

Communication

# Nickel-Catalyzed Kumada Cross-Coupling Reactions of Benzylic Sulfonamides

Kirsten A. Hewitt<sup>1</sup>, Claire A. Herbert<sup>†</sup>, Alissa C. Matus<sup>1</sup>, and Elizabeth R. Jarvo<sup>1,\*</sup><sup>1</sup> Department of Chemistry, University of California, Irvine, California 92697-2025, United States  
[khewitt1@uci.edu](mailto:khewitt1@uci.edu) (K. A. H.); [caherber@uci.edu](mailto:caherber@uci.edu) (C. A. H.); [matusa@uci.edu](mailto:matusa@uci.edu) (A. C. M.)\* Correspondence: [erjarvo@uci.edu](mailto:erjarvo@uci.edu) (E. R. J.)

**Abstract:** Herein, we report a Kumada cross-coupling reaction of benzylic sulfonamides. The scope of the transformation includes acyclic and cyclic sulfonamide precursors that cleanly produce highly substituted acyclic fragments. Preliminary data is consistent with a stereospecific mechanism that allows for a diastereoselective reaction.

**Keywords:** cross-coupling reactions, sulfonamides, nickel, catalysis, hydrocarbons

**Citation:** Hewitt, K. A.; Herbert, C. A.; Matus, A. C.; Jarvo, E. R. Nickel-Catalyzed Kumada Cross-Coupling Reactions of Benzylic Sulfonamides. *Molecules* **2021**, *26*, x. <https://doi.org/10.3390/xxxxx>

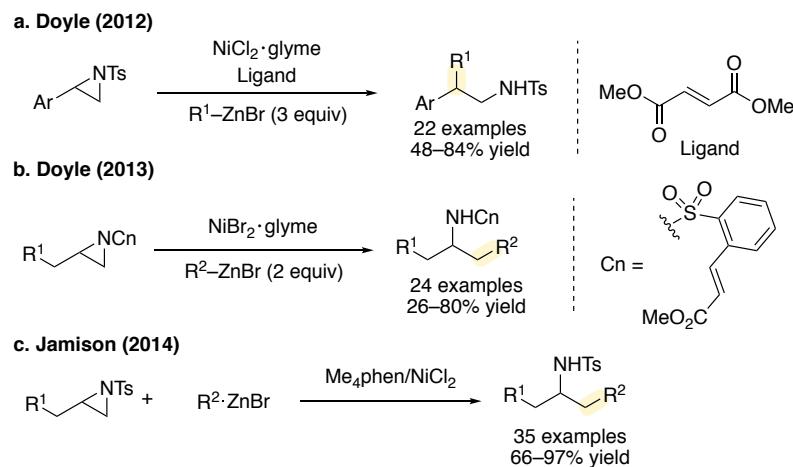
Academic Editor: Firstname Lastname

Received: date

Accepted: date

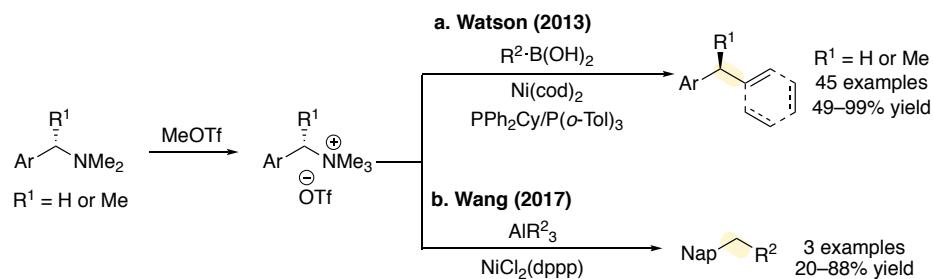
Published: date

**Publisher's Note:** MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.



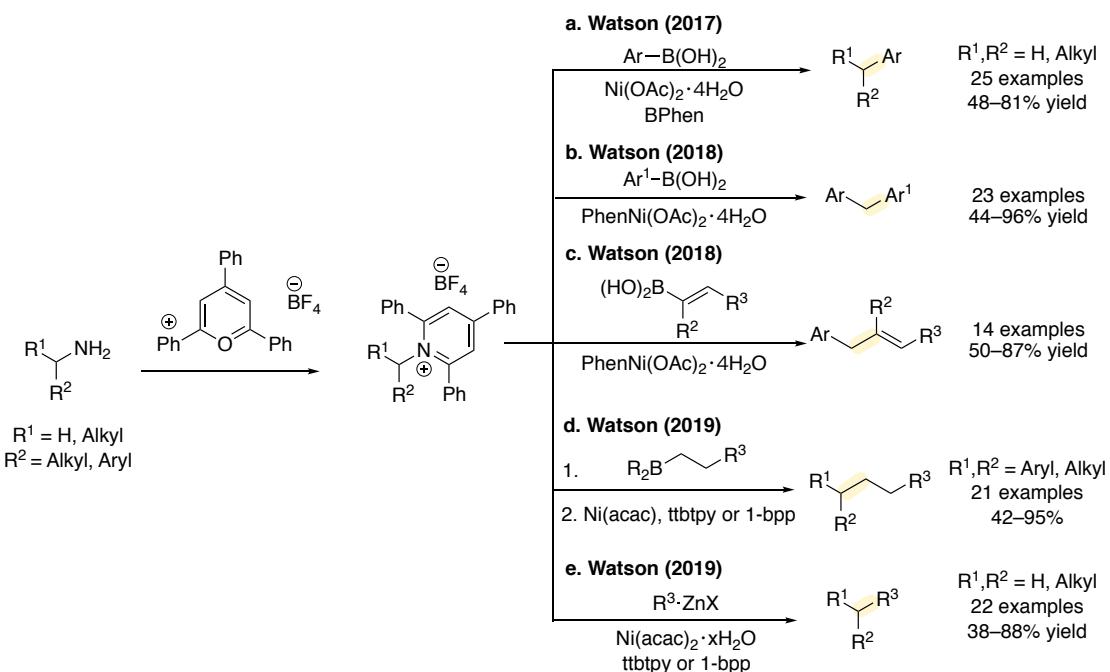

**Copyright:** © 2021 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

## 1. Introduction


Transition-metal catalyzed cross-coupling (XC) reactions have transformed modern synthetic organic chemistry by creating an arsenal of carbon-carbon bond forming reactions. [1] Nickel is a cost-effective metal that is capable of activating challenging electrophiles such as amine derivatives. [2] Intense research efforts have been employed in the development of nickel-catalyzed XC reactions of sluggish electrophiles. [3] However, the XC reaction of alkyl amine derivatives has remained a significant challenge. [4,5] Historically, in order to facilitate nickel-catalyzed reactions, activation of these carbon-nitrogen bonds has been achieved via incorporation into strained aziridine rings or transformation to ammonium salts. [6]

Ring-strain-promoted XC of aziridines has been accomplished. [7] Early stoichiometric work by Hillhouse established that aziridines undergo facile oxidative addition with nickel complexes. [8] Catalytic Negishi reactions of sulfonylaziridines have subsequently been established. The Doyle laboratory reported a regioselective Negishi XC reaction of styrenyl aziridines with alkylzinc reagents with substitution at the benzylic position (Scheme 1a). [9] Key to their success was the use of an electron deficient fumarate ligand. Shortly thereafter, the Doyle and Jamison groups independently described a regioselective Negishi XC reaction of alkyl aziridines with alkylzinc reagents to forge the desired carbon-carbon bond (Scheme 1b and c). [10] The differing regioselectivity of these reactions can be explained by comparing the oxidative addition events of the C–N bonds. Styrenyl aziridines preferentially undergo oxidative addition at the benzylic center to afford a  $\eta^3$ -benzylnickel complex. In contrast, alkyl aziridines, which do not contain an aromatic ring to direct the nickel complex, preferentially undergo oxidative addition at the less hindered position. [8] These reports demonstrate the ability to activate the C–N bond in strained rings.

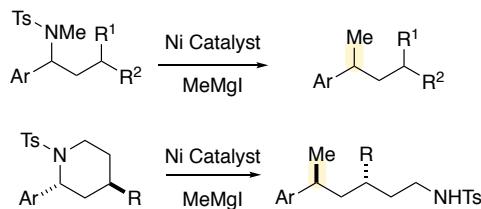



Scheme 1. Cross-Coupling (XC) Reactions of Aziridines

Development of XC reactions of acyclic benzylamine derivatives has relied upon formation of highly reactive electrophiles (i.e. charged ammonium salts). [11] For example, the Watson laboratory demonstrated that benzylic trimethylammonium salts are competent electrophiles in Suzuki-Miyaura XC reactions with aryl and vinylboronic acids (Scheme 2a). [12] Similarly, the Wang laboratory disclosed the XC reaction of benzylic trimethylammonium salts with organoaluminum reagents to forge the desired carbon-carbon bond (Scheme 2b). [13]



Scheme 2. XC Reactions of Trimethylammonium salts. Nap = Naphthyl.


The use of Katritzky salts to activate amines has proven to be sufficient for activation of benzylic and alkyl amines for Suzuki-Miyaura and Negishi XC reactions. Previously, it has been observed that Katritzky salts participate in  $S_N2$ , radical, and Minisci-type reactions, and in recent years, many transition-metal catalyzed reactions have been developed. [14,15] The Watson laboratory hypothesized that these air and moisture stable salts would be suitable electrophiles in a XC reaction. [16] To test their hypothesis, primary amines were converted to Katritzky salts via a condensation reaction with 2,4,6-tri-phenylpyrylium tetrafluoroborate and the corresponding salts were subjected to Suzuki-Miyaura XC reactions with aryl boronic acids. The desired cross-coupled products were obtained in good yields (Scheme 3a). [17] This strategy was amenable to the coupling of primary benzylic Katritzky salts as well (Scheme 3b). [18] Additionally, vinyl boranes and alkylborane reagents, generated in situ by hydroboration of alkenes, participated in XC with Katritzky salts (Scheme 3c and d). [19] This strategy has been extended beyond Suzuki-Miyaura reactions to include Negishi XC reactions with alkylzinc reagents (Scheme 3e). [20]



Scheme 3. XC Reactions of Katritzky Salts

These methods establish strain- and charge-based strategies to activate amines for use as the electrophilic partner in XC reactions, however, the requirement for aziridines or functionalization as highly reactive ammonium salts remains a major limitation in broad application of these methods. In this manuscript, we report the first nickel-catalyzed Kumada XC reaction of simple benzylic sulfonamides with methylmagnesium iodide (Scheme 4). Previously, the Jarvo laboratory disclosed the Kumada XC reaction of benzylic ethers which proceeded in excellent yields, and enantio- and diastereoselectivity. [21] Building on this work, we aimed to develop an analogous reaction that employed benzylic sulfonamides. Ethers and sulfonamides have similar leaving group abilities, as the conjugate bases have similar  $pK_a$ 's, and we hypothesized sulfonamides would behave similarly to ethers in a XC reaction. [22,23] In addition, these moieties are appealing because they are common functional groups in synthesis. Furthermore, we demonstrate that sulfonamides undergo stereospecific XC reactions, in contrast to the stereoab ablative reactivity typically observed with styrenyl aziridines and Katritzky salts. [24,25,26] This stereospecific manifold allows for rapid diastereoselective construction of acyclic fragments bearing 1,3-substitution. [27]

#### This Work

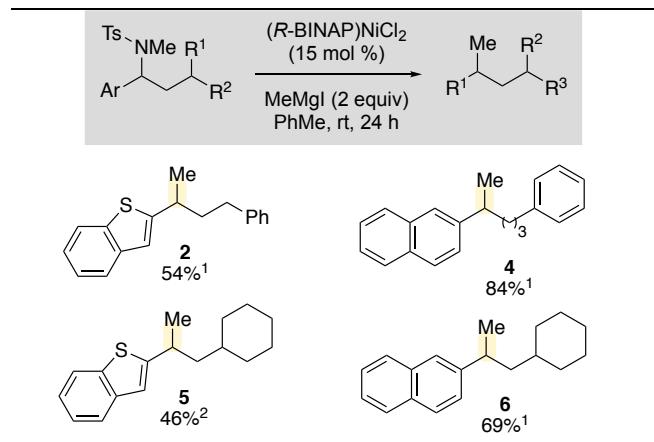


Scheme 4. Kumada XC Reactions of Benzylic Sulfonamides

## 2. Results and Discussion

We began our investigation into the Kumada XC reaction with benzylic sulfonamide 1, which was synthesized in three steps from the commercially available aldehyde. [28] Previously, Kumada XC reactions of benzylic ethers employed  $\text{Ni}(\text{cod})_2$  and racemic

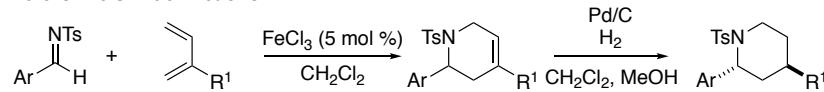
BINAP as the optimal reaction conditions. [21] Under these conditions, we were excited to observe 25% yield of the desired cross-coupled product **2**. Increasing the catalyst loading to 15 mol % improved the yield of the reaction (entry 2). However, it also increased the yield of the undesired styrene product **3** arising from  $\beta$ -hydride elimination. In an effort to improve the ratio between desired product **2** and styrene product **3**, we investigated a series of bidentate phosphine, NHC, and pyridine ligands. DPEPhos improved the yield of **2** and decreased the amount of styrene **3** (entry 3). However, all other ligands evaluated did not improve the yield of **2** (entries 4–7).


We next investigated an alternative precatalyst. Previously, the Jarvo laboratory reported the cross-electrophile coupling (XEC) reaction of benzylic and allylic sulfonamides which employed a BINAP-ligated nickel (II) precatalyst. [23,29] Utilizing these conditions, with 15 mol % of catalyst, we were delighted to observe the desired product in 54% yield and 40% yield of styrene **3**. We elected to proceed with the nickel (II) precatalyst as it provided the desired product in the highest yield.

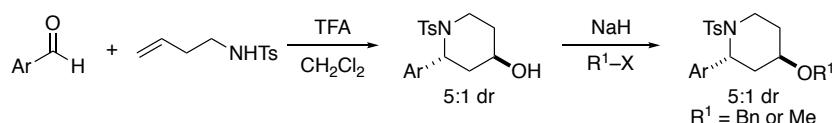
**Table 1.** Optimization of Kumada XC Reaction of Benzylic Sulfonamides

| Entry          | Nickel Catalyst                     | Ligand                | Yield <b>2</b> (%) <sup>1</sup> | Yield <b>3</b> (%) <sup>1</sup> | RSM <b>1</b> (%) <sup>1</sup> |
|----------------|-------------------------------------|-----------------------|---------------------------------|---------------------------------|-------------------------------|
| 1 <sup>2</sup> | Ni(cod) <sub>2</sub>                | <i>rac</i> -BINAP     | 25                              | 10                              | 19                            |
| 2              | Ni(cod) <sub>2</sub>                | <i>rac</i> -BINAP     | 34                              | 30                              | 7                             |
| 3              | Ni(cod) <sub>2</sub>                | DPEPhos               | 42                              | 20                              | 0                             |
| 4              | Ni(cod) <sub>2</sub>                | XantPhos              | 0                               | <5                              | 37                            |
| 5              | Ni(cod) <sub>2</sub>                | dppe                  | 0                               | <5                              | 65                            |
| 6              | Ni(cod) <sub>2</sub>                | SiMes·BF <sub>4</sub> | 12                              | 0                               | 86                            |
| 7              | Ni(cod) <sub>2</sub>                | BPhen                 | 0                               | 0                               | 61                            |
| 8              | ( <i>R</i> -BINAP)NiCl <sub>2</sub> | –                     | 54                              | 40                              | 0                             |

<sup>1</sup> Yield of **2** and **3** and Recovered Starting Material (RSM) determined by <sup>1</sup>H NMR based on comparison to PhTMS as internal standard. <sup>2</sup> 5 mol % Ni(cod)<sub>2</sub>


With optimized conditions in hand, we evaluated the scope of the Kumada XC reaction (Scheme 5). Naphthyl substrates were well tolerated under the standard reaction conditions and product **4** was observed in 84% yield. Notably, products such as **5** and **6** with branching at the  $\beta$ -position provided good yields of cross-coupled products with lesser amounts of styrenes formed from  $\beta$ -hydride elimination (20–30%) when compared to product **2**. We hypothesized that this increase in steric bulk destabilized the conformation necessary for  $\beta$ -hydride elimination to proceed.




**Scheme 5.** Scope of the Kumada XC Reaction of Acyclic Sulfonamides. <sup>1</sup>Yield determined by <sup>1</sup>H NMR based on comparison to PhTMS as internal standard. <sup>2</sup>Isolated yield.

