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It is well known that fluctuations of marginals of high-
dimensional random vectors that satisfy a certain concentra-
tion estimate called the thin shell condition are approximately
Gaussian. In this article we identify a general condition on
a sequence of high-dimensional random vectors under which
one can identify the exponential decay rate of large deviation
probabilities of the corresponding sequence of marginals. More
precisely, consider the projection of an n-dimensional random
vector onto a random k,-dimensional basis, k, < n, drawn
uniformly from the Haar measure on the Stiefel manifold
of orthonormal k,-frames in R", in three different asymp-
totic regimes as n — oo: “constant” (k, = k), “sublinear”
(kn — oo but kn/n — 0) and “linear” (kn/n — X with
0 < A <1). When the sequence of random vectors satisfies a
certain “asymptotic thin shell condition”, we establish large
deviation principles for the corresponding sequence of ran-
dom projections in the constant regime, and for the sequence
of empirical measures of the coordinates of the random pro-
jections in the sublinear and linear regimes. We also establish
large deviation principles for scaled £; norms of the random
projections in all three regimes. Moreover, we show that the
asymptotic thin shell condition holds for various sequences of
random vectors of interest, including the uniform measure on
suitably scaled £ balls, for p € [1,00), and generalized Orlicz
balls defined via a superquadratic function, as well as a class
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of Gibbs measures with superquadratic interaction potential.
Along the way, we obtain logarithmic asymptotics of volumes
of high-dimensional Orlicz balls, which may be of independent
interest. We also show that the decay rate of large deviation
probabilities of Euclidean norms of multi-dimensional projec-
tions of £ balls, when p € [1,2), exhibits an unexpected
phase transition in the sublinear regime, thus disproving an
earlier conjecture due to Alonso-Gutiérrez et al. Random pro-
jections of high-dimensional random vectors are of interest in
a range of fields including asymptotic convex geometry and
high-dimensional statistics.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Motivation and context

The study of high-dimensional probability distributions through their lower-dimen-
sional projections, especially random projections, is a common theme in a wide range of
areas, including geometric functional analysis [25], statistics and data analysis [15,18],
information retrieval [24,48], machine learning [42] and asymptotic geometric analysis
[6,34]. In the latter case, the typical probability measure of interest is the uniform distri-
bution on a high-dimensional convex body (i.e., a compact convex set with non-empty
interior). Questions about the geometry of convex bodies in high dimensions often take
on a certain probabilistic flavor. A significant result in this direction is the so-called cen-
tral limit theorem (CLT) for convex sets, which roughly says that most k-dimensional
projections (equivalently, marginals) of an n-dimensional isotropic convex body are close
to Gaussian in the total variation distance, when n is sufficiently large and k is of a
smaller order than n® for some universal constant o € (0,1). Although foreshadowed
by results of Sudakov [52], Diaconis and Freedman [15] and von Weizsicker [54], the
conjecture that most marginals are Gaussian was precisely formulated by Anttila, Ball
and Perissinaki in [6] (see also [11]). Specifically, they showed that if the Euclidean norm
of a symmetric high-dimensional random vector X (™) satisfies a certain concentration
estimate referred to as the “thin shell” condition, then “most” of its marginals are ap-
proximately Gaussian. They also verified this condition for random vectors uniformly
distributed on a certain class of convex sets whose modulus of convexity and diameter
satisfy certain assumptions. Subsequently, the thin shell condition was verified for vari-
ous classes of convex bodies by several authors, with a breakthrough verification due to
Klartag [34,35] for any isotropic log-concave distribution, which, in particular, includes
the uniform distribution on an isotropic convex body (see also [19] for a simplified proof).
The result of [6] was further extended to general high-dimensional measures by Meckes
[43], who showed that whenever an n-dimensional random vector satisfies a quantita-
tive version of the thin shell condition, then most k-dimensional marginals are close to
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Gaussian (in the bounded-Lipschitz distance) if £ < 2logn/loglogn, and that the latter
cutoff for k is in some sense the best possible.

One broad aim of studying lower-dimensional projections is to obtain information
about less tractable high-dimensional measures. While the central limit theorem for
convex sets and related theorems are beautiful universality results, they imply the some-
what negative result that (fluctuations of) most lower-dimensional projections do not
provide much information about the high-dimensional measure. In contrast, large de-
viation principles (LDPs), which characterize the rate of decay of tail probabilities in
an asymptotically exact way, are typically non-universal and distribution-dependent,
and thus may allow one to distinguish high-dimensional probability measures or convex
bodies via their lower-dimensional projections. Moreover, LDPs are also useful for com-
putation of limits of scaled logarithmic volumes (e.g., of Orlicz balls; see also [27] and
Remark 3.15) and for the development of computationally efficient (importance sam-
pling) algorithms for numerically estimating such volumes or other tail probabilities for
finite n (see, e.g., [40]). Furthermore, they can also be used to obtain information on
the conditional distribution of the high-dimensional measure, given that its projections
deviate significantly from their means, via the so-called Gibbs conditioning principle (as
elucidated in [13] or [14, Section 3.3]); see [33] or the more recent extension in [26], for
example, for demonstrations in a geometric context.

The focus of this article is to identify general conditions on sequences of high-
dimensional random vectors under which one can characterize asymptotic tail proba-
bilities of their multi-dimensional random projections, and obtain corollaries that may
be of interest in convex geometry. More precisely, the goal is to establish LDPs for ran-
dom projections of general sequences of random vectors, both for projections onto fixed
lower-dimensional spaces, as well as onto spaces with dimension growing with n. In the
latter case, when the dimension of the projected vectors grows with n, the space in which
one should look for an LDP for the sequence of projected vectors is a priori unclear.
We show that the empirical measure of the coordinates of the projected vector is a con-
venient object to look at, and allows us to establish LDPs in the space of probability
measures on R in these cases. Unlike in the case of the CLT for convex sets, where a
transition occurs at a projection dimension of k,, = 2logn/loglogn (or k, = n® when
restricted to isotropic logconcave measures), these LDPs hold for all growing k,, as long
as k,/n — X\ € [0, 1]. Additional motivation for studying projections onto growing sub-
spaces arises from the fact that the speeds and rate functions of such LDPs for scaled
FEuclidean norms of sequences of log-concave isotropic random vectors have implications
for the Kannan-Lovasz-Simonovits (KLS) conjecture, which is one of the major open
problems in convex geometry (see [4, Theorem A] for details of this connection, and also
Remark 2.4).
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1.2. Contributions and outline of the paper

In this article, we introduce a large deviation analogue of the results in [6]. Whereas
the latter work shows that fluctuations of (most) random projections of high-dimensional
vectors that satisfy a thin shell condition can be characterized (as almost Gaussian), our
work characterizes tail behavior (at the level of annealed LDPs) for projections and
their associated norms onto (possibly growing) random subspaces of high-dimensional
random vectors that satisfy an asymptotic thin shell condition. In particular, our work
goes beyond the more studied specific setting of measures on £} balls or spheres, and also
univariate LDPs, although we also obtain new results in this setting (see Remark 3.6).
Specifically, for any sequence of random vectors {X (n)}neN whose scaled Euclidean
norms satisfy an LDP (see Assumption A and its specific case Assumption A*), we
characterize the tail behavior of the corresponding sequence of orthogonal projections
of X onto a random k,,-dimensional basis, k, < n, drawn from the Haar measure
on the Stiefel manifold V, ; of orthonormal k,-frames in R", as the dimension n goes
to infinity with k,/n — X\ € [0,1]. Assumption A (or rather, a slight strengthening of
it) can be viewed as an “asymptotic thin shell” condition since it implies that for all
sufficiently large n, the random vector X (™) satisfies the thin shell condition (see the

discussion at the end of Section 2.1). Note, however, that for growing subspaces, in con-
2logn
loglogn

[43] (or k,, ~ n® if one assumes additional regularity of X (") such as logconcavity [35]),

trast to CLT results where approximate Gaussian marginals hold only for &, <

the annealed LDP results indicate three crucial regimes for {k, },cn, constant, sublinear
and linear (see also [3] for £} balls).

A summary of our main results is as follows (the precise definition of LDPs, rate
functions, and the Stiefel manifold are given in Section 1.4 and Section 2):

1. LDPs in the constant regime (Theorem 2.7): Given Assumption A*, or a modification
of it stated as Assumption B, in the setting where k,, = k for every n, we establish
an (annealed) LDP for the sequence of k-dimensional random projections of X (™).

2. LDPs in the sublinear and linear regimes (Theorems 2.9 and 2.15): Given Assump-
tion A, in the setting where {k, } ,en satisfies k,, — oo, we establish (annealed) LDPs
for the sequence of empirical measures of the coordinates of the k,,-dimensional pro-
jections of X (™. This LDP is established with respect to the g-Wasserstein topology
for g < 2, which is stronger than the weak topology. The rate function is shown to
have a different form in the sublinear (k,/n — 0) and linear (k,/n — X € (0,1])
regimes.

3. LDPs for norms of random projections (Corollary 2.8 and Theorems 2.12, 2.11 and
2.16): We establish LDPs for sequences of ¢, norms of the multi-dimensional random
projections in all regimes, with two different scalings considered in the sublinear
regime.

4. Illustrative examples (Section 3): To show that our theory unites disparate examples
under a common framework, recovering, and in some cases extending, existing results
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for £} balls, while also covering new examples, we verify our assumptions for many
sequences {X (n)}neN of interest, including product measures, the uniform measure
on certain scaled ¢, balls and generalized Orlicz balls, and Gibbs measures (see
Remark 2.3). Along the way, we obtain several results of potentially independent
interest. Specifically, in Theorem 3.5 we show that when p € [1,2), the LDP for
Euclidean norms of multi-dimensional projections of £} balls exhibits an interesting
phase transition depending on whether the ratio &,/ n2P/(2+P) ig asymptotically finite
or infinite, thus disproving a conjecture in [3] (see Remark 3.6 for more details).
In addition, we also obtain the asymptotic logarithmic volume of Orlicz balls, as
elaborated in Remark 3.15. (See also more recent extensions due to [27] and [39]).

The formulation of the correct form of the asymptotic thin shell condition that would
also allow one to consider ¢} balls, when p € [1,2), is somewhat subtle, and involves
a suitable rescaling argument. Verification of the asymptotic thin shell condition for £
balls, for all p > 1, makes use of a probabilistic representation for the uniform measure
on /; balls (see [50,51] and Section 3.2 for details). However, such probabilistic repre-
sentations are not available for Orlicz balls, and so we develop a new approach in which
the tail probability is expressed as a volume ratio (see (3.18) in the proof of Proposi-
tion 3.11), and the asymptotics of this volume ratio is determined using a tilted measure
with respect to Lebesgue measure. Subsequent work that uses similar ideas to obtain
the volumetric properties and the thin shell concentration for random vectors in Orlicz
balls includes [2,27]. More recently, detailed estimates of intersections and differences of
Orlicz balls have been obtained in [40]. We leave for future work the identification of
more sequences { X (n)}nEN of random vectors that satisfy the asymptotic thin shell (and
related) conditions. Furthermore, although in this article we focus on Euclidean (and
more general ¢,) norms of the random projections, since they are of special relevance
in asymptotic convex geometry, our results could potentially be used to also investigate
other symmetric functionals of lower-dimensional projections that are of interest, such
as the volume or barycenter of the projected body, or other functionals of interest in
high-dimensional statistics.

1.8. Summary of prior work

First steps towards studying LDPs of sequences of one-dimensional projections were
taken in [20], [32] and [21], where it was shown that such LDPs capture geometric
information about the convex body. However, LDPs for random projections have been
first largely restricted to the setting of high-dimensional product measures [20] or the
uniform measure on the (suitably renormalized) unit ball or sphere in the space £ for
some p € [1,00) [3,4,21,28,29,40], and secondly, limited to univariate LDPs (i.e., in R)
involving either the projection of a high-dimensional random vector onto a random one-
dimensional subspace [21] or (annealed) LDPs of the Euclidean norm of an orthogonal
projection onto a k,-dimensional subspace, with k, possibly tending to infinity [3,4].
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Indeed, the first paper to consider LDPs for norms of projections of scaled £} balls
onto growing subspaces was [3], with further results obtained in subsequent papers (see,
e.g., [4,28,29]). (Strictly speaking, in [3] the authors analyze norms of random vectors
uniformly distributed on scaled £} balls projected onto k-dimensional subspaces indexed
by the Grassmannian, whereas we analyze norms of random projections of more general
random n-dimensional vectors (including those uniformly distributed on scaled £} balls)
projected onto k-dimensional orthogonal bases indexed by the Stiefel manifold. In the
annealed setting considered here, the Grassmanian and Stiefel manifold perspectives can
be seen to be equivalent due to the exchangeability of the coordinates of the projections,
but in quenched settings, as considered in [38], it is more appropriate to consider the
Stiefel manifold.) The only prior example of a multivariate LDP that we know in this
context is for the particular case of the sequence of projections of a random vector
sampled from a scaled £ ball onto the first k canonical directions [8, Theorem 3.4].
Further, in all cases, the analysis for non-product measures has focused on £} balls,
where the analysis is greatly facilitated by a convenient probabilistic representation of the
uniform measure on the £} ball (see [51, Lemma 1] or [50]), or a slightly more general class
of measures supported on the £ ball that admit a similar probabilistic representation
(see [9] or Section 2.2 of [4]). Such a representation has also been exploited in recent
work [40] that obtains refined or sharp large deviations estimates for (quenched) random
projections of £} balls and spheres.

1.4. Basic definitions and background results

We set some initial notation and definitions, with a particular emphasis on large
deviations terminology. First, for a,b € R, we will use a Vb and a Ab to denote max(a, b)
and min(a, b), respectively. Next, for p € [1,00], let || - ||, denote the £ norm (with some
abuse of notation, we use common notation for the £ norm on R™ for any n € N). We
use the notation N(u, 0?) to denote a normal random variable with mean y and variance
o?.

Given a topological space X with Borel o-algebra B, let P(X) denote the space of
probability measures on X. By default, we impose the topology of weak convergence on
P(X): recall that a sequence {un}nen C P(X) is said to converge weakly to u € P(X),
also denoted as p = p, if and only if for every bounded continuous function f on X,
J fdun — [ fdu as n — oco. On occasion, when X = R?, we will consider subsets of
probability measures that have certain finite moments. For ¢ > 1 and d € N, define

P,RY =L v e PRY): [ |2|%w(dr) < oo
/

Then, a sequence of probability measure {v,,}nen C Py(R?) converges to v € P, (R?)
with respect to the g-Wasserstein topology if we have weak convergence v, = v and
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convergence of ¢-th moments [p, |27V, (dz) — [pa|z|%v(dz). In fact, as elaborated in
[53, Sec. 6], the g-Wasserstein topology can be metrized by a distance function called
the g-Wasserstein metric, which we denote W,. Next, for ¢ > 0, let

M,(v) ::/|9L‘|qy(dx)7 v e P(RY), (1.1)
Rd

denote the ¢-th moment map. In our analysis, we will frequently consider the following
subset: for j € N, define K> ; C P(RY) as

Ksj:={v e PR : My(v) < j}. (1.2)

Lemma 1.1. Fiz j € N. For any q € [1,2), the set K2 ; C Po(R?) is compact with respect
to the q- Wasserstein topology. In addition, K ; is convex and non-empty.

Proof. The proof is a simple modification of the proof of the j = 1 case given in [33,
Lemma 3]. O

We refer to [14] for general background on large deviations theory. In particular, we
recall the definition:

Definition 1.2. Let X be a regular topological space with Borel o-algebra B. A sequence
{Pp}nen C P(X) is said to satisfy a large deviation principle (LDP) at speed s, with
rate function I : X — [0, 0] if I is lower-semicontinuous and for all I" € B,

— inf I(z) < liminf X log P,(T") < limsup - log P, (T') < — inf I(z),
xzele n—oo °m n—oo " zel

where I'° and T' are the interior and closure of T, respectively. We say I is a good rate

function (GRF) if, in addition, it has compact level sets. Analogously, a sequence of

X-valued random variables {7, }nen is said to satisfy an LDP at speed s, and with a

rate function I if the sequence of their laws {P o, },en satisfies an LDP at the same

speed and with the same rate function.

Remark 1.3. Let {P,},cn be a sequence of probability measures satisfying an LDP at
speed s, with GRF I that has a unique minimizer m. It is immediate from the definition
of the LDP that I(m) = 0 and that then, for any speed t,, such that t,/s, — 0, the
sequence { P, },eN also satisfies an LDP at speed t,, but with a degenerate rate function
Xm, Which is defined to be 0 at m and +oo elsewhere.

Remark 1.4. Let {P,},en be a sequence of probability measures satisfying an LDP at
speed s, with GRF I and suppose b, is another sequence such that s, /b, — X € (0, 00).
Then it is immediate from the definition that {P,},cn also satisfies an LDP at speed
b, with GRF AI.
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As a useful tool, we recall the following definition.

Definition 1.5. Let X be a metric space with distance d, equipped with its Borel o-algebra.
Two sequences of X-valued random variables {n,},en and {7, }nen are exponentially
equivalent at speed s, if for all § > 0,

1

lim sup . log P(d(np, ) > §) = —00. (1.3)
n—oo n

Remark 1.6. The notion of exponential equivalence is valuable because if an LDP holds

for {1, }nen, then an LDP holds for an exponentially equivalent sequence {7}, },,en with
the same GRF (see, e.g., Theorem 4.2.13 of [14]).

