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It is well known that fluctuations of marginals of high-
dimensional random vectors that satisfy a certain concentra-
tion estimate called the thin shell condition are approximately 
Gaussian. In this article we identify a general condition on 
a sequence of high-dimensional random vectors under which 
one can identify the exponential decay rate of large deviation 
probabilities of the corresponding sequence of marginals. More 
precisely, consider the projection of an n-dimensional random 
vector onto a random kn-dimensional basis, kn ≤ n, drawn 
uniformly from the Haar measure on the Stiefel manifold 
of orthonormal kn-frames in Rn, in three different asymp-
totic regimes as n → ∞: “constant” (kn = k), “sublinear” 
(kn → ∞ but kn/n → 0) and “linear” (kn/n → λ with 
0 < λ ≤ 1). When the sequence of random vectors satisfies a 
certain “asymptotic thin shell condition”, we establish large 
deviation principles for the corresponding sequence of ran-
dom projections in the constant regime, and for the sequence 
of empirical measures of the coordinates of the random pro-
jections in the sublinear and linear regimes. We also establish 
large deviation principles for scaled �q norms of the random 
projections in all three regimes. Moreover, we show that the 
asymptotic thin shell condition holds for various sequences of 
random vectors of interest, including the uniform measure on 
suitably scaled �n

p balls, for p ∈ [1, ∞), and generalized Orlicz 
balls defined via a superquadratic function, as well as a class 
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of Gibbs measures with superquadratic interaction potential. 
Along the way, we obtain logarithmic asymptotics of volumes 
of high-dimensional Orlicz balls, which may be of independent 
interest. We also show that the decay rate of large deviation 
probabilities of Euclidean norms of multi-dimensional projec-
tions of �n

p balls, when p ∈ [1, 2), exhibits an unexpected 
phase transition in the sublinear regime, thus disproving an 
earlier conjecture due to Alonso-Gutiérrez et al. Random pro-
jections of high-dimensional random vectors are of interest in 
a range of fields including asymptotic convex geometry and 
high-dimensional statistics.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation and context

The study of high-dimensional probability distributions through their lower-dimen-
sional projections, especially random projections, is a common theme in a wide range of 
areas, including geometric functional analysis [25], statistics and data analysis [15,18], 
information retrieval [24,48], machine learning [42] and asymptotic geometric analysis 
[6,34]. In the latter case, the typical probability measure of interest is the uniform distri-
bution on a high-dimensional convex body (i.e., a compact convex set with non-empty 
interior). Questions about the geometry of convex bodies in high dimensions often take 
on a certain probabilistic flavor. A significant result in this direction is the so-called cen-
tral limit theorem (CLT) for convex sets, which roughly says that most k-dimensional 
projections (equivalently, marginals) of an n-dimensional isotropic convex body are close 
to Gaussian in the total variation distance, when n is sufficiently large and k is of a 
smaller order than nα for some universal constant α ∈ (0, 1). Although foreshadowed 
by results of Sudakov [52], Diaconis and Freedman [15] and von Weizsäcker [54], the 
conjecture that most marginals are Gaussian was precisely formulated by Anttila, Ball 
and Perissinaki in [6] (see also [11]). Specifically, they showed that if the Euclidean norm 
of a symmetric high-dimensional random vector X(n) satisfies a certain concentration 
estimate referred to as the “thin shell” condition, then “most” of its marginals are ap-
proximately Gaussian. They also verified this condition for random vectors uniformly 
distributed on a certain class of convex sets whose modulus of convexity and diameter 
satisfy certain assumptions. Subsequently, the thin shell condition was verified for vari-
ous classes of convex bodies by several authors, with a breakthrough verification due to 
Klartag [34,35] for any isotropic log-concave distribution, which, in particular, includes 
the uniform distribution on an isotropic convex body (see also [19] for a simplified proof). 
The result of [6] was further extended to general high-dimensional measures by Meckes 
[43], who showed that whenever an n-dimensional random vector satisfies a quantita-
tive version of the thin shell condition, then most k-dimensional marginals are close to 
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Gaussian (in the bounded-Lipschitz distance) if k < 2 log n/ log log n, and that the latter 
cutoff for k is in some sense the best possible.

One broad aim of studying lower-dimensional projections is to obtain information 

about less tractable high-dimensional measures. While the central limit theorem for 
convex sets and related theorems are beautiful universality results, they imply the some-
what negative result that (fluctuations of) most lower-dimensional projections do not 
provide much information about the high-dimensional measure. In contrast, large de-
viation principles (LDPs), which characterize the rate of decay of tail probabilities in 

an asymptotically exact way, are typically non-universal and distribution-dependent, 
and thus may allow one to distinguish high-dimensional probability measures or convex 

bodies via their lower-dimensional projections. Moreover, LDPs are also useful for com-
putation of limits of scaled logarithmic volumes (e.g., of Orlicz balls; see also [27] and 

Remark 3.15) and for the development of computationally efficient (importance sam-
pling) algorithms for numerically estimating such volumes or other tail probabilities for 
finite n (see, e.g., [40]). Furthermore, they can also be used to obtain information on 

the conditional distribution of the high-dimensional measure, given that its projections 
deviate significantly from their means, via the so-called Gibbs conditioning principle (as 
elucidated in [13] or [14, Section 3.3]); see [33] or the more recent extension in [26], for 
example, for demonstrations in a geometric context.

