
Model-CheckingSupport for File SystemDevelopment

Wei Su, Yifei Liu, Gomathi Ganesan
Stony Brook University

Gerard Holzmann
Nimble Research

Scott Smolka, Erez Zadok
Stony Brook University

Geoff Kuenning
Harvey Mudd College

ABSTRACT
Developing and maintaining a file system is time-consuming,

typically requiring years of effort. Developers often test com-

pliance with APIs such as POSIX with hand-written regres-

sion suites that, alas, examine only a fraction of a file system’s

state space. Conversely, formal model checking can explore

vast state spaces efficiently, increasing confidence in the file

system’s implementation. Yet model checking is not cur-

rently part of file system development. Our position is that file

systems should be designed a priori to facilitate model checking.

To this end, we introduce MCFS, an architecture for efficient

and comprehensive file-system model checking. MCFS relies

on two new APIs that save and restore a file system’s in-

memory and on-disk state. We describe our earlier attempts

at model-checking file systems, including unsuccessful or

inefficient ones. Those attempts led us to develop VeriFS,

which implements the newAPIs.We illustrateMCFS’s model-

checking principles with VeriFS, a FUSE-based file system

we were able to quickly develop with MCFS’s help.

CCS CONCEPTS
• Software and its engineering→ Software verification

and validation; • Information systems→ Information

storage systems.
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1 INTRODUCTION
File system development is time-consuming, complex, and

error-prone, requiring precise logic, standards compliance

(e.g., POSIX), and careful implementation of data structures

and concurrency [14, 24, 49]. Yet even mature file systems

suffer repeated bugs. For example, Btrfs [36] was designed 14

years ago yet reported 110 bugs in 2020 [21]. Such bugs can

cause data corruption or loss and system crashes [22, 24, 37].

To help address this state of affairs, we present MCFS, a

model-checking framework for file systems that: (1) checks

every corner case in a bounded state space; (2) does not

require an abstract file system model; (3) retains the original

file system behavior; (4) applies to most file systems, whether

in-kernel or user-space; and (5) has high performance.

MCFS compares file systems to each other with concurrent

processes that non-deterministically issue file-system calls; it

compares their outcomes (e.g., file content and return values)

to find discrepancies. MCFS can exhaustively execute system-

call permutations and thus uncover abnormal behavior.

We implemented MCFS using the Spin model checker [41]

and applied it to a number of file systems. Our position is

that thanks to its exhaustive state-space analysis capabilities,

model checking should be an integral part of the file-system

development process (alongside traditional hand-written

regression suites [27, 39]). However, file systems need to facil-

itate model checking. We make the following contributions:

(1) We created MCFS to support file system checking that

can exhaustively search bounded state spaces.

(2) We uncovered two inherent challenges to model-

checking: cache incoherency and I/O inefficiencies.

Ultimately we designed state checkpoint/restore APIs

to ease integrating file systems with model checkers.

(3) We developed (two versions of) a FUSE file system,

VeriFS, that efficiently checkpoints and restores

file-system states using our proposed APIs.

(4) We empirically evaluated MCFS’s performance. Our

results suggest that MCFS is a viable approach: one

can use it to find behavioral deviations and bugs while

developing or maintaining a file system.
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Related work. Bug-detection techniques for file systems

can be grouped into regression testing, verification, model

checking, and fuzzing. Regression suites (e.g., xfstests [39]

and ltp [27]) are useful in development and maintenance, but

test only known defects and are unlikely to cover all corner

cases. Prior work has demonstrated the benefits of building

a machine-verifiable file system from scratch [2, 6ś9, 20, 40,

50], but this approach does not apply to existing file sys-

tems. File-system model checkers have verified test cases [3,

28, 47, 48] and located corner-case bugs, but are strictly fo-

cused on crash consistency. Another approach is to build

an abstract model and check whether a file system adheres

to it [13, 23, 26, 34, 35]. Constructing a formally verifiable

model, however, requires considerable domain knowledge

and human effort. It is also impractical to build formal models

for large and intricate file systems. Worse, the formal model

requires updating when the file system’s code changes.

CMC [29ś31] inserts file system code directly into the

model checker, for substantial speed advantages, but requires

extensive changes to the very code being verified, making the

results less trustworthy [47]. Fuzzing can find real-world

bugs [12, 22, 38, 45, 46], but either is limited to specific types

of bugs (e.g., memory safety for Janus [46]), or needs human

effort to create checkers [22]. Likewise, symbolic-execution

tools [4, 5] cannot guarantee thorough coverage because

they focus on particular issues (e.g., corrupt input [5]); they

also require a behavioral model of each file system call [4].