Remark 1.7. Let {a,},en be a sequence in R that converges to a € R as n — oc.
Suppose {U, }nen satisfies an LDP in R at speed b,, with a GRF I. Then the sequences
{anUptnen and {aU,}nen are exponentially equivalent at speed b,. Indeed, for any
M € (0,00), since {U, }nen satisfies an LDP with a GRF, there exists K € (0,00) such
that limsup,,_, o, 3 log P(|U,| > K) < =M. Given 6, M € (0,00), pick ¢ > 0 such that
d/e > K. Then

1 1
lim —logP (|a, Uy, — aUy| > 6) < lim —log (P (|a, —a| > &) + P (|U,] > §/¢))

1
< lim —logP (U] > K)

n—o0 by,

< —M.
Since M is arbitrary, we obtain the desired exponential equivalence by sending M — oo.

For some of our LDPs, the resulting rate functions will be expressed in terms of the
following quantities. For v € P(R), define the entropy of v as

h(v) = f/log (%) dv, (1.4)
R

for v with density (with respect to Lebesgue measure dz), and h(v) := —oo otherwise.
Furthermore, for v, u € P(R), define the relative entropy of v with respect to u as

Hv|u) = /1og (g—;) dv (1.5)
R

if v is absolutely continuous with respect to u, and H(v|u) := 400 otherwise. Given a
function A : R — R, let A* be its Legendre-Fenchel transform defined by
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A (z) = fg}g{xt —A(®)}, zeR. (1.6)

The following contraction principle for LDPs is used multiple times throughout the
paper.

Lemma 1.8 (Contraction principle). [14, Theorem 4.2.1] Let X and Y be Polish spaces and
f:X =Y a continuous function. Suppose {Xp}nen 5 a sequence of X-valued random
variables and satisfies an LDP in X at speed s, with GREF Jx. Then {f(X,) }nen satisfies
an LDP in'Y at speed s, with GRF Jy defined by

Iy (y) == inf{Jx(z) : 2z € X, f(2) = y}.
Finally, we state a simple lemma that is used multiple times in our proofs.

Lemma 1.9. Suppose {Uy }neN, {Vatnen and {W, }nen satisfy LDPs in R at speed o,
Bn and 7y, with GRFs Jy, Jy and Jw, respectively. Let o, = B < Y, (i-€., Bn/Yn —
0 as n — o0). Assume {Up}tnen is independent of {V,}tnen and Jw has a unique
minimizer m. Then {(Uy, Vo, W) bnen is exponentially equivalent to {(Uy, Vi, m) }nen
and satisfies an LDP at speed o, with GRF J : R3 — [0, 00] defined by

J(u,v,w) =

{JU(u) + Jv (v), w=m, (L)

400, otherwise.

Moreover, if m # 0, then {V,W,},en satisfies an LDP at speed o, with GRF v —
Jyv(v/m).

Proof. Define Y, := (U,,V,,W,) and Y, = (Un, Vn,m). By the independence of
{Up}nen and {V,}nen, {YVinlnen satisfies an LDP at speed a, with GRF J defined
n (1.7) (this is easily deduced from the definition of the LDP, but the fact that the
rate function for (U, V;,) is Jy(u) + Jy (v) follows from [14, Exercise 4.2.7] with X = R,
Y = R? and F being the identity mapping; the stated rate function for (U, V,,m)
follows as an immediate consequence). Now, for € > 0, we have

1

lim LlogIP’ (HYn — Yn”z > e) = li_)m 5
n oo n

n—00 Uy,

log P(|W,, —m| > €) = —o0,

where the last equality follows because Jy has a unique minimizer at m and {W,, }en
satisfies an LDP at speed v,, > ay,, as in the observation of Remark 1.3. Thus, {Y, }nen is
exponentially equivalent to {Y, },en at speed a,,. By Remark 1.6, this implies {Y}, }nen
satisfies an LDP with speed a,, with the same GRF as {Yn}neN. This proves the first
assertion of the lemma.

The second assertion follows by applying the contraction principle to the mapping
F :R3 — R defined by F(u,v,w) =vw. 0O
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2. Main results
2.1. Projection regimes and assumptions

For each n € N, consider a random vector X (™ that takes values in R™. For k € N, let
I}, denote the k x k identity matrix, and for n > k, let V,, ,, = {A € R"*¥ : ATA = [},}
denote the Stiefel manifold of orthonormal k-frames in R™. Here, the constraint AT A =
Ij, ensures that the columns of A are orthonormal. As is well known, V,,  is a compact
subset of R"** being the pre-image of the closed set {I} under the continuous map
A — AT A that is also bounded (by vk with respect to the Frobenius norm). We are
interested in the orthogonal projection of X (™ onto a random k,-dimensional subspace,
where 1 < k,, < n. To this end, fixn € N, 1 < k,, < n, and let

Ak, = [Amkn (i’j)]izl,.. n;j=1,....kn

be an n x k, random matrix drawn from the Haar measure on the Stiefel manifold
Vn.k, (i-e., the unique probability measure on V,, i, that is invariant under orthogonal
transformations). Note that the random matrix Ag %, linearly projects a vector from n
to ky dimensions. We assume that for each n € N, A,, ;. is independent of X () and for
simplicity, we assume that the sequences {X (™}, cn and {A,, 1. }nen are defined on a
common probability space (2, F, P), although dependencies across n are immaterial for
the questions we address.

We aim to analyze the large deviation behavior of the coordinates of random projec-
tions Az;an (") of X(™) in three regimes, constant, linear and sublinear, depending on
how the dimension k,, of the projected vector changes with n:

Definition 2.1. Given a sequence {k;, },en C N, we say:

1. {kn}nen is constant at k, for some k € N, denoted k,, = k, if k,, = k for all n € N;

2. {kn}nen grows sublinearly, denoted 1 < k,, < n, if k,, — oo but k,/n — 0;

3. {kn}tnen grows linearly with rate A, for some A € (0, 1], denoted k,, ~ An, if k,/n —
A

When {k, } ,eN is constant at some k € N, then one can investigate when the sequence
of vectors {Azyan(”) = AZ,kX(n)}neN satisfies an LDP in the space R*. In contrast,
when k, increases to infinity, in order to even pose the question of existence of an
LDP, one must first embed the sequence {AZ K, X (")}neN of random vectors of different
dimensions into a common topological space. Thus, we prove an LDP for the sequence
{L™},en of empirical measures of the coordinates of the k,,-dimensional random vectors
Az;an ().
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kn

L" .= 6(AT X('n,))j ) n € N. (21)
=1

1
J
Remark 2.2. Note that the law of A,, ;. is invariant under permutation of its k,, columns,
so the k,, coordinates of Az’ ke, X (") are exchangeable. Thus, the empirical measure L" in
(2.1) encodes the essential distributional properties of the coordinates of the projection,
and hence, serves as a natural choice for a common infinite-dimensional embedding of

the k,, coordinates of Aﬁan(”), for all n € N.
We now present our main condition on the sequence {X ™}, .

Assumption A. The sequence of scaled norms {||X()||s/v/n}nen satisfies an LDP at
speed s,, with GRF Jx : R — [0, o0].

When a special case of Assumption A holds with speed s,, = n, we say that Assump-
tion A* holds.

Assumption A*. The sequence of scaled norms {||X™||2/\/n},en satisfies an LDP at
speed n with GRF Jx : R — [0, o0].

Remark 2.3. The special case of Assumption A* is important because, as shown in Sec-
tion 3, it is satisfied by several important sequences of measures, including those whose
elements are taken from a large family of product measures (see Proposition 3.1), the
uniform measure on an ¢, ball of radius n'/P with p > 2 (see Proposition 3.7) or, in fact,
a more general class of measures that includes the uniform measure on an Orlicz ball
defined via a superquadratic function (see Proposition 3.11), and a general class of Gibbs
measures with superquadratic potential and interaction functions (see Proposition 3.18).
However, Assumption A* no longer holds when X (™ is uniformly chosen from an 48
ball of radius n'/? with p € [1,2). Indeed, this can be deduced from the sharp large
deviation upper bounds obtained in [47] and [22]. In addition, Theorem 1.3 of [28] shows
that {||X()||s//n}nen satisfies an LDP with speed s,, = n?/2. These results motivate
the more general condition stated in Assumption A.

Remark 2.4. The general form of Assumption A is also of interest because of its con-
nection to the Kannan-Lovasz-Simonovits (KLS) conjecture formulated in [31] (also see
[1] for a nice exposition), which is one of the major open problems in convex geometry.
Indeed, Theorem A in [4] states that the KLS conjecture is false if there exists a sequence
of isotropic and log-concave random vectors { X (M}, cn satisfying Assumption A either
with s, < y/n and nontrivial Jx or with s, = /n and inf;~, {inf,~: Jx(2)/t} = 0 for
some ty € (1,00). It is shown in [4] that when X (™ is uniformly distributed on the ¢}
ball of radius n, then {X (™} satisfies Assumption A with s, = \/n, but the condition
on the rate function Jx is not satisfied (which is consistent with the fact that the KLS
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conjecture is widely believed to be true). In view of this observation, it would be interest-
ing to extend our verification of Assumption A to more general measures such as Orlicz
balls (respectively, Gibbs measures) with superlinear functions (respectively, potentials),
extending the corresponding results obtained in this article for superquadratic functions
(respectively, potentials).

When Assumption A is satisfied with a GRF Jx that has a unique minimum at
m € R4, go then for all sufficiently large n, the random variable X (") satisfies the thin
shell condition of [6, Equation (1)]. To be more precise, note that the observation that
the minimum of Jx, which is equal to zero, is achieved uniquely at m, together with the
fact that s, — oo, implies that for every ¢ > 0, there exists {0¢}¢en with d¢ | 0 such that

Vspinf{Jx(z) : |[v —m| > dp,x € R} > e

Setting ey := max(d;, 2e7V5¢), it then follows from Assumption A and the definition of
the LDP (see Definition 1.2) that e, | 0 as £ — oo, and for every ¢ € N, there exists
Ny € N such that

o (XL,
NG

In particular, this implies the following weak limit:

> 513) < gy, for all n > N,. (2.2)

x(n)
NG

Thus, we refer to the strengthening of Assumption A with Jx having a unique minimum
as the asymptotic thin shell condition. Note that the thin shell condition is usually stated
for isotropic random vectors X (") and with m = 1, but since we do not restrict our
consideration to only isostropic random vectors X ("), we phrased the condition above
for arbitrary m > 0. Just as the thin shell condition yields a central limit theorem in
the sense that the projections of X (™) can be shown to be close to Gaussian (see, e.g.,
[6,35]), our results, summarized in the next three sections, show that the asymptotic thin
shell condition implies that the empirical measures {L"},cn of the coordinates of the
projections of X (™) satisfy an LDP in the sublinear and linear regimes (with the weaker
Assumption A sufficing in the latter regime).

Remark 2.5. There exist sequences {X (™}, cn for which the corresponding random pro-
jections satisfy an LDP, but the thin shell condition fails to hold. For example, this can
happen when Assumption A holds with a rate function Jy that has multiple minima,
as can happen for certain Gibbs measures (see Section 3.4) with non-convex potentials
F and G. As another example, let X(") be distributed according to a mixture of two
Gaussian distributions in R™ both with mean 0 and covariance matrices I,, and 21,
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respectively. In other words, the density of X (™ takes the form fyw) = %(]5[71 + %(252 In
for a positive definite matrix C, where ¢ denotes the Gaussian density with mean 0 and
covariance matrix C. Then {X (™}, cn does not satisfy the thin shell condition since half
its mass is concentrated around the thin shell of radius v/n and the other half around
the thin shell of radius v/2n. However, it is easy to show that the sequence {X (n)}neN
satisfies Assumption A* (e.g., since the sequence of norms of each of the Gaussian dis-
tributions in the mixture satisfies an LDP trivially, the LDP for the sequence of norms
of the mixtures can be deduced from results in [16]).

2.2. Results in the constant regime

To establish LDPs in the constant regime, when {k,, } ,en is constant at & for some k €
N, we will require either Assumption A* or, to cover more general sequences {X (n)}nEN
like the uniform measure on an ¢, ball with p € [1,2), the following modification of
Assumption A*.

Assumption B. There exists a positive sequence {sp}tneny with lim, o0 s, =
lim,, oo 1/8, = oo such that the sequence of scaled norms {/5,||X ™ |s/n}peN sat-
isfies an LDP in R at speed s,, with GRF Jx : R — [0, oc].

Remark 2.6. It is easy to see, by a simple rescaling argument, that Assumption A*
is equivalent to a modified version of Assumption B, in which one requires that
{5l X™]|2/n)}nen satisfies an LDP at a speed s,, that satisfies s,,/n — 7, with
r € (0,00) rather than r = 0. Indeed, this modified version of Assumption B would hold
with GRF J)(;) if and only if Assumption A* is satisfied with GRF Jx () := TJ;) (V/TT).

Theorem 2.7 (constant, k,, = k). Suppose {k,}nen is constant at k € N, and that either
Assumption A* or Assumption B holds, with sequence {s,}nen and GRF Jx. Then
{nfl/ZAZ’kX(”)}neN satisfies an LDP in R¥ at speed s, with GRF Iax  : R¥ — [0, o]
defined by

; () infocect {JX (”9”(:”2 — %log (1 — 02)} , if Assumption A* holds,
AXx k(T) =
inf.sq {JX (Hm‘l’“) + %} , if Assumption B holds.
(2.3)

The proof of Theorem 2.7 is given in Section 4.2, where the role of Assumption B
in the proof is discussed in detail. The rate function takes the form in (2.3) because
rare events for n=/2A”", X(") occur through a combination of the “radial” component
represented by Jx, and the “angular” component represented by ¢ — —% log(1 — ¢?)
(when Assumption A* holds) or ¢+ ¢?/2 (when Assumption B holds).
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As an immediate corollary of Theorem 2.7, we have the following LDP for the corre-
sponding scaled E’; norms (or in the case ¢ € (0,1), quasi-norms) of random projections.
For any ¢ € (0,00) and n € N, define

Yo = AL X g, (2.4)

Corollary 2.8 (constant, k, = k). Suppose {kn}nen, {X™}nen, {Snlnen and Iax.k
are as in Theorem 2.7. Then {n_l/QYq’fk}neN satisfies an LDP at speed s,, with GRF

1) = inf {Iaxa(): el =}, @ eRy. (2.5)

Proof. This is an immediate consequence of the LDP for {n_1/2A£,kX(")}neN in The-
orem 2.7 and the contraction principle (Lemma 1.8) applied to the continuous mapping
RSz |z, €R. O

2.3. Results in the sublinear regime

Recall that if, instead of being constant, the sequence k,, tends to infinity as n — oo,
then our goal is to establish an LDP for the sequence of empirical measures {L"},,cn of
(2.1). We start in this section by analyzing the sublinear regime. Section 2.3.1 summarizes
our LDP results for the sequences of empirical measures {L"},,cn and Euclidean norms
of the randomly projected vectors. Section 2.3.2 contains additional results on LDPs for
a different scaling of Euclidean norms as well as more general ¢g-norms, with ¢ € [1,2),
of projected vectors that is suitable for the sublinear regime.

2.8.1. LDPs for the empirical measures and norms of projected vectors
In what follows, we will write 7, to denote the Gaussian measure on R with mean 0
and variance o2; that is, for o > 0, let

P(R) 2 75 ~ N(0,0?%). (2.6)

Theorem 2.9 (sublinear, 1 < k, < n). Suppose {kn}nen grows sublinearly and Assump-
tion A holds with associated speed s, and GRF Jx. Also, suppose that Jx has a unique
minimum at m > 0. Let H be the relative entropy functional defined in (1.5). Then, for
every q € [1,2),

1. If sp > ky, {L"}nen satisfies an LDP in Py(R) at speed ky, with GRF 1, -
Py(R) — [0, 0], defined by

Ip k, (1) = H(pt|vm)-

2. If sp, = kyn, {L"}nen satisfies an LDP in P, (R) at speed k,, with GRF Iy, :
Py(R) — [0, 0], defined by
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Lk, () := mf {H (ulye) + Ix(c)}-

3. If sy, < kpn, {L"}nen satisfies an LDP in P, (R) at speed s,, with GRF Iy, :
Py(R) — [0, 00], defined by

Ix(c),  p=r
Irk, (1) = ’ °
~+00, otherwise.
As in Theorem 2.7, the rate functions above can again be decomposed into a radial
component, represented by Jx (as a consequence of Assumption A), and “an angular”

component A, ;. , which is captured by the relative entropy term. Depending on the

relative rate of growth of k, and s,, different parts dominate the rate function, with
both terms being present only when s,, = k.

Next, as in the constant regime (see Corollary 2.8), we also establish LDPs for the
sequence of scaled Euclidean norms of the random projections. To deal with cases when
Assumption A* is not satisfied, it is not sufficient to consider Assumption B as in the
constant regime. Instead, we will need to introduce the following refinement of Assump-

tion A.

Assumption C. There exist r € [0, 0], a GRF Jg) : R — [0, 0], and a positive sequence
{8n}nen satisfying s, — o0, s,/n — 0 and s, /k, — r as n — oo, such that

1. if 7 € [0,00), then {v/k,||X™)||2/n},en satisfies an LDP at speed s, with GRF
Jg);
2. if r = oo, then {,/5,||X™||2/n},en satisfies an LDP at speed s, with GRF J)((Do).

The following simple observation is analogous to the one made in Remark 2.6.