The focus of this article is to identify general conditions on sequences of high-
dimensional random vectors under which one can characterize asymptotic tail proba-
bilities of their multi-dimensional random projections, and obtain corollaries that may 

be of interest in convex geometry. More precisely, the goal is to establish LDPs for ran-
dom projections of general sequences of random vectors, both for projections onto fixed 

lower-dimensional spaces, as well as onto spaces with dimension growing with n. In the 

latter case, when the dimension of the projected vectors grows with n, the space in which 

one should look for an LDP for the sequence of projected vectors is a priori unclear. 
We show that the empirical measure of the coordinates of the projected vector is a con-
venient object to look at, and allows us to establish LDPs in the space of probability 

measures on R in these cases. Unlike in the case of the CLT for convex sets, where a 

transition occurs at a projection dimension of kn = 2 log n/ log log n (or kn = nα when 

restricted to isotropic logconcave measures), these LDPs hold for all growing kn as long 

as kn/n → λ ∈ [0, 1]. Additional motivation for studying projections onto growing sub-
spaces arises from the fact that the speeds and rate functions of such LDPs for scaled 

Euclidean norms of sequences of log-concave isotropic random vectors have implications 
for the Kannan-Lovász-Simonovits (KLS) conjecture, which is one of the major open 

problems in convex geometry (see [4, Theorem A] for details of this connection, and also 

Remark 2.4).
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1.2. Contributions and outline of the paper

In this article, we introduce a large deviation analogue of the results in [6]. Whereas 
the latter work shows that fluctuations of (most) random projections of high-dimensional 
vectors that satisfy a thin shell condition can be characterized (as almost Gaussian), our 
work characterizes tail behavior (at the level of annealed LDPs) for projections and 
their associated norms onto (possibly growing) random subspaces of high-dimensional 
random vectors that satisfy an asymptotic thin shell condition. In particular, our work 
goes beyond the more studied specific setting of measures on �n

p balls or spheres, and also 
univariate LDPs, although we also obtain new results in this setting (see Remark 3.6). 
Specifically, for any sequence of random vectors {X(n)}n∈N whose scaled Euclidean 
norms satisfy an LDP (see Assumption A and its specific case Assumption A*), we 
characterize the tail behavior of the corresponding sequence of orthogonal projections 
of X(n) onto a random kn-dimensional basis, kn ≤ n, drawn from the Haar measure 
on the Stiefel manifold Vn,k of orthonormal kn-frames in Rn, as the dimension n goes 
to infinity with kn/n → λ ∈ [0, 1]. Assumption A (or rather, a slight strengthening of 
it) can be viewed as an “asymptotic thin shell” condition since it implies that for all 
sufficiently large n, the random vector X(n) satisfies the thin shell condition (see the 
discussion at the end of Section 2.1). Note, however, that for growing subspaces, in con-
trast to CLT results where approximate Gaussian marginals hold only for kn < 2 log n

log log n

[43] (or kn ∼ nα if one assumes additional regularity of X(n) such as logconcavity [35]), 
the annealed LDP results indicate three crucial regimes for {kn}n∈N , constant, sublinear 
and linear (see also [3] for �n

p balls).
A summary of our main results is as follows (the precise definition of LDPs, rate 

functions, and the Stiefel manifold are given in Section 1.4 and Section 2):

1. LDPs in the constant regime (Theorem 2.7): Given Assumption A*, or a modification 
of it stated as Assumption B, in the setting where kn = k for every n, we establish 
an (annealed) LDP for the sequence of k-dimensional random projections of X(n).

2. LDPs in the sublinear and linear regimes (Theorems 2.9 and 2.15): Given Assump-
tion A, in the setting where {kn}n∈N satisfies kn → ∞, we establish (annealed) LDPs 
for the sequence of empirical measures of the coordinates of the kn-dimensional pro-
jections of X(n). This LDP is established with respect to the q-Wasserstein topology 
for q < 2, which is stronger than the weak topology. The rate function is shown to 
have a different form in the sublinear (kn/n → 0) and linear (kn/n → λ ∈ (0, 1]) 
regimes.

3. LDPs for norms of random projections (Corollary 2.8 and Theorems 2.12, 2.11 and 
2.16): We establish LDPs for sequences of �q norms of the multi-dimensional random 
projections in all regimes, with two different scalings considered in the sublinear 
regime.

4. Illustrative examples (Section 3): To show that our theory unites disparate examples 
under a common framework, recovering, and in some cases extending, existing results 
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for �n
p balls, while also covering new examples, we verify our assumptions for many 

sequences {X(n)}n∈N of interest, including product measures, the uniform measure 
on certain scaled �n

p balls and generalized Orlicz balls, and Gibbs measures (see 
Remark 2.3). Along the way, we obtain several results of potentially independent 
interest. Specifically, in Theorem 3.5 we show that when p ∈ [1, 2), the LDP for 
Euclidean norms of multi-dimensional projections of �n

p balls exhibits an interesting 
phase transition depending on whether the ratio kn/n2p/(2+p) is asymptotically finite 
or infinite, thus disproving a conjecture in [3] (see Remark 3.6 for more details). 
In addition, we also obtain the asymptotic logarithmic volume of Orlicz balls, as 
elaborated in Remark 3.15. (See also more recent extensions due to [27] and [39]).

