IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

GPU-based Supervoxel Generation with a Novel
Anisotropic Metric

Xiao Dong, Zhonggui Chen, Yong-Jin Liu, Junfeng Yao, and Xiaohu Guo

Abstract—Video over-segmentation into supervoxels is an im-
portant pre-processing technique for many computer vision tasks.
Videos are an order of magnitude larger than images. Most
existing methods for generating supervovels are either memory-
or time-inefficient, which limits their application in subsequent
video processing tasks. In this paper, we present an anisotropic
supervoxel method, which is memory-efficient and can be ex-
ecuted on the graphics processing unit (GPU). Therefore, our
algorithm achieves good balance among segmentation quality,
memory usage and processing time. In order to provide accurate
segmentation for moving objects in video, we use the optical
flow information to design a brand new non-Euclidean metric to
calculate the anisotropic distances between seeds and voxels. To
efficiently compute the anisotropic metric, we adjust the classic
jump flooding algorithm (which is designed for parallel execution
on the GPU) to generate anisotropic Voronoi tessellation in
the combined color and spatio-temporal space. We evaluate
our method and the representative supervoxel algorithms for
their capability on segmentation performance, computation speed
and memory efficiency. We also apply supervoxel results to
the application of foreground propagation in videos to test the
performance on solving practical problems. Experiments show
that our algorithm is much faster than the existing methods, and
achieves good balance on segmentation quality and efficiency.

Index Terms—Supervoxels, video segmentation, anisotropic
metric, jump flooding algorithm, GPU.

I. INTRODUCTION

S an efficient pre-processing technique, superpixel seg-
mentation [1], [24], [11], [26], [12] technology had
been widely used in image processing. By stacking the
image frames along time axis, many over-segmentation al-
gorithms have been extended from image to video. Video
over-segmentation aims to group perceptually similar spatio-
temporal (3D) voxels into meaningful atomic patches called
supervoxels. Supervoxels well preserve the important structure
of video content and can greatly reduce the number of com-
putational units for downstream computer vision applications
(e.g., [22], [27], [13]). Furthermore, the design principle of
supervoxels can also inspire the hardware design of new cam-
era [30] and the new methodology in video visualization [4].
The quality of supervoxels directly affects the results of
subsequent processing task. To well preserve the video content,

Xiao Dong and Zhonggui Chen are with the School of Informatics, Xiamen
University, Xiamen, China (e-mail: dongxiao0401@gmail.com; chenzhong-
gui@xmu.edu.cn). Junfeng Yao is with the School of Film, Xiamen University
(e-mail: yao0010@xmu.edu.cn).

Yong-Jin Liu is with the Department of Computer Science and Technology,
Tsinghua University, Beijing, China (e-mail:liuyongjin @tsinghua.edu.cn).

Xiaohu Guo is with the Department of Computer Science, University of
Texas at Dallas, Dallas, USA (e-mail: xguo@utdallas.edu).

Corresponding authors: Zhonggui Chen, Junfeng Yao and Xiaohu Guo.

supervoxels are usually expected to have good performance on
multiple aspects [42], such as segmentation accuracy, color
homogeneity, shape compactness, processing efficiency and
so on. The supervoxel boundaries should adhere well to the
object, and every supervoxel should overlap with only one
object, which encourages a high-degree of color homogeneity
within supervoxels. Meanwhile, the supervoxels are expected
to be compact and uniform in the space-time domain, espe-
cially on the flat background. The above properties should be
maintained with as few supervoxels as possible. In addition,
Supervoxel generation should be efficient on running time
and memory cost, and should not reduce the achievable
performance of its downstream applications.

Many methods have been proposed for computing video
over-segmentation in recent years. Except for the temporal
superpixel methods, most offline supervoxel methods load all
the voxels of video into the memory at once. Considering
the limitation of memory, the streaming version [43], [45] are
proposed to handle long videos by allowing a small number
of frames to be loaded into the memory at any given time.

By meeting the requirement of segmentation quality, recent
researches focused on solving the problem of insufficient
memory by proposing the streaming version of supervoxel
algorithms. However, time consuming is another problem that
needs to be solved with great demand. In fact, the long time
consumption hinders the wide application of supervoxels as
a pre-processing technology in many video processing fields,
especially for some tasks that require real-time performance.
Usually, the segmentation quality, processing time and mem-
ory usage are conflicting requirements, and in our work we
hope to achieve a good compromise between these targets. We
propose an anisotropic supervoxel algorithm based on GPU
implementation to over-segment the video with good quality,
while greatly improving the processing speed. For a video with
51 frames and 7 million pixels, our method produces the result
in 2 seconds, while the advanced methods such as TSP [8] and
FCSS [46], producing results with similar quality, require more
than one minute. Other supervoxel methods such as SLIC [1]
have similar processing speed, however, our method generates
much better segmentation results as compared to them (see
Sec. V for more comparison details).

Our method is a seed-based supervoxel segmentation, and
we design an anisotropic distance metric for each seed to
classify the voxels. Fig. 1 shows supervoxel results of different
methods. For most existing methods [8], [44], [46], supervox-
els are costly to obtain on memory and time. We show that
it’s possible to design a parallel algorithm executed on GPU
for supervoxel segmentation, which makes our algorithm far

mailto: dongxiao0401@gmail.com
mailto: chenzhonggui@xmu.edu.cn
mailto: chenzhonggui@xmu.edu.cn
mailto: yao0010@xmu.edu.cn
mailto: liuyongjin@tsinghua.edu.cn
mailto: xguo@utdallas.edu

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

GBH streamGBH

Original frame GB

SWA FCSS Ours

Fig. 1: Segmentation results of representative algorithms, such as GB [16], GBH [20], steamGBH [43], SWA [35], [36], [10],
TSP [8], FCSS [46] and ours. The magnified details in the third row show that our method is sensitive to color changes and
achieves better boundary adherence. For 500 supervoxels, our processing speed is at least 20 times faster than FCSS and 100
times faster than TSP. See Section V for detailed comparison results.

ahead in efficiency. The main contributions of our work are
as follows:

« For accurate segmentation of objects in motion, we design
a new anisotropic distance metric to calculate the dis-
tances between seeds and voxels, which uses the motion
information to compensate for the prolonged distance of
moving objects’ pixels between frames, thus provides
more accurate object capturing capability for supervoxel.

o« We propose a simple yet effective seed initialization
strategy that places more seeds in object area to segment
the object more accurately.

o In order to ensure the segmentation quality and process-
ing efficiency at the same time, we design an anisotropic
supervoxel algorithm that can be implemented in par-
allel on the GPU, by extending the jump flooding al-
gorithm [33], [34]. While most existing algorithms are
difficult to be implemented on the GPU.

II. RELATED WORK

Many methodologies have been proposed to compute su-
perpixels and supervoxels. For image segmentation, main-
stream theories include graph theory [12], clustering based
on seeds [37], [38], [24], etc. Most superpixel algorithms can
quickly and accurately generate over-segmentation results, and
some seed-based superpixel algorithms [1], [38] even achieve
real-time processing speed. These methods can be naturally
extended to video segmentation, but as the number of pixels
increases, the processing speed and memory footprint also
increase substantially. We will mainly focus on the current
research status of video over-segmentation in this section.

The supervoxels for video over-segmentation can be classi-
fied into two categories: supervoxels and temporal superpixels.
Supervoxel methods [16], [20], [29], [36], [43], [44] treat the
video as a volume and over-segment it in 3D space. Temporal
superpixel methods [8], [7], [32] first generate superpixels on
one frame and build the temporal correspondences between
adjacent frames.

Supervoxel methods can be developed based on multiple
principles, such as mode-seeking, graph cut, seed-based clus-
tering and so on. Mean shift is a mode-seeking method. Paris
and Durand [29] applied Morse theory to interpret mean shift
to decompose the feature space into density modes. Paris et
al. [28] proposed the hierarchical mean shift by a streaming ap-
proach to improve the efficiency of isotropic mean-shift meth-
ods. Felzenszwalb and Huttenlocher [16] proposed a graph-
based segmentation method (GB), which is suitable for the ex-
tension to spatio-temporal video segmentation. Based on GB,
Groundmann et al. [20] proposed a hierarchical graph-based
method (GBH), which constructs a bottom-up hierarchical tree
structure of the region graphs. Xu et al. [43] extended GBH
to a streaming version (streamGBH) to handle arbitrarily long
videos, by allowing a small number of frames to be loaded into
memory. Nystrom Normalized Cut (NCut) was proposed by
Fowlkes et al. [17], [18], which is based on a technique for the
numerical solution of eigen function problems known as the
Nystrom approximation. SWA [35], [36], [10] is another nor-
malized cut approach that integrates the model-aware affinities
into the multilevel segmentation by the weighted aggregation
algorithm. SWA produces a hierarchy of segmentations and
can be extended to a supervoxel method in 3D. Achanta et
al. [1] proposed a popular seed-based clustering algorithm,
SLIC, which adopts the Lloyd iteration to optimize the Voronoi
tessellation in the combined color and spatio-temporal space.
Inspired by SLIC, Yi et al. [45] proposed the Yi-CSS method
that maps the video to a 3-dimensional manifold embedded in
the RS space. They also proposed qd-CSS [44] which adopts
a fast queue-based graph distance to compute the geodesic
centroidal Voronoi tessellation, and FCSS [46] that tries to find
a uniform tessellation whose cell boundaries well align with
objects among all possible centroidal Voronoi tessellations on
the video manifold.