Remark 2.10. It is easy to see that Assumption C holds with r € (0,00), {sn }nen and
GRF J{ if and only if it also holds with ' = 1, {s/, := ky }nen, and GRF J{ (z) =
TJg)(ﬁx), x € [0,00). Therefore, in essence, one need only consider the cases r €
{0,1, 00} in Assumption C.

Theorem 2.11. Suppose k,, grows sublinearly, and recall the definition of Y given in
(2.4).

1. If Assumption A* holds with GRF Jx, then {n*1/2Y2’fk”}n€N satisfies an LDP in R
at speed n with GRF J§'° : R — [0, 00|, defined by

I () := inf {;log(102)+JX (x)}

ce(0,1) c
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2. If Assumption C holds withr € [0,00], {sn tnen and GRF J)(;), then {n_1/2Y27}k"}neN
satisfies an LDP in R, at speed s,, when r € {0,00} and at speed k,, when r € (0,00),
with GRF J3"° : R — [0, 00], where

Jg) (x), ifr=0,
JS“b(a:) = {inf.~¢ “22—_1 — logc—I—rJ)(;) (‘/jw)}, if r € (0,00),
infc>o ; + J&OO) (%)} R ZfT = 00.

Note that there is a transition in the form of the LDP depending on the relative
growth rates of {s,}nen and {k,}nen. The implications of these results for the special
case when X is the uniform measure on an ¢y ball, and their relation to the work
of [3], is discussed in Section 3.2.2; see Theorem 3.5 and Remark 3.6.

2.8.2. LDP for an alternative scaling of q-norms of projections

In this section, we show that we can also establish LDPs for a different scaling of
the norm, and in this case we consider not just the Euclidean norm, but g-norms for
q € [1,2]. More precisely, we consider the sequence {kﬁl/qu’?kn}neN. For ¢ € [1,2) and
teRorg=2andt<1/2, define

1 1
Ay (t) := log/ exp (t |z|? — x2) dr, teR, (2.7)
2 2
J Vom

and let A7 be the Legendre transform of A,. Moreover, set M, to be the g-th absolute
moment of a standard Gaussian random variable,

M, = /\/LQ_W 12| exp(—22/2)dz — &\//;F (%) . (2.8)

R

Theorem 2.12. Fix q € [1,2], suppose 1 < k, < n and Assumption A holds with speed
sn and GRF Jx, which additionally has a unique minimum at m > 0. Also, recall the
definition of Yy, given in (2.4). Then {k;l/qu’fkn}neN satisfies an LDP at speed s, Nky,

with GRF I3 : R — [0,00] defined by

A; (@t /ma), if 50> kn,
T3 (@) = qinfeso {A(e) + Tx (2/0)} ,if 50 = ks (29)
T /M%), i 0 Lk,

for x>0, and j;”b(a:) = 400 for x < 0.

The proof of Theorem 2.12 is given in Section 5. When ¢ € [1,2), the LDP for
{kn 1/ quT:'kn}neN is an immediate consequence of Theorem 2.9 and the contraction prin-
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ciple. For ¢ = 2, the contraction principle no longer applies since the moment map Ms(+)
is not continuous in P,(R) for ¢ < 2. We take a different approach to the proof for all
cases ¢ € [1,2], by looking directly at the norm, instead of using the LDP of empirical
measures. In the special case when ¢ = 2 and X (™ is uniformly distributed on the scaled
¢y ball of radius n'/P with p € [2,00] (or admits a slightly more general representation),
the LDP for {)727,11@" }neN was also obtained in [4, Theorem BJ.

2.4. Results in the linear regime

Recall the definition of the second moment map Ms(-) from (1.1).

Definition 2.13. For A € (0, 1], define Ky : P(R) — [0, 0] as

—Ah(v) + 2 log(2me) + 152 log (%MA()) ,if Ma(v) < 1)),

Ha(v) == (2.10)

400, otherwise,
where we adopt the convention that 0log0 = 0 and hence, 0log(0/0) = 0.

Note that if AM3(v) = 1, then H,(v) = co when A < 1, but (due to our convention)
Ha(v) = —h(v) + 5 log(2me) when A = 1.

Remark 2.14. Since h is strictly concave and M is linear, from the definition in (2.10), Hy
is strictly convex. A direct verification shows that H(71) = 0, and the strict convexity
of H ) shows that v, is the unique minimizer of Jy.

Theorem 2.15 (linear, k, ~ An). Fix q € [1,2). Suppose {kn }nen grows linearly with rate
A € (0,1] and Assumption A holds with sequence {sp}nen and GRF Jx. Then {L"},en
satisfies an LDP in P¢(R) at speed s, with GRF I x : Pq(R) — [0, 00], where

1. If s, = n, then for u € Py,(R),
inf JS( Cc) — 12 log 1-— —)\ 2(1) + )\ log C
>/ AMa(p) { ( ) 2 ( < ) ( )}

— Ah(p) + 5 log(2me) + 152 log(1 — A),

Ipa(p) = (2.11)

where we use the convention that 0log0 = 0.
2. If s, < n, then for u € Py(R)

I () = Ix(c),  p=7c
’ +00, otherwise.

The LDP of the sequence of ¢, norms of the randomly projected vectors is given in
the following theorem.
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Theorem 2.16. Suppose {X (™}, cn satisfies Assumption A, and k, ~ \n for some X €
(0,1]. Then, for q € [1,2] the sequence {n‘l/qu?kn}neN defined in (2.4) satisfies an LDP
at speed s, with GRF J{';j‘/\, where for x € R,

inf,epm)cer, {Ha(W) +Jx (0) : AMy(v) = (£)"},  if sp=nm,

I (@) = .
iz Jx ((}\Mn:)l/q) , if s, <K n,

(2.12)

with M, the g-th moment map as in (1.1) and M, the g-th absolute moment of a standard
Gaussian random variable defined in (2.8).

The proof of Theorem 2.16 is deferred to Section 6.2. It is shown there that when
g € [1,2), the result is an immediate consequence of Theorem 2.15 and an application
of the contraction principle. However, even though the rate function still takes an anal-
ogous form when g = 2, the contraction principle is no longer applicable in that setting
because the LDP of Theorem 2.15 only holds in the g-Wasserstein topology for ¢ € [1,2).
Despite this apparent gap, using a different argument in Section 6.2 we show that the
result nevertheless holds. In the process, we provide an alternative representation for the
rate function (2.12) for all ¢ € [1,2] (see Proposition 6.1). This is a manifestation of a
somewhat nuanced technical issue, which is elaborated upon in Remark 6.4.

3. Examples satisfying the main assumptions

In this section, we present several examples of sequences of random vectors {X (n)}nGN
that satisfy the assumptions introduced in Section 2.

3.1. Product measures

Lemma 3.1 (i.i.d. case). Let X1, Xs,... be a sequence of i.i.d. real-valued random vari-
ables, and let X := (X1,...,X,,). Suppose that we have

A(t) :=1og E[e"1] < o0

for t in some open ball of non-zero radius about 0, and let A* be the Legendre transform
of A defined in (1.6). Then, {X™},cn satisfies Assumption A* with Jx(z) := A*(2?)
for x € Ry and Jx(z) := 400 otherwise. Moreover, m = /E[|X1|?] is the unique
minimizer of Jx.

Proof. By Cramér’s theorem for sums of i.i.d. random variables [14, Theorem 2.2.1],
the sequence {||X™|2/n},cn, satisfies an LDP at speed n with GRF A*. By the
contraction principle applied to the square root function, Assumption A* holds. As
for the unique minimizer, this follows from the law of large numbers, with limit
F iy XP TS E[XF]=m® O
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3.2. Scaled EZ balls

In this section we consider random vectors uniformly distributed on scaled £} balls.
More precisely, for n € N and p > 0, define X("P) to be a random vector uniformly
distributed on n'/ PB;, where B} denotes the unit £)-ball:

B, = {mER":Z|xk|p<1}.

k=1

We introduce some preliminaries in Section 3.2.1, then verify our main assumptions for
{X (P} N in the case when p € [1,2) in Section 3.2.2 and the easier case when p > 2
in Section 3.2.3. When combined with the results of Section 2, these yield LDPs for
random projections of these £} balls.

3.2.1. Preliminaries
For p € [1,00), let f, be the density of the p-generalized normal distribution:

1
S S £ L cR
fp(x) 2p1/pf‘(1 + 1/]9)6 ) x )

where I' denotes the Gamma function, and let £(P) denote a p-generalized normal random
variable, namely one with density f,. We provide here a useful tail estimate: for ¢ > 0,

1 p—1 tp/? 1 p—1

_ /2 _EF 7 ()2 _Zgp/2 _ P 7
26Xp< pt 5 logt) >P(EPPE>¢) > tp/2+1exp( pt 5 logt ).
(3.1)

This estimate was proved in [3, Lemma 5.3] for p € [1,2), but can easily be extended to
include p = 2. Now, let

Fj(y):== sup |t1y+t2 —log /etlx2+t2|m|pfp(x)d1: , y€ER, (3.2)
tl,tQGR R
and
1/2
pr (1+2)
m(p) = — . (3.3)
30 (1 + 5)

Also, let U be a uniform random variable on [0,1] and {§l(p )}ieN be a sequence of
ii.d. random variables with density f, independent of U. For n € N and p € [1,00),
denote £(P) = (f%p ). ..., ")), In this section, we take advantage of the following useful
representation of X ("?) obtained in [51, Lemma 1]:
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y(np) @ nl/pUl/nﬂ, (3.4)
I,

In view of the representation (3.4), we first establish a property of p-generalized normal
random variables which we strengthen from the result in [46].

Lemma 3.2. Let p € [1,2], let {kn}nen satisfy kn, — 0o as n — oo. Then, given any
{bn}nen such that k, /b, — 0 as n — oo, the sequence {b;* Zf;l(ﬁi(p))Q}neN satisfies
an LDP at speed W/? and GRF Jep R — [0,00] defined by

tP/2 £>0
Jep(t) =4 7 N
S too,  t<O.

The proof is deferred to Appendix B.

3.2.2. Verification of Assumptions B and C when p € [1,2)

When p € [1,2), it should be noted that annealed LDPs associated with the random
vectors {X (”’p)}neN defined in Proposition 3.7 occur at different speeds than in the case
p > 2; see Theorem 2.3 of [21]. In particular, from Theorem 1.3 of [28] it follows that
in this case the sequence of scaled norms {||X(*)||y/\/n},en satisfies an LDP at speed
nP/2. Thus, in this case {X("P)}  _y satisfies Assumption A with s,, = n?/? and unique
minimizer m = m(p) defined in (3.3). In particular, Assumption A* is not satisfied. We
show that nevertheless, Assumption B does hold. In what follows, let U, {51(1) )}ieN, and
£(mP) be as in the representation of X (™?) in (3.4), and note that then

XD, @ i sl

n T e

, neN. (3.5)

Proposition 3.3. For p € [1,2), {X (P N satisfies Assumption B with speed s, :=
n?r/+P) and GRF
p
=, x>0
Ixpx) =42 P (3.6)
400, z < 0.

Proof. Fix p € [1,2). It follows from [21, Lemma 3.3] that {UY/"},cn satisfies an
LDP at speed n, and from Cramér’s theorem and the contraction principle that
{]1€mP)||,,/nt/P}en also satisfies an LDP at speed n. Moreover, it is easy to see
that both sequences converge almost surely to 1. Since, in addition, £&(™?) and U are
independent, appealing again to the contraction principle it follows that their ratio
W, := UY /P /||€P)|| ) also satisfies an LDP at speed n. Furthermore, since W,, — 1
almost surely as n — oo, the LDP rate function for {W,},cn has the unique min-
imizer 1. Given s, < m and the representation in (3.5), an application of (the last
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assertion of) Lemma 1.9, with W,, as above, m = 1, v, = n, V;, := /5, ||€("P)||2/n, and
Bn = $n shows that to establish the proposition it suffices to prove that {V,,},en satis-
E(mp)“

2 =

/o

fies an LDP with speed s,, and GRF Jx ;. To this end, using the relation

1/2
(;—g Z$:1(§§P>)2) , the contraction principle, Lemma 3.2 with k,, = n and b, = n?/s,
therein, and the property that s,, < n, we can conclude that {\/5, |7 ||2/n}nen satis-
fies an LDP at speed n?s;,?/? with GRF Jx p given in (3.6). Finally, since s,, = n?P/(2+P),

. —p/2
we obtain npsnp/ =s, O

Next, we turn to verifying Assumption C. In the following lemma, we show that for

1 < p < 2, different conditions in Assumption C are satisfied according to the growth
speed of k,.

Proposition 3.4. When p € [1,2), let Jx, be defined as in (3.6). Then {X™P)}, N
satisfies Assumption C with GRF Jg(r) = Jx,p for all r € [0,00], where s, is defined by

nl’k;p/Q, if Ky > n2p/(2+p),
T\ i k= 02/ op < 02/,

Proof. Let s, be as defined in the proposition. As in Assumption C, let r € [0, 00] be
the limit of s,/k, as n — oo. It is easy to see that r = 0 if k, > n2p/(+p) = 1 if
kn = n?"/2+P) and r = oo when k, < n?/(tP) Now, set ¢, := \/n/k, if r € [0,00)
and ¢, := \/n/s, if r = oo and note that ¢, — 0o as n — oo. By (3.4), we have the
following representation

(RSl PR G [

e e e "

We first claim that {[|¢™P)||a/(chy/7) }nen satisfies an LDP at speed s,, < n. Indeed,
by Lemma 3.2 with k, = n and b, = c¢2n there, the fact that b, — oo as n — oo and
the contraction principle with the mapping = — /z, {||§("’p)||2/(cn\/ﬁ)}neN satisfies
an LDP at speed nP/2cE with GRF Jx, given in (3.6). By [21, Lemma 3.3], Cramér’s
theorem and the contraction principle, the independence of £(™P) and U, and the con-
traction principle, we see that W, := UY/"n!/?/||¢("P)||, satisfies an LDP at speed n
and further, it also converges almost surely to 1. The lemma then follows upon applying
Lemma 1.9 with V,, := [|€P)|la/(c,v/n) and W, := U™ /P /|| €P)||, m =1, v, =n
and 8, :=s, <n. O

When combined with the results of Section 2.3.1, the last two propositions imply the
following LDPs for norms of projections in the constant and sublinear regimes. Here,
we focus on the norm Y;f,i;f)), which is defined as in (2.4) but with X" replaced with
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X (mP) The corresponding results for the differently scaled norms {k;l/ZY w p)}neN were
obtained in Theorem B of [4].

Theorem 3.5. Fiz p € [1,2).

1. Suppose k,, is constant at k € N. Then {n_l/QAz)kX("’p)}neN satisfies an LDP in
R* at speed s, = n?P/?+P) with GRF Inxw o R¥ — [0, 00] defined by
p+2 I ”217/ p+2)

Iaxw () i= , z€RF

Moreover, n—1/2y(mP) neN satisfies an LDP with GRF
2.k €

(3.7)

B2 2p/(p+2) x>0,
Jy(?) (x) = &4
2,k

400, z < 0.

2. Suppose k,, grows sublinearly.
(a) If k, < n?"/+P) Then {n_1/2Y2(7Z’p)}nEN satisfies an LDP in R at speed
n2p/(2+P) with GRF J : R — [0,00], which is equal to JYz“L) defined in
(3.7). ’
(b) If k, = n?/+P) Then {n’1/2Y2(,7,2’p)}neN satisfies an LDP in R at speed
n?P/(2+P) with GRF J ‘R — [0,00] defined by

)
Vi,

Y2< ,I;C)n

J —— p;;;g E(z.:):ﬁ - lOg(E(l’)), €T 2 07
+00, x < 0.

where &(x) € [1+aP/P+2) 00) is the unique positive solution to P2 —cP —xP = 0.
(c) If ky, > n?/C+P). Then {n71/2Y2(;;,p)}n€N satisfies an LDP in R at speed

0Pk ?'? with GRF Iy, R — [0, 00] defined by
2. kn

z, x>0,
Jy(p) (.Z‘) = p
2kn +o00, x<0,

which is equal to Jx p in (3.6) of Proposition 3.3.

Proof. In the constant regime, Proposition 3.3 shows that {X (”’p)} satisfies Assump-
tion B with rate function Jx , taking the explicit form given in (3.6). Substituting this
into Theorem 2.7, we see that {n’l/QAfﬁkX("’p)}neN satisfies an LDP in R* at speed
sn, = n?/2+P) with GRF

=15 |

c p 2 2p/(p+2) k
P 9 } 9 ||x||2 ’ Z ( )

Iaxw k(7)) = in {
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The LDP for the norm follows from the contraction principle applied to z +— ||x]|2.

In the sublinear regime, Proposition 3.4 shows that {X (")} satisfies Assumption C
with GRF Jx, (for all values of r € [0,00]) and at speed s, = n?/(2*P) in case (a),
which corresponds to r = oo, and in case (b), which corresponds to r = 1, and speed
$n = nPkn?’? in case (c), which corresponds to r = 0. Together with Theorem 2.11(ii),
this immediately implies case (c) and case (a) follows from the second equality in (3.8)
above. On the other hand, if case (b) holds, Theorem 2.11(ii) and the expression for Jx ,
in (3.6) show that for > 0,

. - zP
JY2<p>n (z) = Inf { —logc+ —}
p+2 af

where ¢(z) is the unique positive solution to ¢P*2? — ¢? — 2P = 0, whose existence and
uniqueness is guaranteed by Descartes’ rule of signs (see e.g. [5]). Since x > 0, the
unique positive solution satisfies ¢(z) > 1. Furthermore, ¢(z) = (&(z)P + zP)Y/P+2) >
(14 2P)V/(P+2) > 1 4 gP/P+2)

In a similar fashion, applying Theorem 2.9 and Theorem 2.15, one can also deduce
LDPs for the empirical measures of the coordinates of the sequences of projections of
X = X(p) in the sublinear and linear regimes. Furthermore, in the linear regime,
similar LDP results for the norms of these projections can be deduced from Theorem 2.16
on noting that {X(™P)} _y satisfies Assumption A. But, we do not state these results
since they were already obtained in Theorem 1.2 of [3].

