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A semiclassical approach is used to calculate radiation emission in the collision of an electron with an
intense focused laser pulse. The results are benchmarked with numerical calculations of exact results in a
plane wave and compared to predictions from the locally constant field and locally monochromatic
approximations. It is found that simulations employing the semiclassical approach capture features in the
energy spectra, such as subharmonics and bandwidth structure, which are beyond local approaches. The
formation length is introduced as a diagnostic to select between approaches as the electron is propagated
through the pulse.
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I. INTRODUCTION

The radiation produced in the nonlinear Compton
scattering of high energy electrons and positrons mov-
ing in strong electromagnetic fields has been [1,2] and
is being intensively studied [3–14]. The prevalent
theoretical approach is the background field method
or “furry” picture [15]: the interaction between charges
and the background is determined by solving equations
of motion in that background exactly, whereas radiated
fields are included perturbatively (some reviews of
strong-field QED can be found in [16–20]). The
resulting scattering matrix elements depend in a highly
nonlinear way on outgoing momenta, which means that
calculation of inclusive probabilities, even for lowest-
order tree-level processes, is nontrivial. Therefore,
approximation frameworks have been developed, which
implement QED Monte Carlo generators in numerical
simulation of intense laser-matter interaction (some
reviews can be found in [21–25]). A central approxi-
mation for including QED effects in these simulations,
is the locally constant field approximation (LCFA),
which has been benchmarked against numerical
evaluation of analytical results in numerous studies
[26–32]. However, the experiments E320 [33] at
FACET-II and LUXE [34] at DESY, will measure
strong-field QED effects in the intermediate intensity
regime, outside the region of applicability of the LCFA.
Furthermore, these experiments will employ a conven-
tionally accelerated electron beam and therefore can
measure strong-field QED effects at a higher accuracy
than has so far been possible using laser-wakefield
accelerated beams [3,4].

In response to these developments, the locally mono-
chromatic approximation (LMA), which was originally
employed in the E144 experiment in the mid-1990s
[1,2,35,36] has recently been more intensively studied.
The LMA has been derived from QED and formalized [37],
investigated analytically [38,39], included in simulation
frameworks [40–42], and benchmarked with numerical
evaluation of exact formulas [32,43–45]. (The open-source
code PTARMIGAN [42] employs the LMA and is being used
to simulate the interaction point of the LUXE experiment.)
The LMA trades the versatility of the LCFAwith accuracy
in reproducing harmonic structure, by assuming a back-
ground with two well-defined timescales (e.g., pulse
envelope and carrier frequency). The given QED process
is calculated exactly over the short timescale, whereas
changes in the slow timescale are included adiabatically
[46–49].
The local approaches take into account interference on

different length scales: the LCFA on the subwavelength
scale and the LMA on the wavelength scale (the “local”
expansion is performed in the pulse envelope). In contrast
to these local approaches is an alternative based on the fact
that in a plane-wave background, the Dirac equation is
semiclassically exact: electrons and positrons can be
modeled as pointlike. In the semiclassical approach, one
evaluates the spectrum numerically as an integral over the
particle trajectory through an arbitrary electromagnetic
field [50–52]. Depending on how much of the trajectory
is integrated over, this method can take into account
interference on the length scale of the entire pulse. (As
indicated above, in a plane-wave background, this
approach is even exact.) The semiclassical approach has
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been extended analytically and applied to focused laser
backgrounds [53–55] as the leading order Wentzel-
Kramers-Brillouin method (WKB) [56] result, which
assumes the hierarchy [57]: m ≪ ma0 ≪ ϵ, where m is
the electron mass, ϵ the particle energy and a0 the intensity
parameter, to be introduced below. In the current work, we
will assume this approximation always holds, considering
there has been recent work which hints that in non-plane-
wave fields, application of the semiclassical method
can lead to potentially contradictory results [58]. More
recently, the semiclassical method has also been applied to
standing-wave backgrounds [59]. The numerical method
has been applied to the case of high energy electrons and
positrons propagating through the non-plane-wave fields
of oriented single crystals, and shown to give reliable
results that agree well with experiment [60,61]. We call
the semiclassical formulation in terms of radiation inte-
grals that we use in this paper, the Belkacem, Cue, Kimbal
(BCK) model. Although analytical expressions for the
BCK model have been known for decades, the difficulty
of evaluating the radiation spectra has prevented a detailed
application to electron-laser collisions.
The aim of the current manuscript is to demonstrate the

accuracy and application of the BCK method to electron-
laser collisions. By benchmarking with numerical
evaluation of exact results from QED in a plane-wave
background, we illustrate features of the radiation spec-
trum captured by the BCK method, which are beyond the
reach of the more standard LCFA and LMA approxima-
tions. This is motivated in light of upcoming particle-laser
experiments [33,34], which aim to achieve an experimen-
tal precision using conventionally accelerated electron
beams that is higher than has so far been possible with
laser wakefield acceleration. We assume the laser pulse is
a thin target, i.e., that electrons only undergo single
nonlinear Compton scattering. In Sec. II, we highlight
some relevant points in deriving the theoretical models
and in Sec. III we discuss the concept of “formation
length,” which is useful in determining when a model will
be sufficiently accurate or not. In Sec. IV we present
results of benchmarking the models: first, in a mono-
chromatic background; then in a finite plane-wave pulse,
which is compared against direct numerical evaluation of
the QED expression; then, in a focused laser background.
In Sec. V, a comparison of the computation time for each
model is made and in Sec. VI the results are summarized
and the paper concluded.

