, B3 of
9w (0) in T such that Ty, C By for k = 1,2,3 (see Lemma. By Lemma
we have 0T, C {gw(—1), gw(1)}. Moreover, g,,(—1), gw(1) & T3, since —1,1 ¢ Ts.
Thus T3 NOT, = 0. Hence it follows from Lemma that T3 is actually a
branch of p = ¢,,(0) in T, and so T,,3 = Bs. The first part of the statement follows.
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For the second statement note that
diam(By,) > diam(T,;) = 274
for k = 1,2, while
diam(Bs) = diam(T,3) = 274,
It follows that
Hrp(p) = min{diam(By) : k € {1,2,3}} = 274®),

as desired. O

Proposition 5.4. The continuous self-similar tree T is uniformly branching, i.e.,
its branch points are uniformly relatively separated and uniformly relatively dense.

Proof. Let p,q € T be two distinct branch points of T. Then p = ¢,(0) and
q = gu(0) with v,w € A*, v # w, by Lemma Moreover, we have

P — gl = 19v(0) — 9 (0)]
> min{2~4v) 274wy by Lemma E3[(iD)]
= min{Hr(g,(0)), Hr(g.,(0))} by Lemma m
= min{Hr(p), Hr(q)}.

Here the implicit constant is independent of p and ¢. This shows that T has branch
points that are uniformly relatively separated.

To establish the other property, let z,y € T, x # y, be arbitrary. Since
diam(T) = 2, and so 2 > |z — y| > 0, there exists a unique number n € N such
that 27"%2 > |z — y| > 27" F!. Then we can find w € A* with £(w) = n such that
x € T,. Since

diam(T,,) = diam(g,(T)) = 27" < |z -y,
we then have y ¢ T,,. So as we travel from x to y along the arc [z,y] that joins
z and y in T, there is a last point p € [z,y] N T,. Then (p,y] is non-empty and
disjoint from T, and so p € dT,,. By Lemma we have p € V" C V*, and
so p is a branch point of T by Lemma |53_|

Since p € V™, we know that p = ¢,(0) for some v € A* with 0 < ¢(v) <n —1.
Now Lemma implies that

Hry(p) = Hr(g,(0)) = 27 > 2780 =97 < |z —y|.

Again the implicit multiplicative constant is independent of the choices here. This
shows that the branch points of T are also uniformly relatively dense. The statement
follows. |

Note that Proposition [5.4] together with Lemma [£.3] and Lemma essentially
shows the “only if” implication in Theorem [[.41

Miscellaneous results on tiles in T. We conclude this section with some auxil-
iary results, which will be used in the proof of the other implication of Theorem [T.4]
(namely in the proof of Lemma [T3)).

Let V C T be a finite set of branch points of T. Recall from Section Blthat V then
decomposes T into a set of tiles X. Note that such a tile X € X is not necessarily
in X*, i.e., a tile of T as defined in (55). For example, if V = {—1/2}, then the
decomposition X induced by V consists of the sets X7 = T1;, Xo = T1o U Ty U Ts,
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and X3 = Ty3. Here X5 is not a tile of T. This can be seen from Figure 4 which
shows the relevant 2-tiles.

FIGURE 4. The CSST and some of its 2-tiles

We now consider the special case when such a decomposition of T produces tiles
as in (B.7)).
Lemma 5.5. Let V C T be a finite set of branch points of T, and let X be the set

of tiles in the decomposition of T induced by V.
Suppose that X C X*. Then the levels of tiles in X satisfy

UX) < #V for each X € X.
If, in addition, V # 0, then we have £(X) > 1 for each X € X.

The requirement X C X* means that each X € X is a set of the form X =T,
for some w € A* as in (5. Accordingly, the level ¢(X) = {(w) € Ny of X is well
defined.

In this context, the concept of a tile has two different meanings. Namely, a tile
can be an element of the set of tiles X in the decomposition of T induced by the
given finite set V, or a tile can be an element of X* as defined in (&.71). If we require
X C X*, then every tile in X is a tile in X*, but not every tile in X* is necessarily a
tile in X. An n-tile, or a tile (without further specification), is always understood
to be in X*. It will be stated explicitly if we refer to a tile in X.

Proof. The second statement is immediate. Indeed, the only tile of level 0 is X =
T. If V # (), then for each tile X € X C X* we have X # T as follows from
Lemma B3[(A)} and so £(X) > 1.

Let us now prepare the proof of the first statement. Recall that if m,n € Ny
with n > m, then each n-tile X € X* is contained in an m-tile Y € X*. We also
know by (B.8) that the point 0 € T belongs to the boundary of each 1-tile, namely
Tl; TQa T3'

Claim 1. Let X € X* be a tile with 0 € X. Then either 0 € 0X or X =T.
Indeed, suppose n = £(X) € Ny is the level of a tile X € X* with 0 € X. Assume
that 0 is contained in the interior of X. Recall that we regard T as the ambient
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space here, as before. If n > 1, there exists a 1-tile Y D X. Then 0 is an interior
point of Y, but we know that 0 € 9Y. This is a contradiction. So 0 € X unless
n = 0. In the latter case, X = T and 0 ¢ JT = ). Claim [ follows.

We are now ready to prove the first (i.e., the main) statement in the lemma by
induction on #V € Nj.

To start the induction, assume #V = 0. Then V = () and X = T is the only tile
in X. Then clearly ¢(X) =0 < #V =0, as desired.

For the inductive step we assume that #V > 1 and that the statement is true
for all decompositions of T into tiles induced by sets of branch points with fewer
than #V points.

Claim 2. We have 0 € V.
To see this, note that X is a covering of T (see Lemma [3.3]|(vii)). Hence there
exists a tile X € X with 0 € X. By Claim [II there are two possible cases. If

X =T, we have V = () contradicting our assumption #V > 1. Thus we must have
0 € 90X CV (see Lemma B:{I, which implies 0 € V, as desired. Claim 2] follows.

We know that 0 splits T into the three branches Ty, Ty, T3. Since 0 € V by
Claim 2] each tile X € X is contained in one such branch T}, (see Lemma B3[(1)).
We now want to apply the induction hypothesis to these subtrees Ty.

For this we fix k € {1,2,3}, and let

Vi, =Vn int(Tk) = (V N Tk) \ {0}

This set consists of branch points of Ty as follows from Lemma and induces
a decomposition X of the tree Ty into tiles. Indeed, X € X} if and only if X €
X C X* and X C Ty (see Lemma IBZI. In particular, X C X*. Moreover,
#V; < #V, since 0 € V is not contained in V.

The map g, *: Ty — T is a homeomorphism that sends (n + 1)-tiles contained

in T}, to n-tiles of T (see (5.1) and (5.5)). Let Vj = g ' (Vi). The set Vy consists
of branch points of T and induces the decomposition Xj, = g; ' (Xy) = {g;, " (X) :
X € Xi} of T into tiles. Then X; C X*. Since #V), = #V; < #V, we may apply
the induction hypothesis to Vi and conclude

UX) < #V) = #V), < #V -1
for each X € Xk. If X € Xi, then g,;l(X) € 3~§k and so

U(X) =g, (X)) + 1 < #V.

Since each X € X is contained in one of the sets X with k € {1, 2,3}, the inductive
step follows. This completes the proof. O

In our construction in Section[7] the 2-tiles containing one of the leaves —1 or 1
of T will play a special role. We record the following statement related to this.

Lemma 5.6. The tile X = Tq; is the only tile X € X* with —1 € X and —1/2 €
0X. The tile X = Tag is the only tile X € X* with1 € X and 1/2 € 0X.

See Figure [ for an illustration.

Proof. We will only prove the first statement. The second statement is proved along
very similar lines and we omit the details.

First we consider Tq;. Note that —1 = g11(—1) € ¢11(T) = Ty1. Since —1 is
a leaf and not a branch point of T, it is not a boundary point of Ty, because by
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Lemma and Lemma IEI{I the boundary point of any tile is a branch point
of T. So g11(—1) = —1 ¢ 9Ty;. Hence —1/2 = g¢11(1) € 9Ty;, as follows from
Lemma Thus Ty, is a tile with —1 € Ty and —1/2 € 9Ty;.