Temporal superpixel methods compute a segmentation on
the first frame, and propagate it to the subsequent frames.
Chang et al. proposed the TSP [8] algorithm that adopts
a Gaussian process to model the motion for the streaming

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

segmentation. Inspired by SLIC method, Reso et al. [32]
proposed an energy-minimizing clustering method by utilizing
a hybrid clustering strategy working in a global color subspace
and local spatial subspaces. Wang et al. proposed a superpixel
method based on geodesic distance [41], and conducted the
superpixel flow on video based on Lucas—Kanade algorithm
to find stable correspondent centers between adjacent frames.
Cai et al. [7] proposed a bottom-up merging superpixel method
(GGM) which first generates a coarse image segmentation and
then swaps the boundary pixels to improve the compactness.
GGM can be extended to generate temporal superpixels.
Among the above methods, TSP achieves the state-of-the-art
performance and we choose it as the representative temporal
superpixel method in this paper.

The temporal superpixel methods are able to process ar-
bitrarily long videos as they load a small number of frames
into memory at once. On the contrary, most of the supervoxel
methods are off-line methods that need to load all frames at
first. To solve this problem, some streaming versions [43],
[46] were proposed to deal with long videos. In this paper, we
propose a seed-based anisotropic supervoxel method. We make
use of the optical flow information to design the anisotropic
metric for supervoxels, which are consistent with the motion
direction of the object. The anisotropic metric can compensate
for the prolonged distance (by making them shorter) for pixels
in the motion direction, thus the label of moving object will
remain the same in several consecutive frames. We also extend
our method to the streaming version to handle long videos that
cannot be loaded into memory at once.

III. PRELIMINARIES

Our algorithm is based on a variant of SLIC [1] method
and the jump flooding method [33], [34] on the GPU, which
we briefly summarize below.

A. SLIC for Videos

SLIC method is a classic image segmentation algorithm
that can efficiently generate compact superpixels. Given a
video I with n voxels, SLIC can be easily extended to handle
3D supervoxels by introducing the time dimension to the
spatial term. Denote the spatio-temporal term of a voxel v
as p(v) = [z(v),y(v),t(v)]", where [z(v),y(v)] are the 2D
coordinates in a frame and ¢(v) is the frame index. Denote
the color term of v as c(v) = [l(v),a(v),b(v)]T in the
CIELAB space. The basic information of a voxel is a 6-
dimensional vector v(v) = [p(v)",c(v)"]T. The desired
number of supervoxel is k. Starting from & uniformly sampled
seeds S = {s;}F_;, SLIC uses an adaptation of k-means
algorithm to optimize the segmentation. SLIC measures the
distance between a voxel v and a seed s; in the combined
space using a normalized Euclidean distance defined as:

o= () (8 o

where N, and N, are two weights to balance the relative
importance between the color factor and the spatio-temporal
factor, and

!
H:::H::: =
il R
Fig. 2: Jump flooding to propagate the content of a seed at
the lowest left corner by halving step length [33].

=

/=1

dp = [[p(v) = p(si)ll
=V (@(v) = 2(s:))? + (y(v) — y(s:))? + (t(v) — t(s4))?,

de = |le(v) = (s,
= v/(1(v) = U(5:))? + (a(v) — a(5:)? + (b(v) — b(s:))?.

Different from the conventional k-means method, SLIC com-
putes the distances from the seed s; to voxels within a local
search range 2L x 2L x 2L, where N, = L = n/k.
Once each voxel has been associated to the nearest seed in
one iteration, we get the segmentation I = {C;}¥ ;. Then
it updates the seed s; to be the mean vector of the voxels
belonging to that supervoxel C; as shown below:

v(si) =9(Ci) = Y v(v)/|Cil. 2)

veC;

The assignment and update steps can be applied iteratively, and
computational results show that the SLIC method converges
in several iterations and generates compact supervoxels.

B. Jump Flooding Algorithm on the GPU

Jump flooding algorithm (JFA) [33] and its variants [34]
are an algorithmic paradigm for computing discrete Voronoi
diagrams on the GPU. Fig. 2 is an illustration that shows the
main idea of JFA. Given an image of size r x r with a seed
located at the lowest left corner, JFA shows an efficient way to
flood the content of seed in logr rounds to all the other grid
points, by halving the step length in each round. Here, r = 8§,
and there are log r rounds with step lengths of r/2,7/4, ..., 1.
At the beginning, each point with a seed s records < s, f(s) >
to indicate its closest seed found so far is s, whereas the other
points record < null, null >. Here f(s) can be the position
or other information of the seed s. In a round with step length
of [, each point [z, y| queries the information of other points at
[z +1i,y+ 7], where i, j € {—1,0,1}. Among these 8 received
(plus its current closest seed), the point [z,y] decides which
seed, say s*, is its closest seed found so far, and updates its
record as < s*, f(s*) > if needed.

JFA can be implemented using OpenGL GLSL with frag-
ment program support. It adopts a so-called ping-pong buffer
with two buffers alternating as input and output in consecutive
rounds. At the end of logr rounds, the buffer records the
closest seed for each point, which is the approximation of
Voronoi diagram. The errors due to the differences between
the approximation and the actual Voronoi diagram are hardly
noticeable to the naked eye in experiments.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

(b)

~

(@

Fig. 3: Comparison of isotropic (SLIC) and anisotropic (our method) supervoxels on moving objects with same initialization. (a):
original frames; (b): magnified details of object (the man in white clothes); (c): isotropic supervoxels (SLIC); (d): magnified
details of object in (c), the isotropic supervoxels fail to detect the boundaries of the shoulders and neck; (e): anisotropic
supervoxels (ours); (f): magnified details of object in (e), the anisotropic supervoxels detect the object more accurately.

In this paper, we extend the JFA framework for our
anisotropic supervoxel segmentation, by introducing a new
distance metric in information passing of seeds. The exper-
iments show that our method generates more accurate results
with much faster speed than existing methods. Please see Sec.
IV-E for the extension of JFA for superpixels and supervoxels.

IV. GPU-BASED ANISOTROPIC SUPERVOXEL

In this section, we present the proposed supervoxel method
using a motion-based anisotropic distance metric, and its
parallel implementation on the GPU.

A. Motivation

Our idea is to introduce the motion information into the
seed-based clustering framework of SLIC [1], so that the
object segmentation quality can be further improved. The su-
pervoxel generated by SLIC can achieve uniform segmentaion,
but it is not accurate enough in object detection. A supervoxel
C; consists of voxels that satisfy the following condition: C; =
{v € I|D(v,s;) < D(v,s;),¥j = 1,...k, j # i}. Here SLIC
only makes use Euclidean distance of the color and position
between voxels and seeds, discarding the motion information,
which is not optimal due to the non-negligible motions and
occlusion/disocclusion. SLIC is unable to segment the objects
in motion very well, especially for the cases that the color
difference between moving objects and background is not
obvious. Using Fig. 3 as an example, the pseudo-color images
are superpixels induced by clipping supervoxels on a frame.
We generate both the isotropic supervoxels and anisotropic
supervoxels using JFA technique on the GPU with the same
initialization of seeds, without enforcing the connectivity of
supevoxels. Let us focus on the skating man in white clothes,
which is magnified in the second column. The color difference
between the man’s clothes and the background is small,
making it difficult to accurately segment the object from the
background. The images in the third column show results of
isotropic supevoxels using the Euclidean distance defined in
Eq. (1). From the magnified details in the fourth column we

observe that the isotropic supervoxels fail to detect the neck
and shoulders of the man. On the other hand, the optical
flow technique is able to detect the motion of objects, which
helps the anisotropic supervoxels to distinguish objects from
background as shown in the last column.

In order to capture the motion of objects, we make use
of the optical flow field to design a non-Euclidean metric to
measure the distances between voxels and seeds. Suppose the
object is in motion for several consecutive frames, and in the
current frame the nearest seed of the voxel v is s. Due to
the motion of v, the Euclidean distance D(v,s) in the next
frame is getting larger. However, we hope that the seed s could
capture the object longer within its search range. That is to find
a non-Euclidean metric to keep the distance between the seed
s and v rather short, so that the nearest seed for v is still s in
subsequent frames. We design a specific anisotropic metric for
each seed according to the motion information around it, and
the seeds are able to capture the motion of different objects
with the aid of anisotropic distance metric.