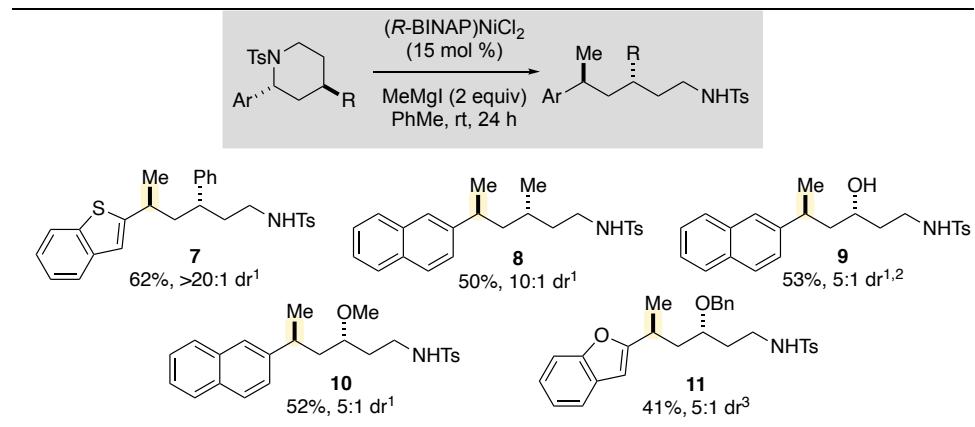
We also sought to evaluate a series of arylpiperidines, with the expectation that a stereospecific XC reaction at the benzylic position would provide synthetic access to highly substituted acyclic fragments. Furthermore, products would bear a pendant sulfonamide moiety, available for subsequent functionalization. [23] Rapid synthesis of the requisite cyclic sulfonamides was achieved by hetero Diels-Alder (HDA) cycloadditions or aza-Prins reactions. [30,31] For substrates with alkyl substituents in the 4-position, [4+2] HDA reactions provided the requisite starting materials (Scheme 6a). For substrates bearing ether groups in the 4-position, an aza-Prins reaction provided the requisite 2-aryl-4-hydroxylpiperidine that could be subsequently methylated or benzylated. (Scheme 6b).

**a. Hetero Diels-Alder Reaction**



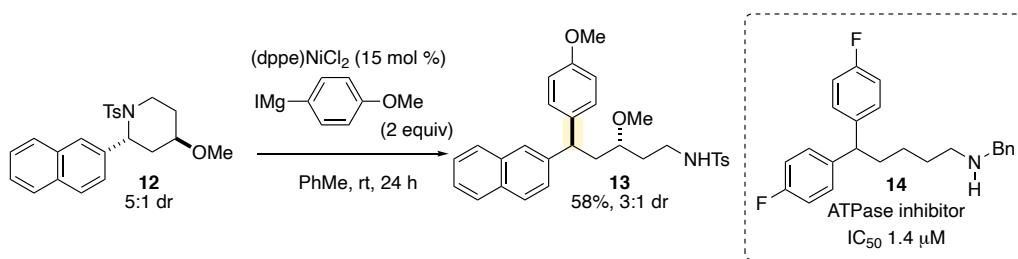
**b. Aza-Prins Reaction**




**Scheme 6.** Arylpiperidine Synthesis via (a) Hetero Diels-Alder (HDA) Reaction and (b) Aza-Prins Reaction.

With rapid and diastereoselective access to the desired piperidines, we examined these cyclic substrates in ring-opening Kumada XC reactions (Scheme 7). Phenyl and methyl substituents (products 7 and 8) were well tolerated and minimal amounts (<5%) of  $\beta$ -hydride elimination were observed. Methylated and benzylated ethers were well tolerated and provided the desired products in good yields (9, 10, and 11). [32] It is important to note that the diastereomeric ratio observed in the products is consistent with the diastereomeric ratio of the starting material. [33] Therefore, preliminary data supports a stereospecific Kumada XC reaction.

119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131


132  
133  
134

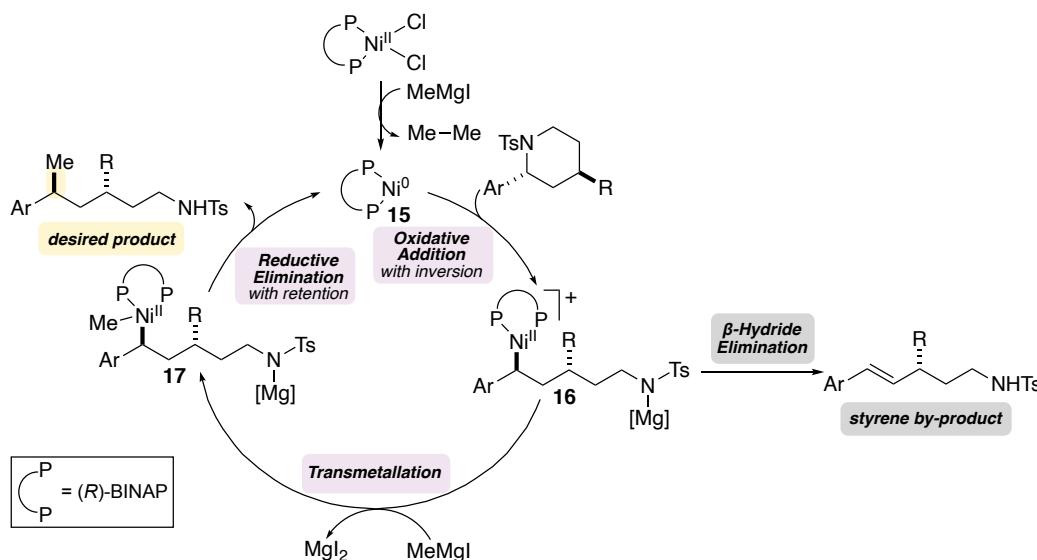
135  
136  
137  
138  
139  
140  
141  
142  
143



**Scheme 7.** Scope of the Kumada XC Reaction of Cyclic Sulfonamides. <sup>1</sup>Isolated yield. <sup>2</sup>R = OBn in starting material and provided the free alcohol in product. <sup>3</sup>Yield determined by <sup>1</sup>H NMR based on comparison to PhTMS as internal standard.

To further develop the potential scope of this reaction, we sought to establish ring-opening of a sulfonyl piperidine with an aryl Grignard reagent (Scheme 8). Such transformations would provide synthetic access to diarylalkanes bearing pendant sulfonamides, including rapid assembly of stereochemically-rich analogs of ATPase inhibitor **14**. [34,35] We have previously observed that in Kumada XC reactions of benzylic ethers employing aryl Grignard reagents, the optimal nickel catalyst is ligated by dppe. [36] We were pleased to see that this trend applied to benzylic sulfonamides: employing the commercially available precatalyst, (dppe)NiCl<sub>2</sub>, the XC reaction proceeded smoothly to provide the desired product **13** in 58% isolated yield. [37]




**Scheme 8.** Kumada XC Reaction with Aryl Grignard Reagent

We propose the following catalytic cycle for the Kumada XC reaction based on related mechanisms for the Kumada XC reaction of benzylic ethers and the XEC reaction of benzylic sulfonamides (Scheme 9). [38] First, reduction of the nickel(II) precatalyst with the Grignard reagent provides the active Ni(0) catalyst **15**. Next, oxidative addition of the benzylic sulfonamide affords the Ni(II) intermediate **16**. Based on the calculated reaction coordinate diagram and transition state energies for related transformations, we hypothesize that rate-determining oxidative addition occurs with inversion of the benzylic carbon. [21,38] This step is facilitated by Lewis acidic magnesium salts that activate the sulfonamide moiety. Transmetalation with the Grignard reagent provides alkynickel complex **17**. Subsequent reductive elimination, which occurs with retention at the benzylic center, affords the desired product and turns over the catalyst. **Alternatively, intermediate 16 can undergo β-hydride elimination to afford the observed styrene by-product.**

144  
145  
146  
147

148  
149  
150  
151  
152  
153  
154  
155  
156  
157

158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172



**Scheme 9.** Proposed Mechanism of Kumada XC Reaction. Speciation of magnesium complexes are omitted for clarity.

### 3. Materials and Methods

#### 3.1 General Procedures

All reactions were carried out under an atmosphere of  $N_2$ , or Ar when noted. All glassware was oven- or flame-dried prior to use. Tetrahydrofuran (THF), diethyl ether ( $Et_2O$ ), dichloromethane ( $CH_2Cl_2$ ), and toluene ( $PhMe$ ) were degassed with Ar and then passed through two  $4 \times 36$  inch columns of anhydrous neutral A-2 alumina (8 x 14 mesh; LaRoche Chemicals; activated under a flow of argon at  $350\text{ }^\circ\text{C}$  for 12 h) to remove  $H_2O$ . [39] All other solvents utilized were purchased anhydrous commercially, or purified as described.  $^1H$  NMR spectra were recorded on Bruker DRX-400 (400 MHz  $^1H$ , 100 MHz  $^{13}C$ , 376.5 MHz  $^{19}F$ ), GN-500 (500 MHz  $^1H$ , 125.4 MHz  $^{13}C$ ), or CRYO-500 (500 MHz  $^1H$ , 125.8 MHz  $^{13}C$ ) spectrometers. Proton chemical shifts are reported in ppm ( $\delta$ ) relative to internal tetramethylsilane (TMS,  $\delta$  0.00). Data are reported as follows: chemical shift (multiplicity [singlet (s), broad singlet (br s), doublet (d), doublet of doublet (dd), doublet of doublet of doublets (ddd), doublet of doublet of doublet of doublets (dddd), doublet of triplet (dt), doublet of doublet of triplet (ddt), doublet of triplet of doublet (dtd), triplet (t), broad triplet (br t), triplet of doublet (td), triplet of doublet of doublet (td), triplet of triplet (tt), quartet (q), quartet of doublet (qd), quartet of doublet of doublets (qdd), quintet (quint), apparent quintet (appar quint), sextet, apparent sextet (appar sextet), multiplet (m)]. coupling constants [Hz], integration). Carbon chemical shifts are reported in ppm ( $\delta$ ) relative to TMS with the respective solvent resonance as the internal standard ( $CDCl_3$ ,  $\delta$  77.16 ppm). Unless otherwise indicated, NMR data were collected at  $25\text{ }^\circ\text{C}$ . Infrared (IR) spectra were obtained on a Thermo Scientific Nicolet iS5 spectrometer with an iD5 ATR tip (neat) and are reported in terms of frequency of absorption ( $\text{cm}^{-1}$ ). Analytical thin-layer chromatography (TLC) was performed using Silica Gel 60  $F_{254}$  precoated plates (0.25 mm thickness). Visualization was accomplished by irradiation with a UV lamp and/or staining with  $KMnO_4$  or CAM. Flash chromatography was performed using SiliaFlash F60 (40-63  $\mu\text{m}$ , 60  $\text{\AA}$ ) from SiliCycle. Automated chromatography was carried out on a Teledyne Isco CombiFlash Rf Plus. Melting points (m.p.) were obtained using a Mel-Temp melting point apparatus and are uncorrected. High resolution mass spectrometry was performed by the University of California, Irvine Mass Spectrometry Center.

Bis(1,5-cyclooctadiene)nickel was purchased from Strem, stored in a glove box freezer ( $-20\text{ }^\circ\text{C}$ ) under an atmosphere of  $N_2$  and used as received. All ligands were purchased from Strem or Sigma Aldrich and were stored in a glovebox and used as received.

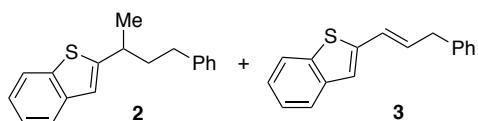
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208

The methylmagnesium iodide was titrated with iodine prior to use. [40] All other chemicals were purchased commercially and used as received, unless otherwise noted.

### 3.2 Experimental

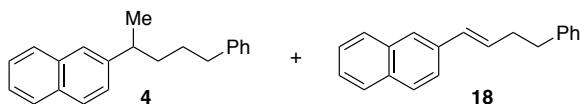
#### 3.2.1 General Kumada Cross-Coupling Reaction Procedures

##### Method A: Kumada Cross-Coupling Reaction

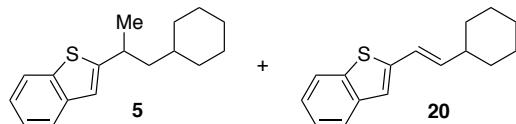

In a glovebox, a flame-dried 7 mL vial equipped with a stir bar was charged with sulfonamide substrate (1.0 equiv), **nickel precatalyst** (15 mol %) and PhMe (0.10–0.20 M in substrate). **The Grignard reagent** (2.0 equiv) was then added dropwise via a syringe. After 24 h, the reaction was removed from the glovebox, quenched with methanol, filtered through a plug of silica gel eluting with 100% Et<sub>2</sub>O and concentrated in vacuo. Phenyltrimethylsilane (PhTMS; 8.6  $\mu$ L, 0.050 mmol) was added and the yield was determined by <sup>1</sup>H NMR based on comparison to PhTMS as internal standard before purification by column chromatography.

For reactions in which 1.0 equiv of MgI<sub>2</sub> is added, the vial is wrapped in aluminum foil for the duration of the reaction due to the light sensitivity of MgI<sub>2</sub>.

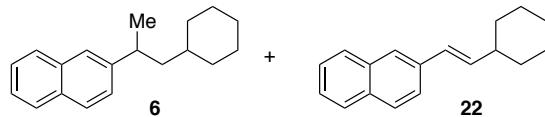
**1) Preparation of Grignard Reagent** Under a N<sub>2</sub> atmosphere, a three-necked flask equipped with a stir bar, reflux condenser, and Schlenk filtration apparatus was charged with magnesium turnings (1.1 g, 45 mmol). The flask and magnesium turnings were then flame-dried under vacuum and the flask was back-filled with N<sub>2</sub>. Anhydrous Et<sub>2</sub>O (7.0 mL) and a crystal of iodine (ca. 2.0 mg) were added to the flask. Freshly distilled iodomethane (1.9 mL, 31 mmol) or 4-iodoanisole as a solution in Et<sub>2</sub>O (4.7 g, 20. mmol, 6.7 M in Et<sub>2</sub>O) was slowly added over 30 min to maintain a gentle reflux. The mixture was stirred for 2 h at room temperature then filtered through the fritted Schlenk filter into a Schlenk flask under N<sub>2</sub> atmosphere. The magnesium turnings were washed with Et<sub>2</sub>O (2  $\times$  1.0 mL) then the Schlenk flask was sealed, removed, and placed under an N<sub>2</sub> atmosphere. The resulting methylmagnesium iodide was typically between 2.4 and 3.0 M as titrated by Knochel's method [40] and could be stored, sealed under N<sub>2</sub> atmosphere or in a glovebox, for up to 4 weeks.


**2) Preparation of (R-BINAP)NiCl<sub>2</sub>** This method was adapted from a procedure reported by Jamison. [29a] To a flame-dried 50 mL round bottom flask equipped with a stir bar was added NiCl<sub>2</sub>·6H<sub>2</sub>O (0.24 g, 1.0 mmol, 1.0 equiv). The flask was placed under vacuum and flame-dried until nearly all of the nickel compound had turned from emerald green to yellow-orange. Some of the green hexahydrate is necessary for the reaction to proceed. The flask was allowed to cool to room temperature then (R-BINAP) (0.62 g, 1.0 mmol, 1.0 equiv) was added. The flask was then equipped with a reflux condenser and was evacuated and backfilled with N<sub>2</sub>. Then the solids were dissolved in MeCN (20 mL, 0.05 M) and the reaction mixture was allowed to reflux for 24 h. Upon completion, the reaction was cooled to room temperature and the black crystalline precipitate was filtered under vacuum to yield a fine black powder (0.53 g, 0.71 mmol, 71% yield).