Now suppose X € X* is any tile with —1 € X and —1/2 € X, and let n € Ny
be the level of X. Then n # 0, 1, because the 0-tile T has empty boundary and the
1-tiles Ty, Ty, T35 do not contain —1/2 in their boundaries (see (B.8)).

We have diam(X) = 27" > | — 1/2 — (—1)| = 1/2, which rules out n > 3. It
follows that n = 2, and so X must be a 2-tile, say X = Ty, with k,£ € {1,2,3}.
Then —1 € X = Typ C Ty. Since To and T3 do not contain —1 (see Lemma|5:[|7
we have k = 1, and so X must be one of the 2-tiles Ty, Ty, Ty3.

The homeomorphism g; *: T; — T sends these 2-tiles that are all contained in
T, to Ty, Ts, T3, respectively. Since —1 = g;*(—1) € g; (X) and —1 ¢ To, T3, we
must have gl_l(X) = T; and so X = Ty;. Hence X = Ty; is indeed the only tile
X € X* with —1 € X and —1/2 € 0X. O

6. SUBDIVISIONS OF QUASICONFORMAL TREES

The results in the previous two sections give the “only if” implication in Theo-
rem [[4]

In the following, we assume that T is a uniformly branching trivalent quasicon-
formal tree. We need to show that such a tree T is quasisymmetrically equivalent
to T. By rescaling the metric on T if necessary, we may assume that diam(7") = 1
for convenience.

Recall from Section [ that a finite set V. C T that does not contain any leaf of
T decomposes T into a set of tiles X. These tiles are subtrees of T. We want to
map them to tiles of T, i.e., elements of X* (see (B7)). By Lemma each
tile in T distinct from T itself has one or two boundary points. For this reason,
we are interested in decompositions such that every tile X € X has one or two
boundary points. Accordingly, we call X an edge-like decomposition of T if V = ()
and X = {T'} (as a degenerate case), or if V # () and #0X < 2 for each X € X.
Note that in the latter case 1 < #0X < 2 by Lemma We say that a
tile X € X in an edge-like decomposition X of T is a leaf-tile if #0X = 1 and an
edge-tile if #0X = 2.

The reason for this terminology is that in an edge-like decomposition X of T
the tiles in X satisfy the same incidence relations as the edges in a finite simplicial
tree. Here the leaf-tiles in X correspond to edges of the simplicial tree that contain
a leaf and the edge-tiles in X to edges that do not contain a leaf of the simplicial
tree.

We now set V¥ = (), fix § € (0,1), and for n € N define

(6.1) V" ={peT: pisa branch point of T with Hr(p) > 6"}.

Recall that the height Hp was defined in (L2). Clearly, {V"} is an increasing
sequence as in (3] and none of the sets V" contains a leaf of T. We will mo-
mentarily see that each set V™ is finite. We denote by X" the set of tiles in the
decomposition of T induced by V™. Then the sequence {X"} forms a subdivision
of T in the sense of Definition [ZTT] (see the discussion after (33])).

As we will see, this subdivision {X"} has some good properties, in particular
it is a quasi-visual subdivision of T' (see Definition 212). By choosing ¢ € (0,1)
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sufficiently small, we can also ensure that the points in V**! separate the points
in V™ in a suitable way. We summarize this in the following statement.

Proposition 6.1. Let T be a uniformly branching trivalent quasiconformal tree
with diam(T) = 1. Let 6 € (0,1), and {V"}pen, be as in (61). Then the following
statements are true:
(i) V™ is a finite set for each n € Ny.
(il) {X"}nen, 15 a quasi-visual subdivision of T.
Letn € Ng, X € X", and Vx = V" nint(X). Then we have:
(iii) #0X < 2, and if we denote by Xx the decomposition of X induced by Vx,
then Xx is edge-like.
(iv) There exists N = N(&) € N depending on 0, but independent of n and X,
such that #Vx < N.

If § € (0,1) is sufficiently small (independent of n and X ), then we also have:
(V) #VX > 2.
(vi) If #0X =2 and 0X = {u,v} C T, then (u,v) N Vx contains at least three
elements.

We will see in the proof that {X"} is in fact a quasi-visual subdivision that
satisfies the (stronger) conditions of Lemma[Z4] The first part of implies that
X" is an edge-like decomposition of the whole tree T for each n € Ny. It follows
fromthat if § € (0,1) is small enough, then we have V" # () for each n € N. One
can show based on that in one has in fact a bound of the form #V" < C"
for all n € N with some constant C' > 1.

Proof. This is clear for n = 0, since V? = {J.
Let n € N, and u,v € V" be distinct points. Since T has uniformly relatively
separated branch points, by definition of V" we have

(6.2) |lu —v| 2 min{Hr(u), Hr(v)} > §",

where C(2) is the constant in Definition [[T] for the tree T. Since T is compact,
([62) implies that V™ is finite.

We now first prove before we establish To this end, consider n € Ny,
X € X", Vx = V™1 nint(X), and, as in the statement of let Xx be the
decomposition of X induced by V.

To show that #0X < 2, we argue by contradiction and assume that there are
three distinct points x,y,z € X C X. Then z,y,2z € X C V"™ by Lemma BEI
We now consider the center of z,y, z (see Lemma , namely the point c € T
with

{c} =[z,9] N[y, 2] N[z 2]
Since X is a subtree of T'; we have ¢ € X. By Lemma this is a branch point
of T' with
Hy(c) > min{Hr(x), Hr(y), Hr(z)} > 6™

So ¢ belongs to V™. At least two of the three points z, y, z are distinct from c,
say 2,y # ¢. Then ¢ € (x,y) and so z and y cannot lie in the same tile X as
follows from Lemma B:I:I and Lemma IBEI This is a contradiction, showing
that indeed #0X < 2.

Now consider a tile Y € Xx. Then Y C X, and Y € X"*! as follows from
Lemma BZI If OxY denotes the relative boundary of Y as a subset of X, then
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OxY C 9Y (see Lemma IBZI the latter inclusion is actually true in every topo-
logical space). Since Y € X"t we have #9Y < 2 by the previous considerations
(applied to Y'), and so #9xY < 2. This means that the decomposition X x of X
induced by Vx is edge-like, and follows.

We now show that {X"} is a quasi-visual subdivision of T. As we have
already discussed in the beginning of this section, {X"} is a subdivision of T" in the
sense of Definition .11l It remains to show that it is a quasi-visual approximation
(as in Definition [Z]). For this we will verify conditions |(i)| and in Lemma 24
Fix some n € Ng.

Claim 1. diam(X) =< §” for all X € X", where C(x) is independent of n, X, and 4.

Let X € X" be arbitrary. If n = 0, then X =T and diam(T) = 1 = §°. So the
statement is obviously true in this case.

Now assume n > 1, and let u,v € X be arbitrary distinct points. Then (u,v) N
V" = (; otherwise, u and v could not be contained in the same tile X as follows
from Lemma BB] Since T" has uniformly relatively dense branch points, there is
a branch point p of T with p € (u,v) and

Hr(p) 2 |u—wvl,

where C(2) only depends on the constant in Definition for T (to see this,
choose a branch point p € [v/,v'] C (u,v) with v/,v" € (u,v) very close to u,v,
respectively). Then p ¢ V™, and so

6" > Hr(p) 2 |u—v|.

It follows that diam(X) < §" with C'(<) independent of n, X, and 4.

In order to show an inequality in the opposite direction, recall that #0X < 2 by
and that 0X C V" by Lemma B3[(ii)]

If 0X =0, then X =T and so diam(X) =1 > 6™

Assume 0X # (). If OX consists of one point p € T, then p € V™ and so p is
a branch point of T with Hr(p) > §™. In this case, X is a branch of p in T (see
Lemma B:{I, and so

diam(X) > Hr(p) > ™.

