Model-Checking Support for File System Development

Wei Su, Yifei Liu, Gomathi Ganesan
Stony Brook University

Scott Smolka, Erez Zadok
Stony Brook University

ABSTRACT

Developing and maintaining a file system is time-consuming,
typically requiring years of effort. Developers often test com-
pliance with APIs such as POSIX with hand-written regres-
sion suites that, alas, examine only a fraction of a file system’s
state space. Conversely, formal model checking can explore
vast state spaces efficiently, increasing confidence in the file
system’s implementation. Yet model checking is not cur-
rently part of file system development. Our position is that file
systems should be designed a priori to facilitate model checking.
To this end, we introduce MCFS, an architecture for efficient
and comprehensive file-system model checking. MCFS relies
on two new APIs that save and restore a file system’s in-
memory and on-disk state. We describe our earlier attempts
at model-checking file systems, including unsuccessful or
inefficient ones. Those attempts led us to develop VeriFS,
which implements the new APIs. We illustrate MCFS’s model-
checking principles with VeriFS, a FUSE-based file system
we were able to quickly develop with MCFS’s help.

CCS CONCEPTS

« Software and its engineering — Software verification
and validation; - Information systems — Information
storage systems.

KEYWORDS

Model checking, file systems, verification

ACM Reference Format:

Wei Su, Yifei Liu, Gomathi Ganesan, Gerard Holzmann, Scott
Smolka, Erez Zadok, and Geoff Kuenning. 2021. Model-Checking
Support for File System Development. In 13th ACM Workshop
on Hot Topics in Storage and File Systems (HotStorage °21), July

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotStorage 21, July 27-28, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACMISBN 978-1-4503-8550-3/21/07...$15.00

https://doi.org/ 10.1145/3465332.3470878

Gerard Holzmann
Nimble Research

Geoff Kuenning
Harvey Mudd College

27-28, 2021, Virtual, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/lo.1145/3465332.3470878

1 INTRODUCTION

File system development is time-consuming, complex, and
error-prone, requiring precise logic, standards compliance
(e.g., POSIX), and careful implementation of data structures
and concurrency [14, 24, 49]. Yet even mature file systems
suffer repeated bugs. For example, Btrfs [36] was designed 14
years ago yet reported 110 bugs in 2020 [21]. Such bugs can
cause data corruption or loss and system crashes [22, 24, 37].

To help address this state of affairs, we present MCFS, a
model-checking framework for file systems that: (1) checks
every corner case in a bounded state space; (2) does not
require an abstract file system model; (3) retains the original
file system behavior; (4) applies to most file systems, whether
in-kernel or user-space; and (5) has high performance.

MCEFS compares file systems to each other with concurrent
processes that non-deterministically issue file-system calls; it
compares their outcomes (e.g., file content and return values)
to find discrepancies. MCFS can exhaustively execute system-
call permutations and thus uncover abnormal behavior.

We implemented MCFS using the Spin model checker [41]
and applied it to a number of file systems. Our position is
that thanks to its exhaustive state-space analysis capabilities,
model checking should be an integral part of the file-system
development process (alongside traditional hand-written
regression suites [27, 39]). However, file systems need to facil-
itate model checking. We make the following contributions:

(1) We created MCFS to support file system checking that
can exhaustively search bounded state spaces.

(2) We uncovered two inherent challenges to model-
checking: cache incoherency and I/O inefficiencies.
Ultimately we designed state checkpoint/restore APIs
to ease integrating file systems with model checkers.

(3) We developed (two versions of) a FUSE file system,
VeriFS, that efficiently checkpoints and restores
file-system states using our proposed APIs.

(4) We empirically evaluated MCFS’s performance. Our
results suggest that MCFS is a viable approach: one
can use it to find behavioral deviations and bugs while
developing or maintaining a file system.

Related work. Bug-detection techniques for file systems
can be grouped into regression testing, verification, model
checking, and fuzzing. Regression suites (e.g., xfstests [39]
and ltp [27]) are useful in development and maintenance, but
test only known defects and are unlikely to cover all corner
cases. Prior work has demonstrated the benefits of building
a machine-verifiable file system from scratch [2, 6-9, 20, 40,
50], but this approach does not apply to existing file sys-
tems. File-system model checkers have verified test cases [3,
28, 47, 48] and located corner-case bugs, but are strictly fo-
cused on crash consistency. Another approach is to build
an abstract model and check whether a file system adheres
to it [13, 23, 26, 34, 35]. Constructing a formally verifiable
model, however, requires considerable domain knowledge
and human effort. It is also impractical to build formal models
for large and intricate file systems. Worse, the formal model
requires updating when the file system’s code changes.