#### 3.2.2 Characterization Data for Kumada Cross-Coupled Products



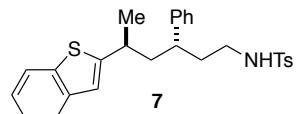

**2-(4-Phenylbutan-2-yl)benzo[b]thiophene (2)** was prepared according to Method A. The following amounts of reagents were used: sulfonamide **1** (87 mg, 0.20 mmol, 1.0 equiv), (R-BINAP)NiCl<sub>2</sub> (23 mg, 30.  $\mu$ mol, 15 mol %), PhMe (1.0 mL, 0.20 M), and


methylmagnesium iodide (0.16 mL, 0.40 mmol, 2.0 equiv, 2.5 M in Et<sub>2</sub>O). Before purification, a <sup>1</sup>H NMR yield of 54% was obtained containing 40% styrene **3** based on comparison to PhTMS as an internal standard. The residue was purified by flash chromatography (0–5% EtOAc/hexanes) to yield a mixture of the title compound and styrene **3**. To separate the major product and the styrene, an Upjohn dihydroxylation was performed. [31b] The following amounts of reagents were used: substrate (30 mg, 0.12 mmol, 1.0 equiv), OsO<sub>4</sub> (7.6  $\mu$ L, 1.2  $\mu$ mol, 1.0 mol%, 4% solution in H<sub>2</sub>O), *N*-methylmorpholine *N*-oxide (NMO) (16 mg, 0.13 mmol, 1.1 equiv), acetone (0.25 mL) and H<sub>2</sub>O (0.05 mL). The residue was purified by flash column chromatography to afford the title compound as a colorless oil. (13 mg, 48  $\mu$ mol, 24% yield over two steps) with a small amount of styrene **3** (1.1 mg, 4.5  $\mu$ mol, 2.2% yield). TLC  $R_f$  = 0.8 (5% EtOAc/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, *J* = 7.9 Hz, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.45–7.22 (m, 4H), 7.22–7.12 (m, 3H), 7.04 (s, 1H), 3.12 (sextet, *J* = 7.0 Hz, 1H), 2.73–2.50 (m, 2H), 2.12–1.92 (m, 2H), 1.41 (d, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (125.7 MHz, CDCl<sub>3</sub>)  $\delta$  152.5, 142.1, 140.0, 139.0, 128.5 (2C), 128.4 (2C), 125.8, 124.1, 123.5, 122.9, 122.3, 119.5, 40.5, 35.8, 33.6, 23.1; IR (neat) 2927, 1456, 904, 726 cm<sup>−1</sup>; HRMS (TOF MS ES+) *m/z*: [M + Na]<sup>+</sup> calcd for C<sub>18</sub>H<sub>18</sub>SnA 289.1027, found 289.1024.



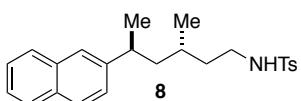
**2-(5-Phenylpentan-2-yl)naphthalene (4)** was prepared according to Method A. The following amounts of reagents were used: sulfonamide **19** (22 mg, 50.  $\mu$ mol, 1.0 equiv), (*R*-BINAP)NiCl<sub>2</sub> (5.6 mg, 7.5.  $\mu$ mol, 15 mol %), PhMe (0.25 mL, 0.20 M), and methylmagnesium iodide (40.  $\mu$ L, 0.10 mmol, 2.0 equiv, 2.8 M in Et<sub>2</sub>O). Before purification, a <sup>1</sup>H NMR yield of 84% was obtained containing 13% styrene **18** based on comparison to PhTMS as an internal standard. The residue was purified by flash chromatography (100% hexanes) to yield the title compound as yellow oil (10. mg, 36  $\mu$ mol, 74% yield) containing styrene **18** (1.3 mg, 5.0  $\mu$ mol, 10%) and CH<sub>2</sub>Cl<sub>2</sub> (0.8 mg, 9.4  $\mu$ mol, 19%). TLC  $R_f$  = 0.8 (5% EtOAc/hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.81–7.74 (m, 3H), 7.60–7.55 (s, 1H), 7.42 (dd, *J* = 16.3, 8.2, 6.8, 1.4 Hz, 2H), 7.33 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.23 (d, *J* = 7.5 Hz, 2H), 7.17–7.09 (m, 3H), 2.88 (sextet, *J* = 7.0 Hz, 1H), 2.64–2.53 (m, 2H), 1.79–1.55 (m, 4H), 1.31 (d, *J* = 6.9 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  145.2, 142.7, 133.8, 132.3, 128.5 (2C), 128.4 (2C), 128.0, 127.7, 127.7, 125.9, 125.9, 125.8, 125.3, 125.2, 40.2, 38.0, 36.1, 29.7, 22.5; HRMS (TOF MS Cl<sup>+</sup>) *m/z*: [M]<sup>+</sup> calcd for C<sub>21</sub>H<sub>22</sub> 274.1721, found 274.1710.




**2-(1-Cyclohexylpropan-2-yl)benzo[b]thiophene (5)** was prepared according to Method A. The following amounts of reagents were used: sulfonamide **21** (43 mg, 0.10 mmol, 1.0 equiv), (*R*-BINAP)NiCl<sub>2</sub> (11 mg, 15  $\mu$ mol, 15 mol %), PhMe (0.50 mL, 0.20 M), and methylmagnesium iodide (70.  $\mu$ L, 0.20 mmol, 2.0 equiv, 2.8 M in Et<sub>2</sub>O). The residue was purified by flash column chromatography (0–15% Et<sub>2</sub>O/pentanes) to afford the title compound as a clear, colorless oil (12 mg, 46  $\mu$ mol, 46% yield) containing styrene **20** (7.3 mg, 30.  $\mu$ mol, 30%) and minimal amounts of solvent. TLC  $R_f$  = 0.7 (100% pentanes); <sup>1</sup>H NMR: (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.83 (d, *J* = 7.2 Hz, 1H), 7.72 (d, *J* = 7.8 Hz, 1H), 7.30 (td, *J* = 7.6, 1.2 Hz, 1H), 7.26–7.22 (m, 1H), 7.00 (s, 1H), 3.27 (sextet, *J* = 12.6 Hz, 1H), 1.84–1.76 (m, 1H), 1.70–1.57 (m, 5H), 1.53–1.44 (m, 1H), 1.34 (d, *J* = 6.9 Hz, 3H), 1.32–1.23 (m, 2H), 1.19–1.11 (m, 2H), 0.96–0.85 (m, 2H); <sup>13</sup>C NMR (150.9 MHz, CDCl<sub>3</sub>)  $\delta$  153.6, 140.2, 138.9, 124.1, 123.4, 122.9, 122.4, 119.0, 66.0, 46.7, 35.2, 33.7, 33.3, 26.8, 26.4, 23.8, 15.4; HRMS (TOF MS Cl<sup>+</sup>) *m/z* [M]<sup>+</sup> calcd for C<sub>17</sub>H<sub>22</sub>S 258.1442, found 258.1453.



**2-(1-Cyclohexylpropan-2-yl)naphthalene (6)** was prepared according to Method A. The following amounts of reagents were used: sulfonamide **23** (44 mg, 0.10 mmol, 1.0 equiv), (*R*-BINAP)NiCl<sub>2</sub> (11 mg, 15  $\mu$ mol, 15 mol %), PhMe (0.50 mL, 0.20 M), and methylmagnesium iodide (70.  $\mu$ L, 0.20 mmol, 2.0 equiv, 2.9 M in Et<sub>2</sub>O). Before purification, a <sup>1</sup>H NMR yield of 69% was obtained with 22% styrene **22** based on comparison to PhTMS as an internal standard. The residue was purified by flash column chromatography (0–20% EtOAc/hexanes) to afford the title compound as a colorless oil (14 mg, 54  $\mu$ mol, 54% yield) with a small amount of styrene **22** (3.7 mg, 15  $\mu$ mol, 15% yield). TLC  $R_f$  = 0.7 (100% hexanes); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.85–7.73 (m, 3H), 7.60 (s, 1H), 7.47–7.38 (m, 2H), 7.35 (dd,  $J$  = 8.4, 1.8 Hz, 1H), 2.99 (sextet,  $J$  = 6.8 Hz, 1H), 1.81 (d,  $J$  = 13.0 Hz, 1H), 1.63 (tdd,  $J$  = 14.2, 8.1, 5.0 Hz, 5H), 1.50–1.41 (m, 1H), 1.28 (d,  $J$  = 6.9 Hz, 3H), 1.19–1.06 (m, 4H), 0.95–0.83 (m, 2H); <sup>13</sup>C NMR (125.8 MHz, CDCl<sub>3</sub>)  $\delta$  145.8, 133.8, 132.3, 128.0, 127.72, 127.68, 126.0, 125.9, 125.2, 125.1, 46.3, 37.0, 35.3, 33.9, 33.5, 26.9, 26.4, 26.4, 23.1; HRMS (TOF MS CI+) *m/z*: [M]<sup>+</sup> calcd for C<sub>19</sub>H<sub>24</sub> 252.1878, found 252.1868.


### 3.2.3 Characterization Data for Ring Opening Kumada Cross-Coupled Products

309  
310  
311  
312  
313  
314  
315  
316  
317  
318  
319  
320  
321  
322  
323  
324  
325  
326

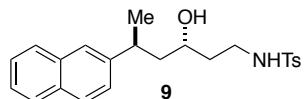


**N-(5-(benzo[b]thiophen-2-yl)-3-phenylhexyl)-4-methylbenzenesulfonamide (7)** was prepared according to Method A. The following amounts of reagents were used: piperidine **24** (38 mg, 80  $\mu$ mol, 1.0 equiv), (*R*-BINAP)NiCl<sub>2</sub> (9.0 mg, 12  $\mu$ mol, 15 mol %), methylmagnesium iodide (60.  $\mu$ L, 0.16 mmol, 2.0 equiv, 2.6 M in Et<sub>2</sub>O), and PhMe (0.5 mL). Before purification, a <sup>1</sup>H NMR yield of 64% was obtained. The residue was purified by column chromatography (0–20% EtOAc/hexanes) to afford the title compound as pale yellow oil (23 mg, 49  $\mu$ mol, 62% yield). The ratio of diastereomers was determined by integration of the resonances attributed to amine hydrogen in the <sup>1</sup>H NMR spectrum. The relative configuration of **7** was assigned based on analogy to a compound that has been previously reported. [21b] TLC  $R_f$  = 0.8 (20% EtOAc/hexanes); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.74 (d,  $J$  = 7.9 Hz, 1H), 7.67–7.56 (m, 3H), 7.37–7.13 (m, 9H), 7.07–7.00 (m, 2H), 6.93 (s, 1H), 2.85 (q,  $J$  = 6.7 Hz, 1H), 2.83–2.69 (m, 2H), 2.70–2.59 (m, 1H), 2.40 (s, 3H), 2.07–1.95 (m, 1H), 1.93–1.77 (m, 2H), 1.76–1.64 (m, 1H), 1.30 (d,  $J$  = 6.8 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  152.7, 143.5, 143.4, 140.0, 138.9, 136.9, 129.9, 129.8 (2C), 128.9 (2C), 127.7, 127.6 (2C), 127.2 (2C), 126.8, 124.2, 123.6, 123.0, 122.3, 119.1, 45.8, 41.5, 40.9, 36.6, 33.4, 22.0, 21.7; HRMS (TOF MS ES+) *m/z* [M+Na] calcd for C<sub>27</sub>H<sub>29</sub>NO<sub>2</sub>S<sub>2</sub>Na 486.1537, found 486.1524.

327  
328  
329  
330  
331  
332  
333  
334  
335  
336  
337  
338  
339  
340  
341  
342  
343  
344



**4-Methyl-N-(3-methyl-5-(naphthalen-2-yl)hexyl)benzenesulfonamide (8)** was prepared according to Method A. The following amounts of reagents were used: piperidine **25** (10. mg, 30.  $\mu$ mol, 1.0 equiv), (*R*-BINAP)NiCl<sub>2</sub> (3.0 mg, 40.  $\mu$ mol, 15 mol %), methylmagnesium iodide (10.  $\mu$ L, 60.  $\mu$ mol, 2.0 equiv, 2.9 M in Et<sub>2</sub>O), and PhMe (0.30 mL). Before purification, a <sup>1</sup>H NMR yield of 48% and 10:1 dr was obtained based on comparison to PhTMS as an internal standard. The residue was purified by flash column chromatography (0–15% EtOAc/hexanes) to afford the title compound as a colorless oil (5.4 mg, 14  $\mu$ mol, 50% yield, 6:1 dr) with a small amount of styrene (0.6 mg, 0.2  $\mu$ mol, 6%). The ratio of diastereomers

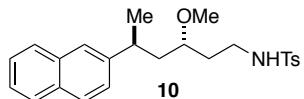

345  
346  
347  
348  
349  
350  
351  
352  
353

was determined by integration of the resonances attributed to amine hydrogen in the <sup>1</sup>H NMR spectrum. The relative configuration of the major **8** was assigned based on analogy to ring opened compound **7**. For clarity, the <sup>1</sup>H NMR and <sup>13</sup>C NMR data of the major and minor diastereomers have been tabulated individually.

**TLC**  $R_f$  = 0.7 (30% EtOAc/hexanes, stained with CAM); **HRMS** (TOF MS E+) *m/z* [M+Na]  
calcd for C<sub>24</sub>H<sub>29</sub>NO<sub>2</sub>SnA, 418.1817; found, 418.1830.

**Major Diastereomer:** **<sup>1</sup>H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.81–7.76 (m, 3H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.6 (s, 1H), 7.47–7.40 (m, 2H), 7.31–7.26 (m, 3H), 4.29 (t, *J* = 5.9 Hz, 1H), 3.03–2.82 (m, 3H), 2.41 (s, 3H), 1.49 (t, *J* = 6.2 Hz, 1H), 1.43–1.46 (m, 1H), 1.30–1.25 (m, 3H), 1.25 (d, *J* = 6.9 Hz, 3H), 0.79 (d, *J* = 6.5 Hz, 3H); **<sup>13</sup>C NMR** (125.8, CDCl<sub>3</sub>)  $\delta$  145.1, 148.4, 133.7, 132.2, 129.7 (2C), 128.1, 127.6, 127.6, 127.1 (2C), 126.0, 125.6, 125.2, 125.0, 45.6, 41.1, 37.2, 36.5, 28.1, 29.1, 22.1, 21.5, 19.6.

**Minor Diastereomer:** **<sup>1</sup>H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.81–7.76 (m, 3H), 7.69 (d, *J* = 8.3, 2H), 7.63 (s, 1H), 7.47–7.40 (m, 2H), 7.31–7.26 (m, 3H), 4.39 (t, *J* = 5.5 Hz, 1H), 3.03–2.82 (m, 3H), 2.41 (s, 3H), 1.49 (t, *J* = 6.2 Hz, 1H), 1.43–1.46 (m, 1H), 1.30–1.25 (m, 3H), 1.25 (d, *J* = 6.9 Hz, 3H), 1.08 (d, *J* = 6.7, 3H); **<sup>13</sup>C NMR** (125.8, CDCl<sub>3</sub>)  $\delta$  145.1, 148.4, 133.7, 132.2, 129.7 (2C), 128.1, 127.6, 127.6, 127.1 (2C), 126.0, 125.7, 125.2, 125.0, 45.6, 41.5, 37.2, 36.5, 29.7, 29.1, 22.1, 21.5, 19.6.

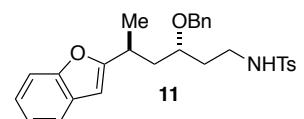



***N*-(3-hydroxy-5-(naphthalen-2-yl)hexyl)-4-methylbenzenesulfonamide (9)** was prepared according to Method A. The following amounts of reagents were used: piperidine **26** (93 mg, 0.20 mmol, 1.0 equiv), (*R*-BINAP)NiCl<sub>2</sub> (23 mg, 30.  $\mu$ mol, 15 mol %), methylmagnesium iodide (0.14 mL, 0.40 mmol, 2.0 equiv, 2.9 M in Et<sub>2</sub>O), and PhMe (2.0 mL). The residue was purified by flash column chromatography (0–15% EtOAc/hexanes) to afford the title compound as a colorless oil (42 mg, 0.11 mmol, 53% yield, 5:1 dr). The ratio of diastereomers was determined by integration of the resonances attributed to amine hydrogen in the <sup>1</sup>H NMR spectrum. The relative configuration of the major **9** was assigned based on analogy to ring opened compound **7**. For clarity, the <sup>1</sup>H NMR and <sup>13</sup>C NMR data of the major and minor diastereomers have been tabulated individually.

**TLC**  $R_f$  = 0.5 (30% EtOAc/hexanes, stained with CAM); **HRMS** (TOF MS E+) *m/z* [M+Na]  
calcd for C<sub>23</sub>H<sub>27</sub>NO<sub>3</sub>SnA, 420.1609; found, 420.1604.

**Major Diastereomer:** **<sup>1</sup>H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.79–7.75 (m, 3H), 7.69 (d, *J* = 8.15 Hz, 2H), 7.59 (s, 1H), 7.43 (appar quint, *J* = 7.44 Hz, 2H), 7.31 (d, *J* = 8.82 Hz, 1H), 7.23 (d, *J* = 8.17 Hz, 2H), 5.27 (t, *J* = 5.55 Hz, 1H), 3.74–3.70 (m, 1H), 3.12–3.06 (m, 1H), 3.01–2.93 (m, 2H), 2.37 (s, 3H), 1.89 (br s, 1H), 1.86–1.80 (m, 1H), 1.72–1.62 (m, 2H), 1.53–1.46 (m, 1H), 1.28 (d, *J* = 7.23 Hz, 3H); **<sup>13</sup>C NMR** (125.8, CDCl<sub>3</sub>)  $\delta$  144.4, 143.3, 136.9, 133.7, 132.3, 129.7 (2C), 128.4, 127.7, 127.6, 127.1 (2C), 126.1, 125.5, 124.4, 125.0, 69.2, 45.9, 40.8, 37.0, 36.0, 22.2, 21.5.