If 0X consists of two distinct points u,v € V™, then by (6.2]) we have
diam(X) > |u —v| 2 ",

where C'(2) is the constant from Definition [T
Claim [ follows, and so condition |(i)[in Lemma 2.4]is true.

Claim 2. dist(X,Y) 2 6" for all XY € X" with X NY = 0, where C(2) is
independent of n, X, Y, and 4.

To see this second claim, fix arbitrary tiles X, Y € X" with X NY = (. We can
find points € X and y € Y with |z — y| = dist(X,Y"). Now consider the unique
arc [z,y| joining = and y in T. As we travel from « € X to y ¢ X along [z,y],
there is a last point u € [z,y] with « € X. Then (u,y] is non-empty and disjoint
from X which implies that v € 0X C V™. As we travel from u € Y to y € Y along
[u,y] C [z,y], there is a first point v € [u,y] with v € Y. Then v € Y C V" by a
similar reasoning.

The points u,v € V™ are distinct, because v € X, v € Y, and X NY = 0. Tt
follows that |u — v| 2 6™ by (62). Since T is a quasiconformal tree and hence of
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bounded turning, we have diam[z,y] < |z — y|. This implies that
dist(X,Y) = |z — y| < diam[z,y] > |u —v| 2 ™.

Here all implicit multiplicative constants are independent of n, X, Y, and §. We
have shown Claim [, which is condition in Lemma 2.4

Lemma [2Z4lnow implies that {X™} is indeed a quasi-visual subdivision of T', and

(i1)| follows.

By ([6.2) two distinct points u,v € Vx C V™! have separation |u — v| >
§"T1. On the other hand, Vx is contained in X with diam(X) =< ¢", as we saw in
Claim [l Since T is doubling, it follows that there is a constant N € N with

#Vx < N.

Here N depends on ¢, the doubling constant of 7', and the constants in ([6.2)) and
Claim [ (which depend on the constants in Definition [Tl and Definition [2]), but
not on n and X.

Having verified [(i)H(iv)|for any ¢ € (0, 1), we now prove the remaining statements
that require us to choose § sufficiently small.

By Claim [ we have diam(X) < 6" and diam(Y) =< 6"*! for each Y €
X" *1 Here the constant C'(x<) depends only on the constants in Definition [ and
Definition [[L2] as we have seen. This implies that there exists a constant d; € (0,1)
independent of n and X with the following property: if 0 < § < §; (as we now
assume), then

(6.3) diam(Y) < 1 diam(X)

for all Y € X"+1L,

It follows from Lemma BEI that the decomposition Xx of X induced by
Vi is given by all tiles Y € X" with Y € X. Then clearly Vx # (), because
otherwise Xx = {X} C X"*! which is impossible by ([6.3).

To show that #Vx > 2, assume on the contrary that Vx = V"l N int(X)
contains only one point p. This is a branch point of 7" and hence a branch point
of X, because p € int(X) (see Lemma B2[(A)). Then the decomposition Xx of
X induced by Vx consists precisely of the three branches Yi,Ys,Ys5 of p in X.
Moreover, these branches are tiles in X”*! and share the common point p. Then

diam(X) < 2max{diam(Y%) : k € {1,2,3}},

but this is impossible by ([6.3]).

We conclude that if 0 < § < §;, then necessarily #V x > 2, and follows.

Now assume that #9X = 2 and 0X = {u,v}. Then u and v are distinct
points in 0X C V™, and so |u —v| 2 6™ by (62). On the other hand, the points in
Vol 0 [y, v] divide [u,v] C X into non-overlapping arcs. Each of these arcs lies in
a tile in X!, and so has diameter < 6”*! by Claim [l If there are k € N of these
arcs it follows that

6" < |lu—v| < kot

where the constants C'(<) do not depend on n, X, or . If ¢ is small enough,
say 0 < § < dg, where do € (0,1) can be chosen independently of n and X, then
necessarily k > 4, and so V"1 N (u,v) contains at least three elements. Note that
(u,v) € X\ 0X = int(X). Thus Vx N (u,v) = V"1 N (u,v) contains at least three
elements, and follows.
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If we choose 0 < § < min{dy, 82}, where 1,8, € (0,1) are the constants from [(v)]
and respectively, then and are both true. This finishes the proof. [

7. QUASI-VISUAL SUBDIVISIONS OF THE CSST

Let T be a uniformly branching trivalent quasiconformal tree. Then it is possible
to show that for every quasi-visual subdivision of T there is an isomorphic quasi-
visual subdivision of the CSST T. From this one can deduce the quasisymmetric
equivalence of T and T by Proposition 213

We will actually prove a slightly less general statement, namely we restrict our-
selves to a quasi-visual subdivision {X"} of T" as in Proposition This is formu-
lated in the following proposition, which is the main result of this section.

Proposition 7.1. Let T be a uniformly branching trivalent quasiconformal tree
with diam(T) = 1. Suppose V", for n € Ny, is as in (@), with § € (0,1) so small
that all the statements in Proposition are true for the decompositions X" of T
induced by the sets V™. Then there exists a quasi-visual subdivision {Y™}nen, of
T that is isomorphic to the quasi-visual subdivision of {X"}nen, of T

Recall that the notion of isomorphic subdivisions was based on (Z14]) and (Z.I5]).
By applying Proposition 2.13] we see that there exists a quasisymmetric homeomor-
phism F': T — T that induces the isomorphism between the quasi-visual subdivision
{X"} of T and the quasi-visual subdivision {Y"} of T. In particular, " and T are
quasisymmetrically equivalent. This gives the “if” implication in Theorem [[.4l

The proof of Proposition [Tl requires some preparation. We first study homeo-
morphisms that send tiles in a decomposition of T to tiles in T.

Decompositions of trees and tile-homeomorphisms. By Proposition
the decompositions X" of T as in Proposition [l are edge-like in the sense that for
each tile X € X" its boundary is the empty set (only if X = T), or contains one
point (then X is a leaf-tile), or two points (then X is an edge-tile). The points in
0X play a special role. They are leaves of X and the only points where X intersects
other tiles of the same level (see Lemma IBEI and . Accordingly, we say
that the points in 0X are marked leaves of X.

Recall that X € X" (viewed as a tree) has an edge-like decomposition X x
induced by Vx = V"™ Nint(X) (see Proposition BI[(iii)). We want to find a
decomposition of T into tiles in X* that is isomorphic to Xx and respects the
marked leaves. To this end, we consider —1 or 1 as a marked leaf of T if #0X =1,
or both —1 and 1 as marked leaves of T if #0X = 2.

To formulate a corresponding statement, we consider an arbitrary trivalent tree
T (instead of X) with a dense set of branch points. The following theorem allows
us to construct homeomorphisms between T and T that map leaves in a prescribed
way.

Theorem 7.2. Let T be a trivalent metric tree whose branch points are dense in
T. Then T is homeomorphic to T. Moreover, if p, q, T are three distinct leaves of
T, then there exists a homeomorphism F: T — T such that F(p) = —1, F(q) = 1,
F(r)=1.

The first part follows from [BT2Il Theorem 1.7] and the second part from
[BT21l Theorem 5.4]. Note that —1, 1, ¢ are leaves of T (see the discussion af-
ter [BT21I], Theorem 5.4]; that —1 and 1 are leaves of T was already pointed out in
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Lemma IEII. If T is as in Theorem [Z.2] then T is homeomorphic to T, and so T'
has at least three leaves (actually infinitely many). The second part of the theorem
says that any three leaves of T can be sent to the prescribed leaves —1, 1, i of the
CSST by a homeomorphism between T' and T. We will apply this in a weaker form
where we send at most two leaves of T' to —1 and 1.

Now let X be an edge-like decomposition of T induced by a finite set of branch
points V of T. We say that a homeomorphism F': T'— T is a tile-homeomorphism
(for X) if F(X) € X* (see (L.1)) for each X € X. Then F maps tiles in T to tiles
in T, and so the level £(F (X)) (of F(X) as a tile of T) is defined for each X € X.
The following statement is a basic existence result for tile-homeomorphisms.