The formulation of the correct form of the asymptotic thin shell condition that would 
also allow one to consider �n

p balls, when p ∈ [1, 2), is somewhat subtle, and involves 
a suitable rescaling argument. Verification of the asymptotic thin shell condition for �n

p

balls, for all p ≥ 1, makes use of a probabilistic representation for the uniform measure 
on �n

p balls (see [50,51] and Section 3.2 for details). However, such probabilistic repre-
sentations are not available for Orlicz balls, and so we develop a new approach in which 
the tail probability is expressed as a volume ratio (see (3.18) in the proof of Proposi-
tion 3.11), and the asymptotics of this volume ratio is determined using a tilted measure 
with respect to Lebesgue measure. Subsequent work that uses similar ideas to obtain 
the volumetric properties and the thin shell concentration for random vectors in Orlicz 
balls includes [2,27]. More recently, detailed estimates of intersections and differences of 
Orlicz balls have been obtained in [40]. We leave for future work the identification of 
more sequences {X(n)}n∈N of random vectors that satisfy the asymptotic thin shell (and 
related) conditions. Furthermore, although in this article we focus on Euclidean (and 
more general �q) norms of the random projections, since they are of special relevance 
in asymptotic convex geometry, our results could potentially be used to also investigate 
other symmetric functionals of lower-dimensional projections that are of interest, such 
as the volume or barycenter of the projected body, or other functionals of interest in 
high-dimensional statistics.

1.3. Summary of prior work

First steps towards studying LDPs of sequences of one-dimensional projections were 
taken in [20], [32] and [21], where it was shown that such LDPs capture geometric 
information about the convex body. However, LDPs for random projections have been 
first largely restricted to the setting of high-dimensional product measures [20] or the 
uniform measure on the (suitably renormalized) unit ball or sphere in the space �n

p for 
some p ∈ [1, ∞) [3,4,21,28,29,40], and secondly, limited to univariate LDPs (i.e., in R) 
involving either the projection of a high-dimensional random vector onto a random one-
dimensional subspace [21] or (annealed) LDPs of the Euclidean norm of an orthogonal 
projection onto a kn-dimensional subspace, with kn possibly tending to infinity [3,4]. 
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Indeed, the first paper to consider LDPs for norms of projections of scaled �n
p balls 

onto growing subspaces was [3], with further results obtained in subsequent papers (see, 
e.g., [4,28,29]). (Strictly speaking, in [3] the authors analyze norms of random vectors 
uniformly distributed on scaled �n

p balls projected onto k-dimensional subspaces indexed 
by the Grassmannian, whereas we analyze norms of random projections of more general 
random n-dimensional vectors (including those uniformly distributed on scaled �n

p balls) 
projected onto k-dimensional orthogonal bases indexed by the Stiefel manifold. In the 
annealed setting considered here, the Grassmanian and Stiefel manifold perspectives can 
be seen to be equivalent due to the exchangeability of the coordinates of the projections, 
but in quenched settings, as considered in [38], it is more appropriate to consider the 
Stiefel manifold.) The only prior example of a multivariate LDP that we know in this 
context is for the particular case of the sequence of projections of a random vector 
sampled from a scaled �n

p ball onto the first k canonical directions [8, Theorem 3.4]. 
Further, in all cases, the analysis for non-product measures has focused on �n

p balls, 
where the analysis is greatly facilitated by a convenient probabilistic representation of the 
uniform measure on the �n

p ball (see [51, Lemma 1] or [50]), or a slightly more general class 
of measures supported on the �n

p ball that admit a similar probabilistic representation 
(see [9] or Section 2.2 of [4]). Such a representation has also been exploited in recent 
work [40] that obtains refined or sharp large deviations estimates for (quenched) random 
projections of �n

p balls and spheres.

1.4. Basic definitions and background results

We set some initial notation and definitions, with a particular emphasis on large 
deviations terminology. First, for a, b ∈ R, we will use a ∨ b and a ∧ b to denote max(a, b)
and min(a, b), respectively. Next, for p ∈ [1, ∞], let ‖ · ‖p denote the �n

p norm (with some 
abuse of notation, we use common notation for the �n

p norm on Rn for any n ∈ N). We 
use the notation N(μ, σ2) to denote a normal random variable with mean μ and variance 
σ2.

Given a topological space X with Borel σ-algebra B, let P(X) denote the space of 
probability measures on X. By default, we impose the topology of weak convergence on 
P(X): recall that a sequence {μn}n∈N ⊂ P(X) is said to converge weakly to μ ∈ P(X), 
also denoted as μ ⇒ μ, if and only if for every bounded continuous function f on X, ∫

fdμn →
∫

fdμ as n → ∞. On occasion, when X = Rd, we will consider subsets of 
probability measures that have certain finite moments. For q ≥ 1 and d ∈ N, define

Pq(Rd) :=

⎧⎨⎩ν ∈ P(Rd) :
∫
Rd

|x|qν(dx) < ∞

⎫⎬⎭ .