II. THEORETICAL FORMALISM

The common starting point for all three theoretical
models used for radiation emission investigated in this
paper is the transition matrix element M, for single non-
linear Compton scattering [16,50,62] that contains the
transition matrix element M. The transition matrix element
is given by

M ¼ −ie
Z

Ψ̄p0 ðxÞê0�ΨpðxÞ
eik

0·xffiffiffiffiffiffiffi
2k00

p d4x ð1Þ

for an electron that transitions from an initial state ΨpðxÞ to
a final state Ψ̄p0 ðxÞ (where Ψ̄p0 ¼ Ψ†

p0γ0) and radiates a
single photon (volume factors have been set equal to unity).
(We use the shorthand k0 · x ¼ k0μxμ; we also use ^ to denote
an operator and set the speed of light in vacuum c ¼ 1, but
keep factors of the reduced Planck constant, ℏ.) In Eq. (1)
e < 0 is the electron charge, ê0 is the photon polarization
vector, p and p0 is the electron four-momentum in its initial
and final state, respectively, and k0 is the photon four-
momentum in the final state.
The radiation models investigated in this work are

differentiated by how the squared transition matrix
element is approximated. Derivation of the local approx-
imations is based on the exact solution to the Dirac
equation in a plane-wave background (so-called Volkov
wave function [16,62,63]), and the generalization of
local approximations in simulations to non-plane-wave
backgrounds follows by calculating the relevant local
momentum in a non-plane-wave context. The vector
potential of the background, AμðϕÞ, is assumed only to
depend on the invariant variable ϕ ¼ k · x. Here kμ is the
zero-length wave vector of the background field with
kμ ¼ ðjkj;kÞμ, where k determines the propagation
direction of the external field. The Volkov wave function
can be written as

ΨpðxÞ ¼
�
1þ e=k=AðϕÞ

2k · p

�
uðpÞffiffiffiffiffiffiffiffi
2p0

p eiS=ℏ; ð2Þ

where uðpÞ is the free particle plane-wave bispinor. The
parameter S is the classical action of an electron moving
in an electromagnetic field with vector potential AμðϕÞ
given by

S ¼ −p · x − e
Z

ϕ

0

�
p · Aðϕ0Þ
k · p

−
eAðϕ0Þ2
2k · p

�
dϕ0: ð3Þ

The electron wave function has a classical action, which
is a reflection that the Volkov wave function is semi-
classical [16]. This allows the motion of the electron in
the external electromagnetic field to be treated classically.
In contrast, the interaction between the electron and the
radiated photon is treated quantum mechanically. This is
true for all radiation models investigated in this paper.
The Volkov wave functions are solutions to the Dirac
equation, consequently they are completely quantum
mechanical, therefore no semiclassical characteristics
are inferred. The semiclassical nature of the wave
function could have been predicted by looking at the
quantum effects in the photon emission process and in the
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trajectory of the electron moving in an electromagnetic
field. In non-plane-wave fields, quantum effects in the
trajectory of the particle become important when the
energy levels in the electromagnetic field become com-
parable to the energy of the particle. One example where
this can be clearly seen is in the propagation of a particle
perpendicular to a constant magnetic field H, which is
considered in, e.g., Refs. [50,62]. In this background, the
energy levels of the electron are quantized with an energy
spacing of

ℏω0 ¼ ℏ
vjejH
jpj ≈ ℏ

jejH
ϵ

; ð4Þ

where ω0 is the classical frequency of revolution of a
particle with energy ϵ, momentum p, and speed v. The
approximation in Eq. (4) holds for γ ≫ 1 with γ being the
relativistic Lorentz factor. The motion is classical when
ℏω0=ϵ ≪ 1. It is convenient to introduce the quantum
nonlinearity parameter χ and the critical Schwinger field
H0 [62]

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðFμνuνÞ2

q
=H0; H0 ¼ m2=jejℏ ≈ 4.4 × 1013 G;

ð5Þ

whereFμν is the external electromagnetic field tensor, uμ is
the four velocity of the electron. The parameter χ can be
expressed as the ratio between the Lorentz boosted
electromagnetic field and the critical field in the rest frame
of the particle. The trajectory is considered to be classical
when

1 ≫
ℏω0

ϵ
¼ vmH

γH0

≈
H
H0

1

γ2
≈

χ

γ3
: ð6Þ

Quantum effects in the emission process (i.e., electron
recoil) become important when the energy of a single
emitted photon is comparable to the energy of the emitting
particle. Classically, a charged relativistic particle in an
electromagnetic background can emit photons via
synchrotron emission with frequencies up to the critical
frequency ωc ≈ ω0γ

3 [64]. For a relativistic particle mov-
ing perpendicular to a magnetic field, the condition for the
emission process to be classical is

1 ≫
ℏωc

ϵ
≈ γ

H
H0

≈ χ: ð7Þ

From the above discussion, it is evident that the parameter
χ is important in determining if the emission process or the
trajectory can be treated classically or has to be treated
quantum mechanically. (Presently, no experiment has
been close to producing fields in the lab frame comparable
to the Schwinger critical field, otherwise these arguments
would also have to be generalized to also consider the

magnitude of the electromagnetic invariants.) Due to the
extra γ3 factor on the radiation condition, quantum effects
in the radiation process quickly start becoming important
as the energy increases (these have been noted in plane-
wave backgrounds in the phenomena of, e.g., straggling
[65] and quenching [66]). We see that Eq. (6) provides
justification for treating the trajectory of the electrons
classically, even though a quantum theory is being used.
In addition to the question of “classical” vs “quantum,”

there is also the question of coherence. Given a fixed point
on the trajectory, over what length does the amplitude for
emission add coherently with neighboring points on the
trajectory? This is sometimes referred to as the “inter-
erence” or “coherence” length. This can be understood by
considering the probability for emission, which is propor-
tional to the mod square of M [see Eq. (1)]. The only
nontrivial space-time integrals are over variables t and t0. It
is useful to define

τ ¼ tþ t0

2
; Δt ¼ t − t0; ð8Þ

where τ is the average time coordinate, and Δt is the
“interference” time coordinate. Then the probability can be
cast as an integral over the average position of the electron,
quantified by τ and an interference window in Δt around τ.
Depending on the particle energy and field strength, the
integral in Δt can be approximated in different ways.
In the following sections we outline the derivations of

three models to evaluate the radiation spectrum from
nonlinear Compton scattering of an electron moving in
an electromagnetic background, with the goal of high-
lighting the major differences between the methods. This
will provide an understanding of the advantages and
limitations of each model, which will be investigated later.