Lemma 7.3. Let T be a trivalent metric tree whose branch points are dense in
T. Suppose V. C T is a finite set of branch points of T that induces an edge-like
decomposition of T into the set of tiles X.

We assume that either T has no marked leaves, one marked leaf p € T, or two
marked leaves p,q € T, p # q. If V # 0, we also assume that the marked leaf p
(when present) lies in a leaf-tile P € X, and the other marked leaf ¢ (when present)
lies in a leaf-tile Q € X distinct from P.

Then there exists a tile-homeomorphism F: T — T for X such that the following
statements are true:

(i) F(p) = —1, or alternatively, F(p) = 1, when T has one marked leaf p; or
F(p) = -1 and F(q) =1, when T has two marked leaves p and q.

(ii) If T has one marked leaf p and #V > 2, then we may also assume that F
satisfies L(F(P)) = 2.

(iii) If T has two marked leaves p,q € T and [p,q] "'V contains at least three
points, then we may also assume that F satisfies L(F(P)) = ((F(Q) = 2.

(iv) For each X € X we have ((F(X)) < #V, and, if V #£ 0, also L(F(X)) > 1.

If we are in the situation of or the homeomorphism F' sends the leaf-
tiles containing the marked leaves of T to 2-tiles in T. Actually, in we have
F(P) = Ty; or F(P) = Ta; depending on whether F(p) = —1 or F(p) = 1, and
in we have F(P) = Ty; and F(Q) = Taz. It is important that these images
of P and @ have fixed diameter 1/2. This (seemingly technical) condition will be
crucial to ensure that the subdivision of T given in Proposition [([1]is quasi-visual.
In particular, we use it to show that neighboring tiles have comparable diameter, as
required by Definition IZEI This is the reason why we constructed decompositions
of T satisfying the corresponding conditions and in Proposition

The tile-homeomorphism F: T — T in Lemma [7.3]is merely a convenient device
that allows us to transfer information on leaves and tiles from 7" to T. The main
point is that we can find a decomposition of T into tiles (in X*) isomorphic to the
given edge-like decomposition of T'.

Proof of Lemma [[3]
Depending on the number of marked leaves of T' and the desired normalization
for F', we distinguish several cases in the ensuing discussion:

Case 1. T has no marked leaf.
Case 2a. T has one marked leaf p, and the desired normalization is F'(p) = —1.

Case 2b. T has one marked leaf p, and the desired normalization is F(p) = 1.
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Case 3. T has two marked leaves p and ¢, and the desired normalization is F'(p) =
—1 and F(q) = 1.

We now prove the statement by induction on #V > 0. In the proof, Case [ is
the easiest to handle, since we do not have to worry about normalizations, but we
will have to make some careful choices in Cases 2al 2B [3] due to the presence of
marked leaves.

Suppose first that #V = 0, and so V = . We invoke Theorem to obtain a
homeomorphism F': T'— T, where we can impose the normalization F'(p) = —1 or
F(p) = 1 when T has one marked leaf p (Cases 2al and 2B), or the normalization
F(p) = —1 and F(q) =1 when T has two marked leaves p and ¢ (Case ().

Then F' is a tile-homeomorphism for X, since there is only one tile X = T7 it is
mapped to F'(T) = T, which is a tile of T (the 0-tile).

For the inductive step suppose #V > 1 and that the statement is true for all
marked trees homeomorphic to T with decompositions induced by sets of branch
points with fewer than #V elements.

Since #V > 1, we have V # (). We choose a (branch) point x € V. If T has
marked leaves, then they are distinct from the branch point x. Moreover, if T is
marked by two leaves p and ¢ (Case B]), we may assume in addition that they lie in
distinct components of T\{z}. Indeed, we may then choose any point z € (p,¢q)NV.
The latter set is non-empty as follows from the fact that p and ¢ are contained in
distinct leaf-tiles P, @ € X by our assumptions.

Let By, By, B3z be the branches of x in T. Here we may assume that p € By
in Case[2al p € By in Case ROl and p € By, ¢ € By in Case[Bl Note that these
branches are precisely the tiles in the decomposition of T' induced by {z}.

The idea for the proof is now to apply the induction hypothesis to each of the
trees By with suitable markings and copy the image of the resulting homeomor-
phism into the subtree Ty of T by the map g (as in (BI)). If we assemble these
maps into one, we obtain the desired homeomorphism F'.

First, note that Lemma B:{I implies that each branch By is also a trivalent
metric tree with a dense set of branch points. The (possibly empty) set

Vi =VnNint(Bx) = VN (B \ {z})

consists of branch points of By, and #V < #V (since Vi, C V \ {z}).

The set Vi, induces a decomposition of By. Its set of tiles X consists precisely
of the tiles X € X with X C By (see Lemma [B4|(iii))). We denote the relative
boundary of X € X;, in By, by 9y X. Then, using Lemma BAI[(iv)] we have
(7.1) X = 0X \ {z},

and in particular, #0, X < #0X < 2 for each X € Xj. This implies that Xy, is an
edge-like decomposition of By.

Since € 0By, this point is a leaf of By by Lemma Moreover, each
marked leaf of T' (when present) is a leaf of the unique branch By that contains it,
as follows from Lemma We now mark:

B; by z and, in addition, by p in Cases [2al and [3
B, by z and, in addition, by p in Case 2B, and by ¢ in Case [3
B3 by x.
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This means that each marked branch By, is marked by its leaf x and in addition
by any marked leaf of T that By may contain.

Claim. Let k € {1,2,3} and suppose By, is marked by its leaf z and possibly one
other of its leaves as indicated. If Vi # (), then z lies in a leaf-tile X € X,,. If By
has another marked leaf, then this leaf lies in a leaf-tile Y € X, distinct from X.

In other words, each marked branch Bj with the decomposition Xj induced by
V. satisfies the hypotheses of the lemma and we can apply the induction hypothesis.

To prove the Claim, first observe that there exist precisely three distinct tiles
X1, X5, X3 € X that contain the triple point z. With suitable labeling we have
X C By, for k=1,2,3 (see LemmaBB].

Fix k € {1,2, 3} and suppose Vi, # () as in the Claim. We now set X := X, € Xj.
Then 0X\{z} = 0, X # 0 by (TI) and LemmaB3[(iii)} On the other hand, z € 0X
by Lemma B:{I and #0X < 2, because X is an edge-like decomposition of 7.
We conclude that X contains precisely two distinct points, one of which is . So
X is an edge-tile in X. Then 0, X = 0X \ {z} is a singleton set, and so X is a
leaf-tile in X that contains x. This shows the first part of the Claim.

Suppose Bj has another marked leaf apart from x. This is only possible if
k € {1,2}. We assume k = 1; the case k = 2 is very similar and we skip the details.

Then p is a marked leaf of By = B;. By our assumptions, p is contained in a
leaf tile P € X. By Lemma B:{I the tile P is contained in precisely one of the
branches of z in T'. This branch must be B;, because p € P is belongs to By, but
not to By or B3. We conclude that P C B; and so P € X;.

Since O, P # () and #0, P < #0P = 1, the set O, P consists of a single point.
This means P is a leaf-tile in X that contains p. We have P # X, because X is an
edge-tile and P is a leaf-tile in X. So if we set Y = P, then we see that the second
part of the Claim is also true.

By the Claim we can apply the induction hypothesis to By, marked by leaves as
above, and its edge-like decomposition Xy, induced by Vy, (recall that #V < #V).
Then we can find tile-homeomorphisms Fy: By — T for X, that are normalized by

Fi(z) = 1, and, in addition, F}(p) = —1 in Cases 2a and 3,
Fy(x) = —1, and, in addition, F5(p) = 1 in Case 2b,

Fy(x) = —1, and, in addition, F5(¢) = 1 in Case 3,

F3(x) = —1.

Recall that these cases were defined at the beginning of the proof. They refer to the
markings of 7' (and not of By). Case[llis included here, because then the statements
about p and ¢ are void. These normalizations are modeled on how ¢; v 9y L g3 !
map Ty, Ty, T3, marked by 0 and possibly —1 and/or 1, to T (see Figure [)).