Then, a sequence of probability measure {νn}n∈N ⊂ Pq(Rd) converges to ν ∈ Pq(Rd)
with respect to the q-Wasserstein topology if we have weak convergence νn ⇒ ν and 
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convergence of q-th moments 
∫
Rd |x|qνn(dx) →

∫
Rd |x|qν(dx). In fact, as elaborated in 

[53, Sec. 6], the q-Wasserstein topology can be metrized by a distance function called 
the q-Wasserstein metric, which we denote Wq. Next, for q > 0, let

Mq(ν) :=
∫
Rd

|x|qν(dx), ν ∈ P(Rd), (1.1)

denote the q-th moment map. In our analysis, we will frequently consider the following 
subset: for j ∈ N, define K2,j ⊂ P(Rd) as

K2,j :=
{

ν ∈ P(Rd) : M2(ν) ≤ j
}

. (1.2)

Lemma 1.1. Fix j ∈ N. For any q ∈ [1, 2), the set K2,j ⊂ P2(Rd) is compact with respect 
to the q-Wasserstein topology. In addition, K2,j is convex and non-empty.

Proof. The proof is a simple modification of the proof of the j = 1 case given in [33, 
Lemma 3]. �

We refer to [14] for general background on large deviations theory. In particular, we 
recall the definition:

Definition 1.2. Let X be a regular topological space with Borel σ-algebra B. A sequence 
{Pn}n∈N ⊂ P(X) is said to satisfy a large deviation principle (LDP) at speed sn with 
rate function I : X → [0, ∞] if I is lower-semicontinuous and for all Γ ∈ B,

− inf
x∈Γ◦

I(x) ≤ lim inf
n→∞

1
sn

log Pn(Γ) ≤ lim sup
n→∞

1
sn

log Pn(Γ) ≤ − inf
x∈Γ̄

I(x),

where Γ◦ and Γ̄ are the interior and closure of Γ, respectively. We say I is a good rate 
function (GRF) if, in addition, it has compact level sets. Analogously, a sequence of 
X-valued random variables {ηn}n∈N is said to satisfy an LDP at speed sn and with a 
rate function I if the sequence of their laws {P ◦ ηn}n∈N satisfies an LDP at the same 
speed and with the same rate function.

Remark 1.3. Let {Pn}n∈N be a sequence of probability measures satisfying an LDP at 
speed sn with GRF I that has a unique minimizer m. It is immediate from the definition 
of the LDP that I(m) = 0 and that then, for any speed tn such that tn/sn → 0, the 
sequence {Pn}n∈N also satisfies an LDP at speed tn, but with a degenerate rate function 
χm, which is defined to be 0 at m and +∞ elsewhere.

Remark 1.4. Let {Pn}n∈N be a sequence of probability measures satisfying an LDP at 
speed sn with GRF I and suppose bn is another sequence such that sn/bn → λ ∈ (0, ∞). 
Then it is immediate from the definition that {Pn}n∈N also satisfies an LDP at speed 
bn with GRF λI.
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As a useful tool, we recall the following definition.

Definition 1.5. Let X be a metric space with distance d, equipped with its Borel σ-algebra. 
Two sequences of X-valued random variables {ηn}n∈N and {η̃n}n∈N are exponentially 
equivalent at speed sn if for all δ > 0,

lim sup
n→∞

1
sn

logP (d(ηn, η̃n) > δ) = −∞. (1.3)

Remark 1.6. The notion of exponential equivalence is valuable because if an LDP holds 
for {ηn}n∈N , then an LDP holds for an exponentially equivalent sequence {η̃n}n∈N with 
the same GRF (see, e.g., Theorem 4.2.13 of [14]).

Remark 1.7. Let {an}n∈N be a sequence in R that converges to a ∈ R as n → ∞. 
Suppose {Un}n∈N satisfies an LDP in R at speed bn with a GRF I. Then the sequences 
{anUn}n∈N and {aUn}n∈N are exponentially equivalent at speed bn. Indeed, for any 
M ∈ (0, ∞), since {Un}n∈N satisfies an LDP with a GRF, there exists K ∈ (0, ∞) such 
that lim supn→∞

1
bn

logP (|Un| ≥ K) < −M . Given δ, M ∈ (0, ∞), pick ε > 0 such that 
δ/ε > K. Then

lim
n→∞

1
bn

logP (|anUn − aUn| > δ) ≤ lim
n→∞

1
bn

log (P (|an − a| > ε) + P (|Un| > δ/ε))

≤ lim
n→∞

1
bn

logP (|Un| > K)

< −M.

Since M is arbitrary, we obtain the desired exponential equivalence by sending M → ∞.

For some of our LDPs, the resulting rate functions will be expressed in terms of the 
following quantities. For ν ∈ P(R), define the entropy of ν as

h(ν) := −
∫
R

log
(

dν
dx

)
dν, (1.4)

for ν with density (with respect to Lebesgue measure dx), and h(ν) := −∞ otherwise. 
Furthermore, for ν, μ ∈ P(R), define the relative entropy of ν with respect to μ as

H(ν|μ) :=
∫
R

log
(

dν
dμ

)
dν (1.5)

if ν is absolutely continuous with respect to μ, and H(ν|μ) := +∞ otherwise. Given a 
function Λ : R → R, let Λ∗ be its Legendre-Fenchel transform defined by
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Λ∗(x) = sup
t∈R

{xt − Λ(t)}, x ∈ R. (1.6)

The following contraction principle for LDPs is used multiple times throughout the 
paper.

Lemma 1.8 (Contraction principle). [14, Theorem 4.2.1] Let X and Y be Polish spaces and 
f : X → Y a continuous function. Suppose {Xn}n∈N is a sequence of X-valued random 
variables and satisfies an LDP in X at speed sn with GRF IX . Then {f(Xn)}n∈N satisfies 
an LDP in Y at speed sn with GRF IY defined by

IY (y) := inf{IX(x) : x ∈ X, f(x) = y}.