2 MCFS DESIGN
Model checking is an automatic method for verifying

finite-state concurrent systems. It performs an exhaustive

search of the state space to verify whether a system’s model

conforms to its specification. We exploit this efficient search

technology to explore file system states exhaustively. The

MCFS model-checking framework is designed to detect

discrepant behaviors in file systems; i.e., situations where

two file systems behave differently given the same inputs.

MCFS has five key design goals: (1) Thorough coverage:

It should thoroughly explore the state spaces of the file

systems we check, so that it can uncover as many corner

cases as possible. This requires MCFS to check as many

permutations of file system operations as possible, exploring

all possible changes that the given set of operations

can make. (2) Eliminate need for an abstract model:

Traditional model checking requires one to define a model

for the system under investigation. MCFS can verify file

systems without a model because it directly executes system

code to perform state-space exploration.

(3) Absence of observer effects: To ensure accuracy,

MCFS should avoid changing the behavior of the investi-

gated file system, ideally treating it as a black box. If we

have to modify it, we must be careful to minimize MCFS’s

footprint. (4) Universality: The model-checking framework

should support a wide range of file systems (e.g., in-kernel,

user-level, networked, distributed). (5) High performance:

Since a file system’s state space is the product of many sys-

tem calls and their parameters, the number of states can be

exponential. The model checker must be able to enumerate

new states as fast as possible, exploring large fractions of

the state space within a reasonable amount of time.

MCFS’s architecture has four main components: random-

ized test engines, optimized state-space exploration, integrity

checks, and abstraction functions. Driven by the Spin model

checker [15], randomized test engines nondeterministically

issue operation sequences to each file system under consider-

ation. Spin’s efficient partial-order reduction algorithm [19]

allows MCFS to execute all permutations of the given set of

calls and their parameters without duplication. Its random-

ized driver processes generate both valid and invalid call

sequences. Valid sequences should succeed on all file systems,

while invalid ones (e.g., write() before open()) should pro-

duce consistent error behavior. Invalid sequences are critical

because they exercise error paths, where bugs often lurk.

We chose Spin to perform optimized state-space exploration

because: (i) it is open-source and actively maintained; (ii) C

code can be embedded in Spin’s model-description language

(Promela) to issue system calls, and c_track statements

let Spin record C buffers as states [16]; and (iii) Spin can

perform parallel model checking using Swarm verification

techniques [17], substantially speeding up exploration of

large state spaces.

After each system call, integrity checks verify that all

tested file systems have identical states by asserting equality

of return values, error codes, file data, and metadata. If

a discrepancy is detected, the integrity checker reports a

potential bug and halts. Spin logs the precise sequence of

operations, parameters, and starting and ending states that

led to a problem, simplifying reproducibility. Because file

systems have implementation-specific features [35], not

all discrepancies are bugs. We believe though that many

of these non-bug behavior differences are also interesting,

since they still affect application behavior [33].

Finally, abstraction functions convert concrete states

into abstract ones. In MCFS, each concrete state contains

all the information needed to describe the file systems,

including file data and metadata. MCFS uses the abstract

state to determine whether a state was previously visited.

If MCFS reaches a state that is logically equivalent to a

previous one, it will backtrack corresponding concrete

states to restore the file systems to their earlier versions.

The abstraction functions hash the important data in the

concrete states (including file paths, data, and relevant

metadata) to distinguish logically unique states but omit

noisy attributes such as atime timestamps and the physical
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locations of data blocks. Hashing the entire on-disk state

would fail because of those less interesting attributes.

Designing abstraction functions requires domain knowl-

edge. We wrote the functions to conform to the POSIX

specification, so they are generic and applicable to most

POSIX-compliant file systems.

3 CHALLENGES
We now describe challenges we encountered while

developing MCFS, and our attempts to work around them.

3.1 Access to In-Memory States
MCFS must save and restore all information related to the

tested file systems, including their persistent (on-disk) and

dynamic (in-memory) states. Spin could use the underlying

block device to track persistent states, but there is no

simple way to access in-memory statesÐin kernel or user

spaceÐbecause they are not part of Spin itself.

In-kernel file systems. Many file systems (e.g., Ext4 [11],

XFS [39]) run in the Linux kernel, with states in the kernel

address space. In theory, one could use /dev/kmem to save and

restore those states, but in reality they are so intertwined

with other kernel data structures that doing so is impractical.

