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ABSTRACT: Development of nickel-catalyzed transformations would be facilitated by an improved ability to predict which ligands 
promote and suppress competing mechanisms.  We evaluate ligand-based modulation of catalyst preference for one- or two-electron 
pathways employing 4-halotetrahydropyrans as model substrates that can undergo divergent reaction pathways.  Chemoselectivity 
for one- or two-electron oxidative addition is predicted by ligand class. Phosphine-ligated nickel catalysts favor closed-shell oxidative 
addition. In contrast, nitrogen-ligated nickel catalysts prefer the one-electron pathway, initiating with halogen atom transfer.  

Experimental evidence that provides the basis for a broad-
strokes understanding of ligand effects is critical for implemen-
tation of new catalytic methods by a broad range of synthetic 
chemists and can accelerate development of new catalytic trans-
formations. Such experimentally determined design principles 
have driven powerful advances in palladium-catalyzed coupling 
reactions.1,2 Guiding principles for the selection of nickel cata-
lysts are still being identified.3,4,5 Chemoselectivity for one- or 
two-electron oxidative addition is a critical feature of many re-
actions of alkyl electrophiles and can be controlled by identity 
of the substrate.6,7,8 However, there is little empirical evidence 
that this selectivity can also be perturbed by the ligand. Many 
stereoablative reactions employ pyridyl- or imine-based lig-
ands, while stereospecific transformations often employ phos-
phine ligands.  In any given publication, typically either nitro-
gen- or phosphine-based ligands are evaluated. However, a di-
rect contrast between the two classes is rarely provided. In this 
manuscript, we report experiments that provide, to our 
knowledge, the first data set that directly compares stereospe-
cific and stereoablative reaction manifolds under the same re-
action conditions.9,10  As such, we directly interrogate the lig-
ands’ control of catalyst propensity for closed-shell and open-
shell reactivity. These experiments complement detailed pa-
rameterization that has been employed to compare closely re-
lated ligands for single reaction pathways.11,12 This work will 
impact the development of new base-metal-catalyzed reactions 
of alkyl electrophiles. 

A major challenge is identifying a suitable control reaction, 
where a single variable can be changed to systematically com-
pare catalyst systems, and where the reaction mechanisms are 
well-understood. We hypothesized that reactions of 4-halotet-
rahydropyrans fit these criteria (Scheme 1).  These substrates 
undergo divergent reaction pathways and therefore provide a 
competition experiment where product outcome is determined 
by the chemoselectivity of the first elementary step, oxidative 
addition. One potential reaction product is the cyclopropane, 
formed by intramolecular cross-electrophile coupling (XEC).8b 
This product forms if the reaction initiates by oxidative addition 
at the ether. Our laboratory has reported mechanistic details for 
this XEC reaction and has determined that it proceeds through 
a robust two-electron pathway, where oxidative addition occurs 
via an SN2-type transition state.13 Radical intermediates are not 
formed.  Alternatively, the tetrahydropyran can be formed as 
the product if the reaction initiates by halogen atom transfer 
(XAT) of the alkyl halide.14 This pathway proceeds through the 
alkyl radical. Therefore, we hypothesized that correlating the 
product distribution to ligand identity would allow identifica-
tion of the key features of the nickel catalyst that promote oxi-
dative addition by one- or two-electron manifolds.  
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Scheme 1. Ligand-Based Control of Nickel Catalysis: Com-
petition Between One- and Two-Electron Pathways.  
As a first step to validate our approach, we set out to confirm 

that the reduction products are indeed formed via open-shell in-
termediates (Table 1).15 We proposed that the nickel catalyst 
undergoes halogen atom abstraction with the alkyl halide to 
form a secondary radical.14,16 Substrates 1a and 1b were chosen 
for these experiments due to the resolution of the characteristic 
peaks in 1H NMR. Experiments were performed employing 
Ni(cod)2 in the presence of IndaBox and Biox ligands since 
these catalyst-substrate combinations facilitated the reduction 
pathway (vide infra). Addition of TEMPO to the standard reac-
tion conditions suppressed formation of tetrahydropyrans 3a 
and 3b (entries 2 and 5). These results are consistent with for-
mation of open-shell intermediates over the course of the reduc-
tion pathway. In contrast, the XEC reaction, employing rac-
BINAP as the ligand, was not significantly inhibited by addition 
of TEMPO, consistent with closed-shell intermediates for the 
XEC pathway (entry 8).  