**Minor Diastereomer:** **<sup>1</sup>H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.79–7.75 (m, 3H), 7.65 (d, *J* = 8.14 Hz, 2H), 7.59 (s, 1H), 7.43 (appar quint, *J* = 7.44 Hz, 2H), 7.29 (d, *J* = 8.91 Hz, 1H), 7.19 (d, *J* = 8.05 Hz, 2H), 5.19 (t, *J* = 5.57 Hz, 1H), 3.43–3.39 (m, 1H), 3.12–3.06 (m, 1H), 2.91–2.82 (m, 2H), 2.35 (s, 3H), 1.86–1.80 (m, 1H), 1.76 (br s, 1H), 1.72–1.62 (m, 2H), 1.53–1.46 (m, 1H), 1.29 (d, *J* = 6.40 Hz, 3H); **<sup>13</sup>C NMR** (125.8, CDCl<sub>3</sub>)  $\delta$  143.7, 143.3, 136.8, 133.7, 132.3, 129.7 (2C), 128.4, 127.7, 127.6, 127.1 (2C), 126.1, 125.5, 124.4, 125.0, 68.7, 45.6, 40.8, 36.45, 36.42, 23.2, 21.5.


406  
407

**N-(3-methoxy-5-(naphthalen-2-yl)hexyl)-4-methylbenzenesulfonamide (10)** was prepared according to Method A. The following amounts of reagents were used: piperidine **12** (58 mg, 0.15 mmol, 1.0 equiv), (*R*-BINAP)NiCl<sub>2</sub> (15 mg, 20.  $\mu$ mol, 15 mol %), methylmagnesium iodide (0.11 mL, 0.30 mmol, 2.0 equiv, 2.8 M in Et<sub>2</sub>O), and PhMe (1.5 mL). The residue was purified by flash column chromatography (0–25% EtOAc/hexanes) to afford the title compound as a colorless oil (32 mg, 80.  $\mu$ mol, 52% yield, 5:1 dr). The ratio of diastereomers was determined by integration of the resonances attributed to amine hydrogen in the <sup>1</sup>H NMR spectrum. The relative configuration of the major **10** was assigned based on analogy to ring opened compound **7**. For clarity, the <sup>1</sup>H NMR and <sup>13</sup>C NMR data of the major and minor diastereomers have been tabulated individually.

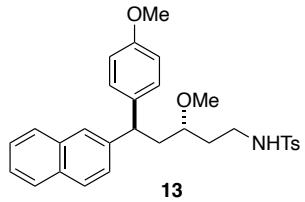
**TLC R<sub>f</sub>** = 0.4 (30% EtOAc/hexanes, stained with CAM); **HRMS** (TOF MS E+) *m/z* [M+Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>29</sub>NO<sub>3</sub>SnA, 424.1766; found, 434.1775.

**Major Diastereomer:** **<sup>1</sup>H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.81–7.76 (m, 3H), 7.68 (d, *J* = 8.37 Hz, 2H), 7.55 (s, 1H), 7.47–7.40 (m, 2H), 7.29 (dd, *J* = 8.48, 1.70 Hz, 1H), 7.26–7.24 (m, 1H), 7.21 (d, *J* = 7.97 Hz, 1H), 5.11 (t, *J* = 5.53 Hz, 1H), 3.15 (s, 3H), 3.08–2.91 (m, 3H), 2.86 (appar. sextet, *J* = 7.37 Hz, 1H), 2.34 (s, 3H), 1.96 (ddd, *J* = 14.3, 8.50, 5.78 Hz, 1H), 1.82–1.76 (m, 1H), 1.58–1.50 (m, 2H), 1.28 (d, *J* = 6.98 Hz, 3H); **<sup>13</sup>C NMR** (125.8, CDCl<sub>3</sub>)  $\delta$  144.1, 143.2, 136.8, 133.6, 132.3, 129.7 (2C), 128.3, 127.7, 127.6, 127.1 (2C), 126.1, 125.4, 125.24, 125.17 78.4, 56.3, 40.9, 40.5, 36.3, 32.0, 22.9, 21.5.

**Minor Diastereomer:** **<sup>1</sup>H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.81–7.76 (m, 3H), 7.70 (d, *J* = 8.60 Hz, 2H), 7.55 (s, 1H), 7.47–7.40 (m, 2H), 7.29 (dd, *J* = 8.48, 1.70 Hz, 1H), 7.26–7.24 (m, 1H), 7.21 (d, *J* = 7.97 Hz, 1H), 5.03 (t, *J* = 5.52 Hz, 1H), 3.20 (s, 3H), 3.08–2.91 (m, 3H), 2.86 (appar. sextet, *J* = 7.37 Hz, 1H), 2.38 (s, 3H), 1.96 (ddd, *J* = 14.3, 8.50, 5.78 Hz, 1H), 1.71–1.66 (m, 1H), 1.47–1.40 (m, 2H), 1.27 (d, *J* = 7.32 Hz, 3H); **<sup>13</sup>C NMR** (125.8, CDCl<sub>3</sub>)  $\delta$  144.2, 143.2, 136.9, 133.6, 132.3, 129.7 (2C), 128.3, 127.7, 127.6, 127.1 (2C), 126.1, 125.52, 125.46 125.4, 78.4, 56.3, 40.9, 40.5, 36.3, 32.0, 22.9, 21.5.



**N-(5-(benzofuran-2-yl)-3-(benzyloxy)hexyl)-4-methylbenzenesulfonamide (11)** was prepared according to Method A. The following amounts of reagents were used: piperidine **27** (78 mg, 0.17 mmol, 1.0 equiv), (*R*-BINAP)NiCl<sub>2</sub> (22 mg, 30.  $\mu$ mol, 15 mol %), methylmagnesium iodide (0.23 mL, 0.68 mmol, 4.0 equiv, 2.9 M in Et<sub>2</sub>O), and PhMe (1.5 mL). The residue was purified by flash column chromatography (0–15% EtOAc/hexanes) to afford a mixture of the title compound and styrene. To separate the major product and the styrene, a dihydroxylation was performed. The following amounts of reagents were used: AD-mix- $\beta$  (52 mg, 1.4 g/mmole), *t*-BuOH (1.0 mL), and H<sub>2</sub>O (1.0 mL). The residue was purified by flash column chromatography to afford the title compound as a colorless oil. (7.0 mg, 15  $\mu$ mol, 8.6 % yield over two steps, 5:1 dr). The ratio of diastereomers was determined by integration of the resonances attributed to amine hydrogen in the <sup>1</sup>H NMR spectrum. The relative configuration of the major **11** was assigned based on analogy to ring opened compound **7**. When the reaction was performed with 2.0 equivalents of methylmagnesium iodide, a <sup>1</sup>H NMR yield of 41% was obtained based on comparison to


408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453

PhTMS as an internal standard before purification. For clarity, the <sup>1</sup>H NMR and <sup>13</sup>C NMR data of the major and minor diastereomers have been tabulated individually.

**TLC R<sub>f</sub>** = 0.5 (30% EtOAc/hexanes, stained with CAM); **HRMS** (TOF MS E+) *m/z* [M+Na] calcd for C<sub>28</sub>H<sub>31</sub>NO<sub>4</sub>SNa, 500.1872; found, 500.1861.

**Major Diastereomer:** **<sup>1</sup>H NMR** (500 MHz, CDCl<sub>3</sub>) δ 7.64 (d, *J* = 7.9 Hz, 2H), 7.48 (d, *J* = 7.4 Hz, 1H), 7.42 (d, *J* = 7.9 Hz, 1H), 7.27–7.16 (m, 8H), 6.33 (s, 1H), 4.79 (t, *J* = 6.0 Hz, 1H), 4.45 (d, *J* = 11.5 Hz, 1H), 4.31 (d, *J* = 11.4 Hz, 1H), 3.49–3.42 (m, 1H), 3.09–2.95 (m, 3H), 2.38 (s, 3H), 2.12 (appar quint, *J* = 6.9 Hz, 1H), 1.87–1.81 (m, 1H), 1.65–1.54 (m, 3H), 1.29 (d, *J* = 6.9 Hz, 3H) **<sup>13</sup>C NMR** (125.8, CDCl<sub>3</sub>) δ 162.6, 154.5, 143.3, 137.9, 136.9, 129.7 (2C), 128.5 (2C), 128.1 (2C), 127.9, 127.1 (2C), 123.4, 122.6, 120.5, 110.9, 101.1, 75.0, 70.7, 40.2, 39.1, 32.9, 30.3, 29.7, 21.5, 19.7.

**Minor Diastereomer:** **<sup>1</sup>H NMR** (500 MHz, CDCl<sub>3</sub>) δ 7.80 (d, *J* = 7.9 Hz, 2H), 7.75 (d, *J* = 7.7 Hz, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.27–7.16 (m, 8H), 6.25 (s, 1H), 4.79 (t, *J* = 6.0 Hz, 1H), 4.40 (s, 2H), 3.53–3.48 (m, 1H), 3.09–2.95 (m, 3H), 2.73 (appar quint, *J* = 6.5 Hz, 1H), 2.40 (s, 3H), 1.80–1.77 (m, 1H), 1.65–1.60 (m, 3H), 0.88 (d, *J* = 7.0 Hz, 3H); **<sup>13</sup>C NMR** (125.8, CDCl<sub>3</sub>) δ 162.6, 154.5, 143.3, 137.9, 136.9, 129.4 (2C), 128.7 (2C), 128.3 (2C), 127.9, 127.1 (2C), 123.4, 122.6, 120.5, 110.9, 101.4, 75.6, 71.4, 39.9, 39.1, 32.8, 30.5, 29.7, 21.5, 20.2.



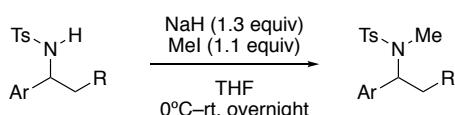
**N-3-methoxy-5-(4-methoxyphenyl)-5-(naphthalen-2-yl)pentyl-4-methylbenzenesulfonamide** (**13**) was prepared according to Method A. The following amounts of reagents were used: piperidine **12** (37 mg, 90  $\mu$ mol, 1.0 equiv), Ni(dppe)Cl<sub>2</sub> (7.0 mg, 10.  $\mu$ mol, 15 mol %), (4-methoxyphenyl)magnesium iodide (0.11 mL, 0.18 mmol, 2.0 equiv, 1.7 M in Et<sub>2</sub>O), and PhMe (0.90 mL). Before purification, a <sup>1</sup>H NMR yield of 56% was obtained based on comparison to PhTMS as an internal standard. The residue was purified by flash column chromatography (0–20% EtOAc/hexanes) to afford the title compound as a yellow oil (26 mg, 50.  $\mu$ mol, 58% yield, 3:1 dr). The ratio of diastereomers was determined by integration of the resonances attributed to methyl hydrogens of the tosyl group in the <sup>1</sup>H NMR spectrum. The relative configuration of the major **13** was assigned based on analogy to ring opened compound **7**. For clarity, the <sup>1</sup>H NMR and <sup>13</sup>C NMR data of the major and minor diastereomers have been tabulated individually.

**TLC R<sub>f</sub>** = 0.3 (30% EtOAc/hexanes, stained with CAM); **HRMS** (TOF MS E+) *m/z* [M+H] calcd for C<sub>30</sub>H<sub>34</sub>NO<sub>4</sub>S, 504.2209; found, 504.2206.

**Major Diastereomer:** **<sup>1</sup>H NMR** (500 MHz, CDCl<sub>3</sub>) δ 7.76 (d, *J* = 7.3 Hz, 2H), 7.70–7.69 (m, 3H), 7.61 (s, 1H), 7.43 (dt, *J* = 20.4, 7.3 Hz, 2H), 7.29–7.19 (m, 3H), 7.13 (d, *J* = 8.5 Hz, 2H), 6.81 (d, *J* = 8.6 Hz, 2H), 5.09–5.5 (m, 1H), 4.12 (t, *J* = 7.8 Hz, 1H), 3.76 (s, 3H), 3.20 (s, 3H), 3.13–3.09 (m, 1H), 3.05–2.97 (m, 2H), 2.30 (s, 3H), 2.25 (appar sext, *J* = 7.3 Hz, 1H), 2.02–1.97 (m, 1H), 1.85–1.80 (m, 1H), 1.58–1.52 (m, 1H); **<sup>13</sup>C NMR** (125.8, CDCl<sub>3</sub>) δ 158.2, 143.4, 142.4, 136.8, 135.2, 133.6, 129.7 (2C), 129.0 (2C), 128.8, 128.3, 127.8, 127.7, 127.2 (2C), 126.5, 126.2, 125.6, 125.5, 114.1 (2C), 78.0, 56.7, 55.3, 46.5, 40.3, 39.1, 31.8, 21.5.

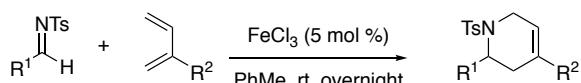
**Minor Diastereomer:** **<sup>1</sup>H NMR** (500 MHz, CDCl<sub>3</sub>) δ 7.76 (d, *J* = 7.3 Hz, 2H), 7.73–7.70 (m, 3H), 7.63 (s, 1H), 7.43 (dt, *J* = 20.4, 7.3 Hz, 2H), 7.29–7.19 (m, 3H), 7.14 (d, *J* = 7.7 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 5.09–5.5 (m, 1H), 4.12 (t, *J* = 7.8 Hz, 1H), 3.76 (s, 3H), 3.19 (s, 3H),

3.13–3.09 (m, 1H), 3.05–2.97 (m, 2H), 2.35 (s, 3H), 2.25 (appar sext,  $J$  = 7.3 Hz, 1H), 2.06–2.03 (m, 1H), 1.76–1.78 (m, 1H), 1.58–1.52 (m, 1H);  $^{13}\text{C}$  NMR (125.8,  $\text{CDCl}_3$ )  $\delta$  158.2, 143.4, 142.0, 136.9, 136.5, 133.6, 129.7 (2C), 129.0 (2C), 128.8, 128.4, 127.8, 127.7, 127.2 (2C), 126.5, 126.2, 125.9, 125.6, 114.1 (2C), 78.0, 56.7, 55.3, 46.5, 40.3, 39.1, 31.9, 21.6.


### 3.2.4 General Procedures for Synthesis of Starting Materials

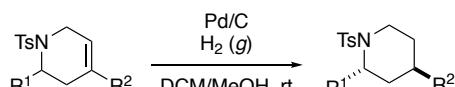
#### Method B: Condensation Reaction




This method was adapted from a procedure reported by Ruano et al. [41] A flame-dried two-neck flask equipped with a stir bar, condenser, septum and  $\text{N}_2$  inlet was charged with aldehyde (1.0 equiv), and *p*-toluenesulfonamide (1.0 equiv) and  $\text{CH}_2\text{Cl}_2$  (330 mL). Then  $\text{Ti(OEt)}_4$  (2.0 equiv) was added dropwise. The deep orange solution was brought to reflux (~45 °C) and allowed to stir for 48 h. The solution was cooled to room temperature and was quenched with  $\text{H}_2\text{O}$ . The mixture was vacuum filtered and the filtrate was concentrated in vacuo.

#### Method C: Methylation of Sulfonamide with Methyl Iodide

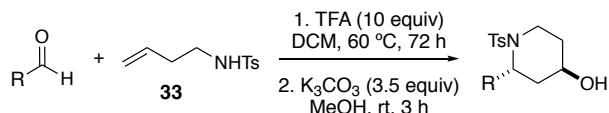



This method was adapted from a procedure reported by Jarvo. [21a] To a suspension of  $\text{NaH}$  (1.3 equiv) in  $\text{THF}$  (0.10 M) was added a solution of sulfonamide (1.0 equiv) in  $\text{THF}$  (0.15 M) at 0 °C. The mixture was warmed to rt and allow to stir for 1 h before the addition of iodomethane (1.1 equiv). The reaction was allowed to stir overnight at rt. The excess  $\text{NaH}$  was quenched with sat.  $\text{NH}_4\text{Cl}$  and the solution was extracted with  $\text{EtOAc}$  (x 3). The combined organic layers were washed with brine, dried over  $\text{Na}_2\text{SO}_4$ , concentrated in vacuo, and purified by flash column chromatography.

#### Method D: Fe-Catalyzed Formal [4+2] Cycloaddition

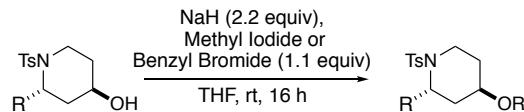


This method was adapted from a procedure reported by Matsubara. [30] To a flame-dried round-bottom flask equipped with a stir bar was added imine (1.0 equiv),  $\text{FeCl}_3$  (5.0 mol %), and  $\text{PhMe}$  (0.1 M). Once the solution was homogenous, diene (2.0 equiv) was added. The reaction mixture was allowed to stir at rt overnight. After completion, the reaction mixture was filtered through a short pad of silica, washed with excess ethyl acetate, and concentrated in vacuo.