User-space file systems. Tracking kernel file systems is

hard, so we turned to file systems built on libFUSE [42] (e.g.,

fuse-ext2 [1]). Such file systems, however, are separate pro-

cesses, so Spin cannot directly track their internal state. We

tried several alternatives. First, we modified malloc to allo-

cate memory from a shared-memory pool accessible to Spin,

so that it could be saved and restored. This failed because

important state was stored in static (non-heap) variables

outside the shared-memory segment, leading to incorrect

pointers and crashes. We concluded that it was impractical

to modify file-system code to avoid these static variables.

3.2 Cache Incoherency
We next explored a compromise in which Spin tracked only

the persistent (on-disk) state. Doing so allowed MCFS to

run without crashing, but our experiments encountered cor-

rupted file systems. A typical symptom was directory entries

with corrupted or zeroed inodes, caused by Spin backtracking

and restoring a persistent state. Since we were not restoring

in-memory state to match, cached information in the kernel

was no longer consistent with the disk content. For example,

the dcache might contain a recently created directory, but

the restored state might reflect a time before its creation.

We tried to resolve the inconsistency by calling fsync

after each operation, and by mounting the file system with

the sync option. Neither approach was effective: although

they guaranteed that the caches were flushed to persistent

storage, they did not implement the opposite operationÐ

loading any Spin-initiated change in the persistent storage

back into the in-memory caches.

Finally, we compromised again: we unmounted and

remounted the file system between each pair of operations.

An unmount is the only way to fully guarantee that no

state remains in kernel memory. [Re]mounting always

loads the latest state from disk, ensuring that the caches

are coherent between each Spin state exploration. This

compromise caused two problems: (1) it considerably slowed

state exploration (see Section 6) and (2) it prevented us from

identifying file-system bugs caused by incorrect in-memory

states. These problems led us to consider adding support for

file system state checkpointing and restoring (see Section 5).

3.3 State Explosion

Algorithm 1: Abstraction Functions

Input :Path to the file system mount point path

Output :128-bit MD5 Hash

1 files← list ([])

2 md5ctx ← md5_init ()

// Recursively walk the mount-point directory

3 foreach file in recursively_traverse_dir (path) do

4 files.append (file)

5 sort (files) // Sort files by pathnames

6 foreach file in files do

7 fd ← open (file.path)

8 content← read (fd) // Read all file content

9 md5_update (md5ctx, content)

10 close (fd)

11 attrs← stat (file)

// Get important metadata

12 attrs’← important_attributes (attrs)

13 md5_update (attrs’)

14 md5_update (file.path)

15 return get_md5_hash (md5ctx)

We use Spin’s c_track statement to declare memory

buffers used by the C code. During state exploration, Spin

detects an already-visited state by comparing these buffers

against all previously visited states. This causes state explo-

sion because any change in a buffer is considered a new state,

yet some changes, such as access-time updates, are rarely rel-

evant to bugs. Consequently, Spin could not fully explore file

systems with even moderate parameter spaces. Fortunately,

Spin’s c_track allows one to define abstract states used for

matching, and concrete states used only in state restoration.

We thus introduced an abstract state that contained an MD5

hash of file paths, data, and important metadata (e.g., mode,

size, nlink, UID, and GID) for all files and directories.

Algorithm 1 shows the procedure to obtain an abstract

state of a file system. We first identify all files and directories

in the file system by traversing from the mount point. We
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then sort them by their pathnames so that they appear in

a consistent order. We then read each file’s contents and

call stat to obtain its metadata. The important_attributes

function extracts only the important metadata mentioned

above. Finally, we calculate the MD5 hash for the files’

content, important metadata, and pathnames.

We then marked persistent states as concrete, and in-

structed Spin to track only the hashes that distinguish differ-

ent abstract states. Doing so not only prevented visiting du-

plicate states, it also greatly reduced the amount of memory

needed to track states, increasing Spin’s exploration capacity.

3.4 False Positives
MCFS performs integrity checks that assert state equality

of the file systems under investigation. In case of any

discrepancy, MCFS terminates and reports a bug, logging

the operations it executed and their parameters. We found,

however, that MCFS sometimes terminated on discrepancies

that were not bugs. We took measures to prevent these false

positives and describe several such cases below.