B. Objective Function

Using the Euclidean metric to calculate the distance between
seeds and voxels is equivalent to having a spherical iso-
distance surface centered at the seed point, and all voxels
intersecting the spherical surface are equidistant from the seed.
In terms of the non-Euclidean metric, the iso-distance surface
becomes an ellipsoidal surface centered at the seed. If the
long axis direction of the ellipsoid could be consistent with the
direction of the motion around the seed, the seed could capture
objects much easier. Motivated by this idea, we modified the
distance based on a metric tensor defined per supervoxel:

D (v, 8i) =Aclle(v) — c(s)||*+
Ao((P(v) — p(s:)) "M (p(v) — P(s4)))-
Here, M, is a positive definite matrix which stretches or
compresses the equidistant sphere according to the motion, so

that the main direction of the deformed equidistant surface
is consistent with the motion direction. In our formulation,

3

update seeds

forward backward

* (position, color, metric) |

| segmentation on GPU

(b)

Fig. 4: The workflow of our method. (a) Frame sequences; (b) forward and backward optical flow fields; (c) seed information,
including position (red points in the figure), color and anisotropic metric; (d) anisotropic supervoxels on GPU; (e) final result.
We optimize the supervoxels by iterating steps (c) and (d) until it converges.

each supervoxel C; is defined by a center s; and a metric
tensor M; € R**3. The seeds S = {s;}_, and metrics M =
{M,}¥_, are themselves variables of the functional:

E({si}i, AM), {Cih))

k
“)
=35 Dl
i=1 veC;
We constrain the matrix M, to be a positive semidefinite
(PSD) matrix, so our objective function is:

min E({s;}i_y, M}y, {Ci}Ey), 5)
st. M, € PSD.

C. Anisotropic Supervoxel Algorithm

We demonstrate the workflow of the anisotropic supervoxel
segmentation in Fig. 4. First, we load video data to GPU,
and calculate the forward and backward optical flow fields,
which are utilized to calculate the anisotropic metric of the
seed. Then we adopt an optimization strategy similar to the
classic Lloyd method [25] to obtain the segmentation result.
The anisotropic supervoxels will be optimized by iterating
following two steps:

1) By fixing the seeds S and metrics M, compute the
supervoxel segmentation by jump flooding.
2) For each supervoxel Cj, update its seed s; to be the
centroid and compute the corresponding metric M.
Suppose we have determined the initial position of seeds, we
first calculate the metrics M for the seeds, then optimize the
segmentation by Lloyd method. In the iteration, the algorithm
computes the anisotropic supervoxel segmentation using the
jump flooding algorithm (Sec. IV-E). After generating new
segmentation, the algorithm updates the seed v(s;) to be the
centroid of superpixel C;, and calculates the metric at new
position. The algorithm will terminate after several iterations.
For the high efficiency, we implement the algorithm on GPU,
and we set the maximum number of iterations iter,,, to be 20.
Computation of metrics M: During the optimization, one
important step is to solve for the non-Euclidean metrics of

r-1 t t+1
*
Vi
vi| 7"
_ L —
n
0 'Y
}’lz v(’)“
Vo

Fig. 5: Metric computation based on optical flow. v is the
position of a seed s;, v1 is its upper right neighbor, and the
vector n; is the optical flow vector at v;. To solve the matrix,
we construct the polynomial by constraining ny to be of the
expected length.

seeds. We prepare the forward and backward motion fields
of all frames using a 2-frame stencil [15] (OpenCV’s GPU
FarnebackOpticalFlow routines) for the computation of met-
rics.

For each seed, the anisotropic distance metric redefines the
distance between the seed and a voxel by neglecting its motion
along the optical flow direction. Thus the iso-distance surface
of the matrix is consistent with the moving direction of the
object. Fig. 5 is an illustration to show how to construct
polynomials to solve the metric based on motion vectors.
Suppose the seed s; is located at vy on frame ¢, and v; is
its upper right neighbor voxel. Assuming that the distance
between voxels adjacent in the =, y and ¢ dimensions is of
unit length, then vector ng is of length v/2. The green vector
n; denotes the optical flow of voxel v;. If the motion vector
is accurate, v can be treated the same as v in the next frame.
For a vector n, we denote the squared anisotropic length to

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

be:
Infa, =n'Myn = b. (6)

Taking vectors ng, n; and n, in Fig. 5 for example, the
3D vector and corresponding deformed squared length are as
follows:

no :(17 1a0)Ta ||n0||Ml = 2a
n; :(iv.j7 I)Tv ||n1||Mi =1, (N
ny =ng + n, Hn2||Mi = (\/5)2 + 12 =3.

where (¢,7) is the optical flow vector of vi. |mi|m, is
constrained to be 1 under the anisotropic metric IM; because
that the length of n; is redefined by neglecting its movement
along the optical flow direction.

We take the non-Euclidean squared length ||na||ng, as one
polynomial equation for computing the metric M;. There are
total 18 vectors like na for seed s; to its neighbors on the
previous and next frames. By constructing 18 equations in the
following:

n, Min, = b,,p=1,2,...,18, (®)

we construct a overdetermined system to solve the Matrix M.
Here, n,, is a 3 x 1 vector, M; is a 3 x 3 positive semidefinite
matrix, and b, is the expected value of the anisotropic length.

In our objective (Eq. (5)), we constrain the matrices M
to be positive semidefinite (PSD). PSD is a strong constraint
for M;, which is not always satisfied in the optimization
process. In our algorithm, we first guarantee that the matrix
is symmetric, denoted as M. For those that do not satisfy
the PSD constraint, we find a closest positive semidefinite
matrix M, as an alternative. Since the matrix l\N/Ii is sym-
metric, there will be 6 unknown variables. We denote it as
vector m = [mq,ma, ms, Mg, m5, mg]. Then transform the
overdetermined system (Eq. (8)) to the following equations to
solve for the 6 variables of symmetric matrix:

Am = b, 9

where A is a 18 x 6 matrix and b is the vector [by, ba, ..., bys].
The overdetermined system can be solved with pseudo-inverse
of A.

Having calculated the symmetric matrix M, for each seed
s;, we check if the matrix is positive semidefinite. For the
computation of the anisotropic metric, it only needs rough
motion information around the seed, and utilizes the optical
flow information of 18 neighbors in forward and backward di-
rections, reducing the risk of influences from some problematic
flow vector at some pixels. In our implementation, we do not
place any seeds at the first or last frame. If the seeds are moved
to the first frame during the optimization, our algorithm can
construct nine polynomials to solve the variables of the matrix.
The matrix M; is usually positive semidefinite in most cases.
We have tested two optical flow methods in experiments:
PyrLKOpticalFlow [5] and FarnebackOpticalFlow [15], and
observed that the results are almost independent of the method
utilized. We adopt the classic FarnebackOpticalFlow method
in our implementation.

(a) (b)

Fig. 6: Toy model of anisotropic distance matrix. (a): 3
sampled frames in a video and the corresponding optical
flow fields. The green masks on football are the superpixels
generated by a seed located on it; (b): the ellipsoid is iso-
distance surface of the seed matrix, the blue line is the optical
flow at the seed, and the green points are voxels of the
supervoxels on sampled frames. The main direction of iso-
distance surface is consistent with the object motion.

Here we demonstrate a toy example of the computation of
anisotropic metrics. Fig. 6(a) shows 3 sampled frames of a
rolling football and its corresponding optical flow fields [3].
The background is also in motion due to the movement of the
camera. The green masks on the football denote a supervoxel
located on it. The red point in figure (b) is the seed, the blue
vector denotes the direction of optical flow at the seed point,
and the yellow ellipsoid represents the iso-distance surface of
anisotropic matrix. It is clear that the main direction of the
iso-distance matrix is consistent with the direction of optical
flow. With the aid of motion, it is easier for the seed to capture
the object in several consecutive frames.