We now define

(7.2) F:T = By UByUBs — T by setting F(z) = gi(Fx(2))

if z € By, for k € {1,2,3}. This is well-defined, because z = x is the only point
contained in more than one branch and for which multiple definitions apply; but
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we have
q(Fi(z)) =g (1) =0,
g2(Fa()) = g2(—1) = 0,
g3(F3(x)) = g3(=1) =0

Since F|By, = gk o F}, is continuous for k = 1,2, 3, the map F' is continuous. On
each set By the map F|Bj = gi o F}, is injective. Moreover, F' sends the pairwise
disjoint sets

{z}, Bi\{z}, B2\ {z}, B3\ {}

onto the pairwise disjoint sets

{0}7 I’]I‘l \ {0}7 T? \ {0}7 T?) \ {O}u

respectively.

This implies that F' is injective, and hence a continuous bijection F': T" — T.
Since T is compact, F' is actually a homeomorphism. It has the desired normaliza-
tion, because

Flp)=g(Fi(p)) =g
F(p) = g2(Fa(p)) = g
F(q) = g2(F2(q)) = g

It remains to show that F is a tile-homeomorphism for X. Let X € X be
arbitrary. Then X is contained in one of the branches By, and so is a tile in X.
Since Fj, is a tile-homeomorphism for Xy, we know that Fj,(X) is a tile of T. This
implies that F(X) = gr(Fr(X)) is a tile of T, because g; sends tiles of T to tiles
of T.

This completes the inductive step and the statement follows. The argument
actually shows that the tile-homeomorphism F': T — T with the desired normal-
ization can be constructed so that F'(z) = 0 with € V arbitrary, when T has
one marked leaf, or with « € (p,q) N'V arbitrary, when T has two marked leaves p
and gq.

We now first establish before we show |(ii)|

Let p’ and ¢’ be the first, respectively the last, point in (p,q) NV # () as
we travel from p to ¢ along [p,q]. Then [p,p’] is contained in a tile in X; this
tile must be P, because it is the only tile in X that contains p (this follows from
Lemma B:{I. We see that p’ € VN P = 0P. Since P is a leaf-tile, we have
OP = {p'}. Similarly, 0Q = {¢'}.

There exists a point = € (p’,¢’)N'V by our assumptions. As in the inductive step
in we decompose T into the three branches By, By, B3 with this choice of x.
Again we may assume p € By and q € By. Note that then p’ € (p,z) C By, and so
p € Vi =VN (B \{z}). Similarly, ¢’ € (z,q) and ¢’ € Vo =V N (B2 \ {z}). We
now choose tile-homeomorphisms Fj: By — T for Xj as before, but by the remark

1(=1) = —1 in Cases [Zal and 3]
2(1) = 1 in Case 21
2(1) =1 in Case 3
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at the end of the proof of we can do this so that Fy(p') = 0 and Fy(¢') = 0.
Then the map F as defined in (T2)) satisfies
F(p') = g1(F1(p')) = g1(0) = —1/2,
F(d') = g2(Fa(q')) = g2(0) = 1/2.

Since p € P, p’ € P, and F is a tile-homeomorphism, we have Z := F(P) € X*,
—1=F(p) € Z, and —1/2=F(p’) € 0Z. Lemma implies that Z=F(P)="T,
which is a tile of level 2. By a similar reasoning, F(Q) = Tss, which is again of
level 2. The statement follows.

This is a slight variant of the argument for The leaf-tile P € X with
p € P is the unique tile in X that contains p. Its boundary 0P C 'V consists of
a single point p’ € V. Now we consider the three tiles containing p’ € V. One
of them is P, but not all three can be leaf-tiles, because then #V = 1. So there
exists an edge-tile X with p’ € 0X. Then 0X C V contains another point x € V
distinct from p’. As one travels along the arc [p, x] starting from p, one exits P,
but this is only possible through p’ which is the only boundary point of P. Hence
p’ € (p,x). We now use a construction as in |(i)| for the branch point € V and its
three branches By, Bs, Bs.

To obtain the first normalization, we may assume that p € By. Since p’ € (p, z),
we can choose the homeomorphism F;: By — T so that Fy(p) = —1 and Fi(p’) = 0.
Then, as before, we obtain a tile-homeomorphism F': T — T for X. It satisfies

F(p) = g1(F1(p)) = g1(-1) = -1,

F(') = g1(F1(p') = 91(0) = =1/2.
Using again Lemma 5.6, we see that F(P) = Ty1, and so F(P) is a tile in T of
level 2.

To obtain the second normalization, we may assume that p € By and now choose
Fy: By — T so that Fy(p) =1 and Fy(p’) = 0. Then
F(p) = g2(F2(p)) = 92(1) = 1,
F(p) = g2(F2(p)) = 92(0) = 1/2.
From Lemma we see that F'(P) = Tz, which is a tile of level 2. 'We have
proved
Let V= F(V) C T. Since F': T — T is a homeomorphism, V is a set of
branch points of T that induces a decomposition of T into the set of tiles X = F(X).
Since F' is a tile-homeomorphism, we have X C X*. The statement now immediately

follows from Lemma
The proof is complete. O

Subdividing T. After these preparations, we are now ready to prove Proposi-
tion [.]] the main result in this section.

The desired quasi-visual subdivision {Y"} will be constructed inductively from
auxiliary tile-homeomorphisms F™: T — T for X", n € Ny. We then set

Y":=F"(X")={F"(X): X € X"}.
Recall that if F™ is a tile-homeomorphism, then for each tile X € X™ we have
F"(X) € X*, and so Y” C X* (meaning that Y” is a set of tiles in T).
The next map F*t!1: T — T “refines” F™ in the sense that for X € X" we have
FrHl(X) = F*(X). Thus, for X € X" and X’ € X"*! with X’ C X, we have
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FrHY(X') ¢ FnPY(X) = F*(X) in T. This will ensure that {X"} and {Y"} are
isomorphic subdivisions according to (2I4) and 2I5).

We will show that {Y"} is actually a quasi-visual subdivision of T. Then by
Proposition there exists a quasisymmetry F: T — T that induces the isomor-
phism between {X"} and {Y"}. In fact, one can show that the sequence {F"}
converges uniformly to this quasisymmetry F; we will leave the easy argument for
this to the reader.

Note that for a given tile X € X", the level of F™(X) € X*, i.e., {(F"(X)), will
in general be different from n (the level of X in T'). Moreover, if X,Y € X", the
levels of the tiles F(X) and F(Y) (in T) may be different.

Proof of Proposition [[ Il By our assumptions T is a uniformly branching trivalent
quasiconformal tree, and the set V", for n € Ny, is as in ([@1]), with § € (0,1)
so small that all the statements in Proposition are true for the edge-like de-
compositions X" of T induced by V™. In particular, V° = (), and the sets V"
form an increasing sequence of branch points as in (B3). The sequence {X"} is a
subdivision of T'. Condition in Proposition .1l implies that V™ # () for n € N.

For n € Ny we will now inductively construct homeomorphisms F™: T" — T with
the following properties:

(A) For each n € Ny the map F”: T'— T is a tile-homeomorphism for X", i.e.,
F™ is a homeomorphism from T onto T such that F™(X) € X* for X € X".

In addition, for all n € N and X € X" !, the following statements are true:
(B) The maps F"~! and F™ are compatible in the sense that

F" (X)) = F"(X).

(C) There exists a constant N € N independent of n and X with the following
property: if Y € X" with Y C X, then

(F™YX))+1 < F™(Y)) <{(F"YX))+ N.

(D) Y e X" with Y C X and Y N9X # 0, then
(F™(Y)) = (F" (X)) + 2.

The constant N € N in will be the same as in statement in Proposi-
tion [6.I which is true by our assumptions. Statement means that the level
of the tile Y/ = F™(Y) € X* is strictly, but only by a bounded amount, larger
than the level of X’ = F"~1(X) € X*. In particular, 2= diam(X’) < diam(Y”) <
1 diam(X’). In[(D)] we actually have diam(Y”) = % diam(X").