A. Locally monochromatic approximation

This section outlines some of the key points in deriving
the LMA in a linearly polarized potential. It differs from
[37] in that only the diagonal terms in the double harmonic
sum are kept (the off-diagonal terms include an integral
over an oscillating phase and have so far not been reported
as having any significant impact on energy spectra).
Consider an electron moving in a linearly polarized
plane-wave field with a vector potential of the form
AμðϕÞ ¼ aμ cosðϕÞ, where aμ is a constant four-potential
amplitude. Evaluating the classical action integral analyti-
cally results in the following wave function [16,67,68]

ΨpðxÞ ¼
�
1þ e=k=a cosðϕÞ

2k · p

�
uðpÞffiffiffiffiffiffiffi
2q0

p

exp

�
−i

ea · p
k · p

sinðϕÞ þ i
e2a2

8k · p
sinð2ϕÞ − iq · x

�
;

ð9Þ
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where qμ ¼ pμ − kμe2a2=4k · p, is the quasimomentum of
the electron in the plane wave (the normalization in terms
of q0 follows the arguments in [16]). It is evident that
the transition matrix element in Eq. (1) will depend on
functions of the type

cosnðϕÞeiðα sinðϕÞ−β sinð2ϕÞÞ; n ¼ 0; 1; 2; ð10Þ

with the parameters

α¼e

�
a ·p0

k ·p0−
a ·p
k ·p

�
; β¼e2a2

8

�
1

k ·p0−
1

k ·p

�
: ð11Þ

The functions in Eq. (10) can be written in terms of a
discrete Fourier series

cosnðϕÞeiðα sinðϕÞ−β sinð2ϕÞÞ ¼
X∞
s¼−∞

Anðs; α; βÞeisϕ; ð12Þ

where s is an integer and

Anðs; α; βÞ ¼
1

2π

Z
π

−π
cosnðϕÞeiðα sinðϕÞ−β sinð2ϕÞ−sϕÞdϕ: ð13Þ

The function A0ðs; α; βÞ is related to the “generalized
Bessel function,” Jsðα; βÞ, where [69]

A0ðs; α; βÞ ¼
X∞

m¼−∞
J2mþsðαÞJmðβÞ ≔ Jsðα; βÞ; ð14Þ

and A1 and A2 can be related to the generalized Bessel
function by expanding out the cosine in exponentials.
The parameters in the above expression are given by

α ¼ z cosðθÞ; ð15Þ

z ¼ a20
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a20=2

p
χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðus − uÞ

p
; ð16Þ

us ¼
2sχ

a0ð1þ a20=2Þ
; ð17Þ

β ¼ a30u
8χ

; ð18Þ

where u ¼ k · k0=ðk · q0Þ ≈ ℏω=ðϵ − ℏωÞ is the ratio of
photon and outgoing electron light front momenta, related
to the ratio of energies, and θ, defined between 0 and 2π, is
related nontrivially to the angle between the process
constituents (see, e.g., [16]). The parameter

a0 ¼
jej

ffiffiffiffiffiffiffiffi
−a2

p

m
ð19Þ

is an invariant often called the classical nonlinearity
parameter. The parameter a0 is equivalent to the work
done over a Compton wavelength in units of the field’s
central photon energy. (In some literature the root-mean-
squared value of the field strength is used instead of

ffiffiffiffiffiffiffiffi
−a2

p

[70], then one must include a factor 1=
ffiffiffi
2

p
and the resulting

cross sections altered accordingly.)
Employing the wave function in Eq. (9) and the Fourier

expansion in Eq. (12) in Eq. (1) and integrating over d4x
yields a delta function δðskμ þ qμ − q0μ − k0μÞ in the matrix
element, M, for each term in the sum over s.
The resulting probability for an electron moving in a

linearly polarized plane wave to emit a photon with energy
ratio xω ¼ ℏω=ϵ per unit time can be written

dP
dtdxω

¼ αm2

2πq0

X∞
s¼1

Z
2π

0

ð−A2
0

þ a20

�
1þ u2

2ð1þ uÞ
�
ðA2

1 − A0A2ÞÞdθ; ð20Þ

where the arguments of the An functions have been sup-
pressed and where the ratio xω relates to u by
u ¼ xω=ð1 − xωÞ. The rate in Eq. (20) is in the same form
as used to model the E144 experiment [36] and agrees
exactly with the recent derivation from QED [37], if the
diagonal terms in the double harmonic sum are neglected
and the intensity a0 in the arguments of An is localized to
the envelope value of the potential. We refer to Eq. (20) as
the LMA in this paper. To apply the LMA to simulations,
all instances of the electron momentum can be replaced
with local cycle-averaged quasimomentum [43].

B. Locally constant field approximation

It was shown in [37] that if the limit a0 → ∞ is taken,
whilst holding χ constant (e.g., by taking the limit ωl → 0),
the LMA tends to the LCFA just as the monochromatic
result tends to the constant crossed field result in the
same limit [16]. Here we recap arguments from [16] how
the rate in a constant crossed field is calculated. This can
be achieved by immediately setting AμðϕÞ ¼ aμϕ at the
beginning of the calculation so the wave function becomes

ΨpðxÞ ¼
�
1þ e=k=aϕ

2k · p

�
uðpÞffiffiffiffiffiffiffiffi
2p0

p

exp

�
−i

ea · p
2k · p

ϕ2 þ i
e2a2

6k · p
ϕ3 − ip · x

�
: ð21Þ

To make progress one can, for example, Fourier transform
the nonlinear part of the exponent of the transition matrix
elements, which leads to the introduction of functions
Cðs; α; βÞ, defined through
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ϕn exp

�
i

�
αϕ2

2
−
4βϕ3

3

��
; n ¼ 0; 1; 2; ð22Þ

where α and β are defined in Eq. (11). The functions can be
written in terms of a continuous Fourier integral

ϕne½iðαϕ2=2−4βϕ3=3Þ� ¼ in
Z

∞

−∞
eisθ

∂
nCðs; α; βÞ

∂sn
ds; ð23Þ

where

Cðs; α; βÞ ¼ ð4βÞ−1=3 exp
�
−is

α

8β
þ i

8β

3

�
α

8β

�
3
�
AiðyÞ

ð24Þ

depends on the Airy function AiðyÞ and its derivative
Ai0ðyÞ where their arguments are given by y ¼ ð4βÞ2=3
½s=4β − ðα=8βÞ2�. The resulting probability for an electron
to emit a photon with energy ratio xω per unit time becomes
[16,50,62]

dP
dxωdt

ðχ;uÞ¼−α
m2

ϵ

�Z
∞

z
AiðtÞdtþAi0ðzÞ

z

�
2þ u2

ð1þuÞ
��

;

ð25Þ

where z ¼ ½u=χ�2=3. To turn this into the LCFA, the
asymptotic momentum p is replaced with the (local)
classical kinetic momentum, π, where

πμ ¼ pμ − eAμ þ kμð2eA · p − e2A · AÞ=ð2k · pÞ; ð26Þ

which can be performed straightforwardly as p only occurs
in the constant crossed field rate in the combination
k · p ¼ k · π. In comparison to the LMA, in the LCFA,
the discrete sum over harmonics s is replaced by a
continuous integral which can be performed analytically.
Therefore the LCFA is considerably quicker to evaluate
numerically, especially for larger values of a0, where many
harmonics in the LMA must be included before the sum
converges. Also, instead of the electron’s instantaneous
quasimomentum qμ used in the LMA, in the LCFA, only
the instantaneous kinetic momentum pμ is required. The
applicability range of the LCFA has been investigated in the
literature, and the condition reported [27,30,71]

�
a30ðϕÞu
χðϕÞ

�
1=3

≫ 1; ð27Þ

where a0ðϕÞ and χðϕÞ are the local values of a0 and χ.