Remark 3.6. Theorem 3.5 shows that when p € [1,2), the speed of the LDP for Euclidean
norms of k,-dimensional projections of £} balls exhibits an interesting phase transition
depending on whether the ratio k, /n?*/(?*P) is asymptotically finite or infinite, and the
form of the rate function also differs depending on whether the limit is zero, strictly
positive or infinite. Indeed, note that z? > zP/¢(x)? = ¢(x)? — 1 > 2%/(P+2), Hence,
a comparison of cases (b) and (c¢) of the last theorem above shows that the faster the
growth of the speed k,,, the faster the growth of the rate function Jyﬁ)n (z), as x — oc.
This disproves a conjecture in [3] (see the statement after Theorem 1.2 therein), which
states that the LDP (that is, speed and rate function) of these Euclidean norms should be
the same in the constant and sublinear cases. This behavior is in contrast to the case of
¢, balls, with p > 2, where the rate functions of the (Euclidean) norms of the projections
in the sublinear and constant cases coincide (see Proposition 3.7 and Remark 3.9).

3.2.8. Verification of Assumption A* when p € [2,00)
The verification of the asymptotic thin shell condition is much easier in the case
p € [2,00) than when p € [1,2).
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Proposition 3.7. For n € N and p € [2,00), {X™P)}, o satisfies Assumption A* with
sn =n and GRF Jx , where

—logx ifz € (0,1],
J =
x2(2) { 400 otherwise,

and for p > 2,

2
Ty o(x) = | Bvzalzloglz + Fi()] 2 e (0,1),
. +0o0 otherwise.

Moreover, Jx , has a unique minimizer at m := m(p) defined in (3.3).

Proof. In the case p = 2, by (3.4), clearly || X™P)||y/\/n D gim, Thus, Lemma 3.3 of
[21] shows that {X(™P)}, .y satisfies Assumption A* with GRF Jx o, and the explicit
form of Jx 2 implies it has a unique minimum at m(2) = 1. On the other hand, when
p > 2, the LDP follows from [28, Theorem 1.2] and uniqueness of the minimizer from
[28, Theorem 1.1 (a)], with d = 1 and ¢; = 2 (note that the £} ball is scaled differently
there but the results nevertheless follow). 0O

The last result can also be deduced from Proposition 3.11 on Orlicz balls in Section 3.3
by choosing V (z) = |z|”. However, we presented the self-contained proof above since the
special case of £, balls with p > 2 is easier due to the representation (3.4). Finally,
Proposition 3.7 and Theorem 2.7 together yield the following corollary.

Corollary 3.8. Fiz p € [2,00), let ky, be constant at k € N and let Jx, be defined as in
Proposition 3.7. Then {nil/ZAZ’kX(”’p)}neN satisfies an LDP in R* at speed n with
GRF Ipxw ), : R¥ = [0,00] defined by

0<c<1

Ipnxw () := inf {nyp <”xc”2) — 1log (162)}, z € R¥.

The particular case when k,, = 1, for all range of p € [1,00) was studied in [21]; see
Theorem 2.2 therein. Our method is different in that we take advantage of the equivalent
representation in Lemma 4.2 and hence a different form of the rate function is obtained
here.

Remark 3.9. One may combine Proposition 3.7, Theorem 2.11 and Theorem 2.16 to
obtain LDPs for {n_1/2||AZ7an(”’p)||2}neN in the sublinear and linear regimes when
p € [2,00). We omit these results, since they were already obtained in Theorem 1.1
of [3]. LDPs for empirical measures of the coordinates of the projections of the £ balls
with p € [2,00) in the sublinear and linear regimes can also be deduced on combining
Proposition 3.7 with Theorem 2.9 or Theorem 2.15.
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3.8. Orlicz and generalized Orlicz balls

We now consider the class of Orlicz and generalized Orlicz balls. These form a natural
class of examples because, like the uniform measure on any convex set, the uniform
measure on a generalized Orlicz ball is logconcave, and much like £} balls, the coordinates
of a uniformly distributed random vector satisfy a certain “subindependence” property
known as “negative association” [49], and (under suitable conditions) the Orlicz ball
satisfies the KLS conjecture [37].

Definition 3.10. We say V is an Orlicz function if V : R — R4 U {oc} is convex and
satisfies V(0) = 0 and V(z) = V(—z) for z € R. Let the domain of V' be Dy := {x €
R:V(x) < co}. We say V is superquadratic if

V(z)/2? = 0o, asx — oo. (3.9)

In particular, 2-convex Orlicz functions are superquadratic in the sense of Definition 3.10,
and this includes the case V(z) = |z|P, with p > 2. Fix a superquadratic Orlicz function
V', and denote the associated symmetric Orlicz ball by

L= {1: eER™: zn:V(xi) < n} . (3.10)

We also discuss so-called generalized Orlicz balls, associated with a sequence of su-
perquadratic Orlicz functions V; : R — R, ¢ € N. These generalized Orlicz balls, which
are induced by a norm defined by functions that vary with dimension, are also known in
the literature as Musielak-Orlicz balls [45]. For n € N, define the set

n
ViV 1= {Jf ER™: Y Vi(a) < n} : (3.11)

i=1

In contrast with the usual (symmetric) Orlicz ball, the generalized Orlicz ball By, v,
need not be invariant to permutations of the coordinates.
We verify Assumption A* for symmetric and generalized Orlicz balls in Sections 3.3.1

and 3.3.2, respectively. As mentioned above, the special case Bf, = nl/p]B%g, with p > 2,
i
probabilistic representation (3.4), there is no analogous representation for general B,

was analyzed in Section 3.2.3. However, unlike B, whose study is facilitated by the
making its analysis significantly more complicated. Instead, our proof shows that one can
represent By, in terms of an exponential Gibbs measure; this idea has been subsequently
further exploited in [27]. Conditions like 2-convexity (and 2-concavity) often arise in the
local theory of Banach spaces. In our case this condition arises naturally because we are
also considering 2-norms in this section. However, it would be interesting to investigate
whether an analogous analysis can be carried out for Orlicz balls defined via superlinear
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but subquadratic Orlicz functions V' (it is worth noting that we have been able to cover
the special case of £} balls with p € [1,2)) or whether there is a more fundamental
obstruction. In the following, by a slight abuse of notation, we use |A| to denote the
volume of a measurable set A C R" and use dx to denote the integral over Lebesgue
measure in R or R™.

3.83.1. Symmetric Orlicz balls
In analogy with (1.1), for v € P(R), define My : P(R) — R as

My (v) = / V(@) (dz), (3.12)
R

for v such that the integral in the last display is finite. Also, for b > 0, define vy, € P(R)
as follows: for x € Dy, where Dy is the domain of V' as specified in Definition 3.10,

1

pyp(de) = Z—e_bv(m)dx, (3.13)
Vib

with Zy;, being the normalizing constant Zy, := va eV @) gy, Moreover, define

J(u,v) ;== sup < su+tv—log / sV (@) Fia® gy for w,ve R4, (3.14)
s<0,teR
<0,te g

We now state the main result of this section.

Proposition 3.11 (Annealed example, Orlicz). Suppose V is a superquadratic Orlicz func-
tion and forn € N, let X ~ Unif(BY). Then {X ™}, cn satisfies Assumption A* with
Jx = Jx,v, where

Jxv(z):=3(1,2%) —sup s — log (D/ eV @ dy , z€R,. (3.15)
s<0
\%4
Moreover, there exists a unique b* > 0 such that My (uyp+) =1 and Jx v has a unique
minimizer m := \/Ma(uy,p+ ), with Ma as defined in (1.1).

The proof of Proposition 3.11, which is given at the end of the section, relies on certain
properties of the function J specified in (3.14), which we state in the lemma below, whose
proof is relegated to Appendix C. For s < 0, t € R, define v, ; € P(R) as

1
vsi(dz) == V@t gy e Dy,

s,t
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esV(ac)+tw

where Z; ; is the normalizing constant Z,; := va 2dx7 which is finite since V'

is superquadratic and s < 0.
Lemma 3.12. Suppose V' is a superquadratic Orlicz function and let J be defined in (3.14).

1. For u,v € Ry and (u,v) lying in the interior of the domain of J, there exists a
unique (s,t) € R_ x R such that the supremum in the definition of (3.14) of J(u,v)
is attained. Moreover, this (s,t) satisfies My (vs) < u and Ma(vs ) = v.

2. There exists a unique constant b* > 0 such that My (pve-) = 1. Moreover, v —
J(1,v) is a convex function with minimizer m = Ma(pv,p+), and furthermore,

min J(1,2) =J(1,m) =sup< s — log / eV @) . (3.16)
zeRy s<0
\4
3. For v > m, the supremum in the definition (3.14) of J(1,v) is attained at (s,t) €
R_ x Ry while for 0 < v < m, the supremum is attained at (s,t) € R_ x R_.
4. Foru,v € Ry such that J(u,v) < 00, 8,d(u,v) < 0.

Remark 3.13. Let V,V be Orlicz functions, and suppose now that the definition of J in
(3.14) is replaced with

d(u,v) ;== sup < su+tv— log / eV @+ (@) gy for w,veR4. (3.17)
s<0,teR
\%4
Then, as can be seen from the proof in Appendix C, the conclusions of Lemma 3.12
continue to hold, with M; and J in place of M, and J, respectively, as long as
V(z)/V(x) = 0o as x — oo.

Proof of Proposition 3.11. Fix a superquadratic Orlicz function V (see Definition 3.10).
For a measurable set A C R, define By ,[4] := By, N{z € R™: 3.7 | 27 € nA}, and note
that

1 - n\2 |BS,V[A]|

i=1

which expresses a tail probability in terms of the ratio of volumes of two convex bodies.
We now proceed in three steps to characterize the asymptotics of these volumes in order
to estimate the tail probabilities.

Step 1. For any closed set F' C R, we will establish an upper bound on the numerator
in (3.18),
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1
li —log |BY ,[F]| < — inf J(1, z). 3.19
imsup  log B3y [F]| < — inf 4(1,2) (3.19)

With b, > 0 as defined in property 2 of Lemma 3.12, and M as defined in (1.1), set
m = My(pyp+). Next, set oy := min{x € [m,+00)NF} and a_ := max{z € [0, m|NF}.
Assume oo < m < a4. Then

‘BSV[FH < +

B@ﬂ{xeﬂ%":z:ﬁ? <na}'

i=1

n
B{}ﬂ{xeR":Zm?>na+}

i=1

= |BS v [lar, 00)][ + |BZ.y ([0, ]| (3.20)

Fix s < 0 and ¢t > 0, and note that then

Bg,v[[a+7oo)] = {Z‘ S Rn . exp (Szv(xz)> Z enS’eXp <t2x5> Z enta+} ,
i=1 i=1

and therefore, it follows that

IBS v ([, 00)]| < / exp (sz V(z;) —ns+ tz:tf - nta+> dx
i=1 i=1

B3 v [[ev4,00)]
< emms—ntay / exp <SZ Vix;) + thf> dz.
n i=1 i=1
(Dv)

Hence, for every s < 0 and ¢t > 0, we see that

1

lim sup — log |B§V[[a+7 oo)]| < —s —tay + log / oSV (@) +ta? g,

n—oo T !
4

Taking the infimum over s < 0 and ¢ > 0, we obtain

1 2

lim sup ~ log |B} < inf {—s—toy +1 V@t

imsup - og |BY y[[oy, 00)]| < i T8 Tt + log /e x
\4

=— sup < s+tay —log / eV (@)+ta® g
s<0,t>0
\%4

= _H(la Oé+),

where, since a; > m, the last equality follows by property 3 of Lemma 3.12.
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Similarly, once again fixing s < 0 but now also choosing t < 0, we have

lim sup -~ log |IB%2 v1[0, a— )]} <— sup {s+ta_ —log /esv(x)-‘,—t;szx
n—eo 5<0,t<0
\4

= —3(1,04_),

where, noting that a— < m, the last inequality once again follows by property 3 of
Lemma 3.12. Together with (3.20), the last two displays show that

llr?iso%p log | By V[ ]| < —min(d(1,a),d(1,a-)) = - ;2%3(1’ z),
where the last equality follows from the convexity of @ — J(1,z) and the fact that m
is the unique minimizer of J(1,-), as established in property 2 of Lemma 3.12; and the
definitions of cv_ and a.. This proves the claim (3.19) in this case.

On the other hand, if ay = m or @~ = m, then by property 2 of Lemma 3.12,
infaep J(1,2) = J(1,m). We first obtain an estimate of the volume of the Orlicz ball BY,.

For s <0,
1 n
- log / exp <s Z V(x;) — ns) dx
i=1

iz V(zi)<n

—s+ log / eV @) dy

v

IN

1
— log |IBY
nOgl vl

IN

The claim (3.19) then follows in this case as well since

lim sup log |B | < hm sup log |BY |
n— oo
< —sup< s—log (D/ V(@) g
s<0
= — min J(1,z)
z€R 4

< —minJ(1, z),
zeF

where the second inequality follows on taking the infimum over s < 0 in the last display
and the equality on the third line follows from (3.16).

Step 2. For any open set U C R, we will show the lower bound

n—oo

hmmf — log }]B%Q Vi) = - ingﬂ(l,x). (3.21)
kS
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Since inf ey J(1,z) = infzevnp, d(1,z), with the latter being infinity if the inter-
section is empty, it suffices to only consider U that lies in the interior of the domain of
d(1,-). By property 4 of Lemma 3.12, 9,J(u,v) < 0, and so for each v € Ry, u +— J(u,v)
is decreasing. By the convexity, and hence continuity, of (u,v) — J(u,v) in Ry x Ry,
for every € > 0, there exist 0 < y < 1 and z € U such that

zig[fjg(l,:c) > J(y,z) —e. (3.22)

Pick ¢ > 0 small such that (z — §,z+ ) C U. Let (sy,t,) be the value that attains the
supremum in the expression (3.14) for J(y, z), which exists by property 1 of Lemma 3.12
since U lies in the interior of the domain of J(1,-). Define

n.__ n . 1 - 1 - 2
5.{9:6R .OSEZV(xi)<1,z—6<EZmi<z+5}

=1 =1

and Z, , := Zs, b, = va sV (@)+t:2” 2 which is finite by the definition of (8y,t:), the
definition of J(y, z) in (3.14) and the finiteness of J(y, z). Suppose t, < 0. We then obtain
the following estimate for the lower bound:

By [U]] > / da
Ay
= / (Z%Z)n e v iz V(w)—tea} ﬁ ;esyv(wi)-‘rizx?dx

- 7
Ap i=1 “Y:%

n
> exp (n(log Zy,. — s,y — t.(z — 9))) / H _Lesyv(“)”ﬂ?dx.
Ap =1 Y2
The case t, > 0 can be handled analogously, simply by replacing z — § with z + § on the
right-hand side.
Let {Z;}2, be a sequence of ii.d. continuous random variables with density
iesyv(m)“‘tzﬁ. Since (sy,t,) attains the supremum in (3.14) of J(y,z), by property

1 of Lemma 3.12, E[V(Z;)] <y < 1 and E[Z?] = 2. Then the integral in the last display
can be rewritten as

n

1 'V(")—&-t"? 1 - —_ 1 n;—Q
— eSyVi)ttaig,. —p o< = V() < 1, — < = =4 < o,
17 N P P

-7
Ap i=1 7Y%

which converges to 1 by the weak law of large numbers and finiteness of the respective
moments. Thus, combining the last two displays with the expression for J(y, z) in (3.14)
and the definition of (s, t,), we obtain
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1 _
liminf = log B3/ [U]| > log Z,,. — sy(y — 6) — t.(z — 9)
n :

n—oo
=—J(y,z) + 5,0 +t.0
— inf J(1,2) + € + 540 + t.0,
zelU

Y

where the last inequality invokes (3.22). Since ¢ and § are arbitrary, this implies the
desired lower bound in (3.21).

Step 3. We claim that the denominator of (3.18) satisfies

1
lim —log|By;| = —sup{ s —log (D/ eV @z | 5. (3.23)
n—oo n s<0
\4
Since By, = By ,[R ], applying (3.19) with F' = R, and (3.21) with U = (0, c0), we
obtain

1
lim - log|B}| = — inf J(1,z).
Aim - log[By| = — inf 3(1,2)

The claim then follows from (3.16) of Lemma 3.12.
Finally, the combination of (3.23), (3.19) and (3.21) with (3.18) yields an LDP for
{L 5" (XM)?},en at speed n with rate function

d(1,x) —sup s —log (D/ eV @) dy
s<0
\%

The proposition then follows by an application of the contraction principle to the map-
ping 2 — /z. O

Remark 3.14. The relation (3.23) provides the asymptotic logarithmic volume of an Or-
licz ball. A careful inspection of the argument shows that this limit result does not require
the super-quadratic restriction on the Orlicz function; it is the LDP for the norms that
uses this restriction. Indeed, let V and V' be Orlicz functions such that V(z)/V (z) — oo
as © — o0, let J be defined as in (3.17). and for any measurable set A C R define
B2[A] := {z € R™ : 301, V(x;) € nA}. Then, we see from Step 1 in the proof of
Proposition 3.11 that the following more general inequality holds:

1
li —log BV [A]NBL[B]| < — inf for cl A, B C Ry
imsup - og |BY[A]N vl | < xeirjlyeBH(x,y), or closed sets A, B C Ry
Remark 3.15. After the first version of this paper was posted on arXiv, the asymptotic
logarithmic volume of an Orlicz ball was also obtained in [27], where they also established

further refined estimates using ideas from sharp large deviations estimates (see, e.g.,
[7,40]).
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3.3.2. Generalized Orlicz balls
Suppose that By, is close to a symmetric Orlicz ball in the following sense: there
exists an Orlicz function V : R — R such that as n — oo,

UB% ABT‘}l,...,Vn}

n n
]BV U Bth,Vn

— —o0, (3.24)

where BY, is the Orlicz ball as defined in (3.10), and for any sets A, B C R", AAB =
[A\ B]U[B\ A] represents the symmetric difference of A and B.