Finally, we state a simple lemma that is used multiple times in our proofs.

Lemma 1.9. Suppose {Un}n∈N , {Vn}n∈N and {Wn}n∈N satisfy LDPs in R at speed αn, 
βn and γn with GRFs JU , JV and JW , respectively. Let αn = βn � γn, (i.e., βn/γn →
0 as n → ∞). Assume {Un}n∈N is independent of {Vn}n∈N and JW has a unique 
minimizer m. Then {(Un, Vn, Wn)}n∈N is exponentially equivalent to {(Un, Vn, m)}n∈N

and satisfies an LDP at speed αn with GRF J : R3 → [0, ∞] defined by

J(u, v, w) :=
{

JU (u) + JV (v), w = m,

+∞, otherwise.
(1.7)

Moreover, if m �= 0, then {VnWn}n∈N satisfies an LDP at speed αn with GRF v �→
JV (v/m).

Proof. Define Yn := (Un, Vn, Wn) and Ỹn := (Un, Vn, m). By the independence of 
{Un}n∈N and {Vn}n∈N , {Ỹn}n∈N satisfies an LDP at speed αn with GRF J defined 
in (1.7) (this is easily deduced from the definition of the LDP, but the fact that the 
rate function for (Un, Vn) is JU (u) + JV (v) follows from [14, Exercise 4.2.7] with X = R, 
Y = R2 and F being the identity mapping; the stated rate function for (Un, Vn, m)
follows as an immediate consequence). Now, for ε > 0, we have

lim
n→∞

1
αn

logP
(∥∥Yn − Ỹn

∥∥
2 > ε

)
= lim

n→∞
1

αn
logP (|Wn − m| > ε) = −∞,

where the last equality follows because JW has a unique minimizer at m and {Wn}n∈N

satisfies an LDP at speed γn � αn, as in the observation of Remark 1.3. Thus, {Yn}n∈N is 
exponentially equivalent to {Ỹn}n∈N at speed αn. By Remark 1.6, this implies {Yn}n∈N

satisfies an LDP with speed αn with the same GRF as {Ỹn}n∈N . This proves the first 
assertion of the lemma.

The second assertion follows by applying the contraction principle to the mapping 
F : R3 → R defined by F (u, v, w) = vw. �
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2. Main results

2.1. Projection regimes and assumptions

For each n ∈ N, consider a random vector X(n) that takes values in Rn. For k ∈ N, let 
Ik denote the k × k identity matrix, and for n > k, let Vn,k = {A ∈ Rn×k : AT A = Ik}
denote the Stiefel manifold of orthonormal k-frames in Rn. Here, the constraint AT A =
Ik ensures that the columns of A are orthonormal. As is well known, Vn,k is a compact 
subset of Rn×k, being the pre-image of the closed set {Ik} under the continuous map 
A �→ AT A that is also bounded (by 

√
k with respect to the Frobenius norm). We are 

interested in the orthogonal projection of X(n) onto a random kn-dimensional subspace, 
where 1 ≤ kn < n. To this end, fix n ∈ N, 1 ≤ kn ≤ n, and let

An,kn
= [An,kn

(i, j)]i=1,...,n; j=1,...,kn

be an n × kn random matrix drawn from the Haar measure on the Stiefel manifold 
Vn,kn

(i.e., the unique probability measure on Vn,kn
that is invariant under orthogonal 

transformations). Note that the random matrix AT
n,kn

linearly projects a vector from n
to kn dimensions. We assume that for each n ∈ N, An,kn

is independent of X(n), and for 
simplicity, we assume that the sequences {X(n)}n∈N and {An,kn

}n∈N are defined on a 
common probability space (Ω, F, P ), although dependencies across n are immaterial for 
the questions we address.

We aim to analyze the large deviation behavior of the coordinates of random projec-
tions AT

n,kn
X(n) of X(n) in three regimes, constant, linear and sublinear, depending on 

how the dimension kn of the projected vector changes with n:

Definition 2.1. Given a sequence {kn}n∈N ⊂ N, we say:

1. {kn}n∈N is constant at k, for some k ∈ N, denoted kn ≡ k, if kn = k for all n ∈ N;
2. {kn}n∈N grows sublinearly, denoted 1 � kn � n, if kn → ∞ but kn/n → 0;
3. {kn}n∈N grows linearly with rate λ, for some λ ∈ (0, 1], denoted kn ∼ λn, if kn/n →

λ.

When {kn}n∈N is constant at some k ∈ N, then one can investigate when the sequence 
of vectors {AT

n,kn
X(n) = AT

n,kX(n)}n∈N satisfies an LDP in the space Rk. In contrast, 
when kn increases to infinity, in order to even pose the question of existence of an 
LDP, one must first embed the sequence {AT

n,kn
X(n)}n∈N of random vectors of different 

dimensions into a common topological space. Thus, we prove an LDP for the sequence 
{Ln}n∈N of empirical measures of the coordinates of the kn-dimensional random vectors 
AT

n,k X(n):

n



S.S. Kim et al. / Advances in Applied Mathematics 134 (2022) 102306 11
Ln := 1
kn

kn∑
j=1

δ(AT
n,kn

X(n))j
, n ∈ N. (2.1)

Remark 2.2. Note that the law of An,kn
is invariant under permutation of its kn columns, 

so the kn coordinates of AT
n,kn

X(n) are exchangeable. Thus, the empirical measure Ln in 
(2.1) encodes the essential distributional properties of the coordinates of the projection, 
and hence, serves as a natural choice for a common infinite-dimensional embedding of 
the kn coordinates of AT

n,kn
X(n), for all n ∈ N.