 
Table 1. TEMPO Trapping and Deuterium Incorporation 

Studies Provide Evidence of a Radical Mechanism for Reduc-
tion. 
To provide additional evidence that the reduction pathway 

proceeds by initial XAT and an alkyl radical intermediate, we 
performed deuterium-incorporation experiments to determine 
the source of the hydrogen atom.  Performing the reaction of 
substrates 1a and 1b in D8-toluene provided the reduction prod-
uct with deuterium incorporation, consistent with formation of 
an alkyl radical by XAT and subsequent HAT from toluene (en-
tries 3 and 6).  Importantly, the reaction was stereoablative:  
product 3b was formed as a 1:1 mixture of diastereomers. Taken 
together, these experiments are consistent with initiation of re-
duction by XAT of the alkyl halide with the nickel catalyst.   
With robust mechanistic understanding of competing reac-

tion pathways, we designed and evaluated a matrix of cross-
electrophile coupling reactions with six racemic 4-halotetrahy-
dropyrans and 11 ligands. Ligands were selected based on their 
success in previously developed cross-coupling (XC) and XEC 
reactions, and to span a range of ligand properties including lig-
and field, bite angle and redox activity (Figure 1). Bidentate 
phosphines were selected based on their success in our previ-
ously developed ring contractions.8b,16 A variety of subclasses 
of nitrogen-based ligands that have been employed in XC and 
XEC reactions were examined, including bipyridine-, oxazo-
line-, and diamine-based ligands.7e,17, 18, 19, 20, 21, 22 

 
Figure 1: Ligands Selected for Initial Evaluation for XEC or 

reduction of 4-halotetrahydropyrans. 
Analysis of the data trends supports a working hypothesis 

that two factors work in concert to predict selectivity: the iden-
tity of the electrophile and the identity of the ligand.  Allylic 
ethers (in 4 and 5) out-compete alkyl chloride and alkyl bromide 
moieties, resulting in XEC regardless of ligand structure. Con-
versely, simple benzylic ethers (in 1b and 7) are sluggish oxi-
dative addition partners, resulting in no XEC. In this series, cat-
alysts with nitrogen-based ligands support XAT of the alkyl 
chloride moiety, and many catalysts (nitrogen- and phosphine-
based) promote XAT of the alkyl bromide.  

 
Figure 2: Results from the THPxLigand Matrix.23  
Most illustrative are reactions of naphthyl-substituted tetra-

hydropyrans 1a and 6, where product selectivity is dictated by 
the ligand. The C–O bond of these substrates is moderately ac-
tivated and, with the correct ligand structure, competes with the 
alkyl halide for the nickel catalyst.  Particularly illustrative are 
reactions of 4-chlorotetrahydropyran 1a. For this substrate, 
phosphine-based ligands promote two-electron oxidative addi-
tion and nitrogen-based ligands promote one-electron XAT. 
Therefore, we hypothesize that stronger field phosphine-based 
ligands favor two-electron oxidative addition, by providing an 
electron-rich, nucleophilic catalyst.24 Conversely, weaker field 
nitrogen-based ligands that can support open-shell nickel com-
plexes favor XAT.25 In addition to ligand field effects, it is im-
portant to note that certain nitrogen-based ligands such as 

Ar

O

Cl

Ni(cod)2 (5.0 mol %)
Ligand (5.0 mol %)
MeMgI (2.0 equiv)

PhMe, 24 h, rt
Ar

O

H/D
1a, Ar = Nap

1b, Ar = PhC6H4

Deviation from 
standard conditions

 2 
(%)

D8-PhMe as solvent

none <5

Ligand

IndaBox

IndaBox

D incorporation 
(%)