In practice, there may be a few matrices that do not satisfy
the PSD constraint. Experiments show that in the scene where
the motion of object is relatively fast, optical flow cannot
accurately detect the motion of all relative pixels, resulting
in a small percentage of the matrices not satisfying the PSD
constraint. The failure case usually occurs at a pixel that has
similar color and similar motion with its surroundings. Based
on the local consistency of the motion, we calculate the PSD
matrix of the seed’s neighbors that have the same moving
direction, and replace the seed matrix with the average matrix
of its neighbors. The average of several neighboring PSD
matrices is still a PSD matrix. This strategy can solve most of
problematic seed matrices. In the worst case, the optical flow
method cannot provide an accurate motion field for a local
region around the seed, causing the above method failing to
find a good alternative to the matrix of the current seed. In
this case, we calculate the nearest symmetric PSD matrix of
M, [21] by the following transformation. First, we take a
singular value decomposition of M;:

M, =UDU"' (10

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

Algorithm 1: Seed Initialization

Input: An input video I of n voxels, and desired
number of supervoxels k.
Output: The initial positions of k seeds S = {s;}*_;.
1 Split the video into k uniform grids I = {G;}%_,,
taking the centers as the initial position of seeds;
2 Generate an array F' with F; = 0,1 =1,...k;
3 for each seed s; in grid G; do

4 Calculate the gradient information in each grid
9(Gi) = 22 (92(v) + gy (v) + gi(v) +€);
veG;
5 Compute the anisotropic matrix M, of seed s;;
6 Take the difference between M; and identity
matrix m(G;) = ||M; — I||r as the measure of

motion information around the seed;
7 Calculate A; = A\g(G;) + m(G;) to represent the
information richness of objects in the grid;

8 Compute F; =) Aj;
j=1
9 end

10 Sample k£ uniform values between 0 and F}, more
seeds will be located in the grid with rich informati
of objects.

Then we form the diagonal matrix D by taking the ele
wise maximum:

D, = maxz(D,0)

Finally, we get the closest symmetric PSD matrix M

M; =UD,U"'.

Now we can ensure the PSD nature of the seed ma
and the distance between seeds and voxels can be calc
with Eq. (3). In addition, We provide further analysis in the
supplementary document to show the influence of optical flow
on the PSD constraint and the effectiveness of the above
strategies.

D. Seed Initialization

The optimization of anisotropic supervoxel algorithm will
converge to a local optimal solution. Similar to the Lloyd
refinement, the optimization is sensitive to initial conditions.
We observe that initialization consistent with the video content
is able to generate better results than sampling seeds at regular
grids. In the following, we introduce an adaptive initialization
strategy that adjusts the density of seeds based on video
content.

Our initialization strategy is based on the following idea:
placing more seed points around the objects is helpful for
obtaining more accurate segmentation results. First, suppose
we have k uniform grids I = {G;}_, to represent the
video in 3D space, and the centers of grids are treated as
candidate initial seeds. Notice that in our implementation, the
JFA algorithm generates segmentation by propagating seed

Fig. 8: Sample k seeds based on the information richness A;
of each grid. The value of A; is proportional to the grid length.
More seeds are placed in the grid GG; with higher A; value.

information to its neighboring voxels at a fixed step length,
thus if there is no seed in a large area, the voxels in that area
may not receive any seed information. Considering this, we
use the following adaptive scheme that adjusts the candidate
seeds according to the information richness in each grid.

The information richness of a grid contains two aspects:
the gradient information and the motion information. For
the gradient information, usually the gradients around the
object in = and y directions are more obvious than the
background; and the gradient of moving objects in ¢ direction
shows the trajectory of the motion. To quickly generate a
good initialization, we place more seeds in the grid which
contains rich information. As described in Algorithm 1, we
first calculate the gradient information g(G;) in each grid,
where the g, (v) is the gradient of pixel v in z direction, and
€ is an empirical constant value, preventing the gradient in
the grid from being zero. In addition, we measure the motion
information at the seed by calculating its anisotropic matrix
M,. We denote the difference between M, and the identity
matrix as m(G;) = ||M;—I||r, and it represents the amplitude
of movement. We use 4; = Ag(G;) + m(G;) to represent
the information richness of objects in each grid. Then, we
generate an array F' with k values, with each element storing
the grid information, i.e., F; = 23:1 Aj. At last, we sample

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

(€9)

() ®

Fig. 9: Procedure of generating Voronoi tessellation on image by 1+JFA with halving step length. (a): original image; (b): initial
position of seeds; (c)-(i): flooding results by 7 rounds with step length {1,18,9,5,3,2,1}; (j): superpixels with boundaries.

k uniform values between 0 and F}, as shown in Fig. 8. More
seeds are located in the grids with richer object information.
In our experiments, we set ¢ = 0.1 and A = 1.

We show the illustration of seed initialization in Fig. 7.
Given the video of hummingbirds, we split the video into &
uniform grids, then calculate the object information in each
grid. The object information stored in A; is normalized to
0-255, and it is taken as the value of the green mask in corre-
sponding grid. Fig. 7(c) shows the first frame covered with the
green mask, the area with obvious green is the trajectory of
flying hummingbirds. Fig. 7(b) shows supervoxels generated
by the SLIC method with uniform initialization, and Fig. 7(d)
shows the supervoxels based on our seed initialization strategy.
It can be clearly observed that our algorithm places more seeds
in the motion area, thus is able to achieve more accurate object
segmentation results.

E. Supervoxel Generation on GPU

As introduced in the preliminaries, JFA can generate a good
approximation of Voronoi tessellation on GPU. Integrating
the JFA framework into Lloyd’s iteration gives a centroidal
Voronoi tessellation (CVT). There are several variants [34] of
JFA, among them 1+JFA gives best results with smallest error
rate, which performs a pass with step length of 1 before the
standard JFA.

Recall that the classic SLIC method [1] clusters pixels
in a 5-dimensional Euclidean space combining colors and
positions, and iteratively updates the cluster center. First, we
implement the SLIC for image superpixels using 1+JFA frame-
work. In SLIC, the local search range of each seed is 2L x 2L,
we set the maximum step length of JFA to be L, where
L = \/n/k. Here, n is the total number of pixels in image and
k is the desired number of superpixels. By performing 1+JFA
algorithm once, we get a Voronoi tessellation using Euclidean
distance metric. The maximum step length is L, and the first
step length is 1. In Fig. 9, given about 100 seeds, the procedure
of seeds flooding information is illustrated (in this example,

Algorithm 2: Anisotropic Supervoxel Generation

Input: An input video I of n voxels, the desired
number of supervoxels k, and the maximum
number of iterations iter,,.

Output: k-partition of the video 1.

Load video data to the GPU memory;

Compute the forward and backward optical flow field

of the video;

Initialize the seeds S = {s;}"_, according to the

strategy in Algorithm 1;

4 Calculate the metrics M = {M;}¥_, of seeds;

5 Set iter = 0;

¢ while iter < iter,, do

7

8

SR

w

Load S and M of seeds to GPU memory;

Compute the supervoxel segmentation using jump
flooding algorithm. (Sec. IV-E);

9 for each supervoxel C; do

10 Update the seed vector v(s;) to be the centroid
v(C;) of the supervoxel;

11 Calculate the metric M; at the new position of
seed s;. (Sec. IV-C)

12 end

13 end

L = 18). The second image in the first row shows the initial
position of seeds, then followed by 7 rounds of flooding with
step lengths {1,18,9,5,3,2, 1}, respectively. The last image
shows the boundary adherence of superpixels. These results
show that the Voronoi tessellation implemented by the jump
flooding framework have very good performance in terms of
segment accuracy and boundary adherence.

Next, we extend JFA to video oversegmentation, where
every voxel looks for its (maximum) 26 neighbors with a
certain step length to choose its nearest seed in 3D space on
each round, using L = {¢/n/k. We load seeds S and their
metrics M into GPU memory in advance, then use the ping-

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

Block i+1
A

Block i Block i+2

Fig. 10: Streaming GPU-based anisotropic supe;
long videos. Our method loads one block into memq
and places k seeds for the over-segmentation.

pong buffer alternating as input and output in the
flooding with different step lengths. During the jun
procedure, we change the distance measure between seeds and
voxels to the metric in Eq. (3) to better catch the motion of
objects. The parameter), is related to L, and A, is used to
adjust the relative importance between color and position. In
Fig. 3, the results of our method are anisotropic supervoxels
on a video, and the results of SLIC are isotropic supervoxels
(which adopts Euclidean distance metric in Eq. (1)). We use
the same initialization of seeds in these two methods. The
results clearly show that, using the non-Euclidean distance
metric consistent with the motion direction is more beneficial
to the detection of objects, since the nearest seeds of those
voxels in motion tend to remain the same for longer time.
So far we have discussed the computation of anistropic
metric, seed initialization and supervoxel generation on GPU.
We summarize the detailed steps of this method in Algorithm
2. The algorithm optimizes the segmentation by iterating
through steps from #7 to #11. For one iteration, it computes
segmentation with given seeds using the JFA framework on
GPU, and calculates the new position and anisotropic matrix
of the seed. Then the algorithm uses new seed information for
next iteration until the termination condition is reached.

FE. Streaming GPU-based Anisotropic Supervoxel

Our algorithm is able to segment objects with the aid of
motion information, while for long videos that cannot be
loaded into memory at once, the algorithm should be extended
to a streaming version. We use a simple strategy to deal with
long videos: the more frames coming, the more seed points
should be used. As illustrated in Fig. 10, we set the p frames
of video as a block i, place k seeds to segment it, and only
load a block in memory at once. With a new block coming in,
the corresponding number of new seeds are placed. In order
to guarantee the smooth transition between blocks, we divide
each block 4 into three parts, with its first 1/3 part overlapping
with block ¢ — 1 and its third 1/3 part overlapping with block
1+ 1. For each new block i+ 1, its first 1/3 part is already in
the memory, so we only need to load 2p/3 new frames into
memory. We add new seeds to keep the number of seeds to
be k for block 7 + 1. For every block, we use Algorithm 2 to
generate the anisotropic supervoxels.