#### Method E: Pd/C Reduction of Alkenes

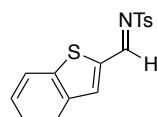


A flame-dried round-bottom flask with stir bar was charged with palladium on carbon (1.0 mg/3.5 mmol of substrate), flushed with  $\text{N}_2$ , and capped with septum. Slowly,  $\text{DCM}$  was added, until  $\text{Pd/C}$  was fully submerged. Then  $\text{MeOH}$  (0.2 M in substrate), and alkene (1.0 equiv) were added. Vacuum was pulled on the flask until the solvent began to bubble,


at which point the flask was backfilled with  $N_2$  (x 3). An  $H_2$  balloon was added and the reaction mixture was allowed to stir vigorously until complete by  $^1H$  NMR. The balloon was then removed, and the flask was purged with  $N_2$  for 30 min. The septum was removed, and the reaction mixture was filtered through Celite using MeOH (100 mL). The collected solvent was then concentrated in vacuo.

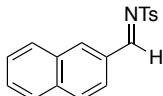
#### Method F: TFA Mediated aza-Prins Cyclization



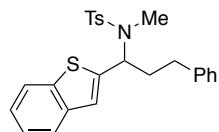

This method was adapted from a procedure reported by Sabitha. [31] To a flame-dried pressure tube equipped with a stir bar was added aldehyde (1.0 equiv), homoallylic sulfonamide **33** (1.1 equiv), and  $CH_2Cl_2$  (0.10 M). Then trifluoroacetic acid (10.0 equiv) was added slowly via syringe. The solution was warmed to 60 °C and allowed to stir for 72 h. The solution was then cooled to rt and quenched with saturated aq.  $NaHCO_3$ . Then the pH was adjusted to >7 by the addition of  $Et_3N$ . The solution was transferred to a separatory funnel, and the aqueous layer was extracted with  $CH_2Cl_2$  (x 3). The combined organic layers were washed with brine, dried over  $Na_2SO_4$ , filtered and concentrated in vacuo. The residue was then redissolved in MeOH, and  $K_2CO_3$  (3.5 equiv) was added to the flask and the slurry was allowed to stir at rt for 3 h. The solvent was removed under reduced pressure, then  $H_2O$  was added and the residue was transferred to a separatory funnel. The aqueous layer was extracted with  $EtOAc$  (x 3). The combined organic layers were washed with brine, dried over  $Na_2SO_4$ , filtered and concentrated in vacuo.

#### Method G: Alkylation of Secondary Alcohol

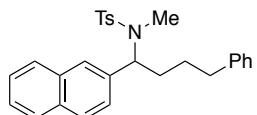



This method was adapted from a procedure reported by Yang. [42] In a glovebox to a flame-dried round bottom flask equipped with a stir bar was added  $NaH$  (2.2 equiv). The flask was removed from the glovebox and  $NaH$  was dissolved in THF (0.2 M). Alcohol (1.0 equiv) was added dropwise as a solution in THF (0.3 M) and the reaction mixture was allowed to stir at rt for 1 h. Methyl iodide or benzyl bromide was then added dropwise to the stirring slurry and the reaction mixture was allowed to stir at rt overnight. The reaction was then quenched with saturated aq.  $NH_4Cl$  and extracted with  $EtOAc$  (x 3). The combined organic layers were washed with brine, dried over  $Na_2SO_4$  and concentrated in vacuo.

#### 3.2.5 Synthesis and Characterization Data of Sulfonamide Starting Materials



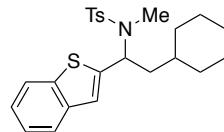

**N-(benzo[b]thiophen-2-ylmethylene)-4-methylbenzenesulfonamide (28)** was prepared according to Method B. The following amounts of reagents were used: benzo[b]thiophene-2-carbaldehyde (3.2 g, 20. mmol, 1.0 equiv), *p*-toluenesulfonamide (3.1 g, 20. mmol, 1.0 equiv),  $Ti(OEt)_4$  (8.4 mL, 40. mmol, 2.0 equiv), and  $CH_2Cl_2$  (330 mL). The residue was purified by flash column chromatography (5–25%  $EtOAc/hexanes$ ) to yield the title compound as a pale yellow solid (5.0 g, 16 mmol, 80 %). **m.p.** 148–150 °C; **TLC  $R_f$**  0.5 (25%  $EtOAc/hexanes$ );  **$^1H$  NMR** (500 MHz,  $CDCl_3$ )  $\delta$  9.23 (s, 1H), 8.02 (s, 1H), 7.90 (d,  $J$  = 8.3,


3H), 7.86 (d,  $J$  = 8.2, 1H), 7.50 (td,  $J$  = 8.3, 1.2, 1H), 7.42 (td,  $J$  = 8.4, 1.2, 1H), 7.35 (d,  $J$  = 8.4, 2H), 2.44 (s, 3H);  $^{13}\text{C}$  NMR (126 MHz,  $\text{CDCl}_3$ )  $\delta$  163.3, 144.8, 143.6, 138.9, 138.3, 137.3, 135.3, 130.0 (2C), 128.7, 128.2 (2C), 126.1, 125.5, 123.2, 21.8; IR (neat) 3259, 2921, 1566, 1305, 1292, 1152, 1087, 752  $\text{cm}^{-1}$ ; HRMS (TOF MS ES+)  $m/z$  calcd for  $\text{C}_{16}\text{H}_{13}\text{NO}_2\text{S}_2$  [ $\text{M} + \text{Na}]^+$  338.0285, found 338.0283.



**4-Methyl-N-(naphthalen-2-ylmethylene)benzenesulfonamide (29)** was prepared according to Method B. The following amounts of reagents were used: 2-naphthaldehyde (0.31 g, 2.0 mmol, 1.0 equiv), *p*-toluenesulfonamide (0.34 g, 2.0 mmol, 1.0 equiv),  $\text{Ti}(\text{OEt})_4$  (0.59 mL, 4.0 mmol, 2.0 equiv), and  $\text{CH}_2\text{Cl}_2$  (33 mL). The residue was purified by flash column chromatography (0–25% EtOAc/hexanes) to yield the title compound as a pale yellow solid (0.31 g, 1.0 mmol, 50% yield). Analytical data is consistent with literature values. [43]  $^1\text{H}$  NMR (400 MHz,  $\text{CDCl}_3$ )  $\delta$  9.18 (s, 1H), 8.34 (s, 1H), 8.04 (dd,  $J$  = 8.6, 1.7 Hz, 1H), 7.98–7.86 (m, 5H), 7.67–7.55 (m, 2H), 7.36 (d,  $J$  = 8.0 Hz, 2H), 2.44 (s, 3H).




**N-(1-(benzo[b]thiophen-2-yl)-3-phenylpropyl)-N,4-dimethylbenzenesulfonamide (1)** was prepared according to Method C. The following amounts of reagents were used: *N*-(1-(benzo[b]thiophen-2-yl)-3-phenylpropyl)-4-methylbenzenesulfonamide (680 mg, 1.6 mmol, 1.0 equiv), NaH (50. mg, 2.1 mmol, 1.3 equiv), methyl iodide (0.11 mL, 1.8 mmol, 1.1 equiv) and THF (30 mL). The residue was purified by flash column chromatography (5–25% EtOAc/hexanes) to yield the title compound as a yellow oil (0.52 g, 1.2 mmol, 68% yield) TLC  $R_f$  = 0.8 (25% EtOAc/hexanes);  $^1\text{H}$  NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$  7.73 (d,  $J$  = 7.9 Hz, 1H), 7.70–7.62 (m, 3H), 7.40–7.27 (m, 4H), 7.27–7.19 (m, 3H), 7.16 (d,  $J$  = 7.7 Hz, 2H), 7.06 (s, 1H), 5.42 (t,  $J$  = 7.5 Hz, 1H), 2.77 (s, 3H), 2.69 (qdd,  $J$  = 14.1, 10.4, 5.9 Hz, 2H), 2.40 (s, 3H), 2.30 (dddd,  $J$  = 13.7, 10.3, 7.2, 5.4 Hz, 1H), 2.08 (dddd,  $J$  = 13.9, 10.5, 7.8, 6.3 Hz, 1H);  $^{13}\text{C}$  NMR (125.7 MHz,  $\text{CDCl}_3$ )  $\delta$  143.31, 143.30, 141.0, 139.6, 139.2, 137.0, 129.6 (2C), 128.6 (2C), 128.5 (2C), 127.3 (2C), 126.3, 124.5, 124.4, 123.6, 122.9, 122.3, 56.5, 34.6, 33.0, 29.0, 21.6; HRMS (TOF MS ES+)  $m/z$ : [M + Na] $^+$  calcd for  $\text{C}_{25}\text{H}_{25}\text{NO}_2\text{S}_2\text{Na}$  458.1224, found 458.1235.



**N,4-dimethyl-N-(1-(naphthalen-2-yl)-4-phenylbutyl)benzenesulfonamide (19)** was prepared according to Method C. The following amounts of reagents were used: 4-methyl-*N*-(1-(naphthalen-2-yl)-4-phenylbutyl)benzenesulfonamide (0.50 g, 1.2 mmol, 1.0 equiv), NaH (36 mg, 1.5 mmol, 1.3 equiv), methyl iodide (80.  $\mu\text{L}$ , 1.3 mmol, 1.1 equiv) and THF (23 mL). The residue was purified by flash column chromatography (0–25% EtOAc/hexanes) to yield the title compound as a pale yellow solid (0.42 g, 0.95 mmol, 82% yield). TLC  $R_f$  = 0.3 (25% EtOAc/hexanes);  $^1\text{H}$  NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$  7.85 (td,  $J$  = 8.1, 7.1, 4.1 Hz, 2H), 7.80 (d,  $J$  = 8.5 Hz, 1H), 7.75 (dt,  $J$  = 6.1, 3.7 Hz, 1H), 7.72 (d,  $J$  = 8.1 Hz, 2H), 7.58–7.50 (m, 3H), 7.46–7.39 (m, 1H), 7.36–7.31 (m, 2H), 7.26 (t,  $J$  = 8.3 Hz, 2H), 7.20 (d,  $J$  = 7.3 Hz, 2H), 5.34 (t,  $J$  = 7.7 Hz, 1H), 2.72 (td,  $J$  = 7.5, 2.3 Hz, 2H), 2.68 (s, 3H), 2.44 (s, 3H), 2.16–2.06 (m, 1H), 1.88 (ddd,  $J$  = 15.6, 14.0, 7.6 Hz, 1H), 1.70 (quint,  $J$  = 9.0 Hz, 2H);  $^{13}\text{C}$  NMR (126 MHz,  $\text{CDCl}_3$ )  $\delta$  143.1, 141.9, 135.9, 133.1, 132.9, 129.9, 129.6 (2C), 128.53 (2C), 128.46 (2C),

128.3, 128.1, 127.7, 127.6, 127.3 (2C), 126.7, 126.4, 126.3, 126.0, 60.0, 35.5, 30.0, 28.9, 28.3, 638  
 21.6; **HRMS** (TOF MS ES+) *m/z*: [M + Na] calcd for C<sub>28</sub>H<sub>29</sub>NO<sub>2</sub>S 466.1817, found 466.1816. 639

640



641

***N*-(1-benzo[b]thiophen-2-yl)-2-cyclohexylethyl-N,4-dimethylbenzenesulfonamide (21)** was prepared according to Method C. The following amounts of reagents were used: *N*-(1-(benzo[b]thiophen-2-yl)-2-cyclohexylethyl)-4-methylbenzenesulfonamide (170 mg, 0.41 mmol, 1.0 equiv), NaH (31 mg, 0.53 mmol, 1.3 equiv), methyl iodide (30.  $\mu$ L, 0.45 mmol, 1.1 equiv), and THF (8.2 mL). The residue was purified by flash column chromatography (20% EtOAc/hexanes) to afford the title compound as a clear, colorless oil (170 mg, 0.40 mmol, 98% yield). **TLC**  $R_f$  = 0.40 (10% EtOAc/hexanes); **<sup>1</sup>H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 (d, *J* = 7.8 Hz, 1H), 7.70 (d, *J* = 8.3 Hz, 2H), 7.66 (d, *J* = 7.2 Hz, 1H), 7.30 (dtd, *J* = 16.4, 7.2, 1.3 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.05 (s, 1H), 5.50 (t, *J* = 7.6, 1H), 2.71 (s, 3H), 2.39 (s, 3H), 1.92–1.78 (m, 2H), 1.76–1.59 (m, 5H), 1.33–1.23 (m, 1H), 1.20–1.10 (m, 3H), 1.04–0.83 (m, 2H); **<sup>13</sup>C NMR** (125.8 MHz, CDCl<sub>3</sub>)  $\delta$  144.1, 143.0, 139.4, 139.1, 137.0, 129.4 (2C), 127.2 (2C), 124.2, 123.3, 122.3, 122.5, 122.1, 53.9, 40.3, 34.0, 33.4, 33.0, 28.7, 26.3, 26.0, 25.9, 21.4; **HRMS** (TOF MS ES+) *m/z* [M + Na]<sup>+</sup> calcd for C<sub>24</sub>H<sub>29</sub>NO<sub>2</sub>S<sub>2</sub>Na 450.1537, found 450.1530. 642

643

644

645

646

647

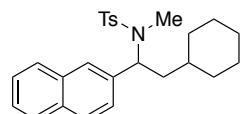
648

649

650

651

652


653

654

655

656

657



658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

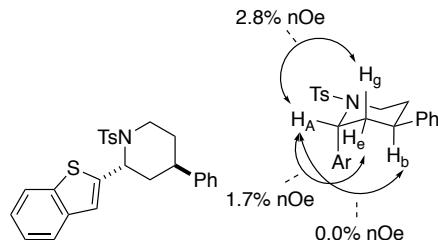
921

922

923

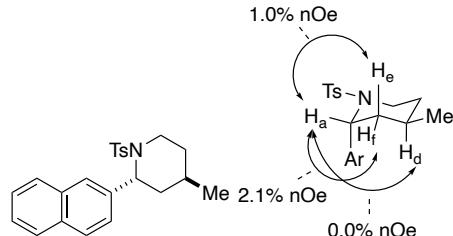
924

925


926

927

928


929

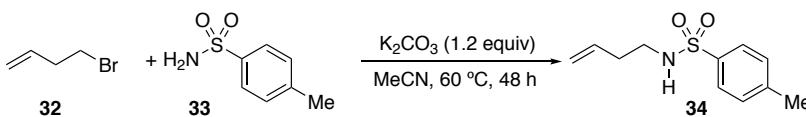
= 18.6, 3.5 Hz, 1H), 3.84 (dq,  $J$  = 18.7, 2.8 Hz, 1H), 2.96 (ddt,  $J$  = 16.3, 6.4, 3.2 Hz, 1H), 2.87 (d,  $J$  = 17.2 Hz, 1H), 2.33 (s, 3H);  $^{13}\text{C}$  NMR (126 MHz,  $\text{CDCl}_3$ )  $\delta$  144.9, 144.6, 143.6, 140.0, 139.9, 129.9 (2C), 129.2, 128.8 (2C), 128.4, 127.4 (2C), 126.8 (2C), 124.5, 124.3, 123.5, 122.3, 122.3, 53.9, 42.2, 37.1, 36.7, 31.7, 21.7. 682  
683  
684  
685