CMC [29-31] inserts file system code directly into the
model checker, for substantial speed advantages, but requires
extensive changes to the very code being verified, making the
results less trustworthy [47]. Fuzzing can find real-world
bugs [12, 22, 38, 45, 46], but either is limited to specific types
of bugs (e.g., memory safety for Janus [46]), or needs human
effort to create checkers [22]. Likewise, symbolic-execution
tools [4, 5] cannot guarantee thorough coverage because
they focus on particular issues (e.g., corrupt input [5]); they
also require a behavioral model of each file system call [4].

2 MCFS DESIGN

Model checking is an automatic method for verifying
finite-state concurrent systems. It performs an exhaustive
search of the state space to verify whether a system’s model
conforms to its specification. We exploit this efficient search
technology to explore file system states exhaustively. The
MCFS model-checking framework is designed to detect
discrepant behaviors in file systems; i.e., situations where
two file systems behave differently given the same inputs.

MCFS has five key design goals: (1) Thorough coverage:
It should thoroughly explore the state spaces of the file
systems we check, so that it can uncover as many corner
cases as possible. This requires MCFS to check as many
permutations of file system operations as possible, exploring
all possible changes that the given set of operations
can make. (2) Eliminate need for an abstract model:
Traditional model checking requires one to define a model
for the system under investigation. MCFS can verify file
systems without a model because it directly executes system
code to perform state-space exploration.

(3) Absence of observer effects: To ensure accuracy,
MCEFS should avoid changing the behavior of the investi-
gated file system, ideally treating it as a black box. If we
have to modify it, we must be careful to minimize MCFS’s

footprint. (4) Universality: The model-checking framework
should support a wide range of file systems (e.g., in-kernel,
user-level, networked, distributed). (5) High performance:
Since a file system’s state space is the product of many sys-
tem calls and their parameters, the number of states can be
exponential. The model checker must be able to enumerate
new states as fast as possible, exploring large fractions of
the state space within a reasonable amount of time.

MCEFS’s architecture has four main components: random-
ized test engines, optimized state-space exploration, integrity
checks, and abstraction functions. Driven by the Spin model
checker [15], randomized test engines nondeterministically
issue operation sequences to each file system under consider-
ation. Spin’s efficient partial-order reduction algorithm [19]
allows MCES to execute all permutations of the given set of
calls and their parameters without duplication. Its random-
ized driver processes generate both valid and invalid call
sequences. Valid sequences should succeed on all file systems,
while invalid ones (e.g., write() before open()) should pro-
duce consistent error behavior. Invalid sequences are critical
because they exercise error paths, where bugs often lurk.

We chose Spin to perform optimized state-space exploration
because: (i) it is open-source and actively maintained; (ii) C
code can be embedded in Spin’s model-description language
(Promela) to issue system calls, and c_track statements
let Spin record C buffers as states [16]; and (iii) Spin can
perform parallel model checking using Swarm verification
techniques [17], substantially speeding up exploration of
large state spaces.

After each system call, integrity checks verify that all
tested file systems have identical states by asserting equality
of return values, error codes, file data, and metadata. If
a discrepancy is detected, the integrity checker reports a
potential bug and halts. Spin logs the precise sequence of
operations, parameters, and starting and ending states that
led to a problem, simplifying reproducibility. Because file
systems have implementation-specific features [35], not
all discrepancies are bugs. We believe though that many
of these non-bug behavior differences are also interesting,
since they still affect application behavior [33].

Finally, abstraction functions convert concrete states
into abstract ones. In MCFS, each concrete state contains
all the information needed to describe the file systems,
including file data and metadata. MCFS uses the abstract
state to determine whether a state was previously visited.
If MCEFS reaches a state that is logically equivalent to a
previous one, it will backtrack corresponding concrete
states to restore the file systems to their earlier versions.
The abstraction functions hash the important data in the
concrete states (including file paths, data, and relevant
metadata) to distinguish logically unique states but omit
noisy attributes such as atime timestamps and the physical

locations of data blocks. Hashing the entire on-disk state
would fail because of those less interesting attributes.

Designing abstraction functions requires domain knowl-
edge. We wrote the functions to conform to the POSIX
specification, so they are generic and applicable to most
POSIX-compliant file systems.

3 CHALLENGES

We now describe challenges we encountered while
developing MCFS, and our attempts to work around them.

3.1 Access to In-Memory States

MCFS must save and restore all information related to the
tested file systems, including their persistent (on-disk) and
dynamic (in-memory) states. Spin could use the underlying
block device to track persistent states, but there is no
simple way to access in-memory states—in kernel or user
space—because they are not part of Spin itself.