Lemma 3.16 (Generalized Orlicz). Fiz Orlicz functions {V;}ien and V that satisfy
(3.24), and are uniformly superquadratic in the sense that there exists a constant
cy € (0,00) such that for x > cy, Vi(z) > 22 for i € N and V(x) > z%. Suppose
XM ~ Unif(BY, ). Then, {XM},cn satisfies Assumption A* with Jx v, defined as
n (3.15), but with V replaced with V.

Proof. Let X(™) ~ Unif(B?), U™ ~ Unif(B UBY, ) and X" ~ Unif(B}, )
be independent random vectors defined on a common probability space. Define
W(n) = U(n) 1{U(n)€]Bv‘w/,1 v } + X(n) 1{U(1L)€B’n

..... V,,}’

W = U(n)l{U(n)eBg} + X(n)l{U(n)ng}.

First note that conditioned on {U™) ¢ BY,
X™) . By definition, X(™ is supported on BY, v, For a measurable set A C By, .

v b U™ has the same distribution as

we have
P (W0 e 4) =P (W0 e alu™ By, Ly, )P (U0 €BY, )
P (Wm) c A’U(m ¢ Bx’%,...,vn) P ( U™ ¢ By )
=P (U™ cAlu® emy, )P (UM eBy )
+P (X eAlv™ ¢ By, v )P (UM ¢BY )

- P (X(”) c A) P (U n e ]th Vn)

—P (X(”) eA).

Hence, W™ @ X () A similar argument can be used to show that W) @ X ™) thus

providing a useful coupling between the uniform measures on By, ~and Bf. Due
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to the contraction principle applied to  +— +/a, Proposition 3.11 and Remark 1.6, it
suffices to show that {||W (|3 /n},en is exponentially equivalent (see Definition 1.5) to
{IW™3/n}nen.

To this end, let k := \/c%, + 1, where ¢y is the positive finite constant stated in the
lemma, and note that By, ,, C sy/nBj and BY C x\/nBY since for x € By, .,
S <3 (e + V(xl)) (3 +1)n = k?n, Where the last inequality uses (3. 11)
and for z € BE, Y20 @7 < Y (&} + V(x;)) < (3 + 1)n = k>n, where the last
inequality uses (3.10). Thus,

W™z w3
n

.....

Therefore, for every d > 0,

IN

1 T 2 2 1
~10gP (|IW3/n — [WI3/n| > 6) < ~10g P (k1o gy omy, 0 > 0)

1
= Elog]P’ (U(n) IS (]}33 AB?/I,..‘,VH))

which converges to —oo as n — oo by (3.24). This establishes the desired exponential
equivalence and thus completes the proof. O

3.4. Gibbs measures

We now consider the case when the random vector X (™) is drawn from a Gibbs measure
on configurations of n interacting particles. To be precise, let F' : R — (—o0, 0] be a
“confining” potential, G : R x R — (—o00, o0] an “interaction” potential, and for n € N,
define a Hamiltonian H,, : R™ — (—o0, 0] given by

H,(z):= ?1121 2 Z Z (i, z5), x€R™

1=1j=1,j7%

As in [17], we assume that there exists a non-atomic, o-finite measure ¢ on R which,
along with the potentials F' and G, satisfies the following conditions:

1. F and G are lower semicontinuous on the respective sets on which they are finite;

2. there exists a € [0,1) and ¢ € R such that F satisfies [ e =9F@((dz) < oo
inf, F(z) > ¢, and inf(, ) cr g [G(z, ) + a(F() + F)] > ¢

3. there exists a Borel measurable set A C R with ¢(A) > 0 such that

/ [F(z) + F(y) + Gla, y)) dda)(dy) < oo

AxA
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4. for all A € R, we have

/ exp [)\(xQ +9%) — F(z) — F(y) — G(m,y)] £(dz)l(dy) < oo.
RxR

Under the above conditions, it is straightforward to verify that for n € N, Z,, :=
Jrn e~ "Hn (@) p®n (41 is finite and so we can define P, € P(R) as follows:

1

P, (dx) := Z—e_”H”(’”)Z‘g"(dx), x € R™ (3.25)
n

Further, let @, € P(R) be the empirical measure of the coordinates of X (") when the

latter is drawn from P,; more precisely, set Q, := %Z?:l 6Xgn), which is a random

P(R)-valued element.

Theorem 3.17 (Theorem 2.7 and Lemma 2.6 of [17]). Under the conditions stated above,
{Qn}nen satisfies an LDP in Po(R) equipped with the 2- Wasserstein topology, at speed
n, with GRF I, : Po(R) — [0, 00] defined by

3.() = 3) = int | 300, (3.26)
I00) = H o) + 5 / G, y) ) dy) + / F(x)u(dz),
RxR R

with H being the relative entropy functional defined in (1.5).

Proposition 3.18 (Gibbs measures). Suppose F,G and { satisfy the conditions stated
above, and for n € N, suppose X™ is drawn from P, of (3.25). Then {X"™}, N
satisfies Assumption A* with GRF

Jx(z) := inf {J*(,u) tp € Py(R),x = Mg(u)}, x>0,
with J. as defined in (3.26).

Proof. The LDP for {||X™|]3/n}nen, follows from an application of the contraction
principle to the empirical measure LDP of Theorem 3.17 and the second moment map M
of (1.1), which is continuous with respect to the 2-Wasserstein topology. Assumption A*
then follows on applying the contraction principle with the map =z — /x. O

Remark 3.19. In a similar fashion, the large deviation results in the recent work of
[41, Theorem 2.8] can be combined with the contraction principle to show that As-
sumption A* is also satisfied by sequences of Gibbs measures associated with a class of
interaction potentials G : R¥ — (—o0,00] that capture k-tuple interactions, for fixed
ke N.
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4. Proofs of LDPs for the random projections

In this section, we prove the main large deviation results, namely, Theorems 2.7, 2.9
and 2.15, stated in Section 2, which deal with the constant, sublinear and linear regimes,
respectively. At many points, we will refer to certain properties of the top row of A,, 1, ,
which we first establish in Section 4.1. Sections 4.2, 4.3 and 4.4 consider the regimes
of {k,} constant, sublinear and linear, respectively. Throughout, let (1, (s, ..., denote a
sequence of i.i.d. standard Gaussian random variables, let ¢(" := (C1y-.,Cn) €R™ let
e; :=(1,0,...,0) € R™

4.1. The top row of Ay 1,

Lemma 4.1. Fiz k,n € N such that k < n. Then the following relation holds:

A k(1) = (AL, 1), Ap(1, ) @ (G G (4.1)

[ISRu[P
Proof. Let O,, be a random n x n orthogonal matrix (i.e., sampled from the normalized
Haar measure on the group of n x n orthogonal matrices). Let I,  be the n X k matrix
of ones on the diagonal and zeros elsewhere. Note that
CY)
AZ;k = Ig,kona
which implies that A, x(1,-) is equal in distribution to the vector of the first k elements in
the top row of O,,. The marginal distribution of the top row of O, is the uniform measure

on the unit sphere of R™, which establishes the identity (4.1), due to the classical fact
that ¢(™/||¢(™ ||y is uniformly distributed on the unit sphere in R™ (see, e.g., [44]). O

Lemma 4.2. Fiz n € N and k < n. Suppose X is an n-dimensional random vector
independent of A, . Then the following relation holds:

(n) n (d) n
(AL 1K) € (AL er, 1X2).

Proof. As in Lemma 6.3 of [21], which considered the case k = 1, this result is eas-
ily deduced from the fact that the distribution of A, ; is invariant under orthogonal
transformations and independent of X (™. In particular, fix n € N and given any n x n
orthogonal matrix O,, and = € R", we have

T @ (7 g
AT—,;Z:)_(AO x>
( n,ka”z ” HQ n,k~n ||9UH2 H ”2

Now, given e; € S"~ !, for any y € S"~! let R(y) € V,,., be the unique orthogonal matrix

O,, such that O, 'y = e;. It is easy to see that R : S"~1 V,.» is a measurable map.
Then, for any « € R™, substituting O,, = R(z/||x||2) in the last display it follows that
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-1
AZL,:C)@ AT (%L)) T el ) = (AT en, 2]a)
( Tl 112 #P\el)) Telp Il ) = Anserslizlz)

Since Aik is independent of X ("), the above relation holds when z is replaced with
XM, o

In the settings in which {k,},en grows, we will first analyze the empirical measure
of the k,, elements in the top row of /nA,, . That is, let

kn
1
fip = o Z VitAn i, (1) M EN. (4.2)

Recall that P(R) is always equipped with the weak topology unless otherwise stated.

Lemma 4.3. Forn € N, let X" be independent of A, i, and recall the definition of L"
given in (2.1). Then we have

d)

£() @ L (- x v/ X]l2).

—~

Moreover, the map P(R) x (0,00) 3 (v,¢) = v(- x c71) € P(R) is continuous.
Proof. For each n € N, using the definition of L™ from (2.1) and Lemma 4.2, we have

kn

ny— L NS .
ro=x ;5|X<">||2( o), O=5, Zé%ﬁ(#vkn“)j()

mokn TXOIT

1 n
T O/ Ak (1 ‘('X\/—/HX()H)
j=1

from which the first assertion of the lemma follows by (4.2). Continuity of the map
(v,¢) = v(- x c¢71) follows if and only if as n — oo a sequence of random variables
{Bn}nen converging in distribution to B and a sequence of constants {c,} converging
to ¢ implies that ¢, B, converges to c¢B in distribution as n — oo, which follows from
Slutsky’s theorem [36, Theorem 13.18]. O

Lemma 4.4. Suppose {i' }nen and {||X™|o/v/n}nen satisfy LDPs, both at speed s,
and with GRFs 11 : Pg(R) — [0,00] and I3 : Ry — [0, 00], respectively. Then {L™},en
satisfies an LDP at speed s, with GRF defined by

I(p) = Ve?q(iﬁ;{%& (L) +Ia(c) s p=v(-x N}, e P(R).
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Proof. By the independence of A,, ., and X {i%, | X™||2/v/n}nen satisfies an LDP
at speed s, with GRF

Pe(R) xRy 3 (v, ¢) = Li(v) + Ia(c) € [0, 00].

The claim follows on applying the contraction principle to the mapping F' : Po(R) xR —
P4(R) defined by F(v,c) =v(-xc™!) O

Lemma 4.5. Let {(;}jen be i.i.d. N(0,1) random variables, ("™ = ((1,...,¢,) and con-
sider the sequence

1 k
VUp = ]{j_ 5(;’ n e (43)
n

3

Then {vn}neN satisfies an LDP in P(R) with respect to the weak topology, at speed ki,
with GRF H(:|y1). Moreover, for a sequence {sp}nen such that s, < kn, {Vn}lnen
satisfies an LDP in P(R) with respect to the weak topology at speed s, with GRF

X (V) 1= { 0 Tv=m  com). (4.4)

+o00  else

Proof. The first claim is a direct conclusion of Sanov’s theorem [14, Theorem 2.1.10]
while the second claim follows since H(-|y1) : P(R) — [0, 00] is convex with a unique
minimizer at 1, as in the observation of Remark 1.3. O

We now document an elementary observation since it will be used multiple times in
the sequel.

Remark 4.6. Let {(;};en be i.i.d. N(0,1) random variables, let {k,},en be a sequence
of positive integers that converges to infinity and let C,, := ﬁ Z?gl Cf, n € N. It is
easy to see that the log moment generating function of (? is given by f% log(1 — 2t)
for t < 1/2 and infinity, otherwise. Hence, it is an immediate consequence of Cramér’s
theorem [14, Theorem 2.2.1] that {C, }nen satisfies an LDP in R at speed k,, with GRF
Je2 : R = [0, 00] of the form

1
Je2(t) :=sup {st + —log(1 — 28)} =
seR 2

4.2. Proof of the LDP for random projections in the constant regime
This section is devoted to the proof of Theorem 2.7. Throughout this section, fix

k € N and suppose k, = k for each n € N. We first give the main idea behind the proof.
Due to Lemma 4.2 we have
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1 n) (@ 1 n
%AZ,kX( ) < %Ag,kel“X( o= Anx(l,)

X

v (4.6)

where {A,, x(1,-)}nen is independent of {X (™1, cn. Thus, the question essentially re-
duces to understanding the following: suppose two independent sequences of random
vectors {Vy, }neny and {Wp,},en (with at least one-being real-valued) satisfy LDPs at
speeds {B,}nen, and {7V, }nen with GRFs Jy and Jy, respectively. Then we want to
understand when an LDP with a non-trivial rate function can be deduced for the prod-
uct sequence Z,, := V,W,,, n € N. When ,, = v,, then this is a simple application of
the contraction principle. We will see that this is the case when Assumption A* holds,
that is, when {[|X()|s/\/n}nen satisfies an LDP at speed n, by showing that then
{A, k(1,)}nen also satisfies an LDP at speed n. On the other hand, if 3, < =, or
Brn > Yn, then the idea is to find sequences {b, },en and {s, }nen such that {b,V, }nen
and {b,,'W,, },en both satisfy non-trivial LDPs at the same speed s,,, and once again
apply the contraction principle. This falls into the case of Assumption B, which states
that {0, || X™||a/v/n}nen, with b, = /s, /n, satisfies a non-trivial LDP at speed s,
and thus the proof in this case follows by showing that {b,*A,, x(1,")},en also satisfies
a non-trivial LDP at speed s,,.

Proof of Theorem 2.7. We consider two cases.
Case 1. Suppose Assumption A* holds with GRF Jx.

First, note that by Lemma 4.1, we can apply the LDP in [8, Theorem 3.4] to find that
{A,k(1,)}nen satisfies an LDP in R” at speed n with GRF Jx(y) := —1 log(1 — [|y[|3),
when |yllz < 1, and Ji(y) := +oo otherwise. Since {X(™},cn is independent of
{A, x}nen, and the case assumption shows that {||X(™||2/\/n},en satisfies an LDP
with speed n and GRF Jx, Lemma 1.9 implies that {A, x(1,-), | X™|2/v/n}nen sat-
isfies an LDP at speed n with GRF Ji(y) + Jx(a) for y € R¥ and o € R,. The
contraction principle applied to the mapping R* x Ry 3 (y,a) = ay € R¥ implies that
{n*1/2AZ’kX(")}neN satisfies an LDP with GRF

Ianxp(z):= inf {—%log(l— ||y|\§)+JX(z) cx=yz, |yl <1, zEO}, x € R”.
yeR* zeR

We can without loss of generality restrict the range of z in the infimum to z > 0; then,
substituting y = z/z and noting that the constraint ||y|j2 <1 is equivalent to ||z||2 < z,

it follows that
= i _1 _ l=llz
IAX,k(Jf) = inf 5 log [ 1 22 + Jx(Z)

z2||z|l2

P oW SO L 2 RF
= 5 log 2 + X(Z) , T E .

2>zl
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On rewriting the above in terms of ¢ = ||z||2/z, we obtain the form (2.3) for the rate
function Iax k.

Case 2. Suppose Assumption B holds with sequence {s;,},en and GRF Jx.

From Lemma 4.2 and (4.1), denoting ¢ := ((y,...,¢n) with {¢}ien ii.d. N(0,1)
random variables, we have

XUy @ ¢®/ s VEdllX™,
v lcely /v

1 d
CALX S A

Now, consider the sequence of vectors

(4.7)

(™ v eI,
o (G ) e

which are almost surely well-defined. Then ¢;/./s, is a N(0, 1/s,) random variable with
$n — 00 as n — oo. Hence, by the Girtner-Ellis theorem, the sequence {¢¥)/,/5,},en
satisfies an LDP in R¥ at speed s,, with GRF  ~ ||z||?/2. Assumption B implies that
{\/5allX™]|2/n},en satisfies an LDP, also at speed s,,, and with GRF Jy. Finally, by
Remark 4.6, the contraction principle applied to x — 1/4/x and the strong law of large

numbers, {\/n/||¢™ |2} en satisfies an LDP at speed n and converges almost surely to
1, which implies that the associated GRF has a unique minimum at 1.