09— 20

-+~ Isotropic+Uniform
~+- Anisotropict+Uniform
15 - Anisotropic+Adaptive

0.8

0.7

SA3D
UE3D

0.6

0 1000 20 0
Number of ¢

1000 2000 3000 4000
Number of sunervoxels

25

Z Mfww*"
a
9
m

I

1000 20 0 1000 2000 3000 4000
Number of ¢ Number of supervoxels

Fig. 11: Ablation experiments on the SegTrackv2 dataset.
Isotropic+Uniform is the GPU implementation of the
isotropic supervoxel (SLIC) method. Anisotropic+Uniform is
anisotropic supervoxel method with same uniform initializa-
tion, and Anisotropic+Adaptive is the anisotropic supervoxels
with the proposed seed initialization strategy.

V. EXPERIMENTS

We implemented the algorithm in C++, and compared it
with other algorithms on a PC with Intel Core 19-9920X,
NVIDIA GeForce RTX 2080 SUPER, and 64 GB RAM
running on Linux. We use OpenGL Shading Language (GLSL)
to implement the JFA framework on the GPU. We compare
our method with several representative methods, including
NCut [17], [18], [39], MeanShift [29], GB [16], GBH [20],
streamGBH [43], SWA [35], [36], [10], TSP [8], SLIC [1],
qd-CSS [44] and FCSS [46]. We name our method as GPU-
AS (for GPU-based Anisotropic Supervoxels) algorithm, and
the streaming version as streamGPU-AS algorithm.

A. Evaluation Benchmark

We evaluate the performance based on the LIBSVX4.0
benchmark [42] with multiple performance metrics, including
segmentation accuracy, time cost and memory usage.

Datasets: The performances of representative algorithms
are evaluated on the following datasets: SegTrackv2 [23], Buf-
faloXiph [9], BVDS [40], [19] and CamVid [6]. SegTrackv2
and BuffaloXiph datasets have frame-by-frame groundtruth an-
notations, and other datasets provide only sparse annotations.
In our experiments, except for NCut (Matlab) and TSP (Matlab
with MEX), all other methods are implemented in C or C++.
Furthermore, NCut runs with 8 threads in a resized resolution
of 240 x 160 down-sampled from the original video. In Fig.
12, we evaluate thirteen supervoxel methods in the range of
0 to 4000 supervoxels per-video on SegTrackv2 dataset. Our
algorithm achieves good balance on all metrics, especially on
UE3D, BRD, EV, and time metrics. For the performance on
other datasets, please refer to the supplementary document.

Evaluation metrics: The LIBSVX 4.0 benchmark [42]
propose multiple standard metrics to evaluate the performance

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

n 1000 200¢

GB
-o-GBH
-+ stream'
-+-SWA
-=-MeanS
- NCut
15 TSP

GB
-o-GBH

SA3D
UE3D

—+streamGE

-4-SWA
/\(‘ -8~ MeanShi
~+NCut
~-TSP

0 1000 2000 0 1000 200C
Number of st Number of st
(a) 3D segmentation accuracv (h) 3D nnder-ceomentation error

2000 120 rome—e—e—eg—e—e—

100
~4=SWA
-=-MeanShift
<+ NCut
~-TSP

1500
80

1000 - 60

40

TIME(Seconds)
TIME(Seconds)

w
2
g
!
i
o
8

0
0 500 0 500
Number Number ¢

(e) Runtime with respect to k (f) Runtime within 120 seconds

BRD

GB
~e-GBH

== streamGBH
[-SWA
~==MeanShift
~*=NCut

/ -e-GBH FCSS
——streamGBH| - qd-CSS
4=SWA

-4-GPU-AS
streamFCSS
streamGPU-AS

-=~MeanShift

-+-NCut
--TSP

"o 1000 2000 0 1000 2000 3000 4000
Number of st Number of supervoxels

(c) Romindarv recall distance (d) Explained variance

20

3

~ B ~
8 ->-GBH /M
s ——stream <}
>~ -4-SWA =
c‘ - MeanS M 2
o ~4-NCut O
2 10 —+-TSP 2
53] o—e—o—o—ooooo 5]
= . =
2 jecccssssnsnsncannna
> > =
@) O 2

00— 0

0 500 0 500 1000 1500 2000
Number o Number of supervoxels

(g) Peak memory (h) Peak memory within 3 GB

Fig. 12: Performance of representative methods on the SegTrackv2 dataset. Our algorithm has high performance on UE3D,
BRD and EV metrics, and achieves a good balance between segmentation quality and efficiency.The top row is the magnified
performance curves. We report the runtime and peak memory at a video with 414 x 352 x 51 voxels, our method takes about
2 seconds, requires 600 MB for CPU memory, and 1GB for GPU memory.

of video over-segmentation based on given hu

such as 3D segmentation accuracy (SA3D),

mentation error (UE3D), boundary recall d

explained variation (EV) and label consisten

measures the fraction of groundtruth segments

detected by supervoxels. UE3D measures the fr

that exceed the boundary of groundtruth w

voxels are mapped on it. BRD directly eval

the groundtruth boundaries are successfully 1

supervoxels. EV is proposed to measure the c«

supervoxels. LC measures the ability of supei

objects given groundtruth flows. SA3D and
complementary indicators of supervoxel accuiacy. rui we
values of SA3D, EV and LC, the higher the better, while for
UE3D and BRD, the lower the better. The video supervoxel is
often used as a pre-processing technique, thus the efficiency
on space and time is important. We also evaluate the runtime
and peak memory cost of these methods.

B. Performance

We summarize the performance of our method and the
representative methods on SegTrackv2 dataset in this section.
The performance on other three datasets is summarized in
supplementary document.

Ablation experiments: Compared with the classic isotropic
supervoxel method SLIC, our method improves the segmen-
tation quality by proposing the anisotropic distance metric
and seed initialization strategy. We clarify the effectiveness

GB
-6-GBH
—+=streamGBH
—4-SWA
—8—MeanShift
~#=NCut
——TSP
—o-SLIC

FCSS

qd-CSS
—4—GPU-AS

LC

"o 1000 2000 3000 4000
Number of supervoxels

(a) Label consistency on the MiddleburyFlow dataset.

= ==

T V"%
= |

=2
| 9=

Bl

TSP

FCSS

GPU-AS
(b) Example of label consistency of three methods.

Fig. 13: Label consistency of supervoxels. Figure (a) shows
the LC comparison on MiddleburyFlow dataset. TSP performs
best, while our method performs better than other seed-based
methods (qd-CSS and FCSS), and achieves a good balance
among quality and processing efficiency. In Figure (b), the
missed or wrong detections are circled in black.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

Frame GB(0.885)

TSP(0.814)

FCSS(0.910)

SLIC(0.867)

(a) Supervoxels with SA3D value for a video with continuous object motion

SA3D
UE3D

o 1000 2000 0 1000 2000
Number of st Number of st

BRD

0 1000
Number of su

-+ GB
-=-GBH
—+streamG
~4=SWA
-&-MeanSh
~+NCut
-+~ TSP

2000

EV

GPU-AS(0.915)

-o-GBH
——streamGBH|
-4-SWA
-a-MeanShift
—+NCut

TSP

—-SLIC
FCSS
qd-CSS

-+ ASG
streamFCSS
streamASG

1000 2000

3000 4000

Number of supervoxels

(b) Supervoxel performance on selected videos with continuous motion

Fig. 14: Analysis of anisotropic supervoxels. Our algorithm achieves the best performance on video (a) containing continuous
motion of objects. We select some videos with smooth motion from SegTrackv2 dataset. The results summarized in (b) show

that our method performs the best for these videos.

of the algorithm in Fig. 11. We first show the performance of
Isotropic+Uniform, which is the GPU implementation of SLIC
using JFA framework. We also show the anisotropic supervox-
els with the same uniform initialization, which is denoted as
Anisotropic+Uniform. With the same uniform initialization,
anisotropic supervoxels achieve higher segmentation accuracy
than isotropic supervoxels. The comparison also shows the
improvement by our initialization strategy. Our method with
adaptive seed initialization, denoted as Anisotropic+Adaptive,
further improves the quality of segmentation.