-

21

Entry

3

1
1 equiv TEMPO added <5IndaBox -2

Recovered
1 (%)
30
87
32

Ar OH
3a, Ar = Nap

3b, Ar = PhC6H4

 3 
(%)
55
10

<5 16

D8-PhMe as solventBiox 416 44 <5 33

noneBiox -4 <5 <5 63

Nap

Nap
Nap

PhC6H4

PhC6H4

Ar

2a, Ar = Nap
2b, Ar = PhC6H4

none 92rac-BINAP -7
1 equiv TEMPO added 83rac-BINAP -8

<5
9

<5
<5

Nap
Nap

1 equiv TEMPO addedBiox -54 <5 35PhC6H45

N N

R R

NO

N N

O

O

N

MeMe

N

O

Ph Ph

MeMe
O

N N

O

N

O

N

O

iPr iPr

PPh2 N

O

iPr

PyBox

IndaBox

(4S,4’S)-iPr-BiOx

(R)-iPr-Phox (R)-Ph-Box

PPh2
PPh2

rac-BINAP

Ph2P

dppm
O

PPh2 PPh2
DPEphos

Bipy; R = H
dtbbpy; R = t-Bu

PPh2

Ph

Ph

NHMe

NHMe
 Diamine A

N N
Bphen

PhPh

O

X

O

X

O

X

X = Br

X = Cl

rac-BINAP

Ph-Box

BiOx

dtbbpy
Bphen

bipy

dppm

iPr-Phox

PyBox

DPEPhos

IndaBox

rac-BINAP

Ph-Box

BiOx

dtbbpy
Bphen

bipy

dppm

iPr-Phox

PyBox

DPEPhos

IndaBox

0 100
Percent Yield

N-Ligand

P-Ligand

P/N-Ligand

CyclopropaneRecovered SM Reduction

4, X = Cl
5, X = Br

1a, X = Cl
6, X = Br

1b, X = Cl
7, X = Br

Diamine A

Diamine A



 

bipyridine are known to be redox active and support Ni(I) inter-
mediates by accommodating ligand-centered radicals.26 How-
ever, this factor does not appear to be a key determinant for this 
data set, since some ligands that favor XAT, such as oxazoline-
based ligands, have been shown to provide nickel(I) complexes 
with metal-centered radicals.27 
To evaluate which reaction pathway is dominant, we per-

formed a competition experiment, where substrate 1a was ex-
posed to both catalysts (eq 1). Subjecting 1a to the reaction con-
ditions with equivalent loadings of both rac-BINAP and Inda-
Box provided cyclopropane 2a as the exclusive product. This 
result is consistent with the rac-BINAP-ligated nickel catalyst 
undergoing oxidative addition at the benzylic C–O bond faster 
than the IndaBox-ligated nickel catalyst can react with the sec-
ondary chloride by XAT.  This follows our expectation that 
phosphine-ligated nickel catalysts have a high nucleophilicity, 
likely in part due to the strong sigma-donor properties of the 
ligand, which favors the SN2-type oxidative addition. The nu-
cleophilicity of the nickel catalyst with rac-BINAP coordina-
tion drives chemoselectivity towards the two-electron para-
digm. 

 
To further to evaluate whether this ligand dependency is a 

predictable trend, we examined a larger sample of a range of 
ligands in reaction of 4-chlorotetrahydropyran 1a (Figure 3).  
We evaluated >40 ligands, including monodentate phosphines, 
phosphoramidites, bidentate phosphines, tridentate phosphines, 
N-heterocyclic carbenes, diamines and pyridines.28,29 The over-
all data trends are clear, with nitrogen-based ligands, including 
diamines and pyridine-based ligands, providing the reduced 
THP 3a via XAT. In contrast, only phosphine ligands provided 
significant yields of cyclopropane 2a, by polar oxidative addi-
tion of the benzylic ether. There are clearly additional factors, 
including steric parameters, that control whether a ligand pro-
vides a reactive catalyst, since many ligands provided recovered 
starting material.30  However, as a general design principle, the 
premise that phosphine ligands favor two-electron pathways 
and nitrogen-based ligands promote one-electron reactions ap-
pears to hold.  These results are consistent with the prevalence 
of phosphine ligands in stereoselective XC and XEC reactions 
of benzylic and alkyl ethers.  These results are also consistent 
with the prevalence of nitrogen-based ligands in stereoablative 
XC and XEC reactions of alkyl halides, and, within this series, 
accommodation of ligand-centered radicals does not appear to 
be a critical feature.25, 26 

 
Figure 3: Results from Expanded Ligand Set.31 

 
Figure 4. Ligand Key for the Expanded Reaction Matrix. 
In conclusion, we provide experimental evidence for a lig-

and-based switch in selectivity for one- and two-electron path-
ways in a nickel catalyzed reaction, by examining competitive 
XEC and reduction of 4-halotetrahydropyrans.   Both phospho-
rous- and nitrogen-based ligands were examined to determine 
the preference of the catalysts for activation of C–O or C–X 
bonds. In general, two factors work in concert to control the 
preferred pathway:  identity of electrophile and the identity of 
the ligand.  These results will inform the development of new 
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coupling reactions by providing insight into the synergistic ef-
fect of the ligand and oxidative addition mechanism evoked. 
Current investigations include more detailed analysis of these 
trends and establishing related structure-activity relationships 
for a broad range stereospecific and stereoablative reactions. 
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