In-kernel file systems. Many file systems (e.g., Ext4 [11],
XFS [39]) run in the Linux kernel, with states in the kernel
address space. In theory, one could use /dev/kmem to save and
restore those states, but in reality they are so intertwined
with other kernel data structures that doing so is impractical.

User-space file systems. Tracking kernel file systems is
hard, so we turned to file systems built on libFUSE [42] (e.g.,
fuse-ext2 [1]). Such file systems, however, are separate pro-
cesses, so Spin cannot directly track their internal state. We
tried several alternatives. First, we modified malloc to allo-
cate memory from a shared-memory pool accessible to Spin,
so that it could be saved and restored. This failed because
important state was stored in static (non-heap) variables
outside the shared-memory segment, leading to incorrect
pointers and crashes. We concluded that it was impractical
to modify file-system code to avoid these static variables.

3.2 Cache Incoherency
We next explored a compromise in which Spin tracked only
the persistent (on-disk) state. Doing so allowed MCFS to
run without crashing, but our experiments encountered cor-
rupted file systems. A typical symptom was directory entries
with corrupted or zeroed inodes, caused by Spin backtracking
and restoring a persistent state. Since we were not restoring
in-memory state to match, cached information in the kernel
was no longer consistent with the disk content. For example,
the dcache might contain a recently created directory, but
the restored state might reflect a time before its creation.
We tried to resolve the inconsistency by calling fsync
after each operation, and by mounting the file system with
the sync option. Neither approach was effective: although
they guaranteed that the caches were flushed to persistent
storage, they did not implement the opposite operation—
loading any Spin-initiated change in the persistent storage
back into the in-memory caches.

Finally, we compromised again: we unmounted and
remounted the file system between each pair of operations.
An unmount is the only way to fully guarantee that no
state remains in kernel memory. [Re]Jmounting always
loads the latest state from disk, ensuring that the caches
are coherent between each Spin state exploration. This
compromise caused two problems: (1) it considerably slowed
state exploration (see Section 6) and (2) it prevented us from
identifying file-system bugs caused by incorrect in-memory
states. These problems led us to consider adding support for
file system state checkpointing and restoring (see Section 5).

3.3 State Explosion

Algorithm 1: Abstraction Functions

Input :Path to the file system mount point path
Output: 128-bit MD5 Hash

1 files « list ([])

2 md5ctx < md5_init ()
// Recursively walk the mount-point directory

3 foreach file in recursively_traverse_dir (path) do

4 L files.append (file)

5 sort (files) // Sort files by pathnames

6 foreach file in files do

7 fd « open (file.path)

8 content < read (fd) // Read all file content

9 md5_update (md5ctx, content)

10 close (fd)

11 attrs « stat (file)

// Get important metadata

12 attrs’ « important_attributes (attrs)

13 md5_update (attrs’)

14 md5_update (file.path)

15 return get_md5_hash (md5ctx)

We use Spin’s c_track statement to declare memory
buffers used by the C code. During state exploration, Spin
detects an already-visited state by comparing these buffers
against all previously visited states. This causes state explo-
sion because any change in a buffer is considered a new state,
yet some changes, such as access-time updates, are rarely rel-
evant to bugs. Consequently, Spin could not fully explore file
systems with even moderate parameter spaces. Fortunately,
Spin’s c_track allows one to define abstract states used for
matching, and concrete states used only in state restoration.
We thus introduced an abstract state that contained an MD5
hash of file paths, data, and important metadata (e.g., mode,
size, nlink, UID, and GID) for all files and directories.

Algorithm 1 shows the procedure to obtain an abstract
state of a file system. We first identify all files and directories
in the file system by traversing from the mount point. We

then sort them by their pathnames so that they appear in
a consistent order. We then read each file’s contents and
call stat to obtain its metadata. The important_attributes
function extracts only the important metadata mentioned
above. Finally, we calculate the MD5 hash for the files’
content, important metadata, and pathnames.

We then marked persistent states as concrete, and in-
structed Spin to track only the hashes that distinguish differ-
ent abstract states. Doing so not only prevented visiting du-
plicate states, it also greatly reduced the amount of memory
needed to track states, increasing Spin’s exploration capacity.

3.4 False Positives

MCEFS performs integrity checks that assert state equality
of the file systems under investigation. In case of any
discrepancy, MCFS terminates and reports a bug, logging
the operations it executed and their parameters. We found,
however, that MCFS sometimes terminated on discrepancies
that were not bugs. We took measures to prevent these false
positives and describe several such cases below.