Comparison with anisotropic supervoxels: The previous
methods such as FCSS, qd-CSS utilize the geodesic centroidal
Voronoi tessellation to generate video over-segmentation,
which also reflect the anisotropic measurement in the clus-
tering process for the seed. The results in Fig. 12 show that
these anisotropic methods can also achieve relatively good
performance. However, these previous anisotropic methods do
not consider the object motion and cannot be performed on
GPU. As a comparison, our algorithm directly uses the motion
field to implement the geometric anisotropy of the model,
which makes our method particularly suitable for the seg-
mentation of videos containing obvious motions. Furthermore,
our anisotropic supervoxel algorithm is the only method that
can be implemented in parallel on GPU, which makes our
algorithm much more time efficient than existing algorithms.

Comparison on SegTrackv2 dataset: In Fig. 12, we show
the performance of thirteen methods on SegTrackv2 dataset.
The top row is the magnified details of seven representative
methods. (1) For SA3D metric, the performance of GPU-AS
gets better as the number of supervoxel increases. GPU-AS
sets a fixed search range for every seed, and takes a simple
strategy to adjust the grid-like seed initialization according to
information richness. Other seed-based algorithms FCSS and
qd-CSS adopt the K-means++ algorithm [2] to decide initial

Vides Stage | 1 1ad (CPU) | Load (GPU) | Optical flow | JFA | Total
Parachute 0.51 0.17 0.26 1.21 | 2.15
Girl 045 0.06 0.12 0.73 | 136
Bird 0.82 0.47 0.71 373 | 5.73

TABLE I: Run time (seconds) of each stage of the algorithm
with k& = 1000, on videos in SegTrackv2 dataset. The video
resolutions are 414 x 352 x 51, 400 x 320 x 21, and 640 x
360 x 98, respectively.

seed position, which is able to generate better initialization
for seeds, however, this strategy is very time consuming.
Compared with them, our initialization is relatively even and
this is required for the jump flooding procedure on GPU. If
there is no seed placed in a large area, some voxels will not
receive any seed information during the JFA process, which
is not conducive to segmenting objects. (2) UE3D imposes a
penalty when supervoxels leak on groundtruth segments. TSP,
qd-CSS, FCSS, SLIC and ours have the best performance on
UE3D. (3) The performance on EV shows that our algorithm
is sensitive to color variation, and the color homogeneity in
each supervoxel is high. (4) Our algorithm achieves the best
performance on BRD than other methods.

Comparison on efficiency: In Fig. 12, we evaluate the run
time and peak memory on a typical video with 414 x 352 x 51
voxels. Our algorithm requires about 600 MB for CPU mem-
ory and 1 GB for GPU memory, which can be met by
most computers. The GPU memory is mainly used for JFA.
For time performance, our algorithm is able to generate the
segmentation for the video of 51 frames in about 2 seconds,
and the computation time is not affected by the number
of supervoxels, which is not satisfied by other seed-based
methods FCSS and qd-CSS. For the graph-based methods,
such as GBH, streamGBH and SWA, they take more than
10 minutes to process the video. The TSP uses a generative

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

Datasct Method | B 1161 | GBH [20] | streamGBH [43] | MeanShift [29] | SWA [10] | TSP [8] | ECSS [46] | qd-CSS [44] | SLIC [1] | GPU-AS
SegTrackv2 140.21 887.52 1103.58 128.63 1309.43 908.86 92.27 90.38 2.04 2.68
BuffaloXiph 125.97 805.74 979.63 116.95 1198.54 885.06 83.03 75.14 1.91 2.02
BVDS 151.84 896.36 1125.57 131.04 1342.93 921.01 105.23 98.07 2.12 3.17
CamVid 70.73 462.95 513.34 58.22 620.89 440.73 51.73 42.66 1.12 2.58
TABLE II: Average run time (seconds) of different methods on datasets with 1000 supervoxels
Method .
Obj GB [16] GBH [20] MeanShift [29] TSP [8] FCSS [46] qd-CSS [44] SLIC [1] GPU-AS
Aeroplane 0.862, 0.973 | 0.850, 0.963 0.806, 0.961 0.860, 0.970 | 0.875,0.971 | 0.874, 0.971 | 0.842, 0.963 | 0.881, 0.974
Bird 0.802, 0.979 | 0.602, 0.975 0.742, 0.966 0.803, 0.976 | 0.795, 0.980 | 0.743, 0.973 | 0.745,0.978 | 0.774, 0.977
Boat 0.842, 0.962 | 0.740, 0.956 0.834, 0.965 0.846, 0.966 | 0.805, 0.953 | 0.833, 0.963 | 0.783, 0.943 | 0.841, 0.958
Car 0.826, 0.917 | 0.768, 0.896 0.830, 0.911 0.856, 0.919 | 0.842, 0915 | 0.850,0.916 | 0.845, 0916 | 0.858, 0.924
Cat 0.432, 0.908 | 0.543, 0.954 0.646, 0.935 0.684, 0.954 | 0.693,0.943 | 0.715, 0.956 | 0.618, 0.943 | 0.694, 0.951
Cow 0.820, 0.950 | 0.801, 0.952 0.785, 0.952 0.826, 0.958 | 0.831, 0.960 | 0.830, 0.960 | 0.815, 0.953 | 0.820, 0.956
Dog 0.822, 0.929 | 0.823, 0.938 0.778, 0.934 0.821, 0.941 | 0.823,0.942 | 0.825, 0.951 | 0.805, 0.941 | 0.827, 0.946
Horse 0.757, 0.962 | 0.763, 0.959 0.726, 0.936 0.758, 0.956 | 0.760, 0.955 | 0.752, 0.958 | 0.739, 0.957 | 0.760, 0.958
Motorbike 0.682, 0.912 | 0.630, 0.881 0.665, 0.907 0.730, 0.932 | 0.707, 0.911 | 0.693, 0.912 | 0.683, 0.911 | 0.703, 0.914
Train 0.858, 0.952 | 0.613, 0.907 0.856, 0.963 0.871, 0.968 | 0.840, 0.959 | 0.865, 0.962 | 0.805, 0.958 | 0.853, 0.963
Average 0.770, 0.944 | 0.713, 0.938 0.766, 0.943 0.805, 0.954 | 0.797, 0.948 | 0.798, 0.952 | 0.768, 0.946 | 0.801, 0.952

TABLE III: F measure and Accuracy measure of foreground propagation on YouTube-Objects based on different supervoxel
methods. For each category, we highlight the method with the best result in bold. The last row shows the average performance

over ten categories, and we highlight the top three methods.

Obj Method | (i camGBH [43] | streamFCSS [46] | streamGPU-AS
Aeroplane 0.824, 0.961 0.861, 0.967 0.881, 0.972
Bird 0.768,0.976 | 0.730,0.969 | 0.724,0.976
Boat 0.734,0951 | 0.820,0961 | 0.835,0.959
Car 0.798,0.907 | 0.864,0922 | 0.853,0.920
Cat 0.670, 0.951 0.580,0.944 | 0.565, 0.953
Cow 0.790, 0.948 | 0.785,0.948 | 0.751,0.950
Dog 0.663,0.920 | 0.803,0.937 | 0.796, 0.940
Horse 0.674,0.947 | 0.734,0953 | 0.776, 0.962
Motorbike 0.658,0.913 | 0.675,0903 | 0.657,0.892
Train 0.764,0.953 | 0.820,0953 | 0.832, 0.952
Average 0.734, 0942|0767, 0.946__| 0.767, 0.948

TABLE IV: F measure and Accuracy measure of foreground
propagation on YouTube-Objects based on streaming super-
voxels. The last row shows that the streamGPU-AS has the
best average performance over ten categories.

probabilistic model to propagate superpixels in a streaming
fashion, which takes much longer time with more supervoxels.
In Table I we show run time of each stage on three videos.
Our algorithm first loads video data into CPU, then passes it to
the GPU and computes the optical flow information. The JFA
stage includes Lloyd iteration and matrix solving. This stage
takes up half of the total time. In Table II we test the average
running time of representative methods on four datasets. Our
method has huge advantage on processing efficiency.
Comparison on label consistency: Label consistency
(LC) measures how well supervoxels track the objects given
groundtruth flows. In Fig. 13(a), we show the LC comparisons
on the MiddleburyFlow dataset [3]. TSP performs best, while
GPU-AS achieves a good balance among quality metrics
and running time. GPU-AS outperforms other seed-based
algorithms such as SLIC, qd-CSS and FCSS due to its good
object tracking capability. Furthermore, we show an example
comparison of label consistency between TSP, FCSS and our
method in Fig. 13(b). The colored regions are supervoxels
that successfully detect the objects according to the definition

of the SA3D metric. From the results we can see that, our
algorithm shows temporal consistency between frames, and is
able to detect more details of objects. The TSP and FCSS
methods are not sensitive to the color variation, thus fail to
detect the arms of the skater. In addition, we provide more
comparison on the LC metric in the supplementary document.