C. Radiation integral-BCK model

This final method provides a general expression to
calculate the resulting radiation emitted from a relativistic
charged particle moving along a classical trajectory in an

arbitrary electromagnetic field [62]. Starting with the
semiclassical wave function of a particle moving in an
external electromagnetic field

Ψ ¼ 1ffiffiffiffiffiffiffi
2Ĥ

p uðp̂Þe−iĤt=ℏϕðxÞ; ð28Þ

where Ĥ is the Hamiltonian operator. The function ϕðxÞ ∝
e−iS=ℏ is the spatial wave function and depends on the
classical action S. In perturbation theory, the probability to
emit a photon with frequency ω and wave vector k is
usually evaluated by squaring the transition matrix element,
multiplying by the density of states and summing over the
final states of the electron

dP ¼
X
f

jMj2 d3k
ð2πÞ3 ¼

X
f

				
Z

VðtÞdt
				
2 d3k
ð2πÞ3 : ð29Þ

The transition matrix element in Eq. (1) is the same as in the
above expression, but now we separate the integral d4x into
d3xdt where the element VðtÞ now becomes a three-
dimensional integral over space,

VðtÞ¼−
e

ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffi
ℏω

p
Z

Ψ†
p0 ðx;tÞe� ·αeiωt−ik·xΨpðx;tÞd3x; ð30Þ

where α is the regular Dirac matrix (see, e.g., Ref [62]).
We can write the new matrix element in terms of the
operator Q̂ðtÞ

V̂ ¼ e
ffiffiffiffiffiffi
2π

p
ffiffiffiffiffiffiffi
ℏω

p hfjQ̂ðtÞjiieiωt; ð31Þ

which is defined as

Q̂ðtÞ ¼ u†fðp̂ðtÞÞffiffiffiffiffiffiffiffiffiffiffiffi
2ĤðtÞ

q e� · αe−ik·x
uiðp̂ðtÞÞffiffiffiffiffiffiffiffiffiffiffiffi
2ĤðtÞ

q ; ð32Þ

where factors of the form e−iĤt=ℏ have been absorbed,
converting the operators into a time-dependent Heisenberg
operator. Since the spatial wave functions form a complete
basis, we can write

P
f ϕ

�ðx2Þϕðx1Þ ¼ δðx2 − x1Þ, which
reduces the emission probability to an expectation value
given by

dP ¼ e2d3k
4π2ℏω

Z Z
hijQ†ðt2ÞQðt1Þjiieiωðt1−t2Þdt1dt2: ð33Þ

Now the semiclassical operator method developed by Baier
and Katkov [50] is employed, where, in the product of
commuting operators, the operators are replaced by their
classical values. Through approximations, the product

Q̂† Q̂ is rewritten in terms of commuting operators that
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are subsequently replaced by their classical nonoperator
value. The accuracy of this approximation is Oð1=γÞ in a
general background, but the approximation is actually exact
in a plane wave, making it a powerful tool for simulating
relativistic particles colliding with laser pulses, which will
be presented in this paper. A detailed derivation of the
approximation is shown in Refs. [50,62,72]. The result is
reduced to a single integral over time (see, e.g., [73] and
derivations shown in Refs. [52,74]), given by

d2P
dℏωdΩ

¼ e2

4π3

�
ϵ�2 þ ϵ2

2ℏωϵ2
jIj2 þ ℏω

2ϵ2γ2
jJj2

�
; ð34Þ

where ϵ� ¼ ϵ − ℏω (with ω� defined via the relation
ϵ�ω� ¼ ϵω) and I and J are given by

I ¼
Z

∞

−∞

n × ½ðn − βÞ × _β�
ð1 − n · βÞ2 eiω

�ðt−n·rÞdt; ð35Þ

J ¼
Z

∞

−∞

n · _β
ð1 − n · βÞ2 e

iω�ðt−n·rÞdt: ð36Þ

We call this model the BCK model. Here n ¼
ðsin ϑ cosφ; sin ϑ sinφ; cosϑÞ is the direction of emission
with polar and azimuthal angles ϑ and φ and
dΩ ¼ sinϑdϑdφ. The classical trajectory is characterized
by the instantaneous position rðtÞ, the instantaneous
velocity βðtÞ, and the instantaneous acceleration _βðtÞ.

As evident from the derivation, no details of the external
field or the trajectory has been assumed, only that the
trajectory should be described classically, which holds for
1 ≫ χ=γ3. The Volkov solution to the Dirac equation in a
plane-wave background is semiclassically exact, and the
BCK method agrees exactly with the QED result in a plane
wave. For non-plane-wave backgrounds, from the discus-
sion in Ref. [50], the angle of the emitted radiation has been
assumed to be of the order 1=γ when determining the
commutativity of the operators, and we can therefore
expect errors of the order 1=γ2 when using this method
in focused backgrounds.
When applying the BCK model, it is necessary to

determine the trajectory first and then evaluate the spectrum
numerically for arbitrary external fields second. (For details
of the numerical implementation of the BCK model, see
Ref. [61].) Classically the radiation from an electron can be
determined by the Liénard-Wiechert radiation integrals [64]
which is very similar to the BCKmodel. So the fact that one
can define a semiclassical version, which is used to include
the nonlinear QED interaction with a plane-wave back-
ground by integrating over the classical trajectory, might
not be too surprising. Lindhard showed [75] that, for a
spin-0 particle, if the only non-negligible quantum
effect is the photon recoil, a simple substitution of the
frequency variable in the classical photon number spectrum