We now present our main condition on the sequence {X(n)}n∈N .

Assumption A. The sequence of scaled norms {‖X(n)‖2/
√

n}n∈N satisfies an LDP at 
speed sn with GRF JX : R → [0, ∞].

When a special case of Assumption A holds with speed sn = n, we say that Assump-
tion A* holds.

Assumption A*. The sequence of scaled norms {‖X(n)‖2/
√

n}n∈N satisfies an LDP at 
speed n with GRF JX : R → [0, ∞].

Remark 2.3. The special case of Assumption A* is important because, as shown in Sec-
tion 3, it is satisfied by several important sequences of measures, including those whose 
elements are taken from a large family of product measures (see Proposition 3.1), the 
uniform measure on an �n

p ball of radius n1/p, with p ≥ 2 (see Proposition 3.7) or, in fact, 
a more general class of measures that includes the uniform measure on an Orlicz ball 
defined via a superquadratic function (see Proposition 3.11), and a general class of Gibbs 
measures with superquadratic potential and interaction functions (see Proposition 3.18). 
However, Assumption A* no longer holds when X(n) is uniformly chosen from an �n

p

ball of radius n1/p with p ∈ [1, 2). Indeed, this can be deduced from the sharp large 
deviation upper bounds obtained in [47] and [22]. In addition, Theorem 1.3 of [28] shows 
that {‖X(n)‖2/

√
n}n∈N satisfies an LDP with speed sn = np/2. These results motivate 

the more general condition stated in Assumption A.

Remark 2.4. The general form of Assumption A is also of interest because of its con-
nection to the Kannan-Lovász-Simonovits (KLS) conjecture formulated in [31] (also see 
[1] for a nice exposition), which is one of the major open problems in convex geometry. 
Indeed, Theorem A in [4] states that the KLS conjecture is false if there exists a sequence 
of isotropic and log-concave random vectors {X(n)}n∈N satisfying Assumption A either 
with sn � √

n and nontrivial JX or with sn =
√

n and inft>t0{infx>t JX(x)/t} = 0 for 
some t0 ∈ (1, ∞). It is shown in [4] that when X(n) is uniformly distributed on the �n

1
ball of radius n, then {X(n)} satisfies Assumption A with sn =

√
n, but the condition 

on the rate function JX is not satisfied (which is consistent with the fact that the KLS 
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conjecture is widely believed to be true). In view of this observation, it would be interest-
ing to extend our verification of Assumption A to more general measures such as Orlicz 
balls (respectively, Gibbs measures) with superlinear functions (respectively, potentials), 
extending the corresponding results obtained in this article for superquadratic functions 
(respectively, potentials).

When Assumption A is satisfied with a GRF JX that has a unique minimum at 
m ∈ R+, go then for all sufficiently large n, the random variable X(n) satisfies the thin 
shell condition of [6, Equation (1)]. To be more precise, note that the observation that 
the minimum of JX , which is equal to zero, is achieved uniquely at m, together with the 
fact that s� → ∞, implies that for every c > 0, there exists {δ�}�∈N with δ� ↓ 0 such that

√
s� inf{JX(x) : |x − m| ≥ δ�, x ∈ R+} ≥ c.

Setting ε� := max(δ�, 2e−c
√

s�), it then follows from Assumption A and the definition of 
the LDP (see Definition 1.2) that ε� ↓ 0 as � → ∞, and for every � ∈ N, there exists 
N� ∈ N such that

P

(∣∣∣∣∣
∥∥X(n)

∥∥
2√

n
− m

∣∣∣∣∣ ≥ ε�

)
≤ ε�, for all n ≥ N�. (2.2)

In particular, this implies the following weak limit:

‖X(n)‖2√
n

P−→ m ∈ R+.

Thus, we refer to the strengthening of Assumption A with JX having a unique minimum 
as the asymptotic thin shell condition. Note that the thin shell condition is usually stated 
for isotropic random vectors X(n) and with m = 1, but since we do not restrict our 
consideration to only isostropic random vectors X(n), we phrased the condition above 
for arbitrary m > 0. Just as the thin shell condition yields a central limit theorem in 
the sense that the projections of X(n) can be shown to be close to Gaussian (see, e.g., 
[6,35]), our results, summarized in the next three sections, show that the asymptotic thin 
shell condition implies that the empirical measures {Ln}n∈N of the coordinates of the 
projections of X(n) satisfy an LDP in the sublinear and linear regimes (with the weaker 
Assumption A sufficing in the latter regime).

Remark 2.5. There exist sequences {X(n)}n∈N for which the corresponding random pro-
jections satisfy an LDP, but the thin shell condition fails to hold. For example, this can 
happen when Assumption A holds with a rate function JX that has multiple minima, 
as can happen for certain Gibbs measures (see Section 3.4) with non-convex potentials 
F and G. As another example, let X(n) be distributed according to a mixture of two 
Gaussian distributions in Rn both with mean 0 and covariance matrices In and 2In, 
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respectively. In other words, the density of X(n) takes the form fX(n) = 1
2φIn + 1

2φ2In

for a positive definite matrix C, where φC denotes the Gaussian density with mean 0 and 
covariance matrix C. Then {X(n)}n∈N does not satisfy the thin shell condition since half 
its mass is concentrated around the thin shell of radius 

√
n and the other half around 

the thin shell of radius 
√

2n. However, it is easy to show that the sequence {X(n)}n∈N

satisfies Assumption A* (e.g., since the sequence of norms of each of the Gaussian dis-
tributions in the mixture satisfies an LDP trivially, the LDP for the sequence of norms 
of the mixtures can be deduced from results in [16]).