Directory-size reporting and ordering. In Ext4, directory
sizes are a multiple of the block size; other file systems report
sizes based on the number of active entries. Thus, directories
on two different file systems might have the same contents
but different sizes; we thus ignore directory sizes. Similarly,
file systems return directory entries in different orders, so
we sort the output of getdents before comparing them.

Special folders. Some file systems create special folders:
For example, Ext4 has a lost+found folder to save lost and
damaged files, while XFS does not. This caused namespace
discrepancies between file systems. We added an exception
list of special files and directories; MCFS ignores anything
on this list when comparing abstract states.

Differing data capacity. Although we tested all file
systems on block devices of the same size, they exposed
different usable data capacities. This is a problem when the
file systems are nearly full: calling write can succeed on one
file system and fail on another, reporting a false bug. We thus
equalize free space among file systems being checked: when
MCEFS starts, it queries all file systems and records the small-
est free space as Sy ; then on each file system with free space
Sp, it creates a dummy file and writes S, —Sr. bytes of zeros.

None of these workarounds introduce false negatives,
because they are all dealing with unstandardized behavior.
For example, an application should not expect sorted output
from getdents, so if a given file system suddenly stops
sorting, that is not a bug. (However, if the change introduces
other misbehavior, we will detect the consequences.)

4 MCFS PROTOTYPE IMPLEMENTATION

Figure 1 shows how MCFS’s prototype handles different
types of file systems. The file system syscall engine, written

in Promela with embedded C code, consists of a multi-entry
do ... od nondeterministic loop; each entry contains code to
issue file-system operations, perform integrity checks, and
record logs. Using Spin, MCFS nondeterministically selects
an operation and its parameters, then executes it on all tested
file systems. MCFS mmaps the file systems’ backend storage
devices into Spin’s address space so it can track their states.

To prevent cache-coherency problems, MCFS unmounts
and remounts kernel file systems (e.g., Ext4 and JFFS2) before
and after each operation (see Section 3.2). However, syscalls
such as write that depend on kernel state (e.g., open file
descriptors) cannot be used in isolation. We thus developed
meta-operations comprising small sequences of syscalls
that avoid tracking kernel state: create_file creates and
then closes a file; write_file opens, writes some data to, and
closes a file. Other operations that can execute alone are run
directly by MCEFS, e.g., truncate and mkdir. Each operation’s
parameters are selected nondeterministically from a pre-
defined (bounded) parameter pool. Because we limited our
exploration space to fixed syscalls and parameters, the entire
exploration—while large—is guaranteed to be bounded.

For FUSE-based file systems (e.g., fuse-ext2), the syscall
is issued to the OS. FUSE’s normal behavior results in
several user/kernel messages being passed, coordinated via
/dev/fuse (see fuse-ext2 in Figure 1).

To avoid being slowed by I/Os, we used RAM block
devices as backend storage for block-based file systems
(e.g., Ext4 and XFS). Linux’s RAM block device driver (brd)
requires all RAM disks to be the same size; we slightly mod-
ified it (renamed brd2), to allow different-sized RAM disks
for file systems with different minimum-size requirements.

Some file systems must be mounted using special
devices. For example, JFFS2 [44] requires an MTD character
device [43] instead of a regular block device. MCFS sets
up JFFS2 differently: it (1) loads the mtdram kernel module,
which creates a virtual MTD device in RAM, and then
(2) loads the mtdblock module to provide a block interface
for the virtual MTD device. This approach allows Spin to
mmap the MTD storage via the block device.

5 TRACKING FILE-SYSTEM STATES

Unmounting and remounting a file system after each op-
eration solved cache-incoherency problems but slowed the
model checking and deviated from a normal use case. Due
to its backtracking search process, Spin saves and restores
all information related to the tested file systems. Therefore,
we must track all file-system states, including persistent
and in-memory ones. We investigated three approaches:
(1) process snapshotting and (2) VM snapshotting, which
culminated in our (3) MCFS-enabled VeriFS.

Process snapshotting. User-space file systems run as
independent processes. To keep their in-memory states

< - - Syscalls — mmap |/O <— Block/Char I/O

File System Syscall Engine
[y

A
| i
! i fuse-ext2
! 1 libFUSE
______ P SN JEDEE EEE S A
1 1
1 1
! | |_/dev/fuse
i
ext4 i

fuse (in kernel)

MTD 1/0

/dev/mtdblock0
mtdblock

A4 A4
| /deviram1 |‘/ | /dev/mtd0 (char dev) |‘

brd2: RAM Block Device Driver (modified) mtdram: Virtual MTD
| System RAM |

Figure 1: Model checking workflow for different file
system types: from left to right, block-based, FUSE,
and character-device-based.