C. Discussion

The anisotropic distance metrics help the seeds detect the
object more accurately, as shown in Fig. 14 (a), our method
achieves the highest segmentation accuracy for the moving
object. The seeds located on the object and the background
have anisotropic distance metrics consistent with different
motion directions, which are helpful for segmenting the object
more accurately. For these videos without obvious object or
background motion, our method performs average. We calcu-
lated the average pixel motion (apm) value for the foreground
objects in a video. The average apm value over all videos
of SegTrackv2 dataset is 2.85. We select some videos with
continuous motion from the dataset, which has average apm
value 3.24. As shown in Fig. 14(b), our GPU-AS method
performs best for these videos according to the performance
on comprehensive evaluation.

D. Application

Supervoxels are designed to reduce the computational
complexity for video processing tasks. To further show the
advantage of our algorithm, we apply the supervoxels to
solve practical problems in computer vision. In the following
experiment, we take supervoxel results generated by different
methods as input for the foreground propagation application,
and evaluate the performance.

The application [22] propagates foreground object regions
in the video. Given an initial frame with manual annotation
for the foreground object, it propagates the foreground region

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

TSP
0.729
0.939

SLIC
0.757
0.961

FCSS
0.806
0.963

Ours
0.813
0.964

Fig. 15: Foreground propagation example of the representative
methods: TSP, SLIC, FCSS and our GPU-AS method, with
F measure and Accuracy measure. The first column shows
the first frame of the video with manual annotated mask. The
mislabeled regions are circled in black. Our method performs
best on F' and accuracy metrics.

to the remainder of frames, by using supervoxels to guide its
estimates towards long-range coherent regions. We estimate
representative supervoxel methods (GB, GBH, streamGBH,
MeanShift, TSP, FCSS, qd-CSS, SLIC) and our method GPU-
AS on the Youtube-Objects dataset [31] (126 videos with 10
object categories) with the groundtruth of foreground objects.
NCut and SWA are not compared because of their high
computational cost and huge memory cost for long videos.
We evaluate the results using two measures: F measure and
accuracy measure. The F measure = 2- PR/(P + R), where
P is precision and R is recall. The values of F measure and
accuracy measure range in [0,1], and the larger values mean
better results.

The average F measure and accuracy measure per class
on YouTube-Objects dataset are illustrated in Table III and
Table IV. We can see that TSP, qd-CSS, FCSS and our method
GPU-AS all demonstrate high performance averagely over
ten classes. The value of average F measure and accuracy
measure using the SLIC supervoxels is lower than using
our supervoxels because the isotropic supervoxels have low
segmentation accuracy and boundary adherence. Table IV
shows the performance of foreground propagation based on
three streaming supervoxel methods, our method has high
performance averagely over ten categories. Fig. 15 shows
foreground propagation results of an example video. The
images in the first column are first frames, foreground objects
are manual annotated with blue masks. We show foreground
propagation results of two frames in the second and third
columns. The mislabeled regions are circled in black. Some
regions of the object are not successfully detected, and some
regions on the background are mislabeled as foreground. We
give the values of F measure and accuracy measure below
each method. The result based on SLIC has low accuracy in
narrow areas, such as the legs of horse in the video. Using the

supervoxels of our algorithm, the application [22] achieves the
highest quality.

VI. CONCLUSION

In this paper, we present a GPU-based anisotropic su-
pervoxel generation algorithm which is fast and can obtain
video over-segmentation with high quality results. In order
for the supervoxels to better capture the motion of objects,
we design a new anisotropic metric for each supervoxel to
calculate the distance between the seeds and the voxels, and
adopt an initialization strategy that is consistent with the
video content. The energy minimization in our algorithm is
a Lloyd-like optimization with several iterations, where in
each iteration, given the position and metric of seeds, our
algorithm computes an anisotropic Voronoi tessellation by
extending the jump flooding framework on GPU. We evaluate
our algorithm on four datasets and apply it in a practical
application. Experimental results show that our method has
high performances in terms of SA3D, UE3D, BRD, and EV
metrics on different datasets, and achieves good balance on
segmentation quality and efficiency. Our method generates
high quality segmentation especially for videos containing
moving objects. The video application shows that our method
works well when applying supervoxels to solve practical
problems. The parallel implementation with JFA makes our
algorithm much more efficient in space and time than the state-
of-the-art methods.

The proposed method is very efficient on image and video
over-segmentation, which is practical for video applications
with large time cost. In the future, we consider applying our
method to more applications that require fast segmentation on
images, videos or point clouds.

VII. ACKNOWLEDGEMENTS

Zhonggui Chen was supported by the National Natural
Science Foundation of China (Nos. 61972327, 61872308) and
the Open Project Program of State Key Laboratory of Virtual
Reality Technology and Systems, Beihang University (No.
VRLAB2021B01). Yong-Jin Liu was supported by the Na-
tional Natural Science Foundation of China (No. 61725204).
Junfeng Yao was supported by the National Natural Science
Foundation of China (No. 62072388), Collaborative Project
Fund of Fuzhou-Xiamen-Quanzhou Innovation Zone (No.
3502ZCQXT202001), the industry guidance project founda-
tion of science technology bureau of Fujian province in
2020 (No. 2020H0047), the natural science foundation of
science technology bureau of Fujian province in 2019 (No.
2019J01601), and the creation fund project of science tech-
nology bureau of Fujian province in 2019 (No. 2019C0021).

REFERENCES

[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal
Fua, and Sabine Siisstrunk. SLIC superpixels compared to state-of-the-art
superpixel methods. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(11):2274-2282, 2012.

[2] David Arthur and Sergei Vassilvitskii. K-means++: the advantages
of careful seeding. In Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1027-1035. Society for
Industrial and Applied Mathematics, 2007.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

[3] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black,
and Richard Szeliski. A database and evaluation methodology for optical
flow. International Journal of Computer Vision, 92(1):1-31, 2011.

[4] Rita Borgo, Min Chen, Ben Daubney, Edward Grundy, Gunther Hei-
demann, Benjamin Hoferlin, Markus Hoferlin, Heike Leitte, Daniel
Weiskopf, and Xianghua Xie. State of the art report on video-based graph-
ics and video visualization. In Computer Graphics Forum, volume 31,
pages 2450-2477. Wiley Online Library, 2012.

[5] Jean-Yves Bouguet et al. Pyramidal implementation of the affine Lucas
Kanade feature tracker description of the algorithm. Intel Corporation,
5(1-10):4, 2001.

[6] Gabriel J Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla.
Segmentation and recognition using structure from motion point clouds.
In European Conference on Computer Vision, pages 44-57. Springer,
2008.

[7] Yiqi Cai and Xiaohu Guo. Anisotropic superpixel generation based on
Mabhalanobis distance. In Computer Graphics Forum, volume 35, pages
199-207. Wiley Online Library, 2016.

[8] Jason Chang, Donglai Wei, and John W Fisher. A video representation
using temporal superpixels. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2051-2058, 2013.

[9] Albert YC Chen and Jason J Corso. Propagating multi-class pixel labels
throughout video frames. In 2010 Western New York Image Processing
Workshop, pages 14-17. IEEE, 2010.

[10] Jason J Corso, Eitan Sharon, Shishir Dube, Suzie El-Saden, Usha Sinha,
and Alan Yuille. Efficient multilevel brain tumor segmentation with
integrated Bayesian model classification. /EEE Transactions on Medical
Imaging, 27(5):629-640, 2008.

[11] Xiao Dong, Zhonggui Chen, Junfeng Yao, and Xiaohu Guo. Superpixel
generation by agglomerative clustering with quadratic error minimization.
In Computer Graphics Forum, volume 38, pages 405—416. Wiley Online
Library, 2019.

[12] Xingping Dong, Jianbing Shen, Ling Shao, and Luc Van Gool. Sub-
markov random walk for image segmentation. [EEE Transactions on
Image Processing, 25(2):516-527, 2015.

[13] Xingping Dong, Jianbing Shen, Ling Shao, and Ming-Hsuan Yang.
Interactive cosegmentation using global and local energy optimization.
IEEE Transactions on Image Processing, 24(11):3966-3977, 2015.

[14] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal Voronoi
tessellations: applications and algorithms. SIAM review, 41(4):637-676,
1999.

[15] Gunnar Farnebick. Two-frame motion estimation based on polynomial
expansion. In Scandinavian Conference on Image Analysis, pages 363—
370. Springer, 2003.

[16] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-
based image segmentation. International Journal of Computer Vision,
59(2):167-181, 2004.

[17] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik.
Spectral grouping using the Nystrom method. [EEE Transactions on
Pattern Analysis and Machine Intelligence, 26(2):214-225, 2004.

[18] Charless Fowlkes, Serge Belongie, and Jitendra Malik. Efficient spa-
tiotemporal grouping using the Nystrom method. In Proceedings of the
2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. CVPR 2001, volume 1, pages I-1. IEEE, 2001.