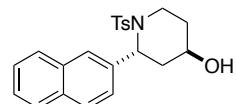
**2-(Benzo[b]thiophen-2-yl)-4-phenyl-1-tosylpiperidine (24)** was prepared according to Method E. The following amounts of reagents were used: substrate **30** (100 mg, 0.22 mmol, 1.0 equiv), Pd/C (20 mg), DCM (2.0 mL) and MeOH (5.0 mL). The residue was purified by column chromatography (0–10% EtOAc/hexanes) to afford the title compound as a pale yellow oil (24 mg, 53  $\mu$ mol, 25% yield, >20:1 dr trans:cis). The dr was determined based on the integration of the resonances attributed to the benzylic hydrogens in the  $^1\text{H}$  NMR spectrum. The relative configuration was assigned based on nOe analysis. TLC  $R_f$  = 0.5 (20% EtOAc/hexanes);  $^1\text{H}$  NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$  7.81 (d,  $J$  = 8.4 Hz, 2H), 7.77 (d,  $J$  = 7.9 Hz, 1H), 7.68 (d,  $J$  = 7.7 Hz, 1H), 7.40–7.26 (m, 6H), 7.23–7.18 (m, 1H), 7.13 (d,  $J$  = 1.5 Hz, 1H), 7.06 (d,  $J$  = 7.4 Hz, 2H), 5.70 (d,  $J$  = 5.2 Hz, 1H), 4.03 (d,  $J$  = 14.0 Hz, 1H), 3.34 (ddd,  $J$  = 14.1, 12.7, 3.0 Hz, 1H), 2.93 (tt,  $J$  = 12.6, 3.6 Hz, 1H), 2.43 (s, 3H), 2.33 (d,  $J$  = 13.0 Hz, 1H), 2.01 (td,  $J$  = 13.5, 5.5 Hz, 1H), 1.68 (d,  $J$  = 12.5 Hz, 1H), 1.61 (td,  $J$  = 12.7, 4.4 Hz, 1H);  $^{13}\text{C}$  NMR (151 MHz,  $\text{CDCl}_3$ )  $\delta$  144.8, 144.5, 139.9, 139.8, 129.8 (2C), 129.1, 128.7 (2C), 128.3, 127.3 (2C), 126.7 (2C), 124.4, 124.2, 123.4, 122.2, 122.2, 76.8, 53.8, 42.1, 36.9, 36.6, 31.6, 21.6; HRMS (TOF MS ES+)  $m/z$  [M+Na] calcd for  $\text{C}_{26}\text{H}_{25}\text{NO}_2\text{S}_2\text{Na}$  470.1224, found 470.1228. 686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702

**4-Methyl-2-(naphthalen-2-yl)-1-tosyl-1,2,3,6-tetrahydropyridine (31)** was prepared according to Method D. The following amounts of reagents were used: imine **28** (0.31 g, 1.0 mmol, 1.0 equiv), isoprene (1.5 mL, 15 mmol, 15 equiv),  $\text{FeCl}_3$  (16 mg, 0.10 mmol, 10. mol %), and PhMe (10. mL, 0.10 M). The residue was purified by flash column chromatography (0–5% EtOAc/hexanes) to afford the title compound as a yellow oil (150 mg, 0.40 mmol, 40% yield). TLC  $R_f$  = 0.5 (20% EtOAc/hexanes);  $^1\text{H}$  NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$  7.78–7.71 (m, 3H), 7.69 (d,  $J$  = 8.3 Hz, 2H), 7.56 (s, 1H), 7.48–7.40 (m, 3H), 7.20 (d,  $J$  = 8.1 Hz, 2H), 5.43 (d,  $J$  = 3.5 Hz, 1H), 5.29 (s, 1H), 4.11 (d,  $J$  = 18.0 Hz, 1H), 3.35 (d,  $J$  = 18.1 Hz, 1H), 2.40–2.30 (m, 2H), 2.35 (s, 3H), 1.68 (s, 3H). 703  
704  
705  
706  
707  
708  
709  
710  
711  
712




**4-Methyl-2-(naphthalen-2-yl)-1-tosylpiperidine (25)** was prepared according to Method E. The following amounts of reagents were used: substrate **31** (53 mg, 0.14 mmol, 1.0 equiv), Pd/C (27 mg), DCM (1.0 mL) and MeOH (1.0 mL). The residue was purified by flash column chromatography (0–10% EtOAc/hexanes) to afford the title compound as a pale yellow oil (9.6 mg, 25  $\mu$ mol, 18% yield, 6:1 dr cis:trans). The dr was determined based on the integration of the resonances attributed to the benzylic hydrogens in the  $^1\text{H}$  NMR 713  
714  
715  
716  
717  
718  
719

spectrum. The relative configuration was assigned based on *n*Oe analysis. For clarity, the <sup>1</sup>H NMR and <sup>13</sup>C NMR data of the major and minor diastereomers have been tabulated individually.


**TLC**  $R_f$  = 0.5 (10% EtOAc/hexanes); **HRMS** (TOF MS ES+) *m/z* [M+H] calcd for C<sub>23</sub>H<sub>26</sub>NO<sub>2</sub>S 380.1684, found 380.1689.

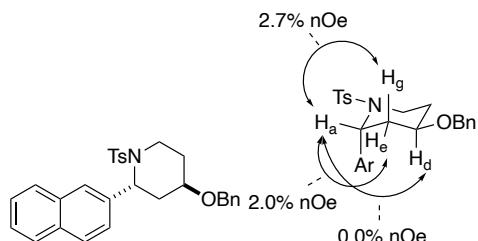
**Major Diastereomer:** <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.80–7.76 (m, 4H), 7.73–7.71 (m, 1H), 7.63 (s, 1H), 7.46–7.44 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 2H), 5.48 (d, *J* = 4.5 Hz, 1H), 3.96 (d, *J* = 14.4 Hz, 1H), 3.06 (ddd, *J* = 14.0, 13.2, 3.1 Hz, 1H), 2.69 (d, *J* = 25.9 Hz, 1H), 2.42 (s, 3H), 2.30 (d, *J* = 13.3 Hz, 1H), 1.43–1.36 (m, 2H), 0.98 (ddd, *J* = 24.5, 12.4, 4.5 Hz, 1H), 0.82 (d, *J* = 6.5 Hz, 3H); <sup>13</sup>**C NMR** (151 MHz, CDCl<sub>3</sub>)  $\delta$  143.1, 138.8, 136.7, 133.3, 132.3, 129.7 (2C), 128.4, 128.0, 127.5, 127.1 (2C), 126.1, 125.9, 125.8, 125.1, 55.6, 42.0, 36.0, 33.0, 25.3, 22.2, 21.5.

**Minor Diastereomer:** <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.80–7.76 (m, 4H), 7.73–7.71 (m, 1H), 7.63 (s, 1H), 7.46–7.44 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 2H), 5.25 (d, *J* = 4.9 Hz, 1H), 3.88 (d, *J* = 10.6 Hz, 1H), 3.04–2.98 (m, 1H), 2.42 (s, 3H), 2.38 (d, *J* = 3.86 Hz, 1H), 2.14 (d, *J* = 13.7 Hz, 1H), 1.43–1.36 (m, 2H), 0.79 (d, *J* = 6.5 Hz, 3H), 0.75 (d, *J* = 6.4 Hz, 1H); <sup>13</sup>**C NMR** (151 MHz, CDCl<sub>3</sub>)  $\delta$  143.1, 138.8, 136.7, 133.3, 132.3, 129.6 (2C), 129.3, 128.0, 127.6, 127.1 (2C), 126.1, 125.9, 125.8, 124.0, 55.2, 41.8, 36.0, 33.1, 25.2, 23.3, 21.5.



***N*-(but-3-en-1-yl)-4-methylbenzenesulfonamide (34)** was prepared according to a procedure reported by Jiang. [45] To a flame-dried flask equipped with a stir bar was added 4-bromo-1-butene **32** (4.1 mL, 40. mmol, 1.0 equiv), *p*-toluenesulfonamide **33** (6.8 g, 40. mmol, 1.0 equiv), K<sub>2</sub>CO<sub>3</sub> (6.6 g, 48 mmol, 1.2 equiv), and MeCN (160 mL). The mixture was heated to 60 °C and allowed to stir for 3 d. The reaction mixture was quenched with saturated NH<sub>4</sub>Cl (100 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layers were washed with H<sub>2</sub>O (50 mL) and brine (50 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated in vacuo. The residue was purified by column chromatography (5–25% EtOAc/hexanes) to afford the title compound as a clear, colorless oil (5.4 g, 24 mmol, 60 %). Analytical data is consistent with literature values. [45] <sup>1</sup>**H NMR**: (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (d, *J* = 8.2, 2H), 7.30 (d, *J* = 8.1, 2H), 5.63 (ddt, *J* = 17.1, 10.4, 6.8, 1H), 5.11 (br s, 1H), 5.02–4.93 (m, 2H), 2.99 (q, *J* = 6.7, 2H), 2.41 (s, 3H), 2.20 (q, *J* = 6.9, 2 H).



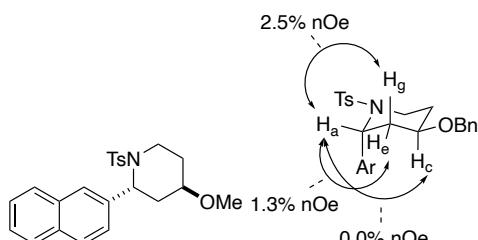

**2-(Naphthalen-2-yl)-1-tosylpiperidin-4-ol (35)** was prepared according to Method F. The following amounts of reagents were used: 2-naphthaldehyde (0.94 g, 6.0 mmol, 1.0 equiv), homoallylic sulfonamide **35** (1.1 mL, 6.0 mmol, 1.0 equiv), TFA (4.6 mL, 60. mmol, 10 equiv), and CH<sub>2</sub>Cl<sub>2</sub> (60 mL, 0.10 M). The residue was purified by flash column chromatography (0–30% EtOAc/hexanes) to afford the title compound as an orange solid (0.72 g, 1.8 mmol, 31 % yield, 5:1 dr trans:cis). The dr was determined based on the integration of the resonances attributed to the benzylic hydrogens in the <sup>1</sup>H NMR spectrum. The relative configuration of the major **34** was assigned based on analogy to compound **24**. For clarity, the <sup>1</sup>H NMR data of the major and minor diastereomers have been tabulated individually.

**TLC**  $R_f$  = 0.1 (30% EtOAc/hexanes, stained with CAM); **HRMS** (TOF MS ES+) *m/z* [M+H] calcd for C<sub>22</sub>H<sub>24</sub>NO<sub>3</sub>S 382.1477, found 382.1483.

**Major Diastereomer:** <sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.79–7.77 (m, 4H), 7.68 (s, 1H), 7.49–7.41 (m, 4H), 7.29 (d, *J* = 8.1 Hz, 2H), 5.54 (d, *J* = 4.5 Hz, 1H), 3.99 (d, *J* = 15.0 Hz, 1H), 3.74 (tt, *J* = 10.9, 7.9 Hz, 1H), 3.03 (td, *J* = 15.3, 2.7 Hz, 1H), 2.63 (dt, *J* = 13.3, 2.0 Hz 1H), 2.43 (s,

3H), 1.70 (br s, 1H), 1.58 (ddd  $J = 13.6, 11.3, 5.5$  Hz, 1H), 1.26–1.18 (m, 2H).  $^{13}\text{C}$  NMR (151 MHz,  $\text{CDCl}_3$ )  $\delta$  143.5, 138.3, 135.9, 133.3, 132.5, 130.0 (2C), 128.7, 128.0, 127.5, 127.0 (2C), 126.3, 126.2, 125.5, 124.7, 64.7, 55.8, 40.7, 36.2, 33.8, 21.6. 767  
768  
769

**Minor Diastereomer:**  $^1\text{H}$  NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$  7.74–7.70 (m, 4H), 7.63 (s, 1H), 7.60 (d,  $J = 8.3$  Hz, 2H), 7.49–7.41 (m, 2H), 7.16 (d,  $J = 8.4$  Hz, 2H), 5.10 (t,  $J = 5.1$  Hz, 1H), 3.99 (d,  $J = 15.0$  Hz, 1H), 3.67 (tt,  $J = 13.4, 4.6$  Hz, 1H), 3.03 (td,  $J = 15.3, 2.7$  Hz, 1H), 2.63 (dt,  $J = 13.3, 2.0$  Hz 1H), 2.36 (s, 3H), 1.81–1.73 (m, 1H), 1.67 (br s, 1H), 1.26–1.18 (m, 2H).  $^{13}\text{C}$  NMR (151 MHz,  $\text{CDCl}_3$ )  $\delta$  143.3, 137.7, 135.9, 133.2, 132.5, 129.6 (2C), 128.7, 128.2, 127.5, 127.2 (2C), 126.3, 126.0, 125.3, 124.8, 65.1, 55.5, 39.0, 37.0, 31.9, 21.5. 771  
772  
773  
774  
775  
776



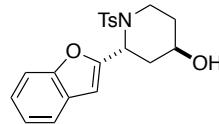

**4-(Benzylxy)-2-(naphthalen-2-yl)-1-tosylpiperidine (26)** was prepared according to Method G. The following amounts of reagents were used: alcohol **35** (0.25 g, 0.66 mmol, 1.0 equiv), NaH (63 mg, 2.6 mmol, 4.0 equiv), benzyl bromide (90.  $\mu\text{L}$ , 0.73 mmol, 1.1 equiv), and THF (2.3 mL, 0.2 M). The residue was purified by column chromatography (0–10% EtOAc/hexanes) to afford the title compound as a white solid (140 mg, 0.30 mmol, 56 % yield, 5:1 dr trans:cis). The dr was determined based on the integration of the resonances attributed to the benzylic hydrogens in the  $^1\text{H}$  NMR spectrum. The relative configuration was assigned based on nOe analysis. For clarity, the  $^1\text{H}$  NMR and  $^{13}\text{C}$  NMR data of the major and minor diastereomers have been tabulated individually. 777  
778  
779  
780  
781  
782  
783  
784  
785  
786

TLC  $R_f = 0.8$  (20% EtOAc/hexanes, stained with CAM); HRMS (TOF MS ES+)  $m/z$  [M+Na] calcd for  $\text{C}_{29}\text{H}_{29}\text{NO}_3\text{SNa}$  494.1766, found 494.1758. 787  
788

**Major Diastereomer:**  $^1\text{H}$  NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$  7.80 (d,  $J = 8.1$  Hz, 4H), 7.70 (d, 1H), 7.61 (s, 1H), 7.48–7.45 (m, 3H), 7.32–7.26 (m, 7H), 5.55 (d,  $J = 3.8$  Hz, 1H), 4.50 (d,  $J = 11.9$  Hz, 1H), 4.43 (d,  $J = 11.9$  Hz, 1H), 4.02 (d,  $J = 14.7$  Hz, 1H), 3.52 (tt,  $J = 10.8$  Hz, 1H), 3.04 (td,  $J = 14.5, 2.5$  Hz, 1H), 2.68 (d,  $J = 13.6$  Hz, 1H), 2.43 (s, 3H), 1.80 (d,  $J = 11.5$  Hz, 1H), 1.62 (ddd,  $J = 17.7, 11.9, 6.1$  Hz, 1H), 1.31–1.34 (m, 1H);  $^{13}\text{C}$  NMR (151 MHz,  $\text{CDCl}_3$ )  $\delta$  143.4, 138.3, 136.0, 133.2, 132.5, 130.0 (2C), 129.5, 128.6, 128.5 (2C), 128.0, 127.8, 127.7 (2C), 127.5, 127.0 (2C), 126.2, 126.1, 125.5, 124.8, 71.3, 70.2, 55.8, 40.8, 33.4, 30.8, 21.6. 789  
790  
791  
792  
793  
794  
795

**Minor Diastereomer:**  $^1\text{H}$  NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$  7.80 (d,  $J = 8.1$  Hz, 4H), 7.70 (d, 1H), 7.59 (s, 1H), 7.48–7.45 (m, 3H), 7.32–7.26 (m, 2H), 7.15 (d,  $J = 8.2$  Hz, 1H), 7.07 (t,  $J = 7.6$  Hz, 1H), 6.96 (t,  $J = 7.3$  Hz, 2H), 6.69 (d,  $J = 7.6$  Hz, 1H), 5.17 (t,  $J = 5.1$  Hz, 1H), 4.24, 4.20 (ABq,  $J_{AB} = 12.3$  Hz, 2H), 3.80–3.68 (m, 3H), 2.53 (dt,  $J = 14.4, 9.4$  Hz, 1H), 2.35 (s, 3H), 2.06 (ddd,  $J = 14.3, 5.3, 2.9$  Hz, 1H), 1.81–1.80 (m, 2H), 1.31–1.34 (m, 1H);  $^{13}\text{C}$  NMR (151 MHz,  $\text{CDCl}_3$ )  $\delta$  143.4, 138.4, 136.0, 133.2, 132.5, 130.0 (2C), 129.5, 128.6, 128.5 (2C), 128.0, 127.8, 127.7 (2C), 127.5, 127.19 (2C), 127.16, 125.9, 125.6, 125.2, 71.2, 69.8, 55.8, 39.3, 34.2, 30.8, 21.6. 796  
797  
798  
799  
800  
801  
802  
803



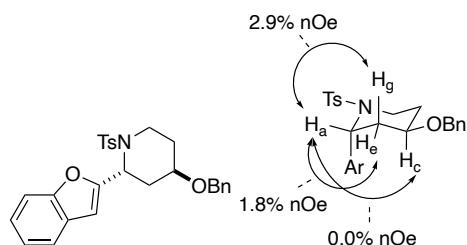

**4-Methoxy-2-(naphthalen-2-yl)-1-tosylpiperidine (12)** was prepared according to Method G. The following amounts of reagents were used: alcohol **35** (110 mg, 0.30 mmol, 1.0 equiv), 790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806

1.0 equiv), NaH (16 mg, 0.67 mmol, 2.2 equiv), methyl iodide (20.  $\mu$ L, 0.33 mmol, 1.1 equiv), and THF (1.5 mL, 0.20 M). The residue was purified by column chromatography (0–20% EtOAc/hexanes) to afford the title compound as a pale yellow solid (61 mg, 0.15 mmol, 52 % yield, 5:1 dr trans:cis). The dr was determined based on the integration of the resonances attributed to the benzylic hydrogens in the  $^1$ H NMR spectrum. The relative configuration was assigned based on nOe analysis. For clarity, the  $^1$ H NMR and  $^{13}$ C NMR data of the major and minor diastereomers have been tabulated individually.