A4
\I /dev/ram0 |

coherent with their persistent states, we can snapshot them
using existing tools. We explored a popular snapshotting
tool called CRIU [10] and tried integrating it with MCFS.
Unfortunately, CRIU refused to checkpoint processes that
have opened or mapped any character or block device (with
a few unhelpful exceptions). Since FUSE-based file systems
use the character device /dev/fuse to communicate with the
kernel, CRIU could not checkpoint them. However, CRIU
was able to snapshot the user-space NFS server Ganesha [32];
we are investigating model-checking Ganesha with CRIU.

Virtual-machine snapshotting. Hypervisors can snapshot
and restore an entire VM, including full file-system states
enclosed therein. However, VM-level snapshotting is fairly
slow and heavyweight. For example, LightVM claims that it
takes 30ms to checkpoint a trivial unikernel VM and 20ms to
restore it [25]. This may be fast enough for cloud platforms
but is too slow for MCFS; LightVM’s latency limited our
model-checking rate to only 20-30 operations/s.

VeriFS. 1t is difficult for MCFS to track the in-memory
state of file systems (see Section 3.1). But if a file system
itself could checkpoint and restore its state, MCFS could use
that facility to easily perform state capture and restoration,
avoiding cache incoherency. To demonstrate this idea, we
developed a RAM-based FUSE file system, VeriFS. Apart
from standard POSIX operations such as open, write, and
close, VeriFS provides checkpoint and restore APIs via
ioctls: ioctl_CHECKPOINT and ioctl_RESTORE.

When MCEFS calls ioctl_CHECKPOINT with a 64-bit key,
VeriFS locks itself, copies inode and file data into a snapshot
pool under that key, and releases the lock.

Similarly, ioct1_RESTORE causes VeriFS to query the snap-
shot pool for the given key. If it is found, VeriFS locks the file
system, restores its full state, notifies the kernel to invalidate
caches, unlocks the file system, and discards the snapshot.

VeriFS is intended to demonstrate the idea of having file
systems themselves support model checking by providing

ext2 vs. Ext4 (+o0) [N 12
ex2 vs. Ext4 (sso) [D 2+
x4 vs. xFs [D
S ————

1 5 10 50 100 500 1000

File System Operation Rate (ops/s, log)
Figure 2: Speed comparison for different experiments.

Unless specified in parentheses, all experiments were
run on RAM disks or entirely in memory.

== fsops_rate (ops/s) == swap_used (GB)

2500 125
@
G 2000 10.0
a P
K @
@ [}
wm 1500 75 4
o =2
2 3
S 1000 50 2
5 g
@ 3
2 »n
o 500 7 25
® [W
w

0 0.0
2.00 4.00 6.00 8.00 10.00 12.00 14.00
Days

Figure 3: File system operation rate and swap usage in
a two-week MCFS experiment on VeriFS1.

checkpoint and restore APIs. Therefore, the initial version,
VeriFS1, was fairly simple. It used a fixed-length inode
array with a contiguous memory buffer attached to each
inode as the file data. It had only a limited set of file system
operations and lacked support for access(), rename(),
symbolic and hard links, and extended attributes. It also did
not limit the amount of data that could be stored.

We ran MCFS with Ext4 and VeriFS1 for over 5 days; MCFS
executed over 159 million syscalls without any errors, behav-
ioral discrepancies, or file system corruption. To demonstrate
how MCEFS supports file system development, we next devel-
oped VeriFS2 to add missing features. During development,
we used MCFS to model-check VeriFS1 against VeriFS2 to
find and fix bugs in VeriFS2. MCES helped us find several
bugs in VeriFS2, which we discuss further in Section 6.

In sum, model checking a file system can involve
exploring a vast number of states. If state exploration takes
too long (e.g., is [/O-bound), then the entire model-checking
process becomes impractical. Our position is that speedy
and thorough file system model-checking requires the
checkpoint/restore API we propose.

6 EVALUATION
We experimented with an MCFS prototype and a number of
file systems running on a VM with 16 cores, 64GB RAM, and
128GB of swap space allocated on a local hypervisor SSD.
We present preliminary performance results and discuss
how MCFS helped our file system development.
Performance and memory demands. We ran MCFS and
recorded key performance metrics for the following file
system combinations: Ext2 vs. Ext4, Ext4 vs. XFS, Ext4

vs. JFFS2, and VeriFS1 vs. VeriFS2. We used 256KB RAM
block devices for both Ext2 and Ext4, and 16MB for XFS,
which allows a larger minimum file-system size. VeriFS is
an in-memory file system and does not need a block device.