Together with the independence of {(;}i=1,.. & and X and Lemma 1.9 (with U, =
C®) ) \f3ms Vi = /B XMl /n, W, = /n/||¢™)]|2 and m = 1), this implies that R,
satisfies an LDP with GRF given by R¥ x Ry x Ry 3 (ry,72,73) % + Jx(rs) if
ro = 1 (and +oco otherwise). Combining this with (4.7) and the contraction principle
for the continuous mapping R¥* x ]Ri > (r1,re,73) —> r1rers € R*, it follows that the
sequence of k-dimensional vectors, {n_l/QAZ;kX(”)}neN, satisfies an LDP at speed s,

with GRF

2
IAX,k(-T) = inf{% + Jx(T3) Ir1 € Rk,’r‘g > O,.T, = 7’17"3}

: Il |, ¢
= f _ _—
go{JX< c + 2/’

which coincides with the expression given in (2.3). This completes the proof of Theo-
rem 2.7. O

4.3. Proof of the empirical measure LDP in the sublinear regime 1 < k,, < n

We now present the proof of Theorem 2.9. We first start with an auxiliary result.
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Proposition 4.7. Fiz q¢ € [1,2). Suppose {kn}tnen grows sublinearly. Then, {{is }neN
defined in (4.2) satisfies an LDP in P4(R) at speed k,, with GRF H(-|y1) : P(R) — [0, 00].

Proof. Recall that {(;}jen are ii. d N(O 1) random variables, ¢(™ = ((1,...,¢,). Due
to (4.2) and Lemma 4.1, {’% }nEN = {Vn}nENv where

kn
1
Y= Z Vg /iy, mEN.

We now claim (and justify below) that {v, },en defined in Lemma 4.5 is exponentially
equivalent (at speed k) to the sequence {7, },en defined in (4.3).

To prove the claim, let z, := \/n/||C™ |2 and let dgy, denote the bounded-Lipschitz
metric (which metrizes weak convergence). Then, letting BL(R) denote the space of
bounded Lipschitz functions f : R — R with Lipschitz constant 1,

FEBL(R) En =

dpL(Vn, 7) < sup Z\fcg F(Gza)l

kn

1 1 on
E IC; — Cj2n|:|2n*1|'ajz::1|€j|-

Jj=1

Hence, for d,¢ > 0, we have

k
1 n
B (dpL (v, ) > 6) P | |z = 1] = |1 > 8

kn,
)
<P ZICJ|>— +P(lzn — 1] > €).

] 1

Since (; has a finite exponential moment, Cramér’s theorem [14, Theorem 2.2.1] implies

li —1 P =—
Jim = log ZICJI > d/e 3(6/€),
for some convex and superlinear rate function J. Also, by Cramér’s theorem for
>, ¢2/n, the continuity of z — 1/y/z on (0,00) and the contraction principle, the
sequence {z,}nen satisfies an LDP at speed n. Hence, due to the sublinear growth of
k., we have

1
lim k—log]P(|zn — 1] >¢€) = —o0.

n—00 n
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Combining the last three displays, we find that

lim — log P (das (v, 7n) > 8) < —3(6/c).
n—oo ki,
The claim of exponential equivalence follows on sending ¢ — 0, due to the superlinearity
of J.

In light of Remark 1.6, the last observation taken together with Lemma 4.5 implies
that {{i'x }nen satisfies an LDP in P(R) at speed k,, with GRF H(-|y1). In order to

strengthen the LDP for {{ii }nen, by [14, Corollary 4.2.6], it suffices to show that

A tnen is exponentially tight in P,(R). Since {i'X }nen @ Uptnen and for each
A q A

j > 0, the set K5 ; defined in (1.2) is compact with respect to P,(R) due to Lemma 1.1,
it suffices to show that for € > 0, there exists M < oo such that

1 1
lim . log P(7, € K5 ) = li_)rn . log P(Ma(9,) > M) < —e¢. (4.8)

n—oo n n

2
Now note that {Ma(7,) = 7= Z?;l H<<€—f5n2}"€N and by Remark 4.6, {||C%*")(|3/kp }nen
and {||¢(™||2/n},en satisfy LDPs at speed k, and n, respectively, both with the same
GRF Jy2(z) defined in (4.5). Thus, {n/||¢(™||3},en also satisfies an LDP at speed n by
the contraction principle. Together with Lemma 1.9 and the fact that Je2» has a unique

minimizer at 1, this implies the sequence {Mas(7y,)}nen satisfies an LDP at speed k,
with GRF J2. Now, for € > 0, pick M such that Je2(M) > €. We then obtain

1
lim —logP(Mz(9yn) > M) < —Je2(M) < —e,

n—oo ky,

which proves (4.8), and thus concludes the proof of the lemma. 0O

Proof of Theorem 2.9. By Assumption A, || X(™)||y/\/n satisfies an LDP at speed s,
with GRF Jx and when s, > k, by Remark 1.3 (and the additional assumption that
Jx has a unique minimizer m), {||X™|s/v/n}nen also satisfies an LDP at speed k,
with (degenerate) rate function x.,. Also, by Proposition 4.7 and Remark 1.3, {{ }nen
satisfies an LDP at speed k, with GRF H(:|v1) and, when s, < ky,, {4 }nen also
satisfies an LDP at speed s,, with (degenerate) GRF x., defined in Remark 1.3 (see also
Lemma 4.5).

Combining the above observations with Lemma 4.4, we see that {L"}, cn satisfies an

LDP at speed s, A k, with GRF I 1, , where when s, > k,,

n?

I = inf H mle)iu=v(-xc!
Lk (1) Ve?q(lﬂg)vce&{ vImn) + xm(c) s p=v(-xc )}

= H(u(- x m)m)
= H(upn(- x m™))
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= H(plvm),

when s, = k,,
I = inf H +J cp=v(-xct
Lok (12) ver, ol er, {Hw|n)+ Jx(c):p=v(-xc ")}

= cierﬁ{er {H(ulve) + Ix(c)},

and when s, < k,,

Ipk, (0) = ueTq(illg)f,ceR {X'yl +Jx(e):p=v( x cil)}
_ Jx(c), H="c
400, otherwise.

This proves Theorem 2.9. 0O
4.4. Proof of the empirical measure LDP in the linear regime k, ~ An

Throughout this section, suppose {ky},en grows linearly with rate A € (0,1]. As in
the sublinear regime, we first analyze the sequence of empirical measures {{ix }nen of
(4.2) as a precursor to the analysis of {L"},cn of (2.1).

Proposition 4.8. Fiz q € [1,2). Suppose k,, grows linearly with rate X € (0,1]. Then, the
sequence {[t'x }neN satisfies an LDP in Py (R) at speed n with GRF Hx of (2.10).

The proof of the above result is deferred to the end of this section. Taking it as given,
we now prove the main LDP in the linear regime.

Proof of Theorem 2.15. Suppose Assumption A is satisfied with corresponding sequence
{8n}nen. First, suppose s, = n. Then, along with Proposition 4.8 and Lemma 4.4, this
implies that {L"},cn satisfies an LDP at speed n with GRF ]TLA, defined by

Toaln) = VGT(R)766R+ {J{A ) +JIx(e) s u() = v(- % cil)} ’

= nf {900 % 0) +Jx(@)}, pe PR).
ceRy
In turn, since H,(v) = oo if Ma(v) > 1/X and Ma(u(- x ¢)) = Ma(p)/c?, this implies

Ipa(p) = N IAHAE - {Ha(u(- x ) +JIx(c)}, nePR). (4.9)

Now for p € P(R) and ¢ > /AMa(u), the definitions of 3, and h in (2.10) and (1.4),
respectively, imply
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TG+ % €)) = ~M(u(- x ) + 3 log(2me) + 52 og (s )
= —Ah(p) + Alog(c) + 3 log(2me) + 152 log (1—(,\/1&;)/\1\42(;1))

= Aog(c) — 52 log (1 - %22(”)) — Ah(p) + 5 log(2me) + 152 log(1 — A).

When substituted back into (4.9), this shows that for every u € P(R), I (1) = I.x (),
with the latter defined as in (2.11).

Next, consider the case s, < n. By Lemma 4.8, {i& }nen satisfies an LDP at speed
sp, with GRF 3. Therefore, by Remark 1.3 and Remark 2.14, {3 },en also satisfies
an LDP at speed s, with GRF x.,. Then, by Assumption A and Lemma 4.4, {L"},,en
satisfies an LDP at speed s, with GRF

. . o . -1
Ve?(l}g,fce]R+ {XM(V) txle)p=vloxe )}

_ {JX(C)a B = Yec,

00, otherwise,

which coincides with the expression for Iy, x(u) given in Theorem 2.15 for the case s, <
n. 0

Remark 4.9. Note that the above proof in particular shows that, under Assumption A,

the rate function Iy (u) from Theorem 2.15 in the linear regime in the case s, = n,
satisfies, for A > 0,

L) = inf {3l x ) + Jx ()}

with Hy defined as in (2.10).

The rest of this section is devoted to the proof of Proposition 4.8, which is broken
down into the intermediate steps given by Lemmas 4.10 and 4.11 below.

Lemma 4.10. Suppose k,,/n — X € (0,1] as n — oo, and {(;};eN s an i.i.d. sequence
with common law 71 (the standard normal distribution). If A € (0,1), then the sequence

1 kn 1 n 1 n

2
k—z%, — > b EZ@ , neN, (4.10)
nj:l =

" j=kn+1

satisfies an LDP in [P(R)]? x R at speed n with GRF I  defined by

Iia(p v, s) = ANH(uly) + (1= A) H(v|y) + 5 [s = AMa(p) — (1= X) Ma(v)],
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if AMa(p) + (1 — X) Ma(v) < s, and I A(u, v, s) := 400 otherwise. On the other hand,
if A\ =1 then the sequence

1 & 1
k—nZI%» =D
p

j=1
satisfies an LDP in P(R) x Ry at speed n with GRF I 1 defined by

Lia(pys) = H(plm) + 5 [s = Ma(p)],
if Ma(p) < s, and I 1(p, s) := +oo otherwise.

Proof. Our approach is to apply the approximate contraction principle of Proposi-
tion A.1 and Corollary A.2 of the appendix, with the following parameters:
¥ =R,
e« X:=R=X%
o c(z) =22, for x € R;
1 kn 2 n
e forn €N, let z,; e Y5t d¢; € P(R), and L = A6 € P(R);
e forneN, let € = fczé” =k c(x),i%g’)(dx), fori=1,2.

First, let A € (0,1), consider (.%,,%,) = (.,%51), %1)). Then the domain D of (A.3) takes
the form D = {a« € R : log]E[eA_lo‘Cf} < 0o} = (—0,3), and so 0 € D° = D. Thus,
F(x) = sup,« /s ax, which is equal to Az/2 if > 0, and equal to oo otherwise, and
J edp = My (p). Thus, by Corollary A.2, the sequence {.,%51), ‘&El)}neN satisfies an LDP

at speed n and with GRF J1) = Jil), defined by

AH + 3t — M. if My(p) < t;
IO 1) = { M)+ e = 3] £

Similarly, another application of Corollary A.2 shows that the sequence {92”752), &2 tnen
satisfies an LDP at speed n with GRF J(2) = J>(\2), defined by

O () o= { (L= NHO) + 32— M) 0 <

Due to the independence of (;,j € N, and the contraction principle applied to the
mapping P(R) x R x P(R) x R 3 (p,t,v,u) — (u, v, Xt + (1 — N)u), the sequence

{.,955”, Z?, A/cdzﬁ” +(1 —A)/cdiﬁiz)} (4.11)

neN
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satisfies an LDP at speed n with GRF

(/1’7’/’ 5) g tinf]R {J(l)(u7t) + J(2)(Va U) DAt + (1 - /\)U = 5} = Il,A(M:”v 5)
,ue

To complete the proof, note that because k,,/n — A deterministically, the sequences

A on 1-) & 18
2 - 2 2
S Gt DG and  § =3
" j=1 " j=kn+1 j=1
neN neN

are exponentially equivalent (recall Definition 1.5). Hence, the sequence in (4.11) is also
exponentially equivalent to (4.10), and the latter thus satisfies an LDP at speed n with
GRF I .

Now, let A = 1. We see from the derivation above that the sequence {3,5”, %ﬁl)}neN
satisfies an LDP at speed n with GRF J() | and that the two sequences {ﬁ Z?ll (3 nen
and {1 > i1 C tnen are exponentially equivalent. Hence, from Remark 1.6, we obtain
the desired LDP. O

Lemma 4.11. Suppose kn/n — A € (0,1] and let {(;}jen be as in Lemma 4.10. If
A € (0,1), the sequence of pairs of measures

k n
1 & 1
= Gl i D Ovaglen, |- mEN, (4.12)
=1 " j=kn+1

satisfies an LDP in [P(R)]? at speed n with GRF I defined by

127/\(M? V) = Il,)\(uv v, 1)
= AH(ply1) + (1= X) H(vln) + 5 (1= AMa(p) — (1= 2) Ma(v)),
if AMa(p) + (1 — X)) Ma(v) < 1, and Iz z(p,v) := 0o otherwise. On the other hand, if

A =1, then the sequence {é Z?;l Oy/me; /e s fneN Satisfies an LDP in P(R) at speed
n with GRF I, defined by

Iya(p) = H(plm) + 5 (1= Ma2())
if Ma(p) <1, and Io1(p,v) == 400 otherwise.

Proof. Below we present the proof only for the case A € (0,1) since the case A = 1 can
be argued in an exactly analogous fashion. Due to Slutsky’s theorem, the map

[P(R)]? x Ry > (i, 7,8) — (/j(. x s12), 7( - x 31/2)) )
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is continuous. Then, applying the contraction principle with this map to the LDP of
Lemma 4.10, we find that the sequence in (4.12) satisfies an LDP with GRF:

V) > inf {I [, 0,8) = - x s/2), v =0(- x 1/2}
(1, v) - LB, v, 8) s p=q(- xs/%),v=v(-xs'7)

= i V(- x 572+ (1= W) B x 57 )

+ 2[5 —=AsMa(p) — (1 = N)s Ma(v)] © 5> As Ma(p) + (1 — A)s Ma(v)}
= inf (A H(ubn (- x52) + (1= ) HO (- x 572)
+ 51 = AMa(p) — (1= XN) Ma(v)] + 1> AMo(p) + (1= A) Ma(v)}
Assuming 1 > A My(p) 4+ (1 — A) Ma(v), noting that

dyy 1 x?
log | ————75+ =—=logs— (1—s5)—=
8 (d71(~ X 31/2)($)) 9 08° (1-5) 2’

and using the chain rule for relative entropy, the right-hand side of the previous display
is equal to

AH (ply) + (1= A) H(vn)
+ sie]%&f+{_)\ (logs+ 152 Ma(p)) — (1= N) (3 logs + 52 My (v))

+ S[1 = AMa(p) — (1= X) Ma(v)]}

= I a(p,v) — % + % inf {s—logs}
seR
= I\ (1, v).

On the other hand, if 1 < A Ma(p)+(1—X) Ma(v) is violated, then (by the convention that
the infimum over an empty set is infinite) is infinite, which is again equal to s x(u, V).
This completes the proof. O

We now turn to the proof of Proposition 4.8. First, for A € (0, 1], define

A A 1-) 1-)

bog (3) + 15 og (13), o<z <1

Jo(2) ;:{2 0g () +15% log (1= 0<z< (4.13)
0, otherwise,

where we use the convention 0log0 = 0log(0/0) = 0.

Proof of Proposition 4.8. We first prove that {{i’x },en satisfies an LDP in P(R) with
respect to the weak topology, with GRF ) of (2.10). Due to the representation for
A, 1, (1,-) established in Lemma 4.1, it suffices to show that the sequence
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kn
1
T Z VG /lceay mEN, (4.14)

satisfies an LDP in P(R) at speed n with GRF K.

We deduce in the following the case for A € (0,1). The case for A = 1 can be shown
using a similar calculation and is hence omitted. Combining the LDP established in
Lemma 4.11 with the contraction principle applied to the projection mapping: (P(R))? >
(my,m2) — m € P(R), it follows that {0, },en satisfies an LDP at speed n with GRF
given by p +— inf,cpr) I2,x(1, 7). Now, note that for p,v € P(R) such that AMy(p) +
(1 =XN)Msy(v) <1, we have

I (p,v) = =Ah(p) + 5 log(2m) + 5 Ma(p)
— (1= Nh(v) + 152 log(2m) + 152 Ma(v)
+ 300 =AM () — (1= X) Ma ()
= —Ah(p) — (1 = Mh(v) + } log(2re),

where h is the entropy functional defined in (1.4). Thus,

f I
Velg(R) 22 (1,v)

= —Ah(p) + 3 log(2me) + ueif?(fm {=(1=XNh(v): (1 =X) Ma(v) <1 —XMa(p)}

. 1= AMs(p)

1 .

= —Ah(p) + 5 log(2me) + (1 — A) uelﬂr'}(fR) {—h(l/) s My(v) < 4 [

Since M3(v) > 0, the right-hand side above is equal to infinity if 1 < AMa(@). On the
other hand, if A\M>(p) < 1, then recalling that the maximum entropy probability measure
under a second moment upper bound of z is the Gaussian measure with mean zero and
variance z (see, e.g., Section 12 of [12]), we have

— Mo (p)
Vér?}(fR) I a(p,v) = =Ah(p) + £ log(2me) — 152 log (27r67j“)

= —Ah(p) + %log(2ﬂ'6) + % log (%)

= H(p)-

Thus, we have shown that the rate function is H(u), as desired.