Directory-size reporting and ordering. In Ext4, directory

sizes are a multiple of the block size; other file systems report

sizes based on the number of active entries. Thus, directories

on two different file systems might have the same contents

but different sizes; we thus ignore directory sizes. Similarly,

file systems return directory entries in different orders, so

we sort the output of getdents before comparing them.

Special folders. Some file systems create special folders:

For example, Ext4 has a lost+found folder to save lost and

damaged files, while XFS does not. This caused namespace

discrepancies between file systems. We added an exception

list of special files and directories; MCFS ignores anything

on this list when comparing abstract states.

Differing data capacity. Although we tested all file

systems on block devices of the same size, they exposed

different usable data capacities. This is a problem when the

file systems are nearly full: calling write can succeed on one

file system and fail on another, reporting a false bug. We thus

equalize free space among file systems being checked: when

MCFS starts, it queries all file systems and records the small-

est free space as SL ; then on each file system with free space

Sn , it creates a dummy file and writes Sn−SL bytes of zeros.

None of these workarounds introduce false negatives,

because they are all dealing with unstandardized behavior.

For example, an application should not expect sorted output

from getdents, so if a given file system suddenly stops

sorting, that is not a bug. (However, if the change introduces

other misbehavior, we will detect the consequences.)

4 MCFS PROTOTYPE IMPLEMENTATION
Figure 1 shows how MCFS’s prototype handles different

types of file systems. The file system syscall engine, written

in Promela with embedded C code, consists of a multi-entry

do ... od nondeterministic loop; each entry contains code to

issue file-system operations, perform integrity checks, and

record logs. Using Spin, MCFS nondeterministically selects

an operation and its parameters, then executes it on all tested

file systems. MCFS mmaps the file systems’ backend storage

devices into Spin’s address space so it can track their states.

To prevent cache-coherency problems, MCFS unmounts

and remounts kernel file systems (e.g., Ext4 and JFFS2) before

and after each operation (see Section 3.2). However, syscalls

such as write that depend on kernel state (e.g., open file

descriptors) cannot be used in isolation. We thus developed

meta-operations comprising small sequences of syscalls

that avoid tracking kernel state: create_file creates and

then closes a file; write_file opens, writes some data to, and

closes a file. Other operations that can execute alone are run

directly by MCFS, e.g., truncate and mkdir. Each operation’s

parameters are selected nondeterministically from a pre-

defined (bounded) parameter pool. Because we limited our

exploration space to fixed syscalls and parameters, the entire

explorationÐwhile largeÐis guaranteed to be bounded.

For FUSE-based file systems (e.g., fuse-ext2), the syscall

is issued to the OS. FUSE’s normal behavior results in

several user/kernel messages being passed, coordinated via

/dev/fuse (see fuse-ext2 in Figure 1).

To avoid being slowed by I/Os, we used RAM block

devices as backend storage for block-based file systems

(e.g., Ext4 and XFS). Linux’s RAM block device driver (brd)

requires all RAM disks to be the same size; we slightly mod-

ified it (renamed brd2), to allow different-sized RAM disks

for file systems with different minimum-size requirements.

Some file systems must be mounted using special

devices. For example, JFFS2 [44] requires an MTD character

device [43] instead of a regular block device. MCFS sets

up JFFS2 differently: it (1) loads the mtdram kernel module,

which creates a virtual MTD device in RAM, and then

(2) loads the mtdblock module to provide a block interface

for the virtual MTD device. This approach allows Spin to

mmap the MTD storage via the block device.

5 TRACKING FILE-SYSTEM STATES
Unmounting and remounting a file system after each op-

eration solved cache-incoherency problems but slowed the

model checking and deviated from a normal use case. Due

to its backtracking search process, Spin saves and restores

all information related to the tested file systems. Therefore,

we must track all file-system states, including persistent

and in-memory ones. We investigated three approaches:

(1) process snapshotting and (2) VM snapshotting, which

culminated in our (3) MCFS-enabled VeriFS.

Process snapshotting. User-space file systems run as

independent processes. To keep their in-memory states
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vs. JFFS2, and VeriFS1 vs. VeriFS2. We used 256KB RAM

block devices for both Ext2 and Ext4, and 16MB for XFS,

which allows a larger minimum file-system size. VeriFS is

an in-memory file system and does not need a block device.

Figure 2 shows model-checking speeds observed in our

experiments. Checking Ext4 vs. XFS on RAM disks was over

11× slower than Ext2 vs. Ext4 because MCFS consumed

105GB of swap space for the former, so swap time dominated.

