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ABSTRACT: Development of nickel-catalyzed transformations would be facilitated by an improved ability to predict which ligands
promote and suppress competing mechanisms. We evaluate ligand-based modulation of catalyst preference for one- or two-electron
pathways employing 4-halotetrahydropyrans as model substrates that can undergo divergent reaction pathways. Chemoselectivity
for one- or two-electron oxidative addition is predicted by ligand class. Phosphine-ligated nickel catalysts favor closed-shell oxidative
addition. In contrast, nitrogen-ligated nickel catalysts prefer the one-electron pathway, initiating with halogen atom transfer.

Experimental evidence that provides the basis for a broad-
strokes understanding of ligand effects is critical for implemen-
tation of new catalytic methods by a broad range of synthetic
chemists and can accelerate development of new catalytic trans-
formations. Such experimentally determined design principles
have driven powerful advances in palladium-catalyzed coupling
reactions.'> Guiding principles for the selection of nickel cata-
lysts are still being identified.>**> Chemoselectivity for one- or
two-electron oxidative addition is a critical feature of many re-
actions of alkyl electrophiles and can be controlled by identity
of the substrate.®”® However, there is little empirical evidence
that this selectivity can also be perturbed by the ligand. Many
stereoablative reactions employ pyridyl- or imine-based lig-
ands, while stereospecific transformations often employ phos-
phine ligands. In any given publication, typically either nitro-
gen- or phosphine-based ligands are evaluated. However, a di-
rect contrast between the two classes is rarely provided. In this
manuscript, we report experiments that provide, to our
knowledge, the first data set that directly compares stereospe-
cific and stereoablative reaction manifolds under the same re-
action conditions.”' As such, we directly interrogate the lig-
ands’ control of catalyst propensity for closed-shell and open-
shell reactivity. These experiments complement detailed pa-
rameterization that has been employed to compare closely re-
lated ligands for single reaction pathways.'"'? This work will
impact the development of new base-metal-catalyzed reactions
of alkyl electrophiles.

A major challenge is identifying a suitable control reaction,
where a single variable can be changed to systematically com-
pare catalyst systems, and where the reaction mechanisms are
well-understood. We hypothesized that reactions of 4-halotet-
rahydropyrans fit these criteria (Scheme 1). These substrates
undergo divergent reaction pathways and therefore provide a
competition experiment where product outcome is determined
by the chemoselectivity of the first elementary step, oxidative
addition. One potential reaction product is the cyclopropane,
formed by intramolecular cross-electrophile coupling (XEC).%
This product forms if the reaction initiates by oxidative addition
at the ether. Our laboratory has reported mechanistic details for
this XEC reaction and has determined that it proceeds through
a robust two-electron pathway, where oxidative addition occurs
via an Sy2-type transition state.'® Radical intermediates are not
formed. Alternatively, the tetrahydropyran can be formed as
the product if the reaction initiates by halogen atom transfer
(XAT) of the alkyl halide.'* This pathway proceeds through the
alkyl radical. Therefore, we hypothesized that correlating the
product distribution to ligand identity would allow identifica-
tion of the key features of the nickel catalyst that promote oxi-
dative addition by one- or two-electron manifolds.
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Scheme 1. Ligand-Based Control of Nickel Catalysis: Com-
petition Between One- and Two-Electron Pathways.

As a first step to validate our approach, we set out to confirm
that the reduction products are indeed formed via open-shell in-
termediates (Table 1).!* We proposed that the nickel catalyst
undergoes halogen atom abstraction with the alkyl halide to
form a secondary radical.'*'¢ Substrates 1a and 1b were chosen
for these experiments due to the resolution of the characteristic
peaks in 'H NMR. Experiments were performed employing
Ni(cod), in the presence of IndaBox and Biox ligands since
these catalyst-substrate combinations facilitated the reduction
pathway (vide infra). Addition of TEMPO to the standard reac-
tion conditions suppressed formation of tetrahydropyrans 3a
and 3b (entries 2 and 5). These results are consistent with for-
mation of open-shell intermediates over the course of the reduc-
tion pathway. In contrast, the XEC reaction, employing rac-
BINAP as the ligand, was not significantly inhibited by addition
of TEMPO, consistent with closed-shell intermediates for the