Figure 2 shows model-checking speeds observed in our
experiments. Checking Ext4 vs. XFS on RAM disks was over
11x slower than Ext2 vs. Ext4 because MCFS consumed
105GB of swap space for the former, so swap time dominated.
Checking Ext2 vs. Ext4 on HDD was 20X slower than on RAM
disks; using SSD was still 18X slower. This illustrates the ad-
vantage of using RAM as backend storage. Checking VeriFS1
vs. VeriFS2 was 5.8 faster than Ext2 vs. Ext4 for two reasons:
(i) MCEFS used the checkpoint/restore APIs (see Section 5) and
thus did not have to unmount and remount the VeriFS file sys-
tems; (ii) VeriFS runs entirely in-memory, so MCFS did not ac-
cess block devices to checkpoint and restore persistent states.

Figure 3 shows MCFS’s speed when checking VeriFS1 over
two weeks. MCFS maintained a rate of around 1,500 ops/s
in the first 3 days; this rate then dropped drastically and
swap usage spiked because Spin was resizing its hash table
of visited states. After rebounding, MCFS’s speed gradually
decreased over time because the checkpointed states could
not fit in memory and it began to consume swap space. Its
speed increased again between days 13 and 14 because the
RAM hit rate was high (states needed by MCFS happened to
be in memory and did not need to be swapped in and out).

Note that by default MCFS remounts and unmounts the
file systems before and after each operation. To evaluate
the impact of that approach, we also measured MCFS’s
performance without the inter-operation remounts. The
average speed for Ext2 vs. Ext4 (in RAM disks) was 316 ops/s,
38% faster than that when remounts and unmounts were
used; and for Ext4 vs. XFS it was 34 ops/s, which is 70% faster.

Assisting file system development. While developing
VeriFS1, we model-checked it vs. Ext4. MCFS found two bugs
that we easily fixed, thanks to precise reports of operations
and arguments. The first occurred after over 9K operations
when test files on VeriFS and Ext4 had different content.
The bug arose when truncate failed to clear newly allocated
space when expanding a file. The second bug was detected
after about 12K operations; MCFS created a test directory in
Ext4 but VeriFS failed, claiming that the directory existed—
but in fact it did not. This was due to cache incoherency be-
tween the kernel and VeriFS’s in-memory state. When VeriFS
rolled back to an earlier state, the kernel’s inode and dentry
caches did not keep up. The fix was to call FUSE’s cache-
invalidation APIs (fuse_lowlevel_notify_inval_entry and
fuse_lowlevel_notify_inval_inode).

We then developed VeriFS2 (see Section 5) and used MCFS
to assist development by model-checking it vs. VeriFS1.
MCEFS found two more bugs during this phase. The first
occurred after over 900K operations, when the test files in

VeriFS1 and VeriFS2 had different data. VeriFS2 had failed
to zero the file buffer if write created a hole in the file. The
second bug was detected after over 1.2M operations: the test
file in VeriFS2 was shorter than that in VeriFS1. The reason
was that the write method in VeriFS2 updated the file size
only when the file was expanded beyond its buffer capacity,
rather than whenever the file was appended to.

7 CONCLUSIONS

We have proposed MCFS, a new model-checking framework
for file system development that exhaustively explores a file
system’s (bounded) state space, without requiring manual
modeling or significant changes to the kernel or the file
system itself. We developed VeriFS (v1 and v2), prototypes
that demonstrate state checkpointing and restoration
functionality via ioctls. These functions let MCFS track
VeriFS’s full state while avoiding cache incoherency. MCFS
found real bugs while we were developing VeriFS. Because
both versions of VeriFS are simple and fast to model-check,
they serve as a useful baseline against which we can
compare other file systems.

We discussed the challenges we encountered when
implementing MCFS, convincing ourselves of the need for
file-system-level support to allow MCFS to work correctly
and efficiently. Finally, while MCEFS is designed to check
file systems, its underlying approach is applicable to other
system software.

Future work. We plan to add checkpoint/restore API
support to Linux kernel file systems (e.g., Ext4) to eliminate
the need for the current mount/remount workaround.
We are implementing the checkpoint/restore API at the
Linux VFS level, which we hope will apply to many Linux
kernel file systems. We are also working on APIs that
will checkpoint file system states to help us resume the
model-checking process if an interruption occurs (e.g., due
to a kernel crash). We also plan to run more than two file
systems concurrently with MCFS and use a majority-voting
approach to recognize incorrect file-system behavior.

We are exploring methods to track code coverage
while model-checking. We will also use Spin’s swarm
verification [17, 18] to explore larger state spaces in parallel.