Checking Ext2 vs. Ext4 onHDDwas 20× slower than on RAM

disks; using SSD was still 18× slower. This illustrates the ad-

vantage of using RAM as backend storage. Checking VeriFS1

vs. VeriFS2 was 5.8× faster than Ext2 vs. Ext4 for two reasons:

(i) MCFS used the checkpoint/restore APIs (see Section 5) and

thus did not have to unmount and remount the VeriFS file sys-

tems; (ii) VeriFS runs entirely in-memory, soMCFS did not ac-

cess block devices to checkpoint and restore persistent states.

Figure 3 shows MCFS’s speed when checking VeriFS1 over

two weeks. MCFS maintained a rate of around 1,500 ops/s

in the first 3 days; this rate then dropped drastically and

swap usage spiked because Spin was resizing its hash table

of visited states. After rebounding, MCFS’s speed gradually

decreased over time because the checkpointed states could

not fit in memory and it began to consume swap space. Its

speed increased again between days 13 and 14 because the

RAM hit rate was high (states needed by MCFS happened to

be in memory and did not need to be swapped in and out).

Note that by default MCFS remounts and unmounts the

file systems before and after each operation. To evaluate

the impact of that approach, we also measured MCFS’s

performance without the inter-operation remounts. The

average speed for Ext2 vs. Ext4 (in RAM disks) was 316 ops/s,

38% faster than that when remounts and unmounts were

used; and for Ext4 vs. XFS it was 34 ops/s, which is 70% faster.

Assisting file system development. While developing

VeriFS1, we model-checked it vs. Ext4. MCFS found two bugs

that we easily fixed, thanks to precise reports of operations

and arguments. The first occurred after over 9K operations

when test files on VeriFS and Ext4 had different content.

The bug arose when truncate failed to clear newly allocated

space when expanding a file. The second bug was detected

after about 12K operations; MCFS created a test directory in

Ext4 but VeriFS failed, claiming that the directory existedÐ

but in fact it did not. This was due to cache incoherency be-

tween the kernel and VeriFS’s in-memory state. When VeriFS

rolled back to an earlier state, the kernel’s inode and dentry

caches did not keep up. The fix was to call FUSE’s cache-

invalidation APIs (fuse_lowlevel_notify_inval_entry and

fuse_lowlevel_notify_inval_inode).

We then developed VeriFS2 (see Section 5) and used MCFS

to assist development by model-checking it vs. VeriFS1.

MCFS found two more bugs during this phase. The first

occurred after over 900K operations, when the test files in

VeriFS1 and VeriFS2 had different data. VeriFS2 had failed

to zero the file buffer if write created a hole in the file. The

second bug was detected after over 1.2M operations: the test

file in VeriFS2 was shorter than that in VeriFS1. The reason

was that the write method in VeriFS2 updated the file size

only when the file was expanded beyond its buffer capacity,

rather than whenever the file was appended to.

7 CONCLUSIONS
We have proposed MCFS, a new model-checking framework

for file system development that exhaustively explores a file

system’s (bounded) state space, without requiring manual

modeling or significant changes to the kernel or the file

system itself. We developed VeriFS (v1 and v2), prototypes

that demonstrate state checkpointing and restoration

functionality via ioctls. These functions let MCFS track

VeriFS’s full state while avoiding cache incoherency. MCFS

found real bugs while we were developing VeriFS. Because

both versions of VeriFS are simple and fast to model-check,

they serve as a useful baseline against which we can

compare other file systems.

We discussed the challenges we encountered when

implementing MCFS, convincing ourselves of the need for

file-system-level support to allow MCFS to work correctly

and efficiently. Finally, while MCFS is designed to check

file systems, its underlying approach is applicable to other

system software.

Future work. We plan to add checkpoint/restore API

support to Linux kernel file systems (e.g., Ext4) to eliminate

the need for the current mount/remount workaround.

We are implementing the checkpoint/restore API at the

Linux VFS level, which we hope will apply to many Linux

kernel file systems. We are also working on APIs that

will checkpoint file system states to help us resume the

model-checking process if an interruption occurs (e.g., due

to a kernel crash). We also plan to run more than two file

systems concurrently with MCFS and use a majority-voting

approach to recognize incorrect file-system behavior.

We are exploring methods to track code coverage

while model-checking. We will also use Spin’s swarm

verification [17, 18] to explore larger state spaces in parallel.
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