To strengthen the LDP on P(R) to an LDP on P (R) (i.e., with respect to the g-
Wasserstein topology), via an appeal to [14, Corollary 4.2.6] it suffices to show that
{x }neN is exponentially tight in P,(R). Since for each j > 0, the set K3 ; defined
in (1.2) is compact in the ¢-Wasserstein topology by Lemma 1.1. By the definition of
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K5 ;, the definition of My in (1.1), and the identity 4’ w Dy, established in (4.2) and
Lemma 4.1, and the definition of 7, in (4.14),

(k)
(i € K§ s} = {0n € K500} = {Ma () > M} = { %% > \/M} (4.15)

When k,/n — X € (0,1], by [3, Lemma 4.2], {[|¢*")[|2/|[¢™ |2} en satisfies an LDP at
speed n with GRF Jg » defined in (4.13), and {\/ M2 (?») }nen is exponentially equivalent
to {[[¢%*) o/ (VXIC"™]]2) }nen at speed n by Remark 1.7. Combining this with (4.15)
and Remark 1.6, when M = 4/\, we obtain

1 N 1 1S
lim ~logP(i% € KS ) = lim —logP | =2~ AT} < —J5,(2) = —oc.
i logP(fia € K3) = lim - log (x/X||g(n>||2 S —J2a(2) = —oo

This proves the desired exponential tightness of {fx }nen in Pg(R). O
5. Proofs of g-norm LDPs in the sublinear regime, 1 < k,, K n

In this section we prove Theorems 2.11 and 2.12. Recall from (2.4) that Yy, =
1Ak, X2

Proof of Theorem 2.11. Fix {k, },cn that grows sublinearly. From Lemma 4.2 and (4.1),
we have the following distributional identity,

@ €50, X0y _ [Nl / VR v [ X,

IR Sl YV n

n—l/QY'ann

(5.1)

Suppose Assumption A* holds, in which case {’ X H2 /v/n}nen satisfies an LDP at
speed n with GRF Jx. On the other hand, by [3, Lemma 4.2], {||¢%)||2/|I¢™]|2}nen
satisfies an LDP at speed n with GRF

Jc(.T) =

{‘%loga—xz» v ef0,1), 652)

400, otherwise.

Due to the independence of ¢ and X (™, the result follows by Lemma 1.9.

Now, suppose Assumption C holds with sequence {s,}nen, 7 € [0,00] and GRF
Jg). We will make repeated use of the following simple observation: by Remark 4.6
and the contraction principle applied to the map = +— vz, {[|C%*")||2/vEn }nen and
{1 ||2/v/n}nen satisfy LDPs at speed k, and n, respectively, with the same GRF
Je2(2%), and hence, {\/n/[[¢™||2}nen also satisfies an LDP at speed n, and all three
sequences converge almost surely to 1 by the strong law of large numbers. We now

consider three cases.
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Case 1. Suppose r = 0. Then s,, < k,, < n. By the case assumption, {v/&, || X ™ |2/n}nen
satisfies an LDP at speed s,, with GRF J)(?). Hence, the result in this case follows by (5.1),
the observation above and a dual application of Lemma 1.9 with (V;,, W,,) therein first

being (v/En[| X" [[2/n, [¢*)|l2/VEn) and then (P l2| X 2/n, //[|C]]2).

Case 2. Suppose r € (0,00). By Remark 2.10, {V/%,|| X ™ |2/n}en satisfies an LDP at
speed k,, and with GRF rJg)(\/Fx). Then (5.1), the independence of X(™ and ¢(™), the
observation above and Lemma 1.9 together show that {n‘l/ 23/2%”}7;61\1 satisfies an LDP
at speed k, with GRF

271 -
J5"°(x) := inf {C 5 —logc—l—rJ)(() (@)}

Case 3. Suppose r = co. Again from the reformulation (5.1), we have

n—1/2yn () Hg(k )H /\/_\/EHX(TL)Hz
v ], /v n

(5.3)

Since

|k 1/2
T ( Zc ) :
and (because r = 0) k,/sn, — 0 as n — oo, by Lemma 3.2 (with p = 2) and the
contraction principle applied to t — /£, {||¢(Fn) ll2/\/3n tnen satisfies an LDP at speed
sp, with GRF J¢(t) = t?2/2 if t > 0, and J¢(t) = oo otherwise. By the case assumption,
{5l X™||2/n},en satisfies an LDP at speed s, with GRF J)((OO). The independence
of {¢;}ien and X together with the contraction principle applied to the product
mapping (z,y) +— xy, then implies that {V;, := [|[¢F)]|o]| X ™ ||l2/n}nen satisfies an
LDP at speed s, with GRF inf.~q{c?/2 + J¥(x/c)}. The lemma follows on applying
Lemma 1.9 with {V,, },en defined above, W, := (|[¢™||2/y/n)" ', n € N,and m =1. O

Proof of Theorem 2.12. Fix ¢ € [1, 2] and suppose k,, grows sublinearly. From Lemma 4.2
and (4.1), we have the following reformulation

n 1/ n
ey @ € o],
B (S PRV

where (™ := (¢1,...,¢,) with {¢}ien being ii.d. N(0,1) random variables. Consider
the following sequence of random vectors

IS, g™, @]
Rn::< k,l/qq’ \/527 \/52 , neN.

(5.4)
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By Assumption A, {||X)||s/v/n}nen satisfies an LDP at speed s,, with GRF Jx. By
Cramér’s theorem and the contraction principle, {||¢(*») Hq/k}/q}neN satisfies an LDP at
speed k,, with GRF J¢ 4(x) == As(a:q) if x > 0, with A4 defined in (2.7), and J¢ 4(z) =
oo if # < 0. Note that A is strictly convex with unique minimizer M;/ 7. Similarly,
{II¢™|2/v/n}nen satisfies an LDP at speed n with GRF J¢ o(z) := A%(2?) if 2 > 0 (and
is equal to infinity otherwise) with unique minimizer 1.

To prove the theorem, we will use Lemma 1.9 to show that in each of the three regimes,
{Rn}nen satisfies an LDP at speed s, Ak, with a GRF Jg that we identify in each case.
In view of (5.4) and the contraction principle, this would imply that {ky 1/ qY;,Lk,,}nEN
satisfies an LDP at speed s,, A k, with GRF

jZUb(U) = inf{JR(va%Z) U= %vx,y72’>0}- (55)

Case 1. Suppose k, < s,. Then we also have k, < n, and by Lemma 1.9 and the
additional assumption that Jx has a unique minimizer m, {R,},en is exponentially
equivalent at speed &, to (||¢(*) ||q/k71/q, 1,m), which satisfies an LDP at speed k,, with
GRF Jg(z,y,2) = Jcq(z) when y = 1 and z = m, and Jg(z,y,2) = 400 otherwise.
Then (5.5) shows that j;“b(u) = Jeg(u/m) = Aj(u?/m?) for u > 0, and is equal to
positive infinity otherwise.

Case 2. Suppose s, = k. Since k,, < n, again invoking Lemma 1.9 and the additional
assumption that Jx has a unique minimizer m, we have the exponential equivalence at
speed k,, between {R, }en and {(||((k")|\q/k:,1/q, L[| X™|l2/v/n) }nen-. Hence, { Ry, }nen
satisfies an LDP at speed k, with GRF Jr(x,y,2) = Jeq(z) + Jx(2) when y = 1,
and Jr(z,y, z) = +oo otherwise. Moreover, (5.5) shows that j;“b(u) = inf,5o{A} (27) +
Jx(u/x)} if u >0, (and is equal to +oo otherwise).

Case 3. Suppose s, < k. Then k,, < n implies s,, < n, and so Lemma 1.9 and the
observation that the GRF J¢ 4 has Mq1 /7 as its unique minimizer imply that { R, },en is
exponentially equivalent at speed s, to the sequence {(Mé/q, L[| X™]2/v/n)}nen, and
therefore satisfies an LDP at speed s, with GRF Jg(z,y,2) = Jx(z) when z = M(I/q
and y = 1, and Jg(z,y, z) = +0o0 otherwise. When combined with (5.5) this implies that
j;”b(u) =Jx (u/Mé/q) if w > 0 (and is equal to +o0o otherwise). O

6. Proofs of g-norm LDPs in the linear regime

The goal of this section is to prove Theorem 2.16. Throughout, fix A € (0, 1], and
assume k, ~ An. Also, for ¢ € [1,2] and n,k € N,k < n, recall the definition
n_l/qY;fkn = n_l/qHAian(”)Hq given in (2.4). Section 6.1 contains a simple proof
that is valid when ¢ € [1,2). Section 6.2 is devoted to the more involved case of ¢ = 2 in
the linear regime, which also then provides an alternative proof and alternative form of

the rate function in the case ¢ € [1, 2).



S.S. Kim et al. / Advances in Applied Mathematics 134 (2022) 102306 51

6.1. The case q € [1,2)

Proof of Theorem 2.16 when ¢ € [1,2). Fix ¢ € [1,2), and observe that with M,, L™,
Yy and A, defined as in (1.1), (2.1), (2.4) and Section 2, respectively, it follows
that

ko S\ N 1qvn
(—Mq<L )) — VAT, X0, = VYT

n

Then, the LDP for {L"},,en in Theorem 2.15 and the contraction principle applied to
the continuous map P,(R) 3 v+ (AM,)'/4(v) € R imply that {\M,(L")},cn satisfies
an LDP with GRF

Ti(a) = nt (L) s (AM () /7 = a).

Since %Mq (L™) is exponentially equivalent to AM,(L™) at speed n by Remark 1.7, this
implies (by Remark 1.6) that {nil/qYZ}kn tnen also satisfies an LDP at speed n with
GRF J (';7”)\.

If x < 0, we infimize over an empty set, and so Jlll'”/\(x) = —o0. Now, if s,, = n, using
the expression for Iz, » given in Remark 4.9, we see that for z > 0,

Igh(@) = ceR+i,I;ltfe?(R) {%A(”(' x ¢)) + Jx(e) : [AMg(u)]"/* = x},

o B (00050 At 5 =)

inf H M, (V=2
et {50600+ Ix (@) M) = 2]

which coincides with (2.12).
On the other hand, if s, < n, using the identity Iy x(n) = Jx(c) if ¢ = 7. (and
infinity, otherwise) established in Theorem 2.15, we have for z > 0,

TyA) = () s M () /7 = )

= inf {Jx(c): (AIM,) YT =z}
ceRL

. ((mfw),

where M, is as defined in (2.8). This proves (2.12). 0O
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6.2. The case ¢ = 2 and alternative proof for q € [1,2)

We now provide an alternative proof of Theorem 2.16 for ¢ € [1,2), which also extends
to the case ¢ = 2. This yields an alternative representation for the rate function J {';7“/\ of
(2.12). To introduce this representation, fix ¢ € [1,2] and define the following functions.
Let

1
Apg(ty,to) i= log/ Norha (t1]z]?+ (ta — 3)2®) dx,  (t1,t2) € RZ. (6.1)
R

Note that for ¢ € [1,2), we have A 4(t1,t2) < 0o when t; € R and ¢, < % On the other
hand, for ¢ = 2, we have Aa (t1,t2) < 0o when t; + t2 < % We also define

1
Ag(ts) :==log | ——=exp ((t3 — 2)2?)dz, t3€R. (6.2)
R/ V2 2

Note that Ag(ts) < oo for t3 < 1. Let A, , and Ag denote the Legendre-Fenchel trans-
forms of Aa 4 and Ag, respectively. For ¢ € [1,2) and X € (0, 1), define

. (w1, 22) x3 x}/q
- f A 1 VA .
Jon(2) (ml,mzl,%@eRS {/\ Aq ( \ +(1—MAg T z (22 + 23)172 [
(6.3)

and define for A =1,

!

1/q
Jg1(2) == inf {A}f\’q ((x1,22)) : 2= (2) 12 } . (6.4)

(z1,22)ER3

Also, recall the definition of J2 x, A € (0, 1], from (4.13).
We then have the following result.

Proposition 6.1. Fiz g € [1,2]. Suppose {kn}nen grows linearly with rate A € (0,1],
and that Assumption A holds with associated GRF Jx. Then, the sequence of scaled {7
norms of random projections, {n_l/q}/(;kn = n_l/q||A7TL7an(")||q}neN, satisfies an LDP
at speed n with GRF

@)= it {Joa(e) + Ix(y) s w=ye}h, v ERy. (6.5)
The proof of Proposition 6.1 relies on an auxiliary result stated in Lemma 6.2, which
concerns an LDP related to the top row of the matrix A,, . Asin Section 4, let (1, (2, . ..

denote a sequence of i.i.d. standard Gaussian random variables, independent of X (),
and let ¢(™ := (¢y,...,¢,) € R™ Due to Lemmas 4.2 and 4.1, we have
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(i) (Cla .. 'aCkn)

n (n) n (d) n n n
AL, X = Ak, TR XMy = AL, en [ XMy = REIE XMy € RF».
Therefore, for n € N and all g € [1, 00|, we have

)| ] X ()
nfl/quvjzkn _ nfl/qHAZanX(n)”q (i) n1/271/q ”C q H ”2 (66)

(IS PRVAD

Given (6.6) and Assumption A, a natural step to proving Proposition 6.1 is to establish
an LDP for the sequence {n'/2=/a||¢(F)||, /1€ |2} nen-

Lemma 6.2. Suppose {k,}nen grows linearly with rate X € [0,1]. For q € [1,2], the
sequence

nl/2=1/a ||C(k")||q — pl/2-1/q 1(C15 - - -5 G ) llg

satisfies an LDP in R at speed n with GRF J, x of (6.3) and (6.4) for ¢ € [1,2) and
(4.13) for g = 2.

neN, (6.7)

Proof. Fix g € [1,2). For n € N. We start with the observation that the quantity in (6.7)
can be represented in terms of a continuous mapping of a vector of scaled i.i.d. sums: for
each n € N,

12—17q 16l I g 1, 1 &,
n o = 1(Zn),  Zn = EZKA »Ezga n Z G |- (6.8)
=1 =1

IS 12 o1

where T is the continuous map

1/q
Ty

—— € R.
(29 + x3)1/2

T:R3 > (x1, 79, 23) —

We now establish an LDP for the sequence {Z, },en. To this end, for fixed A € (0,1),
we first establish LDPs of the related sequences

=

n

A 1—\
A”hq ::k_ (|Ci|q7<i2)a B, = Z C;, n € N.

n—=k
" =1 nj=kn+1

Note that for ¢ € [1, 2], the origin (0, 0) lies in the interior of the domain of Aa 4, which is
the logarithmic moment generating function of (|¢1]9, ¢?). Since the {(;}ien are i.i.d., by
Cramér’s theorem [14, Theorem 2.2.1] the sequence {A,, ;}nen satisfies an LDP in R? at
speed k, with GRF A3  (-/A), and hence (by Remark 1.4 and the fact that k,/n — A)
also satisfies an LDP in R? at speed n with GRF AAR ,(+/A). Similarly, since 0 belongs
to the interior of the domain of Ag, the logarithmic moment generating function of (%,
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the sequence {B,, },cn satisfies an LDP in R at speed n with GRF (1 —A)AL(-/(1 - X)).
Since k,/n — A and (n — k,)/n — 1 — X\ deterministically, by Remarks 1.6 and 1.7,
{% S (1619, ¢2) Y nen and (£ 2k, +1 ¢ nen satisfy LDPs at speed n with the same
GRFs as {A,, 4 }nen and {B,, },en, respectively. Combined with the independence of A,, 4
and B, and Lemma 1.9, it follows that the sequence {Z,},cn satisfies an LDP in R3
at speed n with GRF

(21,29, 23) — )\A;,q (<x1:\$2)> +(1—=X)Ag (1%’/\) , T € Ri
and with the GRF equal to —oo otherwise. Finally, use (6.8), the LDP for {Z,},en and
the contraction principle for the map 7" defined above to show that the sequence in (6.7)
satisfies an LDP with the GRF J, \ of (6.3).

Next, suppose A = 1. We see that the sequence {A,, ;}nen is exponentially equivalent
to {(% Zf;l G172 37" 1 ¢*)}hen by Remark 1.7. An application of the contraction
principle to the map (1, z3) — xi/q/xéﬂ yields the LDP for the sequence in (6.7) with
speed n and GRF (6.4).

The case ¢ = 2 was also considered in [3, Lemma 4.2]), but can be obtained via (a
simpler form of) the argument given above. To be self-contained, we provide some details.
In this case, the quantity of interest is T'(Z,), where Z,, is the R%-valued random vector
that coincides with the second and third components of Z,,, and T maps (xa,23) —
xo/(x2+x3)'/2, and the arguments above show that {Z, },en satisfies an LDP at speed
n with GRF A (/X)) + (1 — MAL (-/(1 — X)) and thus, by the contraction principle,
{1¢®ED 1 /11¢" || }nen satisfies an LDP with GRF

. L (T N r
Toale) = (w2 alcg)feW {)\AB (%) 1= Mhs (1 —3/\) H = T2 -1-2:63 } .

Noting that Apg is the log moment generating function of the chi-squared distribution, it

follows from Remark 4.6 that A% (z) = Je2(z) = 4(x — 1 —log ), for # > 0 and infinity,

otherwise. Substituting this into the expression for J5 »(z) in the last display and solving

the optimization problem yields (4.13). O

Proof of Proposition 6.1. Recall from Lemma 6.2 that the sequence {n!/2=1/a|| (=) /
€™ ||} nen satisfies an LDP with GRF J, . In addition, Assumption A states that the
sequence {[|X(™||o/v/n}nen satisfies an LDP with GRF Jx. Given the equality in distri-
bution of (6.6), the contraction principle applied to the continuous function (y, z) — yz
yields that the sequence of scaled £; norms of random projections, {Yq’fkn }nen, satisfies
an LDP at speed n with GRF :]I(';:‘A of (6.5). O

Remark 6.3. Note that it follows from Proposition 6.1 and the proof of Theorem 2.16 for
q € [1,2) in Section 6.1 that :HJ;?A = J(';f‘A for all ¢ € [1,2).