(ω → ω�), with ω� ≥ 0, regardless of the details of the
motion of the particle, reproduced the exact quantum
mechanical expression [51].
When using the BCK model, breaking up the Δt integral

into smaller sections can be necessary in order to keep the
probability of emitting a photon during a section less than
one. The breaking up of the trajectory into subtrajectory
sections leads to an unphysical contribution in the radiation
spectrum due to how the trajectory is patched between the
pieces. While this contribution is not present in an electron-
laser collision, its origin can be understood on physical
grounds. If a particle follows a trajectory which is ballistic
between random collisions that each change the momentum
by a factor proportional to jΔβj, the BCK model can be
reduced to [76]

dP
dℏω

¼ 2α

3πℏω
γ2jΔβj2

�
1 −

ℏω
ϵ

þ 3

4

ℏω
ϵ

�
; ð37Þ

which has the same analytical form as Bethe-Heitler
bremsstrahlung formula [77]. If one were to use the
BCK model to calculate the spectrum from a particle
moving through an amorphous material subjected to
multiple Coulomb scattering, the overall scaling of the
spectrum obtained agrees with what the Bethe-Heitler
bremsstrahlung formula [77] predicts [60]. This means
that instantaneous changes in momentum lead to a brems-
strahlunglike emission spectrum, which will be added on
top of any coherence the trajectory might have.
If the trajectory becomes too short, then the nonphysical

Bethe-Heitler bremsstrahlung can be significant, which is
important to keep in mind when analyzing the resulting
spectra, as breaking up the trajectory into smaller pieces is
unavoidable because the probability of emitting a photon
during a section has to be kept smaller than unity. The total
spectrum is calculated by adding the probabilities from
each small subsection; i.e., the contributions from the
subsections are summed incoherently:

				
Z

tf

ti

FðtÞdt
				
2

≈
XN
n¼1

				
Z

tðnÞf

tðn−1Þi

FðtÞdt
				
2

; ð38Þ

where tð0Þi ¼ ti and tðNÞ
f ¼ tf. This means the coherence

from the final part of the (n − 1)th section and the
beginning of the nth section will be lost. The error
introduced in the spectrum is of the order of the contribu-
tion on a formation length (described in the following
section).
Although the Bethe-Heitler effect is absent in the LCFA

and LMA rates, because the integration over Δt is per-
formed analytically (after an expansion of the probability in
Δt), the photon emission probability can easily exceed one
if a long time step is chosen. Emission probabilities larger
than one rarely becomes an issue for local models since the
length of each time step usually is kept small to avoid errors
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in determining the particle trajectory, but becomes obvious
when nonlocal methods, such as the BCK model, are used
in scenarios with large fields.
If the probability of emission becomes larger than one,

then the particle is likely to emit several photons along its
entire trajectory. The practical approach is to divide the
trajectory into smaller sections until convergence in the
spectrum is reached, while keeping each section longer
than the formation length. If this cannot be achieved, in,
e.g., very high fields (large a0) and long pulses, the laser
pulse can no longer be considered a “thin target” and higher
orders of nonlinear Compton scattering must be included.
Having a probability of emission larger than unity is

therefore not unique to the BCK model but a consequence
of using nonlocal single emission models for targets that
cannot be considered thin.

III. FORMATION LENGTH

The formation length, or “coherence time,” is the range
of values of Δt that must be integrated over to effectively
include the contribution from the process. A simple
approximation for the formation length can be determined
by expanding the exponent in emission angle, assuming it
to be much smaller than unity (see, e.g., [61,74]) and
neglecting terms that vary with the particle position, to give
(for a head-on collision)

lf ¼ 2γ2
ϵ − ℏω
ϵω

: ð39Þ

For our simulations it is important that the trajectory over
which one integrates is several formations lengths long.
This is especially the case when applying the BCK model,
where a suitable time over which to integrate the trajectory
is required.
From the classical point of view, the formation length

can be considered as the distance an electron and the
emitted photon travel before they are separated by
more than one reduced wavelength. Therefore the
formation length (for a head-on collision) can also be
expressed as

lf ¼ 2γ2=ω: ð40Þ

The quantum version of the formation length in Eq. (39)
can be retrieved from the classical result Eq. (40) by
substituting in ω → ω�, as discussed in the previous
section. A detailed discussion of the concept of the
formation lengths is presented in Ref. [78].
It should be noted that the formation length can be

significantly increased/decreased by contributions at larger
values of Δt than those captured by the local approxima-
tions. If the particle’s trajectory bends considerably outside
the 1=γ light cone, the coherence is broken and the effective
formation length is smaller. For the LMA, a similar

oscillating phase appears in the derivation [see Eq. (50)
in [79] where we neglect the θ2 term] that can be written as

lf ¼ 2γ2

ϵωð1þa2
0
=2Þ

ϵ−ℏω − 4γ2sωl

; ð41Þ

where ωl is the frequency of the plane-wave background. In
this case the position-varying part of the phase is non-
negligible and there arises an interesting phenomenon that
the formation length diverges exactly when the photon
energy is equal to the harmonic frequencies of the nonlinear
Compton spectrum. This indicates that finite-size effects,
such as the finite duration of the pulse, must lead to
modifications at these points in the spectrum. (Indeed when
the QED probability in a finite plane wave was compared to
numerical simulations using the LMA, the error was found
to increase at these harmonic edges [44].) That the large
values of the parameter a0 suppresses the formation length
is no surprise, since it is equivalent to the amount of
transverse momentum the particle receives during one
plane-wave cycle. This means that, for large a0, particles
will be bent outside the light cone breaking the coherence.

IV. NUMERICAL COMPARISON AND
SIMULATIONS

When designing laser-particle experiments, numerical
simulations are employed to calculate particle spectra for a
range of parameters and in multiple geometries. There is a
balance between speed of evaluation and accuracy of
simulation of these models. The LCFA is the easiest to
employ and the fastest to run but does not capture important
spectral features at intermediate intensities a0 ∼Oð1Þ;
the LMA and BCK models are more accurate but if
the intensity of the background satisfies a0 ≳ 1, can take
several orders of magnitude longer to evaluate. Therefore,
knowing where each model is valid allows one to switch
between models and reduce the evaluation time.
For the LCFAmodel, the photon spectrum is evaluated at