Construction of F° and F'. Since V? = ), we have X° = {T'}. We know that T
is homeomorphic to T (by Theorem [(2]) and so we can choose a homeomorphism
FO: T — T. Obviously, F? is a tile-homeomorphism for X°, since F°(T) = T = Ty
is a tile of T.

Note that V7 = VI Nint(T) = V! and the decomposition X! of T induced by
V! is edge-like according to Proposition

So we may apply Lemma [Z3] to T and V!, where no leaves of T are marked.
This gives us a tile-homeomorphism F*: T — T for X!. Then is true forn =0
and n = 1. To verify [[B)H{(D)| for n = 1 note that X = T' € XU is the only 0-tile.
Since F(T) = T = F(T), we obviously have
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Recall that V! # () and let N € N be the number from Proposition By
definition of N we then have #V! < N for the number of 1-vertices in the O-tile
T. Together with Lemma [Z3][(iv)] this implies

1<UFYY)) <#VI<N

for all Y € X!. Since ¢(FY(X)) = ¢(T) =0, holds for n = 1. Moreover, [(D)] is
vacuously true for n = 1, since 8T = (. Thus, with the maps F° and F'! as above,

conditions |(A)H(D)| are true for n = 1.

For the inductive step, suppose that for some n € N maps F"~! and F" with the
properties[(A)}{(D)|have been defined. The map F"*! will be constructed separately
on each tile X € X™. The idea is to modify the map F"|X to a homeomorphism Fx
of X onto the same image F"(X), and “glue” the maps {Fx}, X € X", together
to obtain Ft1.

Constructing F™™1 on an n-tile X. Fix a tile X € X". Define Vx = V*tln
int(X). Then 2 < #Vx < N and Vx induces an edge-like decomposition of X
into tiles, denoted by Xx (see and in Proposition [61]). The set X x
consists precisely of the tiles Y € X" with Y C X (see LemmaB4][(iii)). We want
to construct a homeomorphism Fx: X — F"(X) with the following properties:

(a) The set Fx(Y) is a tile of T for each Y € Xx.
(b) Fy(X) = F™(X) and Fx|dX = F"|0X.
(c) For each Y € Xx, we have
LF™(X))+1<lFx(Y)) <lF™(X))+ N.
(d) If Y € Xy with Y 09X # 0, then
UFx(Y)) = ((F"(X)) +2.
Note that the properties |(a)H(d)| correspond to the properties [(A)H(D)} The

construction of Fx is slightly different depending on whether X is an edge-tile or
a leaf-tile. We will discuss the details when X is an edge-tile and will comment on
the modifications when it is a leaf-tile.

Case 1. X is an edge-tile. Then #9X = 2, say 0X = {p,q} C V™. Since F" is a
tile-homeomorphism for X", the set F™(X) is a tile of T, say F™(X) = Ty, = gu(T)
with w € A* (see (B1). Since F'" is a homeomorphism, we have

OT,, = OF"(X) = F"(9X) = F"({p.q}).

In particular, T,, = ¢,,(T) has two boundary points and so F"({p,q}) = 9T, =
{9w(—1), 9w(1)} by Lemma We may assume that

(7.3) F"(p) = gw(=1) and F"(q) = gu(1).

By our assumptions, the open arc (p,q) contains at least three points in Vx
(see Proposition . In particular, p and ¢ lie in distinct tiles P,Q € X" *!,
respectively, with P, C X. These are leaf-tiles in Xx. Indeed, P has exactly
two boundary points in 7', namely p and one boundary point in Vx (if not, then
X = P, which is impossible since Vx # (). It follows that the relative boundary
of P in X, which is a subset of Vx, contains precisely one point, and so P is a
leaf-tile in X x. Similarly, @ is a leaf-tile in X x.

Therefore, we may apply Lemmal[l3to the tree X, marked by p and ¢ (which are
leaves of X'), and the set Vx. Thus there exists a tile-homeomorphism hAx: X — T
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for Xx with hx(p) = —1 and hx(g) = 1 that satisfies and in Lemma [7.3]
as well.

We now define Fx: X — F"(X) = g,(T) = T, as Fx = gy o hx. This is
a homeomorphism of X onto F"(X). Since g, sends tiles of T to tiles of T, we

have [(a)]

Clearly, we have F'x(X) = F"(X) as well. Moreover,

Fx(p) = guw(hx(p)) = gu(=1) = F"(p),

by ([T3) and similarly Fx(q) = F"(q). Since 8X = {p, q}, we have shown [(b)]
Recall that 2 < #Vy < N. Thus, using Lemma [Z3[(iv)] we obtain for any
Y € Xx that
1 <(l(hx(Y)) <#Vx < N.

Together with

U(Fx (Y)) = U(gw(hx (Y))) = t(w) + £(hx (Y))
= L(F" (X)) + L(hx (Y)),

this implies

Suppose Y € Xx and Y NOX # (). Then Y contains one of the marked leaves p
or g of X; soY is identical with one of the tiles P or @), because each leaf of X is
contained in a unique tile in X x as follows from Lemma B:{I Since hx satisfies
condition in Lemma [73] we have ¢(hx(Y)) = 2. Thus

UFx(Y))=0F"(X))+hx(Y)) =LF"(X))+2,

and [(d)] follows. We have constructed Fx, satisfying [(a){(d)} when X € X" is an
edge-tile.

Case 2. X is a leaf-tile. Then #0X = 1, say 0X = {p} C V™. Again there
exists w € A* with F"(X) = T,, = gw(T). Then 0T,, = F*(0X) = {F"(p)} is a
singleton set and so Ty, = {gw(—1)} or dT,, = {gw (1)} by Lemma

The point p is a leaf of X. Moreover, it is contained in a tile P € X x which is
a leaf-tile in Xx (by the exact same argument used when X is an edge-tile). We
know #V x > 2 and that the decomposition X x of X induced by Vx is edge-like.

Thus we may apply Lemma[7.3]to the tree X marked by its leaf p and the decom-
position X x of X induced by the set Vx. So there exists a tile-homeomorphism
hx: X — T for Xx satisfying the (applicable) conditions in Lemma [[Z3] We may
normalize hx so that

hx(p) = —1if 0Ty = {guw(=1)}, or hx(p) = 1if 9T, = {gu(1)}.

The homeomorphism Fx: X — F"(X) = g,(T) = T, is now defined by
Fx = gy o hx as before. Then again @ and the first part of are true. The
normalization of hx ensures that F'x maps p to the unique point in dT,,. Since F"™
does the same, we have F"(p) = Fx(p), which is the second part of [(b)} because
0X ={p}.

Finally, statements [(c)] and [(d)] follow from similar arguments as in the case of
an edge-tile X. For ne uses the fact that £(hx(P)) = 2 by Lemma

This finishes the construction of the homeomorphism Fx: X — F™(X) with the
properties [(a)H(d)| for a leaf-tile X € X™. Hence we have constructed such Fx for
every tile X € X".
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We now define F™"*1: T — T by setting F"*1(2) = Fx(z) if 2 € X € X". Note
that the tiles X € X" cover T, and so each point z € T lies in one of the tiles
X € X". Moreover, F"*! is well-defined; indeed, suppose that 2 € X NY with
X, Y € X", X #Y. Then z € X N Y (see Lemma B3[(iv)]), and so [(b)| shows
that

Fx(z) = F"(z) = Fy ().

The map F™*™! is continuous, because F"T1|X = Fx is continuous for each tile
X € X" and these finitely many tiles cover T. The map F"*! is also surjective,
because

Frivr) = | Fx(X)= |J F"(X)=F"T)=T.
Xexn XexXn
To show that it is injective, suppose that x,y € T and F""!(z) = F"*(y). Then
there exist X,Y € X" such that x € X and y € Y. Now if X =Y and so =,y € X,
then 2 = y, because F"t1|X = Fy is injective.
If X Y, then

wi= F" (@) € P4 (X) = Fx(X) = F*(X)

and similarly, u = F""(y) € F*(Y) # F"(X). So u lies in different tiles of the
decomposition of T by the set of tiles F™(X"™). Then

u € IF(X)NIF™(Y) = F*(0X NIY).
It follows that there exists a point v € 9X NJY C V" with F™(v) = u. Then by

@ we have

F" ' (v) = Fx(v) = F*(v) = u = F""!(x).
Since v,x € X, and F""1|X = Fy is injective, we see that x = v. Similarly, y = v,
and so z = v = y, as desired.