[19] Fabio Galasso, Naveen Shankar Nagaraja, Tatiana Jimenez Cardenas,
Thomas Brox, and Bernt Schiele. A unified video segmentation bench-
mark: annotation, metrics and analysis. In Proceedings of the IEEE
International Conference on Computer Vision, pages 3527-3534, 2013.

[20] Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan Essa. Efficient
hierarchical graph-based video segmentation. In 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages
2141-2148. IEEE, 2010.

[21] Nicholas J Higham. Computing the nearest correlation matrix—a
problem from finance. IMA Journal of Numerical Analysis, 22(3):329—
343, 2002.

[22] Suyog Dutt Jain and Kristen Grauman. Supervoxel-consistent fore-
ground propagation in video. In European Conference on Computer
Vision, pages 656-671. Springer, 2014.

[23] Fuxin Li, Taeyoung Kim, Ahmad Humayun, David Tsai, and James M
Rehg. Video segmentation by tracking many figure-ground segments. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 2192-2199, 2013.

[24] Yong-Jin Liu, Minjing Yu, Bing-Jun Li, and Ying He. Intrinsic manifold
SLIC: a simple and efficient method for computing content-sensitive
superpixels. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 40(3):653-666, 2017.

[25] Stuart Lloyd. Least squares quantization in PCM. [EEE Transactions
on Information Theory, 28(2):129-137, 1982.

[26] Dongyang Ma, Yuanfeng Zhou, Shiqing Xin, and Wenping Wang.
Convex and compact superpixels by edge-constrained centroidal power
diagram. [EEE Transactions on Image Processing, 30:1825-1839, 2020.

[27] Dan Oneata, Jérome Revaud, Jakob Verbeek, and Cordelia Schmid.
Spatio-temporal object detection proposals. In European Conference on
Computer Vision, pages 737-752. Springer, 2014.

[28] Sylvain Paris. Edge-preserving smoothing and mean-shift segmentation
of video streams. In European Conference on Computer Vision, pages
460-473. Springer, 2008.

[29] Sylvain Paris and Frédo Durand. A topological approach to hierarchical
segmentation using mean shift. In 2007 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1-8. IEEE, 2007.

[30] Shimon Pertsel, Ohad Meitav, Eli Pozniansky, and Erez Galil. Digital
camera with selectively increased dynamic range by control of parameters
during image acquisition, Apr. 1 2014. US Patent 8,687,087.

[31] Alessandro Prest, Christian Leistner, Javier Civera, Cordelia Schmid, and
Vittorio Ferrari. Learning object class detectors from weakly annotated
video. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 3282-3289. IEEE, 2012.

[32] Matthias Reso, Jorn Jachalsky, Bodo Rosenhahn, and Jorn Ostermann.
Temporally consistent superpixels. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 385-392, 2013.

[33] Guodong Rong and Tiow-Seng Tan. Jump flooding in GPU with
applications to Voronoi diagram and distance transform. In Proceedings
of the 2006 Symposium on Interactive 3D Graphics and Games, pages
109-116. ACM, 2006.

[34] Guodong Rong and Tiow-Seng Tan. Variants of jump flooding algorithm
for computing discrete Voronoi diagrams. In 4th International Symposium
on Voronoi Diagrams in Science and Engineering (ISVD 2007), pages
176-181. IEEE, 2007.

[35] Eitan Sharon, Achi Brandt, and Ronen Basri. Fast multiscale image
segmentation. In Proceedings IEEE Conference on Computer Vision and
Pattern Recognition. CVPR 2000 (Cat. No. PR00662), volume 1, pages
70-77. IEEE, 2000.

[36] Eitan Sharon, Meirav Galun, Dahlia Sharon, Ronen Basri, and Achi
Brandt. Hierarchy and adaptivity in segmenting visual scenes. Nature,
442(7104):810, 2006.

[37] Jianbing Shen, Yunfan Du, Wenguan Wang, and Xuelong Li. Lazy
random walks for superpixel segmentation. IEEE Transactions on Image
Processing, 23(4):1451-1462, 2014.

[38] Jianbing Shen, Xiaopeng Hao, Zhiyuan Liang, Yu Liu, Wenguan Wang,
and Ling Shao. Real-time superpixel segmentation by dbscan clustering
algorithm. [EEE transactions on image processing, 25(12):5933-5942,
2016.

[39] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
Departmental Papers (CIS), page 107, 2000.

[40] Patrik Sundberg, Thomas Brox, Michael Maire, Pablo Arbeldez, and
Jitendra Malik. Occlusion boundary detection and figure/ground assign-
ment from optical flow. In 2011 IEEE Conference on Computer Vision
and Pattern Recognition, pages 2233-2240. IEEE, 2011.

[41] Peng Wang, Gang Zeng, Rui Gan, Jingdong Wang, and Hongbin
Zha. Structure-sensitive superpixels via geodesic distance. International
Jjournal of computer vision, 103(1):1-21, 2013.

[42] Chenliang Xu and Jason J Corso. Libsvx: A supervoxel library and
benchmark for early video processing. International Journal of Computer
Vision, 119(3):272-290, 2016.

[43] Chenliang Xu, Caiming Xiong, and Jason J Corso. Streaming hierar-
chical video segmentation. In European Conference on Computer Vision,
pages 626—639. Springer, 2012.

[44] Zipeng Ye, Ran Yi, Minjing Yu, Yong-Jin Liu, and Ying He. Fast
computation of content-sensitive superpixels and supervoxels using g-
distances. In Proceedings of the IEEE International Conference on
Computer Vision, pages 3770-3779, 2019.

[45] Ran Yi, Yong-Jin Liu, and Yu-Kun Lai. Content-sensitive supervoxels
via uniform tessellations on video manifolds. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 646—655,
2018.

[46] Ran Yi, Zipeng Ye, Wang Zhao, Minjing Yu, Yu-Kun Lai, and Yong-
Jin Liu. Feature-aware uniform tessellations on video manifold for
content-sensitive supervoxels. [EEE Transactions on Pattern Analysis
and Machine Intelligence, 2020.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. *, NO. *, * 2021

Xiao Dong is a Ph.D student at the School of Infor-
matics, Xiamen University. She received her M.Eng.
degree from Xiamen University, China, in 2016. She
was a visiting scholar at The University of Texas
at Dallas from 2017 to 2019. Her research interests
include computer vision and computer graphics.

Zhonggui Chen is a Professor with the Department
of Computer Science and Technology, School of
Informatics, Xiamen University, China. He received
the B.Sc. and Ph.D degrees in applied mathematics
from Zhejiang University, in 2004 and 2009, respec-
tively. His research interests include computer graph-
ics and computational geometry. For more informa-
tion, visit http://graphics.xmu.edu.cn/~zgchen/

Yong-Jin Liu is a Professor with the Department of
Computer Science and Technology, Tsinghua Uni-
versity, China. He received the BEng degree from
Tianjin University, China, in 1998, and the PhD
degree from the Hong Kong University of Science
and Technology, Hong Kong, China, in 2004. His
research interests include computational geometry,
computer vision and computer graphics. He is a
senior member of the IEEE and a member of ACM.
For more information, please visit http://cg.cs.

tsinghua.edu.cn/people/~Yongjin/Yongjin.htm

Junfeng Yao is a Professor at the School of
Film, Xiamen University, China. He received his
B.S and Ph.D degrees from Central South Uni-
versity, in 1995 and 2001, respectively. His re-
search interests include computer graphics, virtual
reality, intelligent algorithm research and indus-
trial process simulation. For more information, visit
https://cdmc.xmu.edu.cn/info/1010/1062.htm

Xiaohu Guo is a Professor of Computer Science at
The University of Texas at Dallas. He received his
Ph.D degree in Computer Science from the Stony
Brook University, and a B.S degree in Computer Sci-
ence from the University of Science and Technology
of China. His research interests include computer
graphics, computer vision, medical imaging, and
VR/AR, with an emphasis on geometric modeling
and processing. He received the prestigious NSF
CAREER Award in 2012. For more information,
please visit https://personal.utdallas.edu/~xguo/

15

http://graphics.xmu.edu.cn/~zgchen/
http://cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm
http://cg.cs.tsinghua.edu.cn/people/~Yongjin/Yongjin.htm
https://cdmc.xmu.edu.cn/info/1010/1062.htm
https://personal.utdallas.edu/~xguo/

	Introduction
	Related Work
	Preliminaries
	SLIC for Videos
	Jump Flooding Algorithm on the GPU

	GPU-based Anisotropic Supervoxel
	Motivation
	Objective Function
	Anisotropic Supervoxel Algorithm
	Seed Initialization
	Supervoxel Generation on GPU
	Streaming GPU-based Anisotropic Supervoxel

	Experiments
	Evaluation Benchmark
	Performance
	Discussion
	Application

	Conclusion
	Acknowledgements
	References
	Biographies
	Xiao Dong
	Zhonggui Chen
	Yong-Jin Liu
	Junfeng Yao
	Xiaohu Guo