each particle time step based on the local value of χ. In
contrast, the LMA divides the trajectory into bigger
sections where the average a0 and χ values are used to
evaluate the spectrum for each section. In the LMA,
particles can then be pushed consistently according to
the ponderomotive force equation [43,44], but here the
electrons are modeled as moving through the laser pulse
ballistically, which we find is a good approximation for the
energies considered. The total LMA spectrum is the sum of
the individual spectra from each section. We are working
within the “thin target” approximation, where each electron
can only undergo single nonlinear Compton scattering. As
a result, the BCK model can integrate over the entire
interference time Δt. We note that, for all three models, if
the intensity and interval of integration are sufficiently
large, the calculated probability of emitting a photon can
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exceed unity. In this case, we can no longer use the thin-
target approximation and, instead, the trajectories must be
broken up into smaller subtrajectories, which, when inte-
grated over, each give a probability of emission substan-
tially less than unity. This procedure then describes
multiple nonlinear Compton scattering.
The BCK model has been applied mainly to strong-field

crystal radiation; here we will apply it to electron-laser
collisions. First we will benchmark the BCK with the LMA
in a monochromatic background, which is exact in this
case, to demonstrate the BCK model’s reproduction of
harmonic structure. Then, we will benchmark with a
numerical evaluation of the exact QED expression in a
plane-wave background; this will confirm the accuracy of
the BCK model. Finally, we will compare the models in the
collision between an electron and a focused laser back-
ground, dispensing with the direct QED evaluation, for
which there is currently no solution to a focused
background.

A. Monochromatic wave

In this section, the background is of the form of a linearly
polarized monochromatic wave: a⊥ ¼ ma0fcosϕ; 0g,
where the vector potential A ¼ ð0; a⊥; 0Þ. In this

background, the LMA is exact, therefore the comparison
can be used to show the accuracy of the BCK model.
For the comparison, we choose intensity parameters a0 ¼ 1
and a0 ¼ 7 to correspond to the intermediate and high
intensity range, respectively, the initial electron energy is
13 GeV, and the plane-wave wavelength λ is 800 or
8000 nm (corresponding to energy parameters η ¼ 0.154
or η ¼ 0.0154, respectively, where η ¼ ℏk · p=m2). The
simulation is performed for particles moving 100 fs through
the monochromatic wave. In this case the distance traveled
in the field is only important for the BCK model, which
integrates the trajectory numerically, while the LCFA only
requires the trajectory to sample the local field strength
during one plane-wave cycle. In Fig. 1 we show the
radiation spectra from a head on collision between the
electron and monochromatic plane wave.
When a0 ¼ 1, we see a confirmation of what would be

expected for the intermediate intensity regime, for both
wavelengths. The BCK and LMA spectra display harmonic
structure, with the nth harmonic order corresponding to a
net absorption of n laser photons by the electron. The
spectrum displays the pattern of sharp harmonics of odd
order and more “rounded” harmonics of even order which
is typical for a linearly polarized background (commented

FIG. 1. Radiation spectra from a head-on collision between 13 GeV electrons moving 100 fs through a monochromatic wave for
different values of a0, χ, and wavelength. The black curve is the radiation spectrum according to the LCFA, the blue curve is the LMA
and the red curve is the BCK model. The gridlines mark the position of the harmonics (kinematic edges), as calculated from the formula
ℏωs ¼ ð4sℏωϵ2Þ=ðm2ð1þ a20=2Þ þ 4sℏωϵÞ [70].
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on in, e.g., [80]). In contrast to these models, the LCFA
fails to reproduce the harmonic shape, as expected. As
already discussed in Eq. (41), the formation length
diverges at the harmonic edges in the spectrum. This is
reflected by the LMA producing sharper harmonic edges,
where the BCKmodel has a smoother structure that reflects
harmonic broadening. This can be understood by recalling
that the LMA takes into account interference over the
period of the fast oscillation, i.e., Δt ≈ 2π=k0, but approx-
imates interference over longer periods, whereas in the
BCK approach, a finite particle trajectory is integrated
numerically and therefore interference on the length scale
of the entire trajectory is included. (Sharper edges are
produced in plane-wave pulses with more cycles.)
For a0 ¼ 7, i.e., in the high-intensity region, there is

good agreement between the LMA and BCK spectra where
now the strong harmonic peaks appear as small-amplitude,
high-frequency noise. Distinguishing these spectra exper-
imentally would be extremely difficult because there is no
clear difference even at low energy.
The comparison at a0 ¼ 1 and wavelength of λ ¼

8000 nm reveals an important limitation on the approxi-
mate formation length equation [Eq. (39)]. For these
parameters and a 13 GeVelectron emitting a 2 GeV photon,
the formation length should be lf ≈ 100 nm. This would
imply that lf ≪ λ and therefore harmonic structure in the
photon spectrum should not be significant (harmonic
structure is due to interference on the length-scale of the
wavelength λ). However, we see that the LMA and BCK
indeed have significant harmonic features, and therefore
there are limitations to using Eq. (39) for values of a0 ≫ 1.
In this case, the formula in Eq. (41) is required for a more
accurate estimate of the formation length.
In Fig. 2 we show the formation length as a function of

emitted photon frequency according to Eqs. (39) and (41)
for the 8000 nm case, a0 ¼ 1 and a0 ¼ 7. The divergence
of the formation length clearly has a large effect in the
a0 ¼ 1 case. The diverging peaks, that occur at net number
of absorbed of photons s from the external field, span a
large region of the spectrum. Increasing the value of a0
increases the transverse momentum a particle receives
during a plane-wave cycle. If the particle is deflected
outside the emission cone, which is of the order 1=γ, the
coherence in the motion of the particle is lost. As a result,
the effective coherence length becomes smaller than the
formation length for larger a0. This a0 suppression of the
formation length is clearly visible in the a0 ¼ 7 case, where
only a small fraction of the spectrum extends above the
region where the field is not constant.
At the low energy end of the spectra, the difference

between the models can be understood in terms of the
formation length. The formation length becomes much
longer for low energy photons for all cases investigated in
this paper and each of these models is accurate for different
formation length ranges.

B. Finite plane-wave pulse

Before considering the more experimentally-relevant
case of a tightly focused laser pulse, we benchmark the
models against an evaluation of the exact QED result in a
linearly polarized finite plane-wave pulse of the form

a⊥ ¼
8<
:

ma0sin2 ðφ=2NÞfcosφ; 0g; 0 ≤ φ ≤ 2πN

0 otherwise
; ð42Þ

where N is the number of laser cycles. The parameters of
the test case are chosen to overlap those at upcoming high-
energy experiments. The electron energy is set to 13 GeV
and the collision is chosen to be head-on (corresponding to
an energy parameter η ¼ 0.154). The intensity parameter is
a0 ¼ 1, which is approximately at the crossover between
the behavior of perturbative and nonperturbative depend-
ency on a0. Finally, the two cases of N ¼ 2 and N ¼ 8,
with full-width-at-half-maximum (FWHM) durations of 2
and 8 fs, respectively, are chosen to study short- and long-
pulse effects.