We have shown that F*+!: T — T is a continuous bijection. Since T is compact,
it follows that F”*1: T — T is a homeomorphism. It remains to verify conditions
(D)| for n + 1.

First, if Y € X"*! is arbitrary, then there exists a unique tile X € X" such that
Y C X. It now follows from [(a)] that F"(Y) is a tile of T, because F"*(Y) =

Fx(Y). So we have [(A)
Condition [(B)]is also clear, because if X € X" is arbitrary, then by [(b)| we have

F"(X) = Fx(X) = F"*(X).

Finally, and @ (for n+1) immediately follow from|(c) and @ respectively,
and the definition of F"*!,

So we obtain a homeomorphism F"*! as desired, and the inductive step is com-
plete. We conclude that there exists a sequence {F"} of maps with the properties
)

Having completed the construction of the sequence {F™}, we now show that
{F™(X™)} is a quasi-visual subdivision of T isomorphic to {X"}.

{F™(X™)} is a subdivision of T. We know that the sequence {X"} is a subdivi-
sion of the space T as in Definition ZTT] To see that {F™(X")} is a subdivision of
T, first note that for each n € Ny the map F™ is a homeomorphism by Thus,
the set F™(X") = {F"(X) : X € X"} is a finite collection of compact subsets of
T that cover T. We have that {F°(X°)} = {T}. It follows that the condition in
Definition ZIT[(i)] is true.
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Let n € Ng. If Y/ € FnFY(X"F1) is arbitrary, then Y/ = F"1(Y) for some
Y € X"*1. Then there exists X € X" with Y C X and so

Y' = F"Y(Y) c F""H(X) = F"(X) € F™"(X"),

where [(B)| was used. Thus the condition in Definition ZITI[(ii)] holds.
Finally, if X' € F™*(X") is arbitrary, then X’ = F*(X) with X € X". Since

X=J{yvex v cx}

it follows that X’ can be written as a union of sets in F" (X" 1), because (using

once more)
X'=F"X)=F""'(X) = J{FT(Y): Y e X" Y C X},

We see that the condition in Definition ZITI[(iii)] is also true, and conclude that
{F™(X™)} is indeed a subdivision of T.

The subdivisions {X"} and {F™(X"™)} are isomorphic. We claim that the bijec-
tive correspondence given by X < F"(X) for X € X" on each level n € Ny is an
isomorphism of {X"} and {F™(X™)}.

To see this, fix n € Ny, and let X,Y € X™ be arbitrary. Then

XNY #0 ifand only if F™(X)NF"(Y) #0,

since F™ is a homeomorphism by [(A)l Thus (2I4) is satisfied. Moreover, let
X € X" and X’ € X" be arbitrary. Then F""!(X) = F"(X) by Thus

X' c X ifandonlyif F"'(X')c F"t1(X)=F"(X),

since F™™! is a homeomorphism. We have shown ([ZI5); so {X"} and {F"(X")}
are indeed isomorphic.

{F™"(X™} is a quasi-visual subdivision of T. Since we already know that
{F™(X™)} is a subdivision of T, we have to show that {F"(X")} is a quasi-visual
approximation of T. For this we will verify conditions [(1)H{(iv)|in Definition 211

To see let n € Ny be arbitrary and consider two tiles in F(X") with non-
empty intersection. These tiles can be represented in the form F™(X) and F™(Y)
with X,Y € X", where X NY # (. We want to show that diam(F"(X)) =<
diam(F™(Y)), with a constant C (<) independent of n, X, and Y.

We can find unique tiles X*,Y* € X’ for i = 0,...,n with

X=X"cX"'c.--cX’=Tand
Y=Y'cy"'c...cY'=T.
Let k € Ny, 0 < k < n, be the largest number with X* = Y*. If k = n, there
is nothing to prove, because then X = X" = Y” =Y, and so diam(F"(X)) =
diam(F™(Y)).
Otherwise, 0 < k < n, and XF+1 YA+l ¢ XF = Y with XK+ #£ Y+ Let
L = ((Fk(X*)) = ¢(F¥(Y*)). By[(C)| we know that

(7.4) L+ 1 <O(F*(X*1)) < L+ N, and similarly,
L+ 1 <OFFLY*h) <L+ N.

Note that X*NY?® D> X?NY"™ # () and X* # Y for i = k+1,...,n. By
Lemma B:{I the tiles X* and Y intersect in a single point, which is the unique
point v € X" NY™. Moreover, v € 0X'NOY  fori=k+1,...,n.
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Then@ implies that
UFM (X)) =4
(FFFYXEY)) 4 2(n— k — 1),

and similarly
UF™(Y)) = ((F* YR 4 2(n — k — 1).
Combining this with ([T4]), we see that
[E(F™ (X)) = ((F™(Y))] = [((FMFHXE)) — ((FHHH (YR
<N -1
Hence
diam(F™(X)) = 27" )HL - 9= lEFE" XD+ — qiam (F™(Y))

with C(x) = 2¥~-1. Since N is a fixed number, condition [(i)| in Definition 2]
follows.

To verify condition in Definition 2] let n € Ny and X', Y’ € F™(X™) with
X' NY’ =0 be arbitrary. We choose points z € X’ and y € Y’ with

|z — y| = dist(X',Y"),

and consider the unique arc [z, y] joining x and y in T. Then the points in F™ (V")
that lie on [z, y] decompose this arc into non-overlapping subarcs that lie in distinct
tiles of the edge-like decomposition F™(X™) of T. At least one of these subarcs must
have interior disjoint from X’ and Y”’, because X' NY’ = (). Let a be the first of
these arcs as we travel along [z,y] from x to y, say a = [p,q] C [z,y]. Then there
exists a tile Z’ € F™(X") such that a C Z’. Obviously, Z' # X',Y’. The two
endpoints p and ¢ of « belong to 0Z’, and so Z’ is an edge-tile. Moreover, one of
these endpoints also belongs to X', and so X' N Z" # ().

The set Z' is a tile of T, and so it can be written in the form Z’ = g,,(T) with
w € A*. By Lemma we have 02’ = 0g,,(T) = {gw(—1),9w(1)} = {p, ¢} It
follows that

Ip = al = l9w(~1) = gu(1)] = 27+ = diam(g,(T)) = diam(Z).
By condition [(i)|in Definition 2} which we proved already, we also have diam(X') =
diam(Z"). Combining this with the quasi-convexity of T (see ([B.3)), we arrive at
dist(X',Y’) = |z — y| < length[z, y] > length[p, q]
> |p — q| = diam(Z’) < diam(X").
Since the implicit multiplicative constants here are independent of n, X’, and Y,
condition in Definition 2] follows.

To verify the remaining conditions, suppose k,n € Ny, X' € F*(X"), Y’ €
FrHE(Xntk) and X' NY’ # (. There exists a tile Z' € F*(X") with Y’ C Z'.
Then X' N Z' # 0, and so diam(X’) < diam(Z’) by what we have seen.

If £ =1, then it follows from that

UZY+1 <Y <UZ')+ N.
Since diam(Y”) = 2741 and diam(Z’) = 2~4Z)+1 we conclude that

diam(Y"’) =< diam(Z’) =< diam(X")
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with implicit constants independent of n and the tiles. Condition in Defini-
tion 211 follows.
For arbitrary k& > 0 note that repeated application of |[(C)|leads to

(Y > UZ) + k.
This gives
diam(Y") = 27407+ < 9=kg=t(Z0+1 — 9=k gjam(Z')
= 277 diam(X").