8 ACKNOWLEDGMENTS

We thank the ACM HotStorage anonymous reviewers and
our shepherd Ram Alagappan for their helpful feedback.
This work was made possible in part thanks to Dell-EMC,
NetApp, and IBM support; and NSF awards CCF-1918225,
CNS-1900706, CNS-1900589, CNS-1729939, CNS-1730726,
DCL-2040599, and CPS-1446832.

REFERENCES

[1] Alper Akcan. Fuse-ext2 GitHub repository, 2021. https:
// github.com/ alperakcan/fuse-ext2.

[l

[t

—

—

—

=

[2] Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter

Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim,
Thomas Sewell, et al. Cogent: Verifying high-assurance file system
implementations. In Proceedings of the 21st International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 175-188, Atlanta, GA, April 2016.

[3] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy,

Emina Torlak, and Xi Wang. Specifying and checking file system
crash-consistency models. In Proceedings of the 21st International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 83-98, April 2016.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 209-224, San Diego,
CA, December 2008.

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. EXE: Automatically generating inputs of death. In
Proceedings of the 13th ACM Conference on Computer and Communica-
tions Security (CCS), pages 322-335, Alexandria, VA, November 2006.
Tej Chajed. Verifying an I/O-concurrent file system. Master’s thesis,
Massachusetts Institute of Technology, 2017.

Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay Mert
Ileri, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich.
Verifying a high-performance crash-safe file system using a tree spec-
ification. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP), pages 270-286, Shanghai, China, October 2017.
Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Using Crash Hoare Logic for
certifying the FSCQ file system. In Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP), pages 18-37, Monterey, CA,
October 2015.

Haogang Chen, Daniel Ziegler, Adam Chlipala, M. Frans Kaashoek,
Eddie Kohler, and Nickolai Zeldovich. Specifying crash safety for
storage systems. In Proceedings of the 15th Workshop on Hot Topics in
Operating Systems (HotOS), Kartause Ittingen, Switzerland, May 2015.
CRIU Community. Checkpoint/restore in userspace (CRIU), 2021.

https:// criu.org/.
Ext4. http://ext4.wiki.kernel.org/.
Google. syzkaller: Linux syscall fuzzer, 2021. https:

// github.com/google/ syzkaller.

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,
Xiongnan Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep
specifications and certified abstraction layers. In Proceedings of the
42nd ACM Symposium on Principles of Programming Languages (POPL),
Mumbai, India, January 2015.

[14] John S. Heidemann and Gerald J. Popek. File-system development with

stackable layers. ACM Transactions on Computer Systems, 12(1):58-89,
1994.

Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
software engineering, 23(5):279-295, 1997.

Gerard J. Holzmann. Logic verification of ANSI-C code with SPIN.
In Proceedings of the 7th International SPIN Workshop on SPIN Model
Checking and Software Verification, pages 131-147, Berlin, Heidelberg,
2000. Springer-Verlag.

Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm verification.
In 2008 23rd IEEE/ACM International Conference on Automated Software
Engineering, pages 1-6. IEEE, 2008.

Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm verification
techniques. IEEE Transactions on Software Engineering, 37(6):845-857,
2010.

[19] Gerard]J. Holzmann and Doron Peled. An improvement in formal
verification. In Formal Description Techniques VII, pages 197-211.
Springer, 1995.

[20] Atalay Mert Ileri, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and
Nickolai Zeldovich. Proving confidentiality in a file system using
DiskSec. In Proceedings of the 13th USENLX Symposium on Operating
Systems Design and Implementation (OSDI), pages 323-338, Carlsbad,
CA, October 2018.

[21] Kernel.org Bugzilla. Btrfs bug entries, 2021. https://bugzilla.kernel.
org/buglist.cgi?component=btrfs.

[22] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen
Xu, and Taesoo Kim. Finding semantic bugs in file systems with
an extensible fuzzing framework. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles (SOSP), pages 147-161,
Toronto, Ontario, Canada, October 2019.

[23] David Lie, Andy Chou, Dawson Engler, and David L. Dill. A simple
method for extracting models from protocol code. In Proceedings of
the 28th Annual International Symposium on Computer Architecture
(ISCA), pages 192-203, Gothenburg, Sweden, July 2001.

[24] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Shan Lu. A study of Linux file system evolution. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST), San Jose,
CA, February 2013. USENIX Association.

[25] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici.
My VM is lighter (and safer) than your container. In Proceedings of
the 26th Symposium on Operating Systems Principles (SOSP), pages
218-233, Shanghai, China, October 2017.

[26] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song,
and Taesoo Kim. Cross-checking semantic correctness: The case of find-
ing file system bugs. In Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP), pages 361-377, Monterey, CA, October 2015.

[27] Subrata Modak. Linux test project (LTP), 2009. http:
//Itp.sourceforge.net/.