FIG. 2. Formation length for a 13 GeV electron with different
values of a0 and χ moving through a plane wave with 8000 nm
wavelength according to Eq. (39) (red), and Eq. (41) (black) for
increasing values of absorbed photons from the external field s
throughout the spectrum. The blue line marks a length of 0.1 μm.
The values of s are not equidistant and are chosen to represent the
entire spectrum.
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There are a number of conclusions that can be made from
the results, illustrated in Fig. 3. First, we see reflected in the
numerics, the fact that the BCK model is exact in a plane
wave; the BCK and QED curves are difficult to distinguish,
as one might expect. Second, the BCK model reproduces
exactly the phenomena of harmonic broadening and
appearance of subharmonics, in contrast to the LMA,
which misses these features. This aspect is straightforward
to understand: these effects are to do with the bandwidth of
the pulse, and since the shape of the LMA spectrum is
independent of the pulse duration (it occurs as a simple
prefactor to the rate), it does not contain bandwidth effects.
(The LMA has recently been applied to nonlinear Compton
in a circularly polarized background [20,38,44], and the
corresponding spectra are similar in nature to the ones
presented here.) Third, the error in the LMA is larger for
N ¼ 2 than N ¼ 8, which is also understandable, since the
LMA involves an expansion in the inverse pulse duration
and assumes here that 1=N ≪ 1. However, the LMA does
correctly predict the position of harmonics and well
approximate the overall structure of the spectrum.
Finally, the results in Fig. 3 also demonstrate the well-
established [27,81] fact that the LCFA greatly overesti-
mates the low-energy part of the spectrum.

With the equivalence having been established between
the BCK model and the QED result for a plane-wave
background, we focus on the comparison of the BCK
model (which can be applied to non-plane-wave back-
grounds), with the LMA and LCFA.

C. Focused laser pulse

In this section we consider the head-on collision of
13 GeVelectrons all with the same initial condition, with a
Gaussian focused laser pulse [82,83] of the form

E ¼ E0

w0

wðzÞ exp
�
−

r2

w2ðzÞ − 2 lnð2Þ ðt − zÞ2
τ20

�

×ℜ

�
exp

�
iωðt − zÞ − ikr2

2RðzÞ þ iψgðzÞ
��

e⊥: ð43Þ

Here, E0 is the peak electric field at the focus, wðzÞ ¼
w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðz=zRÞ2

p
describes the evolution of the beam width

as a function of distance z from the waist, and zR ¼ πw2
0=λ

is the Rayleigh length. Furthermore, the wave-front curva-
ture is described by RðzÞ ¼ z½1þ ðzR=zÞ2�, ψgðzÞ ¼
arctanðz=zRÞ denotes the Gouy phase, ℜf·g denotes the
real part of what is inside the braces and τ0 denotes the
FWHM pulse duration of the intensity profile.
The pulsed laser has a FWHM duration of 40 fs, a

transverse spot size of w0 ¼ 3 μm, and a wavelength of
800 nm with intensity parameters: a0 ¼ 1.96, a0 ¼ 6.21,
and a0 ¼ 10.81, corresponding to χ values either side of
and close to the unity of χ ¼ 0.3, χ ¼ 0.96, and χ ¼ 1.67,
respectively (these values are used as they correspond to a
laser pulse energy of 0.1, 1, and 3 J, respectively). The
corresponding radiation spectrum is plotted in Fig. 4. For
a0 ¼ 1.96, harmonics are still visible in the LMA/BCK
models. As the laser intensity is increased, the harmonics
bunch together and decrease in visibility: for a0 ¼ 6.21 and
a0 ¼ 10.81, we see good agreement between all three
models in the high-energy tail of the spectrum. However,
the discrepancy around the peak of the spectrum is still
significant at these intensities, for example in the case
a0 ≈ 11, this discrepancy persists for energies up to around
3 GeV, i.e., almost 20% of the original electron energy. The
disagreement of the low-energy part of the LCFA spectrum
with direct evaluation from QED in a plane wave was noted
in [27]; here it is demonstrated for a focused background
using the BCK and LMA methods.
That the spectra from the BCK and LMA models agree

well can be understood by examining the formation length
based on Eqs. (39) and (41), which is shown in Fig. 5. Since
the formation length remains only of the order of the pulse
central wavelength, the laser field can bewell approximated
by the LMA.
With longer laser pulse lengths, the probability of several

interactions occurring during a collision between the laser
and an electron increases, if an electron has emitted

(a)

(b)

FIG. 3. Comparison of direct evaluation of QED expressions,
BCK, LMA, and LCFA for a head-on collision between an
electron with energy 13 GeV and a sine-squared linearly
polarized plane wave with intensity parameter a0 ¼ 1, for
(a) N ¼ 2 cycles and (b) N ¼ 8 cycles.
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low-energy photons in addition to the measured hard
photon (the contribution of soft and collinear photons to
nonlinear Compton scattering has recently been explored in
[84]). To avoid this situation, we investigate the spectrum

produced from a short laser pulse. In Fig. 6 we show the
radiation spectrum from 13 GeV electrons colliding head
on with a pulsed laser having a 10 fs FWHM pulse
duration, a transverse spot size of w0 ¼ 3 μm, and a
wavelength of 800 nm for two different laser intensities,
a0 ¼ 1.25 and a0 ¼ 3.95, corresponding to χ ¼ 0.19 and
χ ¼ 0.61, respectively. As evident from the a0 ¼ 1.25 case,
the difference between the LCFA and the LMA/BCK
models has increased as the laser pulse length has
decreased. In addition, we now start seeing a difference
between the LMA and the BCK models. This is similar to
what we observed in the plane-wave benchmarking in
Fig. 3, and follows from the fact that the LMA can be
understood as the leading term in an expansion of the
probability in the inverse pulse duration [32]; hence for
short pulse durations, the error can potentially increase.
For the a0 ¼ 3.95 case, we see the same trend as in

previous simulations. The a0 suppression of the formation
length ensures that the plane-wave amplitude does not
change significantly within the reduced formation length,
as a consequence the LMA agrees well with the BCK
model. (We still see disagreement with the LCFA model
starting from the peak moving to lower energy.)