XEC pathway (entry 8).
Ni(cod), (5.0 mol %)
MeMgl (2.0 equiv,
Ar o MM E0ea) | ar OH A H/D
1a, Ar = Nap PhMe, 24 h, rt 2a, Ar = Nap 3a, Ar = Nap
1b, Ar = PhCgH, 2b, Ar=PhCgH,  3b, Ar=PhCgH,
Entry Ar Ligand Deviation from R d 2 3 Dincorporation
standard conditions 1 (%) (%) (%) (%)

1 Nap IndaBox none 30 <5 55
2 Nap IndaBox 1 equiv TEMPO added 87 <5 10 -
3 Nap IndaBox Dg-PhMe as solvent 32 <5 16 21
4 PhCgH, Biox none <5 <5 63
5 PhCgH, Biox 1 equiv TEMPO added 54 <5 35 -
6 PhCgH, Biox Dg-PhMe as solvent 44 <5 33 41
7 Nap  rac-BINAP none <5 92 <5
8 Nap  rac-BINAP 1 equiv TEMPO added 9 83 <5

Table 1. TEMPO Trapping and Deuterium Incorporation
Studies Provide Evidence of a Radical Mechanism for Reduc-
tion.

To provide additional evidence that the reduction pathway
proceeds by initial XAT and an alkyl radical intermediate, we
performed deuterium-incorporation experiments to determine
the source of the hydrogen atom. Performing the reaction of
substrates 1a and 1b in D8-toluene provided the reduction prod-
uct with deuterium incorporation, consistent with formation of
an alkyl radical by XAT and subsequent HAT from toluene (en-
tries 3 and 6). Importantly, the reaction was stereoablative:
product 3b was formed as a 1:1 mixture of diastereomers. Taken
together, these experiments are consistent with initiation of re-
duction by XAT of the alkyl halide with the nickel catalyst.

With robust mechanistic understanding of competing reac-
tion pathways, we designed and evaluated a matrix of cross-
electrophile coupling reactions with six racemic 4-halotetrahy-
dropyrans and 11 ligands. Ligands were selected based on their
success in previously developed cross-coupling (XC) and XEC
reactions, and to span a range of ligand properties including lig-
and field, bite angle and redox activity (Figure 1). Bidentate
phosphines were selected based on their success in our previ-
ously developed ring contractions.®!® A variety of subclasses
of nitrogen-based ligands that have been employed in XC and
XEC reactions were examined, including bipyridine-, oxazo-
line-, and diamine-based ligands.”®!7: 18- 19.20.21. 22
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Figure 1: Ligands Selected for Initial Evaluation for XEC or
reduction of 4-halotetrahydropyrans.

Analysis of the data trends supports a working hypothesis
that two factors work in concert to predict selectivity: the iden-
tity of the electrophile and the identity of the ligand. Allylic
ethers (in 4 and 5) out-compete alkyl chloride and alkyl bromide
moieties, resulting in XEC regardless of ligand structure. Con-
versely, simple benzylic ethers (in 1b and 7) are sluggish oxi-
dative addition partners, resulting in no XEC. In this series, cat-
alysts with nitrogen-based ligands support XAT of the alkyl
chloride moiety, and many catalysts (nitrogen- and phosphine-
based) promote XAT of the alkyl bromide.
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Figure 2: Results from the THPxLigand Matrix.”?

Most illustrative are reactions of naphthyl-substituted tetra-
hydropyrans 1a and 6, where product selectivity is dictated by
the ligand. The C-O bond of these substrates is moderately ac-
tivated and, with the correct ligand structure, competes with the
alkyl halide for the nickel catalyst. Particularly illustrative are
reactions of 4-chlorotetrahydropyran 1a. For this substrate,
phosphine-based ligands promote two-electron oxidative addi-
tion and nitrogen-based ligands promote one-electron XAT.
Therefore, we hypothesize that stronger field phosphine-based
ligands favor two-electron oxidative addition, by providing an
electron-rich, nucleophilic catalyst.** Conversely, weaker field
nitrogen-based ligands that can support open-shell nickel com-
plexes favor XAT.” In addition to ligand field effects, it is im-
portant to note that certain nitrogen-based ligands such as



bipyridine are known to be redox active and support Ni(I) inter-
mediates by accommodating ligand-centered radicals.?® How-
ever, this factor does not appear to be a key determinant for this
data set, since some ligands that favor XAT, such as oxazoline-
based ligands, have been shown to provide nickel(I) complexes
with metal-centered radicals.”’