2.2. Results in the constant regime

To establish LDPs in the constant regime, when {kn}n∈N is constant at k for some k ∈
N, we will require either Assumption A* or, to cover more general sequences {X(n)}n∈N

like the uniform measure on an �n
p ball with p ∈ [1, 2), the following modification of 

Assumption A*.

Assumption B. There exists a positive sequence {sn}n∈N with limn→∞ sn =
limn→∞ n/sn = ∞ such that the sequence of scaled norms {√

sn‖X(n)‖2/n}n∈N sat-
isfies an LDP in R at speed sn with GRF JX : R → [0, ∞].

Remark 2.6. It is easy to see, by a simple rescaling argument, that Assumption A* 
is equivalent to a modified version of Assumption B, in which one requires that 
{√

sn‖X(n)‖2/n)}n∈N satisfies an LDP at a speed sn that satisfies sn/n → r, with 
r ∈ (0, ∞) rather than r = 0. Indeed, this modified version of Assumption B would hold 
with GRF J (r)

X if and only if Assumption A* is satisfied with GRF JX(x) := rJ
(r)
X (

√
rx).

Theorem 2.7 (constant, kn ≡ k). Suppose {kn}n∈N is constant at k ∈ N, and that either 
Assumption A* or Assumption B holds, with sequence {sn}n∈N and GRF JX . Then 
{n−1/2AT

n,kX(n)}n∈N satisfies an LDP in Rk at speed sn, with GRF IAX,k : Rk → [0, ∞]
defined by

IAX,k(x) :=

⎧⎨⎩inf0<c<1

{
JX

(
‖x‖2

c

)
− 1

2 log
(
1 − c2)} , if Assumption A* holds,

infc>0

{
JX

(
‖x‖2

c

)
+ c2

2

}
, if Assumption B holds.

(2.3)

The proof of Theorem 2.7 is given in Section 4.2, where the role of Assumption B
in the proof is discussed in detail. The rate function takes the form in (2.3) because 
rare events for n−1/2AT

n,kX(n) occur through a combination of the “radial” component 
represented by JX , and the “angular” component represented by c �→ −1

2 log(1 − c2)
(when Assumption A* holds) or c �→ c2/2 (when Assumption B holds).
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As an immediate corollary of Theorem 2.7, we have the following LDP for the corre-
sponding scaled �k

q norms (or in the case q ∈ (0, 1), quasi-norms) of random projections. 
For any q ∈ (0, ∞) and n ∈ N, define

Y n
q,k := ‖AT

n,kX(n)‖q. (2.4)

Corollary 2.8 (constant, kn ≡ k). Suppose {kn}n∈N , {X(n)}n∈N , {sn}n∈N and IAX,k

are as in Theorem 2.7. Then {n−1/2Y n
q,k}n∈N satisfies an LDP at speed sn with GRF

J con
q (x) := inf

z∈Rk
{IAX,k(z) : ‖z‖q = x} , x ∈ R+. (2.5)

Proof. This is an immediate consequence of the LDP for {n−1/2AT
n,kX(n)}n∈N in The-

orem 2.7 and the contraction principle (Lemma 1.8) applied to the continuous mapping 
Rk � x �→ ‖x‖q ∈ R. �
2.3. Results in the sublinear regime

Recall that if, instead of being constant, the sequence kn tends to infinity as n → ∞, 
then our goal is to establish an LDP for the sequence of empirical measures {Ln}n∈N of 
(2.1). We start in this section by analyzing the sublinear regime. Section 2.3.1 summarizes 
our LDP results for the sequences of empirical measures {Ln}n∈N and Euclidean norms 
of the randomly projected vectors. Section 2.3.2 contains additional results on LDPs for 
a different scaling of Euclidean norms as well as more general q-norms, with q ∈ [1, 2), 
of projected vectors that is suitable for the sublinear regime.

2.3.1. LDPs for the empirical measures and norms of projected vectors
In what follows, we will write γσ to denote the Gaussian measure on R with mean 0 

and variance σ2; that is, for σ > 0, let

P(R) � γσ ∼ N(0, σ2). (2.6)

Theorem 2.9 (sublinear, 1 � kn � n). Suppose {kn}n∈N grows sublinearly and Assump-
tion A holds with associated speed sn and GRF JX . Also, suppose that JX has a unique 
minimum at m > 0. Let H be the relative entropy functional defined in (1.5). Then, for 
every q ∈ [1, 2),

1. If sn � kn, {Ln}n∈N satisfies an LDP in Pq(R) at speed kn, with GRF IL,kn
:

Pq(R) → [0, ∞], defined by

IL,kn
(μ) := H(μ|γm).

2. If sn = kn, {Ln}n∈N satisfies an LDP in Pq(R) at speed kn, with GRF IL,kn
:

Pq(R) → [0, ∞], defined by
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IL,kn
(μ) := inf

c>0
{H(μ|γc) + JX(c)} .