Again the implicit constants here are independent of k, n, and the tiles. Condi-
tion () in Lemma follows from this, which, in our setting, is equivalent to
condition in Definition 211 We have shown that {F™(X")} is a quasi-visual
subdivision of T as in Definition

Now define Y" = F™(X") for n € Ny. Then our previous considerations show
that {Y"} = {F™(X™)} is a quasi-visual subdivision of T isomorphic to {X"}. The
statement follows. O

8. PROOF OF THEOREM [[4]

We are now ready to prove Theorem [[.4l Assume first that the metric space T is
quasisymmetrically equivalent to the continuum self-similar tree T. In particular,
T is homeomorphic to T. Then T is a trivalent metric tree, because T is of this
type.

The CSST T is doubling as a subset of C, and of bounded turning, because
it is even quasi-convex. Since a quasisymmetry preserves the doubling property
(see [HeOIl Theorem 10.18]) and the bounded turning property (see [TV80, The-
orem 2.11]), the tree T is doubling and of bounded turning as well. So T is a
quasiconformal tree.

We know from Proposition (5.4 that T is uniformly branching. It follows from
Lemmalf3and Lemmabl that T is also uniformly branching. The first implication
of the statement follows.

Conversely, assume that 7" is a trivalent quasiconformal tree that is uniformly
branching. By rescaling T' is necessary, we may assume that diam(7) = 1. Then
by Proposition [6] we can choose § > 0 small enough so that the subdivision {X"}
induced by the sets V™ as defined in (6.1]) has the stated properties in this propo-
sition. In particular, {X"} is a quasi-visual subdivision of T. By Proposition [Tl
there exists a quasi-visual subdivision {Y”} of T isomorphic to {X"}. By Propo-
sition .13 there exists a quasisymmetry F': T — T that induces the isomorphism
between {X"} and {Y"}; so T and T are quasisymmetrically equivalent. The proof
is complete.

9. CONCLUDING REMARKS AND OPEN PROBLEMS

An important numerical invariant for the quasiconformal geometry of a met-
ric space X is its conformal dimension confdim(X) defined as the infimum of all
Hausdorff dimensions dimg(Y") of metric spaces Y that are quasisymmetrically
equivalent to X (see [MT10] for more background on this concept). It is known
that for every quasiconformal tree T' we have confdim(T") = 1 (see [Kinl7, Propo-
sition 2.4] and [BM20, Corollary 1.4]). In particular, for the CSST T we have
confdim(T) = 1. One can show though that the infimum underlying the definition
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of the conformal dimension is not achieved here as a minimum: if T" is any tree that
is quasisymmetrically equivalent to T, then actually dimg(7) > 1. This follows
from [Az15] Theorem 1.6].

The CSST is related to various other metric trees appearing in probabilistic
models or in complex dynamics. One of these objects is the (Brownian) continuum
random tree (CRT) as introduced by Aldous [AI91]. One can define it as a random
quotient space of the unit interval [0,1] as follows (see [AI93, Corollary 22]). We
consider a sample of Brownian excursion e = (e(t))o<i<1 on the interval [0, 1]. For
s,t € [0,1], we set

de(s,t) = e(s) + e(t) — 2inf{e(r) : min(s,t) < r < max(s,t)}.

Then d, is a pseudo-metric on [0, 1]. We define an equivalence relation ~ on [0, 1]
by setting s ~ t if d.(s,t) = 0. Then d. descends to a metric on the quotient space
T. = [0,1]/ ~. The metric space T' = (T¢,d.) is almost surely a metric tree (see
[LGO6, Sections 2 and 3]). Moreover, it is known that a sample T of the CRT is
almost surely homeomorphic to the CSST (see [BT21l, Corollary 1.9]).

Roughly speaking, this means that the topology of the CRT is completely under-
stood. One can ask whether one can say more about the geometry of the CRT, in
particular its quasiconformal geometry. A natural question is whether a sample T
of the CRT is almost surely quasisymmetrically equivalent to the CSST. Actually,
this is not true, because almost surely a sample T" of the CRT is neither doubling
nor has uniformly relatively separated branch points, which are necessary condi-
tions for a tree to be quasisymmetrically equivalent to the CSST. So even though
the CSST serves as a natural deterministic model for the topology of the CRT, it is
not so clear whether there is deterministic model for its quasiconformal geometry.
One can ask though whether the quasiconformal geometry of the CRT is uniquely
determined almost surely. This leads to the following question.

Problem 9.1. Suppose S and T are two independent samples of the CRT. Are S
and 7" almost surely quasisymmetrically equivalent?

This seems to be a difficult problem, because the techniques developed in Sec-
tion 2l do not apply here.

Since the CRT is almost surely homeomorphic, but not quasisymmetrically
equivalent to the CSST, one can ask if they are equivalent with respect to an-
other notion (stronger than topological equivalence, but weaker than quasisymmet-
ric equivalence). A closely related result was recently obtained by Lin and Rohde.
They show that almost surely the CRT can be represented by a quasiconformal tree
in the plane obtained from a (random) conformal welding (see [LRIS]).

An important source of trees is given by Julia sets of postcritically-finite poly-
nomials without periodic critical points in C. For example, P(z) = 2% +i is such a
polynomial. As we indicated in the introduction, one can use Theorem [[.4] to show
that J(P) is quasisymmetrically equivalent to the CSST. For some related results
about quasisymmetric equivalence of Julia sets and attractors of iterated functions
systems see [ERS10].

The CSST has some interesting universality properties. For example, it is not
hard to see that every trivalent tree with only finitely many branch points admits a
topological embedding into the CSST. One can ask similar questions for quasisym-
metric embeddings (i.e., quasisymmetric homeomorphisms onto the image of the
map).
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Problem 9.2. Suppose T is a trivalent quasiconformal tree with uniformly rel-
atively separated branch points. Does there exist a quasisymmetric embedding
F:T—-T?

There are several other “model trees” whose characterization up to quasisym-
metric equivalence may be interesting. For example, the abstract construction of
the CSST as outlined in the introduction can easily be modified to obtain canonical
trees T,,, with branch points of a fixed higher order m € N, m > 3: instead of gluing
one line segment of length 27" to the midpoint ¢, of a line segment s of length 21—
obtained in the n-th step, we glue an endpoint of m — 2 such segments to c¢s. Of
course, T = T3. A tree homeomorphic to T, has been proposed as a model for
diffusion controlled aggregation (see [Vi&3]).

By a modification of the procedure we just described, one can actually define a
tree T all of whose branch points have infinitely many branches. For the construc-
tion of Ty, we again start with a line segment Jy of length 2. The midpoint ¢ of Jy
divides Jy into two line segments of length 1. We glue to ¢ one of the endpoints of
line segments of lengths 270,271,272 .. . We equip the resulting space J; with the
obvious path metric. Then Jy C J;. We repeat this construction for each of the line
segments obtained in this way, that is, a line segment s of length L is divided into
two at its midpoint ¢, and segments of lengths 27 1L,272L,273L, ... are glued in
at cs. Proceeding in this way, we obtain an ascending sequence of compact geodesic
metric spaces Jo C J; C .... Then J = UneN0 Jp, carries a geodesic metric that
agrees with the metric on J,, for each n € Ny. Now T, is defined as the completion
of J with respect to this metric.

Lemma implies that the tree T,, cannot be a quasiconformal tree, because
every branch point in T, has infinitely many branches. In fact, T, is of bounded
turning, but not doubling.

The tree T, admits a topological characterization similar to the CSST: a metric
tree T' is homeomorphic to T, if and only if branch points are dense in T" and each
branch point of T" has infinitely many branches (this follows from results in the first
version of [BT21] that is available on arXiv).

Moreover, T, has an interesting topological universality property: every metric
tree T' admits a topological embedding F': T — T, (see [Na92l Section 10.4]).

It would be interesting to establish a similar universality property for the qua-
siconformal geometry of To,. The following question seems very natural in this
context.

Problem 9.3. Suppose T is a quasiconformal tree with uniformly relatively sepa-
rated branch points. Is there a quasisymmetric embedding F': T' — T,?
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