[28] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian
Raju, and Vijay Chidambaram. Finding crash-consistency bugs with
bounded black-box crash testing. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
pages 33-50, Carlsbad, CA, October 2018.

[29] Madanlal Musuvathi, Andy Chou, David L. Dill, and Dawson R. Engler.
Model checking system software with CMC. In Proceedings of the
10th ACM SIGOPS European Workshop, pages 219-222, Saint-Emilion,
France, July 2002.

[30] Madanlal Musuvathi and Dawson R. Engler. Model checking large
network protocol implementations. In Proceedings of the 1st Sympo-
sium on Networked Systems Design and Implementation (NSDI), pages
155-168, San Francisco, CA, March 2004.

[31] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler,
and David L. Dill. CMC: A pragmatic approach to model checking real
code. In Proceedings of the 5th Symposium on Operating System Design
and Implementation (OSDI), Boston, MA, December 2002.

[32] NFS-Ganesha, 2016. http:// nfs-ganesha.github.io/.

[33] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ram-
natthan Alagappan, Samer Al-Kiswany, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. All file systems are not created equal: On the
complexity of crafting crash-consistent applications. In Proceedings
of the 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 433-448, Broomfield, CO, October 2014.

[34] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal,
Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. IRON file systems. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP °05), pages 206-220,

(35

(36

(37

(38

(39

[40

(41

[42

=

—

]

=

= =

=

Brighton, UK, October 2005. ACM Press.

Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil
Madhavapeddy, and Peter Sewell. SibylFS: formal specification
and oracle-based testing for POSIX and real-world file systems. In
Proceedings of the 25th Symposium on Operating Systems Principles
(SOSP), pages 38-53, Monterey, CA, October 2015.

Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-tree
filesystem. ACM Transactions on Storage (TOS), 9(3):1-32, 2013.

Cindy Rubio-Gonzalez, Haryadi S. Gunawi, Ben Liblit, Remzi H.
Arpaci-Dusseau, and Andrea C. Arpaci-Dusseau. Error propagation
analysis for file systems. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), pages 270-280, Dublin, Ireland, June 2009.

Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. KkAFL: Hardware-assisted feedback
fuzzing for OS kernels. In 26th USENIX Security Symposium (USENIX
Security), pages 167-182, Vancouver, BC, Canada, August 2017.

SGI XFS. xfstests, 2016. http://xfs.org/index.php/ Getting the_
latest_source_code.

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang.
Push-button verification of file systems via crash refinement. In
Proceedings of the 12th Symposium on Operating Systems Design and
Implementation (OSDI), pages 1-16, Savannah, GA, November 2016.
Spin Project. Static analysis tools for C code. www.spinroot.com/
static/.

Miklos Szeredi. Filesystem in Userspace. http://fuse.sourceforge.net,
February 2005.

[43]

[44]

[45]

[46]

[47]

David Woodhouse, Joern Engel, Jarkko Lavinen, and Artem Bityutskiy.
General MTD documentation, 2009.
David Woodhouse, Joern Engel, Jarkko Lavinen, and Artem Bityutskiy.

JFFS2, 2009.

Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim.
Designing new operating primitives to improve fuzzing performance.
In Proceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), pages 2313-2328, Dallas, TX, October 2017.
Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and
Taesoo Kim. Fuzzing file systems via two-dimensional input space
exploration. In IEEE Symposium on Security and Privacy (Oakland),
pages 818-834, San Francisco, CA, May 2019.

Junfeng Yang, Can Sar, and Dawson Engler. eXplode: a lightweight,
general system for finding serious storage system errors. In Proceedings
of the 7th symposium on Operating systems design and implementation
(OSDI), pages 131-146, Seattle, WA, November 2006.

[48] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi.

[49]

[50]

Using model checking to find serious file system errors. In Proceedings
of the 6th Symposium on Operating Systems Design and Implementation
(OSDI), pages 273-288, San Francisco, CA, December 2004.

Erez Zadok, Rakesh Iyer, Nikolai Joukov, Gopalan Sivathanu, and
Charles P. Wright. On incremental file system development. ACM
Transactions on Storage (TOS), 2(2):161-196, 2006.

Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu, and Haibo
Chen. Using concurrent relational logic with helpers for verifying
the AtomFS file system. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP), pages 259-274, Toronto, Ontario,
Canada, October 2019.

	Abstract
	1 Introduction
	2 MCFS Design
	3 Challenges
	3.1 Access to In-Memory States
	3.2 Cache Incoherency
	3.3 State Explosion
	3.4 False Positives

	4 MCFS Prototype Implementation
	5 Tracking File-System States
	6 Evaluation
	7 Conclusions
	8 Acknowledgments
	References