To evaluate which reaction pathway is dominant, we per-
formed a competition experiment, where substrate 1a was ex-
posed to both catalysts (eq 1). Subjecting 1a to the reaction con-
ditions with equivalent loadings of both rac-BINAP and Inda-
Box provided cyclopropane 2a as the exclusive product. This
result is consistent with the rac-BINAP-ligated nickel catalyst
undergoing oxidative addition at the benzylic C—O bond faster
than the IndaBox-ligated nickel catalyst can react with the sec-
ondary chloride by XAT. This follows our expectation that
phosphine-ligated nickel catalysts have a high nucleophilicity,
likely in part due to the strong sigma-donor properties of the
ligand, which favors the Sx2-type oxidative addition. The nu-
cleophilicity of the nickel catalyst with 7ac-BINAP coordina-
tion drives chemoselectivity towards the two-electron para-
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To further to evaluate whether this ligand dependency is a
predictable trend, we examined a larger sample of a range of
ligands in reaction of 4-chlorotetrahydropyran 1a (Figure 3).
We evaluated >40 ligands, including monodentate phosphines,
phosphoramidites, bidentate phosphines, tridentate phosphines,
N-heterocyclic carbenes, diamines and pyridines.?* The over-
all data trends are clear, with nitrogen-based ligands, including
diamines and pyridine-based ligands, providing the reduced
THP 3a via XAT. In contrast, only phosphine ligands provided
significant yields of cyclopropane 2a, by polar oxidative addi-
tion of the benzylic ether. There are clearly additional factors,
including steric parameters, that control whether a ligand pro-
vides a reactive catalyst, since many ligands provided recovered
starting material.*® However, as a general design principle, the
premise that phosphine ligands favor two-electron pathways
and nitrogen-based ligands promote one-electron reactions ap-
pears to hold. These results are consistent with the prevalence
of phosphine ligands in stereoselective XC and XEC reactions
of benzylic and alkyl ethers. These results are also consistent
with the prevalence of nitrogen-based ligands in stereoablative
XC and XEC reactions of alkyl halides, and, within this series,
accommodation of ligand-centered radicals does not appear to
be a critical feature.? 2
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Figure 3: Results from Expanded Ligand Set.*!

X

S) Q
Br Br /§| Br@ o) Bre | N/ Bre
N Ph
PN/ @ N, = } N N®
A Ph @l\l@ [ \>NHCD</J
Ph Me”
NHC B NHC C
Ph NH, NHR
T e 501
Ph™ “NH, NHR
Diamine E Diamine F, R = H Diamine H, R=H ;5 by pyrox

Diamine G, R = Me

o Py L™

PrHN NH/Pr
bpp (NNN)H3

Diamine I, R = Me

PyBcam

Figure 4. Ligand Key for the Expanded Reaction Matrix.

In conclusion, we provide experimental evidence for a lig-
and-based switch in selectivity for one- and two-electron path-
ways in a nickel catalyzed reaction, by examining competitive
XEC and reduction of 4-halotetrahydropyrans. Both phospho-
rous- and nitrogen-based ligands were examined to determine
the preference of the catalysts for activation of C-O or C-X
bonds. In general, two factors work in concert to control the
preferred pathway: identity of electrophile and the identity of
the ligand. These results will inform the development of new



coupling reactions by providing insight into the synergistic ef-
fect of the ligand and oxidative addition mechanism evoked.
Current investigations include more detailed analysis of these
trends and establishing related structure-activity relationships
for a broad range stereospecific and stereoablative reactions.
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