**TLC  $R_f$**  = 0.6 (30% EtOAc/hexanes, stained with CAM); **HRMS** (TOF MS ES+)  $m/z$  [M+Na]<sup>+</sup> calcd for C<sub>23</sub>H<sub>25</sub>NO<sub>3</sub>SnA 396.1633, found 396.1636.

**Major Diastereomer:**  **$^1$ H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.83–7.76 (m, 5H), 7.72 (s, 1H), 7.54–7.51 (m, 1H), 7.48–7.46 (m, 2H), 7.29 (d,  $J$  = 7.9 Hz, 2H), 5.56 (s, 1H), 4.04 (d,  $J$  = 14.1 Hz, 1H), 3.29 (tt,  $J$  = 7.4, 3.0 Hz, 1H), 3.25 (s, 3H), 3.09 (t,  $J$  = 13.1 Hz, 1H), 2.68 (d,  $J$  = 13.2 Hz, 1H), 2.42 (s, 3H), 1.80 (d,  $J$  = 11.5 Hz, 1H), 1.53 (td,  $J$  = 12.2 Hz, 1H), 1.16 (qd,  $J$  = 11.6, 5.8 Hz, 1H);  **$^{13}$ C NMR** (151 MHz, CDCl<sub>3</sub>)  $\delta$  143.4, 138.4, 136.1, 133.4, 132.5, 130.0 (2C), 126.7, 128.1, 127.6, 127.0 (2C), 126.3, 126.1, 125.5, 124.7, 73.2, 55.8, 55.5, 40.8, 33.2, 30.2, 21.6.

**Minor Diastereomer:**  **$^1$ H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.83–7.76 (m, 5H), 7.72 (s, 1H), 7.54–7.51 (m, 1H), 7.48–7.46 (m, 2H), 7.29 (d,  $J$  = 7.9 Hz, 2H), 4.99 (t,  $J$  = 5.38 Hz, 1H), 3.77–3.71 (m, 1H), 3.60 (dt,  $J$  = 13.6, 4.6 Hz, 1H), 3.42 (br s, 1H), 3.03 (s, 3H), 2.37–2.29 (m, 1H), 2.33 (s, 3H), 2.02 (d,  $J$  = 15.2 Hz, 1H), 1.86–1.82 (m, 1H), 1.72–1.68 (m, 1H);  **$^{13}$ C NMR** (151 MHz, CDCl<sub>3</sub>)  $\delta$  143.0, 138.3, 137.4, 133.1, 132.5, 129.4 (2C), 126.7, 128.0, 127.5, 127.2 (2C), 125.8, 125.7, 125.5, 125.2, 73.5, 56.4, 55.5, 40.0, 34.1, 29.6, 21.5.




**2-(Naphthalen-2-yl)-1-tosylpiperidin-4-ol (36)** was prepared according to Method F. The following amounts of reagents were used: 2-benzofurancarboxaldehyde (0.60 mL, 5.0 mmol, 1.0 equiv), homoallylic sulfonamide **34** (0.91 mL, 5.0 mmol, 1.0 equiv), TFA (3.8 mL, 50. mmol, 10 equiv), CH<sub>2</sub>Cl<sub>2</sub> (50 mL, 0.10 M). The residue was purified by flash column chromatography (0–50% EtOAc/hexanes) to afford the title compound as an orange solid (0.42 g, 1.1 mmol, 22% yield, 5:1 dr trans:cis). The dr was determined based on the integration of the resonances attributed to the benzylic hydrogens in the  $^1$ H NMR spectrum. The relative configuration was assigned based on analogy to compound **26**. For clarity, the  $^1$ H NMR data of the major and minor diastereomers have been tabulated individually.

**TLC  $R_f$**  = 0.1 (30% EtOAc/hexanes, stained with CAM).

**Major Diastereomer:**  **$^1$ H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d,  $J$  = 8.29 Hz, 2H), 7.46 (dd,  $J$  = 6.75, 2.12 Hz, 1H), 7.21–7.18 (m, 3H), 7.15 (d,  $J$  = 8.61 Hz, 2H), 6.49 (t,  $J$  = 2.0 Hz, 1H), 5.51 (d,  $J$  = 5.48 Hz, 1H), 3.97–3.90 (m, 2H), 3.23 (td,  $J$  = 13.5, 2.7 Hz, 1H), 2.51–2.45 (m, 1H), 2.33 (s, 3H), 1.94–1.88 (m, 1H), 1.75 (ddd,  $J$  = 13.0, 11.6, 5.9 Hz, 1H), 1.53 (d,  $J$  = 5.0 Hz, 1H), 1.44 (ddd,  $J$  = 24.1, 12.8, 4.5 Hz, 1H).

**Minor Diastereomer:**  **$^1$ H NMR** (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (d,  $J$  = 8.29 Hz, 2H), 7.46 (dd,  $J$  = 6.75, 2.12 Hz, 1H), 7.21–7.18 (m, 3H), 7.15 (d,  $J$  = 8.61 Hz, 2H), 6.51 (t,  $J$  = 1.1 Hz, 1H), 5.33 (d,  $J$  = 5.6 Hz, 1H), 4.14–4.10 (m, 2H), 3.64 (td,  $J$  = 10.9, 4.0 Hz, 1H), 2.51–2.45 (m, 1H), 2.32 (s, 3H), 2.12 (ddd,  $J$  = 14.4, 6.7, 3.3 Hz, 1H), 1.94–1.88 (m, 1H), 1.53 (d,  $J$  = 5.0 Hz, 1H), 1.44 (ddd,  $J$  = 24.1, 12.8, 4.5 Hz, 1H).



**2-(benzofuran-2-yl)-4-(benzyloxy)-1-tosylpiperidine (27)** was prepared according to method G. The following amounts of reagents were used: alcohol **36** (0.15 g, 0.40 mmol, 1.0 equiv), NaH (46 mg, 1.9 mmol, 4.7 equiv), benzyl bromide (52  $\mu$ L, 0.44 mmol, 1.1 equiv), and THF (3.0 mL, 0.2 M). The residue was purified by column chromatography (0–10% EtOAc/hexanes) to afford the title compound as a yellow solid (87 mg, 0.19 mmol, 47% yield, 5:1 dr trans:cis). The dr was determined based on the integration of the resonances attributed to the benzylic hydrogens in the  $^1\text{H}$  NMR spectrum. The relative configuration was assigned based on nOe analysis. For clarity, the  $^1\text{H}$  NMR and  $^{13}\text{C}$  NMR data of the major and minor diastereomers have been tabulated individually.

TLC  $R_f$  = 0.8 (30% EtOAc/hexanes, stained with CAM); HRMS (TOF MS ES+)  $m/z$  [M+Na] calcd for  $\text{C}_{27}\text{H}_{27}\text{NO}_4\text{SNa}$  484.1559, found 484.1542.

**Major Diastereomer:**  $^1\text{H}$  NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$  7.65 (d,  $J$  = 8.3 Hz, 2H), 7.45, (d,  $J$  = 8.3 Hz, 1H), 7.30–7.17 (m, 8H), 7.15 (d,  $J$  = 8.2 Hz, 2H), 6.44 (s, 1H), 5.52 (d,  $J$  = 5.3 Hz, 1H), 4.49 (s, 2H), 3.94 (d,  $J$  = 13.7 Hz, 1H), 3.66 (tt,  $J$  = 11.2, 4.0 Hz, 1H), 3.20 (td,  $J$  = 13.4, 2.6 Hz, 1H), 2.57 (dt,  $J$  = 13.2, 1.8 Hz, 1H), 2.32 (s, 3H), 1.97 (d,  $J$  = 12.3 Hz, 1H), 1.78 (ddd,  $J$  = 13.0, 11.7, 5.8 Hz, 1H), 1.45 (qd,  $J$  = 12.8, 4.8 Hz, 1H);  $^{13}\text{C}$  NMR (151 MHz,  $\text{CDCl}_3$ )  $\delta$  155.3, 154.7, 143.3, 138.2, 137.2, 129.5 (2C), 128.5 (2C), 128.1, 128.0, 127.8, 127.1, 126.9, 124.1, 122.9, 120.9, 111.1, 104.8, 71.8, 70.2, 51.7, 41.4, 34.2, 31.3, 21.5.

**Minor Diastereomer:**  $^1\text{H}$  NMR (500 MHz,  $\text{CDCl}_3$ )  $\delta$  7.68 (d,  $J$  = 8.3 Hz, 2H), 7.35, (d,  $J$  = 4.4 Hz, 1H), 7.30–7.17 (m, 5H), 7.07 (t,  $J$  = 7.5 Hz, 1H), 6.99 (t,  $J$  = 7.6, 2H), 6.79 (d,  $J$  = 7.6 Hz, 2H), 6.42 (s, 1H), 5.36 (d,  $J$  = 6.4 Hz, 1H), 4.28 (s, 2H), 3.76–3.73 (m, 2H), 3.66 (tt,  $J$  = 11.2, 4.0 Hz, 1H), 2.70 (d,  $J$  = 14.1 Hz, 1H), 2.32 (s, 3H), 1.97 (d,  $J$  = 12.3 Hz, 1H), 1.83 (d,  $J$  = 13.8 Hz, 1H), 1.72–1.68 (m, 1H);  $^{13}\text{C}$  NMR (151 MHz,  $\text{CDCl}_3$ )  $\delta$  155.3, 154.7, 143.3, 138.2, 137.2, 129.5 (2C), 128.5 (2C), 128.1, 128.0, 127.8, 127.1, 126.9, 123.6, 122.6, 120.7, 110.9, 103.2, 71.8, 70.0, 49.6, 37.6, 31.0, 29.3, 15.3.

#### 4. Conclusions

In conclusion, we have developed a Kumada XC reaction of benzylic sulfonamides with **Grignard reagents including** methylmagnesium iodide **and arylmagnesium iodide**. This reaction utilizes readily available starting materials that are not activated prior to the XC reaction. We have demonstrated that increasing the steric bulk adjacent to the reactive center destabilizes the conformation necessary for  $\beta$ -hydride elimination to occur. A stereospecific ring opening Kumada XC reaction has been established to synthesize highly substituted acyclic fragments. This work provides a basis for the XC reaction of simple benzylic sulfonamides.

**Supplementary Materials:** NMR data are available online at [www.mdpi.com/xxx/s1](http://www.mdpi.com/xxx/s1)

**Author Contributions:** K.A.H., C.A.H., and A.C.M performed the experiments and analyzed the NMR data. K.A.H. wrote the first draft of the paper. E.R.J. conceived, wrote and finalized the paper. All authors have read and agreed to the published version of the manuscript

**Funding:** This work was supported by the National Science Foundation (NSF CHE-1900340).

**Acknowledgments:** We gratefully acknowledge Dr. Felix Grun and the UC Irvine Mass Spectrometry Facility for mass spectrometry data.

**Conflicts of Interest:** The authors declare no conflict of interest.

850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892

**Sample Availability:** Samples of the compounds are not available from the authors.

893

## References

- 1 For reviews on XC reactions see: (a) *Metal-Catalyzed Cross-Coupling Reactions*. 2nd ed. De Meijere, A. Diederich, F., Eds.; Wiley-VCH: Weinheim, Germany 2004. (b) Hartwig, J. F. *Organotransition Metal Chemistry: From Bonding to Catalysis*; University Science Books: Sausalito, CA, 2010. (c) Jana, R.; Pathak, T. P.; Sigman, M. S. Advances in Transition Metal (Pd,Ni,Fe)-Catalyzed Cross-Coupling Reactions Using Alkyl-Organometallics as Reaction Partners. *Chem. Rev.* **2011**, *111*, 1417–1492. (d) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Enantioselective and Enantiospecific Transition-Metal-Catalyzed Cross-Coupling Reactions of Organometallic Reagents to Construct C–C bonds. *Chem. Rev.* **2015**, *115*, 9587–9652. (e) Choi, J.; Fu, G. C. Transition Metal-Catalyzed Alkyl-Alkyl Bond Formation: Another Dimension in Cross-Coupling Chemistry. *Science*, **2017**, *356*, eaaf7230. (f) Campeau, L.-C.; Hazari, N. Cross-Coupling and Related Reactions: Connecting Past Successes to the Development of New Reactions for the Future. *Organometallics*, **2019**, *38*, 3–35.
- 2 For reviews on nickel-catalysis see: (a) *Modern Organonickel Chemistry*; Tamaru, Y., Ed.; Wiley-VCH: Weinheim; 2005. (b) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Recent Advances in Homogeneous Nickel Catalysis. *Nature* **2014**, *509*, 299–309. (c) *Nickel Catalysis in Organic Synthesis: Methods and Reactions*; Ogoshi, S., Ed.; Wiley, 2020. (d) Singer, R. A.; Monfette, S.; Bernhardson, D.; Tcyruhnikov, S.; Hubbell, A. K.; Hansen, E. C. Recent Advances in Nonprecious Metal Catalysis. *Org. Process. Res. Dev.* **2021**, *25*, 1802–1815.
- 3 For selected reviews see (a) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Nickel-Catalyzed Cross-Couplings Involving Carbon–Oxygen Bonds. *Chem. Rev.* **2011**, *111*, 1346–1416. (b) Tollefson, E. J.; Hanna, L. E.; Jarvo, E. R. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic Ethers and Esters. *Acc. Chem. Res.* **2015**, *48*, 2344–2353. (c) Yu, D.-G.; Li, B.-J.; Shi, Z.-J. Exploration of New C–O Electrophiles in Cross-Coupling Reactions. *Acc. Chem. Res.* **2010**, *43*, 1486–1495.
- 4 For recent reviews, see (a) Ouyang, K.; Hao, W.; Zhang, W.-X.; Xi, Z. Transition-Metal-Catalyzed Cleavage of C–N Single Bonds. *Chem. Rev.* **2015**, *115*, 12045–12090. (b) Wang, W.; Su, Y.; Li, L.; Huang, H. Transition-Metal Catalysed C–N Bond Activation. *Chem. Soc. Rev.* **2016**, *45*, 1257–1272. (c) Pound, S. M.; Watson, M. P. Asymmetric Synthesis via Stereospecific C–N and C–O Bond Activation of Alkyl Amine and Alcohol Derivatives. *Chem. Commun.* **2018**, *54*, 12286–12301.
- 5 For reviews on cross-coupling reactions of amides see: (a) Dander, J. E.; Garg, N. K. Breaking Amides using Nickel Catalysis. *ACS Catal.* **2017**, *7*, 1413–1423. (b) Li, G.; Ma, S.; Szostak, M. Amide Bond Activation: The Power of Resonance. *Trends Chem.* **2020**, *2*, 914–928.
- 6 For an example of a stereoablative copper-catalyzed Kumada XC reaction of sulfonimides, see: Li, M.-B.; Tang, X.-L.; Tian, S.-K. Cross-Coupling of Grignard Reagents with Sulfonyl-Activated  $sp^3$  Carbon–Nitrogen Bonds. *Adv. Synth. Catal.* **2011**, *353*, 1980–1984.
- 7 Huang, C.-Y.; Doyle, A. G. The Chemistry of Transition Metals with Three-Membered Ring Heterocycles. *Chem. Rev.* **2014**, *114*, 8153–8198.
- 8 Lin, B. L.; Clough, C. R.; Hillhouse, G. L. Interactions of Aziridines with Nickel Complexes: Oxidative-Addition and Reductive-Elimination Reactions that Break and Make C–N Bonds. *J. Am. Chem. Soc.* **2002**, *124*, 2890–2891.
- 9 (a) Huang, C.-Y.; Doyle, A. G. Nickel-Catalyzed Negishi Alkylation of Styrenyl Aziridines. *J. Am. Chem. Soc.* **2012**, *134*, 9541–9544. (b) Huang, C.-Y.; Doyle, A. G. Electron-Deficient Olefin Ligands Enable Generation of Quaternary Carbons by Ni-Catalyzed Cross Coupling. *J. Am. Chem. Soc.* **2015**, *137*, 5638–5641.
- 10 (a) Nielsen, D. K.; Huang, C.-Y.; Doyle, A. G. Directed Nickel-Catalyzed Negishi Cross Coupling of Alkyl Aziridines. *J. Am. Chem. Soc.* **2013**, *135*, 13605–13609. (b) Jensen, K. L.; Standley, E. A.; Jamison, T. F. Highly Regioselective Nickel-Catalyzed Cross-Coupling of *N*-Tosylaziridines and Alkylzinc Reagents. *J. Am. Chem. Soc.* **2014**, *136*, 11145–11152.
- 11 For XC of aryl trimethylammonium salts, see (a) Wenkert, E.; Han, A.-L.; Jenny, C.-J. Nickel-Induced Conversion of Carbon–Nitrogen into Carbon–Carbon Bonds. One-Step Transformations of Aryl, Quaternary Ammonium Salts into Alkylarenes and Biaryls. *J. Chem. Soc., Chem. Commun.* **1988**, 975–976. (b) Blakey, S. B.; MacMillan, D. W. C. The First Suzuki Cross-Couplings of Aryltrimethylammonium Salts. *J. Am. Chem. Soc.* **2003**, *125*, 6046–6047.
- 12 (a) Maity, P.; Shacklady-McAtee, D. M.; Yap, G. P. A.; Sirianni, E. R.; Watson, M. P. Nickel-Catalyzed Cross-Couplings of Benzylic Ammonium Salts and Boronic Acids: Stereospecific Formation of Diarylethanes via C–N Bond Activation. *J. Am. Chem. Soc.* **2013**, *135*, 280–285. (b) Shacklady-McAtee, D. M.; Roberts, K. M.; Basch, C. H.; Song, Y.-G.; Watson, M. P. A General, Simple Catalyst for Enantiospecific Cross Couplings of Benzylic Ammonium Triflates and Boronic Acids: No Phosphine Ligand Required. *Tetrahedron* **2014**, *70*, 4257–4263.
- 13 He, F.; Wang, Z.-X. Nickel-Catalyzed Cross-Coupling of Aryl or -2-Menaphthyl Quaternary Ammonium Triflates with Organogaluminum Reagents. *Tetrahedron* **2017**, *73*, 4450–4457.
- 14 (a) Bapat, J. B.; Blade, R. J.; Boulton, A. J.; Epszajn, J.; Katritzky, A. R.; Lewis, J.; Molina-Buendia, P.; Nie, P.-L.; Ramsden, C. A. Pyridines as Leaving Groups in Synthetic Transformations: Nucleophilic Displacements of Amino Groups, and Novel Preparations of Nitriles and Isocyanate. *Tetrahedron Lett.* **1976**, *17*, 2691–2694. (b) Katritzky, A. R.; De Ville, G.; Patel, R. C. Carbon-Alkylation of Simple Nitronate Anions by *N*-Substituted Pyridiniums. *Tetrahedron* **1981**, *37*, 25–30. (c) Katritzky, A. R.; Marson, C. M. *Angew. Chem. Int. Ed.* **1984**, *23*, 420–429. (d) Said, S. A.; Fiksdahl, A. Stereoselective Transformation of Amines via Chiral 2,4,6-Triphenylpyridinium Intermediates. *Tetrahedron: Asymmetry* **2001**, *12*, 1947–1951. (e) Klauck, F. J.; James, M. J.; Glorius, F. Deaminative Strategy for the Visible-Light-Mediated Generation of Alkyl Radicals. *Angew. Chem. Int. Ed.* **2017**, *56*, 12336–12339.