V. NUMERICAL COMPUTATION TIME OF
MODELS

In this section, we compare computation times of the
different radiation models described and discuss the
parameter space in which each model can or should be
used. All calculations shown in this section are made on a
GPU, using the Titan V (V100 chip). More details
optimizing the evaluation of the BCK model using
GPUs is found here [61]. in Fig. 7 we show the compu-
tation time of the photon spectrum containing 100 equi-
distant photon energies between 0–11 GeV (scales linearly
with the number of photon energies), emitted by 13 GeV
electrons, as a function of a0, in the LMA and BCKmodels.

FIG. 4. Radiation spectra for 13 GeV electrons colliding head-on with a pulsed laser having a 40 fs FWHM pulse duration and a
transverse spot size of w0 ¼ 3 μm. Legends indicate the maximum a0 and χ parameter at the focal point of the laser pulse. The black
curve is based on the LCFA, the red curve is based on the BCK model and the blue curve is based on the LMA.

FIG. 5. Formation length for a 13 GeV electron with different
values of a0 and χ moving through a plane wave with 800 nm
wavelength according to Eq. (39) (red), and according to Eq. (41)
(black) for increasing values of s throughout the spectrum. The
blue line marks a length of 2.4 μm (3 wavelengths). The values of
s are not equidistant and are chosen to represent the entire
spectrum.
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The computation time is the ratio compared to the LCFA
computing time (10−4 s), which is independent of a0
and χ. The two cases investigated have parameters identical
to what is used in Figs. 1 and 4 where either a mono-
chromatic plane wave or a Gaussian-focused plane wave
is used.
In Fig. 7 we see that the time it takes to evaluate the LMA

scales as a power law with a0 > 1. This is because of the
increasingly large number of harmonics that must be
included before the sum converges. This can be understood
physically, because of the “effective mass” [68,85,86],
mð1þ a20=2Þ1=2, the electron acquires in the background.
As the intensity increases, the momentum supplied by the
background, sk, must increase to satisfy energy-momentum
conservation, which in turn places a requirement on higher

harmonic order, s (and the double Bessel function also
takes longer to evaluate for higher harmonic order). The
requirement for a higher harmonic order can also be
understood mathematically by noting the dependence of
the Bessel functions on the argument z in Eq. (16). The
largest contribution originates from small argument, z,
which implies us ≈ u, or 2sη ≈ uð1þ a20=2Þ, giving a
harmonic order s scaling with ∼a20 as a0 is increased
above 1. Because of the exponential scaling with a0, the
total computation time will be dominated by the few
trajectory grid points that lie at peak a0, and the total
computation time will be similar to the monochromatic
case, which is why the pulsed plane-wave case is left out of
Fig. 7 for the LMA.
Also in Fig. 7, the computation time of the BCK model

scales linearly with the number of time steps in the
trajectory, and by the number of grid points in the
numerical integral of the emission angle. (The slight
increase from linear behavior at large a0 is due to a
personal choice to calculate a higher resolution of the
angular spectra with increasing a0 since details in spectra
become finer.) For both the monochromatic and pulsed
case, the computation time scales linearly with a0. This is
because the angular excursion of the particle scales linearly
with a0, which in turn increases the area of the emission
angle which has to be numerically integrated.
For a monochromatic plane wave, the particle moves on

a trajectory with identical oscillations during each plane-
wave cycle. The perfect coherence in such a trajectory
narrows the angle of emission, and only a few small
locations in the angular integral contribute to the spectrum
and the resolution of the numerical integration over the
emission angle has to be increased. The more plane-wave
cycles the particle traverses, the narrower these points
become, but, as discussed earlier, the kinematic Compton
edges become sharper as well. In the pulsed case, the value
of a0 changes throughout the pulse and the perfect

FIG. 6. Radiation spectra for 13 GeVelectrons colliding head-on with a pulsed laser having a 10 fs FWHM pulse duration and a spot
size of w0 ¼ 3 μm. Legends indicate the maximum a0 and χ parameter at the focal point of the laser pulse. The black curve is based on
the LCFA, the red curve is based on the BCK model and the blue curve is based on the LMA.

FIG. 7. The ratio of the computation time of the LMA and BCK
models to the computation time of the LCFA (1.7 × 10−4 s,
independent of a0 and χ). The LMA and BCK models were
evaluated for 100 photon energies produced by a 13 GeV
electron. The LMA and BCK results are for a monochromatic
wave, the “pulsed BCK” result is for a 100 fs long trajectory in a
Gaussian focused plane wave, with peak intensity a0, identical to
the parameters used in Fig. 4.
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coherence is broken, meaning that fewer points in the
angular integral are needed.
It is evident from this investigation that for cases with

moderate and small a0 that vary smoothly, where the
harmonic structure is most pronounced the LMA an
appropriate model to use, since its computation time in
this regime is fairly quick. Since the computation time
for the LMA scales disadvantageously for increasing a0,
but the LCFA becomes more accurate, a hybrid approach
using the LMA and LCFA, depending on a0 and χ,
becomes advantageous. If one requires a very accurate
simulation (particularly for lower photon energies) for
a0 ¼ 1…10, the BCK is recommended because it scales
more favorably with a0 than the LMA. In addition, the
BCK should be used for extremely short pulses, as
investigated earlier, where envelope effects such as har-
monic broadening and subharmonics in the spectrum
appear, which are not captured by the LMA.

VI. CONCLUSION

We have calculated the photon spectrum from nonlinear
Compton scattering in the collision of an electron with a
laser pulse. For a plane-wave pulse, we demonstrated
numerically that the BCK model exactly agrees with the
QED result and compared it to predictions using the LMA
and the LCFA. We then performed several comparisons of
the nonlinear Compton spectrum in the collision of an
electron and a focused laser pulse for different intensities,
wavelengths and pulse lengths.

From our results, we conclude that the BCK model can
be used to calculate high resolution spectra for single
nonlinear Compton scattering in a focused laser back-
ground. The model includes bandwidth effects such as
harmonic broadening and subharmonic structure, which are
beyond local approaches such as the LMA and LCFA. The
most efficient method of calculating a high resolution
spectrum is to use a hybrid approach. Our analysis suggests
that the formation length can indicate which model is more
appropriate to calculate the spectrum, depending on what
part of the field the electron samples as it propagates
through a focused laser pulse. Here, we have applied the
BCK model to single nonlinear Compton scattering;
possible future work includes extending the BCK model
to higher orders of emission.
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