To complete the proof of Theorem 2.16 we show that this relation also holds for ¢ = 2.
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Proof of Theorem 2.16 in the case ¢ = 2. First, consider the case s,, = n. Fix A € (0,1).
The result for A = 1 follows on using the convention that 0log0 = 0log0/0 = 0 every-
where in the derivation below. By Proposition 6.1, it suffices to show that jg& = Jg?/\.
In view of (2.12), (6.5), and (4.13), it clearly suffices to show that for 22 € (0,1),

A A 1—-A 1—-A
= Zlog (& 1 - inf . .
J2(2) = 5 log (Z2> +—5 log <1 — 22> veo@it o Ha(v) (6.9)

since when 2% ¢ (0,1) both J3(z) and the right-hand side above are infinite. For
22 € (0,1), substituting the expression for H, from (2.10), we obtain

inf H
VET(]R):IZIQI:)\MQ(V) )\(V)
— : A -\ Y
— ye?(R);g%f:,\Mg(u) {—)\ h(v) + 5 log(2me) + IT log (41_/\1]%(”))}
=— sup AMh(v) + 3 log(2me) + 152 log (11:;\2) .

veP(R):22= M2 (v)

Recall that the maximum entropy probability measure constrained to have second mo-
ment 22/\ is the Gaussian measure with mean zero and variance z2/\ (see, e.g., Ex.
12.2.1 of [12]). Since the entropy of such a Gaussian equals 1 log(2mez%/)), we have

: __A 2 A A -2\ _
Ve?(R):lzr%f:/\Mz(V) Hi(v) = =3 log(2mez?/A) + 5 log(2me) + 152 log (11_22) = J22(2),

lin

which proves (6.9). This completes the proof of the equality 327 N = Jéi:‘/\ in this case.

Now, suppose s, < n. By (6.6), it follows that n*1/2%?k7l @ VoW, W/ where V,, =
X o/ v/7, W i= Vo /0| ¢F |2/ VEn and Wy, = //||¢™ [lo. Noting that k,,/n — A
as n — 00, we see that {W, },en and {W/},cn converge almost surely to (AMs)/? and
1, respectively (by the strong law of large numbers), and satisfy LDPs at speed n (by
Remark 4.6 and the contraction principle). Since by assumption, {V, },cn satisfies an
LDP at speed s, < n with GRF Jx, by Lemma 1.9 the sequence {V, := V,W/ }.eN
satisfies an LDP at speed s, with GRF Jx. Since the GRF of {W, },en has a unique
minimum at m := (AMz)/2, by Lemma 1.9 {V/W,},cn satisfies an LDP at speed s,
with GRF Jx(-/m), which coincides with the expression in (2.12). O

Remark 6.4. Recall that in the sublinear/linear regime, when ¢ = 2 the contraction
principle cannot be applied because the LDP of Theorem 2.15 holds with respect to
the ¢-Wasserstein topology only for ¢ € [1,2). Moreover, the LDP for {g }nen of (4.2)
as stated in Proposition 4.8 also holds with respect to the ¢g-Wasserstein topology only
for ¢ < 2. However, in the case ¢ = 2, (6.9) still establishes a variational problem that
explicitly relates the rate function Jo » of (4.13) to the rate function 3y of (2.10), in
the same manner as if the contraction principle were applicable. We claim that this
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inconvenient gap is related to a more fundamental obstacle. To illustrate this concretely,
consider the case where X1, Xo,... are i.i.d. exponential random variables with mean 1.
It is known that:

1. Due to Sanov’s theorem, the sequence of empirical measures {% o1 0x, tnen sat-
isfies an LDP in P(R) with GRF H(:|| Exp(1)), where we write Exp(1) to denote the
exponential distribution with mean 1.

2. Due to Cramér’s theorem [14, Theorem 2.2.1], the sequence of empirical means
{L 3" | Xi}nen satisfies an LDP in R with GRF

L(B):=p—logp —1.

3. An explicit calculation establishes the expression

L) = inf, 3l Bxp(0): [wdu=3
R

Note that if the map p — f]R x dp were continuous, then the LDP of point 2. above
would follow from point 1., point 3., and an application of the contraction principle.
However, the map p +— fR x dy is mot continuous with respect to the weak topology on
probability measures. Moreover, the result of [55, Theorem 1.1] applied to the exponential
distribution indicates that the LDP of point 1. does not hold with respect to the 1-
Wasserstein topology. This suggests that the apparently cryptic transition at ¢ = 2 in
the nature of the proof of Theorem 2.16 and the result of Theorem 2.15 is in a sense
a manifestation of a more common sticking point in large deviations theory. In other
words, even in the simple setting of i.i.d. random variables, the continuity required by the
contraction principle fails to hold, but the consequences (i.e., a large deviation principle
and a variational formula for the rate function) do still hold in many instances.
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Appendix A. An approximate contraction principle

In this appendix, we recall the approximate contraction principle established in Section
6.2 of [10], and establish a corollary of it that we use in the proof of the LDP in the
linear regime in Section 4.4. Recall that given a,b € R, we will use a Vb and a A b to
denote max(a, b) and min(a, b), respectively.

Let X be a Polish space. Let X be a separable Banach space with topological dual
space X*, and let (-,-) : X* x X — R denote the associated dual pairing. Fix a continuous
map ¢ : X — X, and let {.Z, }en be a sequence of P(X)-valued random elements. For r €
(0, 00] and a continuous function W : ¥ — R such that P-a.s., [, (W (z)V0).Z,(dx) < oo
for all n € N, let

1
A (W) := limsup — log E [e”(-fz W(’”)‘f"(d”)w)} , (A1)
n—oo I
and also let
A(W) := sup A.(W). (A.2)
r>0

We introduce the “domain” of A, defined in the following manner: let

D:={aeX*: Al{a,c()) < oo}, (A.3)
Do :i={aeX*:3p>1,pac D}

Then, for x € X, let

F(z):= aseug (ar, ). (A.4)

Lastly, for n € N, we define the X-valued random variable €, := [, ¢(z) £, (dz).
Proposition A.1 (Proposition 6.4 of [10]). Suppose that:

1. {%nen satisfies an LDP in P(X) at speed n with GRF Iy;
2. {%, Gntnen satisfies an LDP in P(X) x X at speed n with some conver GRF 1;
3. for any sequence {Wy,}neN, in the set

{V+{a,c()) : V:E = R continuous and bounded, « € Dy} (A.5)

such that W, | Wy to a limit W, : ¥ — R that is continuous and bounded above,
we have

limsup A(W,,) < A(Wao). (A.6)

n—roo
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Then, we have the following representation for the GRF 1, for all p € P(X) and s € X:

g = (o) <

with F as defined in (A.4).

The following corollary considers a special case where the conditions of Proposition A.1
can be easily verified.

Corollary A.2. Let 3 be a Polish space and X be a separable Banach space. Suppose that
{kn}nen grows sublinearly with rate A € (0,1], each %, is the empirical measure of ky,
i.i.d. Y-valued random variables my, ..., ng, with common distribution p (that does not
depend on ), and for continuous W : ¥ — R, define

A(W) :=1logE[e* W ()] (A.8)
Also, let ¢ : X2 — X be a continuous map such that 0 lies in the interior 2° of the set
2= {a e X*: Ala, () < oo}, (A.9)

and let €, := [y, c(x)L,(dx). Then {%,,€,} satisfies an LDP with GRF given by (A.7),
where Iy(v) := AH (v|p) and F(z) = sup,ego (@, ).

Proof. We start by verifying the conditions of Proposition A.1.

The fact that { <%, },en satisfies an LDP in P(X) at speed k,, with GRF H (-|u) follows
from Sanov’s theorem on the Polish space P(X) (see, e.g., Theorem 6.6.9 of [30]). Since
kn/n — A, this immediately implies that {.%,},en satisfies an LDP at speed n with
GRF Iy(-) := AH(-|p), so condition 1. of Proposition A.1 is satisfied.

Next, note that (.%,,6,) = 1% ngl (6y,,€(n)) € P(E) x X. Therefore, it follows from
Cramér’s theorem on any locally convex topological space (see, e.g., Theorem 6.1.3 and
Corollary 6.16 of [14]), with an appeal to the assumption that 0 lies in 2°, the interior
of the set Z of (A.9), that {(-Z,, €n) }nen satisfies an LDP in P(X) x X at speed k,, with
a convex GRF. Since k,/n — X € (0, 1], condition 2. of Proposition A.1 is satisfied.

As for condition 3., first consider any sequence {W,, },en such that for each n € N,
W, = Voo +{ay, c(+)) for V,, bounded and continuous, and «,, € Z. Due to the assumption
that a1 € 2, and the boundedness of V7, we have /A\(Wl) < 00, so if W, | W, then by
the dominated convergence theorem,

lim A(W,) = AWx). (A.10)

n—oo

To complete the proof, it clearly suffices to show that 2 = D, for the domains Z and
D defined in (A.9) and (A.3), respectively, and that relation (A.10) holds when A is
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replaced with A. In turn, to show the latter, it suffices to prove that A = M. Indeed,
note that for any continuous W : ¥ — R such that P-a.s., [(W(x)V0).%,(dx) < co for
all n € N, by the definitions of Ay, and A from (A.1) and (A.2), respectively, the i.i.d.
assumption on {7;}¥" and the fact that k,/n — X, we have

AW) = A" TA (W)
> ATA(W)
> A7 lim A(W A R)

R—o00

= A" lim A (W AR)

R— o0
= lim A(W AR)
R—o0
=A(W),

where the first inequality uses the elementary observation that A, < A, for every r
implies A < Ao, and the second equality uses this observation along with the fact that
the converse inequality also holds when both functions are evaluated at W A R, since
then [ (W(z) A R).%,(dz) < R implies Ao (W A R) = Ag(W A R) < A(W A R). Thus,
we have shown A = A"'Ao, which completes the verification of condition 3.

The corollary then follows from Proposition A.1 and the identity 2° = Dy. O

Appendix B. LDP for generalized normal random variables

The aim of this section is to prove Lemma 3.2, which concerns an LDP for weighted
sums of stretched exponential random variables.

Proof. Fix p € [1,2), t > 0, and denote § := fi(p). Define m := E[¢}] and for n € N
define S, := 2?21(51‘2 —m). Since k, /b, — 0 as n — 0o, by Theorem 3 in [46], with n,
Z,, therein and e replaced by k., b,t and 1 — p/2, we see that

P (S, > bnt) = kP (& —m > byt) (14 0(1)).

Hence, by (3.1) and the convergence k,, /b, — 0 as n — oo,

li L
i

log P (biSn > t) = —Jep(t). (B.1)

For p = 2, the sum Zfﬁl €2 is distributed as a chi-squared distribution with k,, degrees
of freedom. Hence for ¢ > 0, we have the following tail probability estimate:

P (S, > but) = (bt + m)kn/2=te=bnttm)/2,

91 /2T (k,, /2)
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Since ky /b, — 0 as n — oo, we again have

.1 1
lim b—log]P’ (ES,L > t>

n—oo n
ot k21 ki kn/2 +1/2 on /2
=2+ lim [ o loa(bat +m) — it log2 — T log(ku /2) — -
B . kn bpt +m  log(byt+m) k., logk,
—o [ﬁl kn b 2bn 20y
t
=2, (B.2)

where the second equality follows from Stirling’s approximation.

Let T, := b, ! Zl &2 = S, + mky, /b,. We now combine the two estimates (B.1)
and (B.2) to show that {7}, },en satisfies an LDP at speed b2/? with GRF Jep- Fix a
closed set F' C R.If 0 € F', then infyecp Je p(2) = 0, and the large deviation upper bound
is automatic since P (7}, € F) < 1. Suppose 0 ¢ F. Let b := inf{8 > 0: 8 € F}. Then
for b > 7 > 0, by the positivity of T;,, (B.1) or (B.2) and the monotonicity of J¢ ,,

limsup —=
n—oo

/ log P(T), € F) < limsup — log P(T}, € [b, 00))
bn n—00 bn

< limsup —=

= _36711(6 - 7).

log]P’(T €b—71,00))

Letting 7 — 0 and appealing to the continuity and monotonicity of ¢, we obtain

lim sup
n—oo

21ogIP>(T € F) = — inf ¢ p(x),

b p/ TeF
which completes the proof of the upper bound.

Next, fix an open set U C R. If 0 € U, then inf ey de p(z) = 0. Since U is open,
there exists ¢ > 0 such that (—e,e) C U. Since ky,/b, — 0 as n — oo, the strong
law of large numbers implies lim, o, P(7}, € (—¢,¢)) = 1. Hence, the large deviation
lower bound follows. Next suppose 0 ¢ U. For § > 0, there exists § € U such that
Jep(B) < infrey Je p(x) + 0. Pick € > 0 such that (8 —¢,8+4+¢) C U. If B <0, then the
large deviation lower bound is trivial. Suppose 8 > 0. Then for ¢ > 7 > 0,

lim inf — log]P’(T el)

> hmmf—logP(S €eB—epB+e—1))

= lim inf 1/ log [P(S,, € (B —¢,0)) —P(S, € [f+e—T,00))]
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e 1
= lim inf — log P (S, € (8 —¢e,0))

= —dep(B—¢)
> = ;Iellf] Bf,P('r) -0,
where the third equality follows by the monotonicity of J¢ ), and the last inequality by

the continuity of ¢, on choosing e sufficiently small. The large deviation lower bound
then follows on sending d to 0. This completes the proof of the lemma. O

Appendix C. Properties of the rate function J of (3.14)

We recall here the definition of the subdifferential of a convex function. Let f: R —
R U {0} be a convex function. Then the subdifferential at a point z € R™ is defined to
be

Of(x) :={seR": f(y) > f(z)+ (s,y —x) foall yeR"}

Note that when f is differentiable at z, the subdifferential 0 f(z) has only one element,
which is the gradient V f(x). For further discussion of subdifferentials, the reader is
referred to Chapter X in [23].

Proof of Lemma 3.12. Before proving the individual properties, we make a general ob-
servation. Recall that Dy is the domain of V. For u, v € Ry, define H : R_ xR —- R
to be

H(s,t) := su+tv —log / eV @)+ g (C.1)
Dy

By definition, H is differentiable. We first show that H is concave. For this, by (C.1)
it suffices to show that (s,t) — log va esV @+t 4y is convex. Indeed, by Hélder’s
inequality, for A € (0,1) and (s1,t1), (s2,t2) € R_ x R, we see that

log/6(81)\-'rSQ(l—)\))V(:E)-‘r(tl)\-'rtg(1—)\))ZE2dl,

Dy

1/
< IOg (D/ esl’\v(w)+t1’\””2dx (D/ esz(l—)\)V(w)+t2(1—/\)w2dx
\4 1

- /\log / 632(1—>\)V(ac)+t2(1—)\)3¢2dl,.

Dy Dy

1/(1-X)

— ilog/esl)\V(x)—&-tl)\xzdx_i_

In particular, H is strictly concave if and only if V' £ 0 in the domain of V.
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We now turn to the proof of property 1. Let (u,v) € Ri be in the interior of the
domain of J. Then by [23, Theorem 1.4.2], since J is convex, the subdifferential at (u, v) is
nonempty, 9J(u,v) # &. Therefore there exists s € R_, ¢t € R such that (s,t) € (u,v).
Since J and (s,t) — log va e*V(@)+t2® 42 are both convex, both functions satisfy the
condition in [23, Theorem 1.4.1]. Hence, we see that there exist s € R_ and t € R such
that J(u,v) = H(s,t). If H is strictly concave, then automatically (s,t) is the unique
maximizer in the supremum of J(u,v) in (3.14). If H is not strictly concave, then V =0
in its domain, and so by (3.14), J(v) = sup,gser, {su +tv —log (5, etIde)}, from
which it clearly follows that (0,t) is the unique maximizer (since v > 0). Next, again by
the last display and [23, Theorem 1.4.1], we see that (u,v) € dlog [, esV@+te® gp By
the definition of a subdifferential, we conclude that

d
wz flog | [V in ) = [ Viodn) = My (v,
S

v Dv
d sV (x)+tax? 2
V= log e dz | = [ z%vs(dz) = Ma(vsy), (C.2)
v Dy

where (C.2) holds due to the differentiability of ¢ ~— log [, e*V@)+t2® 4o This proves
property 1.

To see why property 2 holds, note that by the duality of the Legendre transform [56,
Equation (12)], the minimizer of J(1,-) is obtained at m such that

d
ALy =tm)=0. (C3)

v=m

Substituting this relation back into (C.2), we obtain 1 = My (v4m)0) and m =
M3 (Vs(m),0). Setting b* = —s(m) > 0 and observing that v,g = py,_, for any s,
we conclude that 1 = My (Vsm)0) = My (uve-) and m = May(Vgmy,0) = Ma(py,p).
Now, (3.16) follows since the supremum on the right-hand side of (3.16) is attained at
1 = My (Vs(m),0) and (C.2) is uniquely solvable. This proves property 2.

For the remaining properties, first note that by the duality of the Legendre trans-
form, the supremum in the definition (3.14) of J(w,v), when finite, is attained at
(0ud(u,v),0,d(u,v)) € R_ x R. This proves property 4. By the convexity of v — J(1,v)
and the fact that it uniquely attains its minimum at the value m defined above, we see
that 9,d(1,v) > 0 if v > m and 9,J(1,v) < 0 if 0 < v < m. This proves property 3, and
completes the proof of the lemma. O
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