15 For reviews on transition-metal-catalyzed reactions with Katritzky salts see (a) He, F.-S.; Ye, S.; Wu, J. Recent Advances in Pyridinium Salts as Radical Reservoirs in Organic Synthesis *ACS Catal.* **2019**, *9*, 8943–8960. (b) Pang, Y.; Moser, D.; Cornell, J. Pyrylium Salts: Selective Reagents for the Activation of Primary Amino Groups in Organic Synthesis. *Synthesis* **2020**, *52*, 489–503. (c) Rössler, S. L.; Jelier, B. J.; Magnier, E.; Dagousset, G.; Carreira, E. M.; Togni, A. Pyridinium Salts as Redox-Active Functional Group Transfer Reagents. *Angew. Chem. Int. Ed.* **2020**, *59*, 9264–9280. (d) Li, Y.-N.; Xiao, F.; Guo, Y.; Zeng, Y.-F. Recent Developments in Deaminative Functionalization of Alkyl Amines. *Eur. J. Org. Chem.* **2021**, *2021*, 1215–1228. (e) Kong, D.; Moon, P. J.; Lundgren, R. J. Radical Coupling from Alkyl Amines. *Nat. Catal.* **2019**, *2*, 473–476.

16 Basch, C. H.; Liao, J.; Xu, J.; Piane, J. J.; Watson, M. P. Harnessing Alkyl Amines as Electrophiles for Nickel-Catalyzed Cross-Couplings via C–N Bond Activation. *J. Am. Chem. Soc.* **2017**, *139*, 5313–5316.

17 See reference 16. (b) Hoerner, M. E.; Baker, K. M.; Basch, C. H.; Bampo, E. M.; Watson, M. P. Deaminative Arylation of Amino Acid-Derived Pyridinium Salts. *Org. Lett.* **2019**, *21*, 7356–7360.

18 Liao, J.; Guan, W.; Boscoe, B. P.; Tucker, J. W.; Tomlin, J. W.; Garnsey, M. R.; Watson, M. P. Transforming Benzylic Amines into Diarylmethanes: Cross-Couplings of Benzylic Pyridinium Salts via C–N Bond Activation. *Org. Lett.* **2018**, *20*, 3030–3033.

19 (a) Baker, K. M.; Baca, D. L.; Plunkett, S.; Daneker, M. E.; Watson, M. P. Engaging Alkenes and Alkynes in Deaminative Alkyl-Alkyl and Alkyl–Vinyl Cross-Couplings of Alkylpyridinium Salts. *Org. Lett.* **2019**, *21*, 9738–9741. (b) Guan, W.; Liao, J.; Watson, M. P. Vinylation of Benzylic Amines via C–N Bond Functionalization of Benzylic Pyridinium Salts. *Synthesis* **2018**, *50*, 3231–3237.

20 Plunkett, S.; Basch, C. H.; Santana, S. O.; Watson, M. P. Harnessing Alkylpyridinium Salts as Electrophiles in Deaminative Alkyl-Alkyl Cross-Couplings. *J. Am. Chem. Soc.* **2019**, *141*, 2257–2262.

21 (a) Taylor, B. L. H.; Swift, E. C.; Waetzig, J. D.; Jarvo, E. R. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Alkyl Ethers: Enantioselective Synthesis of Diarylethanes. *J. Am. Chem. Soc.* **2011**, *133*, 389–391. (b) Tollefson, E. J.; Dawson, D. D.; Osborne, C. A.; Jarvo, E. R. Stereospecific Cross-Coupling Reactions of Aryl-Substituted Tetrahydrofurans, Tetrahydropyrans, and Lactones. *J. Am. Chem. Soc.* **2014**, *136*, 14951–14958. (c) See reference 3b.

22 Marshall, D. R.; Thomas, P. J.; Stirling, C. J. M. Leaving Group Ability in Base-Promoted Alkene-Forming 1,2-Eliminations. *J. Chem. Soc., Chem. Commun.* **1975**, 940–941.

23 We have demonstrated that sulfonamides and ethers behave similarly in XEC reactions: Lucas, E. L.; Hewitt, K. A.; Chen, P.-P.; Castro, A. J.; Hong, X.; Jarvo, E. R. Engaging Sulfonamides: Intramolecular Cross-Electrophile Coupling Reaction of Sulfonamides with Alkyl Chlorides. *J. Org. Chem.* **2020**, *85*, 1775–1793.

24 Stereochemical outcome with styrenyl aziridines (a) see ref 9a. (b) For representative mechanistic experiments for XEC reactions of styrenyl aziridines which are proposed to proceed through alkyl iodides see Steinman, T. J.; Liu, J.; Mengiste, A.; Doyle, A. G. Synthesis of  $\beta$ -Phenethylmines via Ni/Photoredox Cross-Electrophile Coupling of Aliphatic Aziridines and Aryl Iodides. *J. Am. Chem. Soc.* **2020**, *142*, 7598–7605.

25 Stereochemical outcome with Katritzky ammonium salts: (a) Tcyrulnikov, S.; Cai, Q.; Twitty, J. C.; Xu, J.; Atifi, A.; Bercher, O. P.; Yap, G. P. A.; Rosenthal, J.; Watson, M. P.; Kozlowski, M. C. Dissection of Alkylpyridinium Structures to Understand Deamination Reactions. *ACS Catal.* **2021**, *11*, 8456–8466. (b) see reference 15

26 Reactions of ammonium salts can be stereospecific or stereoablative: (a) Xu, J.; Bercher, O. P.; Talley, M. R.; Watson, M. P. Nickel-Catalyzed, Stereospecific C–C and C–B Cross-Couplings via C–N and C–O Bond Activation. *ACS Catal.* **2021**, *11*, 1604–1612. (b) Moragas, T.; Gaydou, M.; Martin, R. Nickel-Catalyzed Carboxylation of Benzylic C–N Bonds with CO<sub>2</sub>. *Angew. Chem. Int. Ed.* **2016**, *55*, 5053–5057

27 (a) Hanessian, S.; Giroux, S.; Mascitti, V. The Iterative Synthesis of Acyclic Deoxypionate Units and Their Implication in Polyketide-Derived Natural Products. *Synthesis* **2006**, *7*, 1057–1076. (b) Chen, R.; Shen, Y.; Yang, S.; Zhang, Y. Conformational Design Principles in Total Synthesis. *Angew. Chem. Int. Ed.* **2020**, *59*, 14198–14210.

28 See Experimental Section for substrate synthesis.

29 For the original synthesis and characterization of (R-BINAP)NiCl<sub>2</sub> see: (a) Standley, E. A.; Smith, S. J.; Müller, P.; Jamison, T. F. A Broadly Applicable Strategy for Entry into Homogenous Nickel(0) Catalysts from Air-Stable Nickel(II) Complexes. *Organometallics* **2014**, *33*, 2012–2018. (b) Dawson, D. D.; Oswald, V. F.; Borovik, A. S.; Jarvo, E. R. Identification of the Active Catalyst for Nickel-Catalyzed Stereospecific Kumada Coupling Reactions of Ethers. *Chem. Eur. J.* **2020**, *26*, 3044–3048.

30 Tomifugi, R.; Maeda, K.; Takahashi, T.; Kurahashi, T.; Mastubara, S. FeCl<sub>3</sub> as an Ion-Pairing Lewis Acid Catalyst. Formation of Highly Lewis Acidic FeCl<sub>2</sub><sup>+</sup> and Thermodynamically Stable FeCl<sub>4</sub><sup>-</sup> To Catalyze the Aza-Diels–Alder Reaction with High Turnover Frequency. *Org. Lett.* **2018**, *20*, 7474–7477.

31 (a) Sabitha, G.; Reddy, N. M.; Prasad, M. N.; Yadav, J. S. Stereoselective Routes for the Total Synthesis of (+)-Crytocarya Diacetate. *Helv. Chim. Acta* **2009**, *92*, 967–976. (b) Tollefson, E. J.; Erickson, L. W.; Jarvo, E. R. Stereospecific Intramolecular Reductive Cross-Electrophile Coupling Reactions for Cyclopropane Synthesis. *J. Am. Chem. Soc.* **2015**, *137*, 9760–9763.

32 Deprotection of benzyl group of substrate **9** was accomplished under the standard reaction conditions. For a previous report of benzyl deprotection with a Grignard reagent see: Kawana, M. The Reaction of Benzylated Pyrrole and Adenine Ribonucleosides with Grignard Reagents. *Chem. Lett.* **1981**, 1541–1542.

33 See Materials and Methods Section.

34 Pöhler, R.; Krahn, J. H.; van den Boom, J.; Dobrynin, G.; Kaschani, F.; Eggenweiler, H.-M.; Zenke, F. T.; Kaiser, M.; Meyer, H. A. Non-Competitive Inhibitor of VCP/p97 and VPS4 Reveals Conserved Allosteric Circuits in Type I and II AAA ATPases. *Angew. Chem. Int. Ed.* **2018**, *57*, 1576–1580.

35 Diarylalkanes are known to exhibit potent biological activity. For selected references see: (a) Wetterau, J. R.; Gregg, R. E.; Harrity, T. W.; Arbeeny, C.; Cap, M.; Connolly, F.; Chu, C.-H.; George, R. J.; Gordon, D. A.; Jamil, H.; Jolibois, K. G.; Kunselman, L. K.; Lan, S.-J.; Maccagnan, T. J.; Ricci, B.; Yan, M.; Young, D.; Chen, Y.; Fryszman, O. M.; Logan, J. V. H.; Musial, C. L.; Poss, M. A.; Robl, J. A.; Simpkins, L. M.; Slusarchyk, W. A.; Sulsky, R.; Taunk, P.; Magnin, D. R.; Tino, J. A.; Lawrence, R. M.; Dickson, J. K.; Biller, S. A. An MTP Inhibitor That Normalizes Atherogenic Lipoprotein Levels in WHHL Rabbits. *Science* **1998**, *282*, 751. (b) Kimura, M.; Masuda, T.; Yamada, K.; Mitani, M.; Kubota, N.; Kawakatsu, N.; Kishii, K.; Inazu, M.; Kiuchi, Y.; Oguchi, K.; Namiki, T. Syntheses of Novel Diphenyl Piperazine Derivatives and Their Activities as Inhibitors of Dopamine Uptake in the Central Nervous System. *Bioorg. Med. Chem.* **2003**, *11*, 1621–1630. (c) Dei, S.; Coronello, M.; Bartolucci, G.; Manetti, D.; Romanelli, M. N.; Udomtanakunchai, C.; Salerno, M.; Teodori, E. "Design and synthesis of new potent *N,N*-is(arylalkyl)piperazine Derivatives as Multidrug Resistance (MDR) Reversing agents." *Eur. J. Med. Chem.* **2018**, *147*, 7–20. (d) Ameen, D.; Snape, T. J. Chiral 1,1-Diaryl Compounds as Important Pharmacophores. *MedChemComm* **2013**, *4*, 893–907.

36 Yonova, I. M.; Johnson, A. G.; Osborne, C. A.; Moore, C. E.; Morrissette, N. S.; Jarvo, E. R. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Alkyl Grignard Reagents and Identification of Selective Anti-Breast-Cancer Agents. *Angew. Chem. Int. Ed.* **2014**, *53*, 2422–2427.

37 When (*R*-BINAP)NiCl<sub>2</sub> was employed as the precatalyst, the desired product was not observed and 44% of starting material was recovered.

38 Chen, P.-P.; Lucas, E. L.; Greene, M. A.; Zhang, S.; Tollefson, E. J.; Erickson, L. W.; Taylor, B. L.; Jarvo, E. R.; Hong, X. A Unified Explanation for Chemoselectivity and Stereospecificity of Ni-Catalyzed Kumada and Cross-Electrophile Coupling Reactions of Benzylic Ethers: A Combined Computational and Experimental Study. *J. Am. Chem. Soc.* **2019**, *141*, 5835–5855. (b) see reference 23.

39 Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Safe and Convenient Procedure for Solvent Purification. *Organometallics* **1996**, *15*, 1518–1520.

40 Krasoviskiy, A.; Knochel, P. Convenient Titration Method for Organometallic Zinc, Magnesium, and Lanthanide Reagents. *Synthesis* **2006**, *5*, 890.

41 García Ruano, J. L.; Alemán, J.; Belén Cid, M.; Parra, A. A General Method for the Preparation of *N*-Sulfonyl Aldimines and Ketimines. *Org. Lett.* **2005**, *7*, 179–182.

42 Fu, M.; Chen, L.; Jiang, Y.; Jiang, Z.-X.; Yang, Z. Copper-Catalyzed Intermolecular Chloro- and Bromotrifluoromethylation of Alkenes. *Org. Lett.* **2016**, *18*, 348–351.

43 Syu, S.; Lee, Y.-T.; Jang, Y.-J.; Lin, W. Organocatalytic Tandem Three-Component Reaction of Imine, Alkyl Vinyl Ketone, and Imide via aza-Baylis–Hillman Reaction. *J. Org. Chem.* **2011**, *76*, 2888–2891.

44 Buta-1,3-dien-2-ylbenzene was prepared according to the following method: Fiorito, D.; Folliet, S.; Liu, Y.; Mazet, C. A General Nickel-Catalyzed Kumada Vinylation for the Preparation of 2-Substituted 1,3-Dienes. *ACS Catal.* **2018**, *8*, 1392–1398.

45 Huang, J.; Zheng, J.; Wu, W.; Li, J.; Ma, J.; Ren, Y.; Jiang, H. Palladium-Catalyzed Intermolecular Oxidative Cyclization of Allylto-sylamides with AcOH: Assembly of 3-Pyrrolin-2-ones. *J. Org. Chem.* **2017**, *82*, 8191–8198.