3. If sn � kn, {Ln}n∈N satisfies an LDP in Pq(R) at speed sn, with GRF IL,kn
:

Pq(R) → [0, ∞], defined by

IL,kn
(μ) :=

{
JX(c), μ = γc,

+∞, otherwise.

As in Theorem 2.7, the rate functions above can again be decomposed into a radial 
component, represented by JX (as a consequence of Assumption A), and “an angular” 
component An,kn

, which is captured by the relative entropy term. Depending on the 
relative rate of growth of kn and sn, different parts dominate the rate function, with 
both terms being present only when sn = kn.

Next, as in the constant regime (see Corollary 2.8), we also establish LDPs for the 
sequence of scaled Euclidean norms of the random projections. To deal with cases when 
Assumption A* is not satisfied, it is not sufficient to consider Assumption B as in the 
constant regime. Instead, we will need to introduce the following refinement of Assump-
tion A.

Assumption C. There exist r ∈ [0, ∞], a GRF J (r)
X : R → [0, ∞], and a positive sequence 

{sn}n∈N satisfying sn → ∞, sn/n → 0 and sn/kn → r as n → ∞, such that

1. if r ∈ [0, ∞), then {
√

kn||X(n)||2/n}n∈N satisfies an LDP at speed sn with GRF 
J

(r)
X ;

2. if r = ∞, then {√
sn||X(n)||2/n}n∈N satisfies an LDP at speed sn with GRF J (∞)

X .

The following simple observation is analogous to the one made in Remark 2.6.

Remark 2.10. It is easy to see that Assumption C holds with r ∈ (0, ∞), {sn}n∈N and 
GRF J (r)

X if and only if it also holds with r′ = 1, {s′
n := kn}n∈N , and GRF J (1)

X (x) :=
rJ

(r)
X (

√
rx), x ∈ [0, ∞). Therefore, in essence, one need only consider the cases r ∈

{0, 1, ∞} in Assumption C.

Theorem 2.11. Suppose kn grows sublinearly, and recall the definition of Y n
q,k given in 

(2.4).

1. If Assumption A* holds with GRF JX , then {n−1/2Y n
2,kn

}n∈N satisfies an LDP in R
at speed n with GRF J sub

2 : R → [0, ∞], defined by

J sub
2 (x) := inf

{
−1 log(1 − c2) + JX

(x)}
.

c∈(0,1) 2 c
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2. If Assumption C holds with r ∈ [0, ∞], {sn}n∈N and GRF J (r)
X , then {n−1/2Y n

2,kn
}n∈N

satisfies an LDP in R, at speed sn when r ∈ {0, ∞} and at speed kn when r ∈ (0, ∞), 
with GRF J sub

2 : R → [0, ∞], where

J sub
2 (x) :=

⎧⎪⎪⎨⎪⎪⎩
J

(0)
X (x), if r = 0,

infc>0

{
c2−1

2 − log c + rJ
(r)
X

(√
rx
c

)}
, if r ∈ (0, ∞),

infc>0

{
c2

2 + J
(∞)
X

(
x
c

)}
, if r = ∞.

Note that there is a transition in the form of the LDP depending on the relative 
growth rates of {sn}n∈N and {kn}n∈N . The implications of these results for the special 
case when X(n) is the uniform measure on an �n

p ball, and their relation to the work 
of [3], is discussed in Section 3.2.2; see Theorem 3.5 and Remark 3.6.

2.3.2. LDP for an alternative scaling of q-norms of projections
In this section, we show that we can also establish LDPs for a different scaling of 

the norm, and in this case we consider not just the Euclidean norm, but q-norms for 
q ∈ [1, 2]. More precisely, we consider the sequence {k

−1/q
n Y n

q,kn
}n∈N . For q ∈ [1, 2) and 

t ∈ R or q = 2 and t < 1/2, define

Λq(t) := log
∫
R

1√
2π

exp
(

t |x|q − 1
2x2
)

dx, t ∈ R, (2.7)

and let Λ∗
q be the Legendre transform of Λq. Moreover, set Mq to be the q-th absolute 

moment of a standard Gaussian random variable,

Mq :=
∫
R

1√
2π

|x|q exp(−x2/2)dx = 2q/2
√

π
Γ
(

q + 1
2

)
. (2.8)

Theorem 2.12. Fix q ∈ [1, 2], suppose 1 � kn � n and Assumption A holds with speed 
sn and GRF JX , which additionally has a unique minimum at m > 0. Also, recall the 
definition of Y n

q,k given in (2.4). Then {k
−1/q
n Y n

q,kn
}n∈N satisfies an LDP at speed sn ∧kn

with GRF Ĵ sub
q : R → [0, ∞] defined by

Ĵ sub
q (x) :=

⎧⎪⎪⎨⎪⎪⎩
Λ∗

q (xq/mq) , if sn � kn,

infc>0
{

Λ∗
q(cq) + JX (x/c)

}
, if sn = kn,

JX(x/M
1/q
q ), if sn � kn,

(2.9)

for x ≥ 0, and Ĵ sub
q (x) := +∞ for x < 0.

The proof of Theorem 2.12 is given in Section 5. When q ∈ [1, 2), the LDP for 
{k

−1/q
n Y n

q,k }n∈N is an immediate consequence of Theorem 2.9 and the contraction prin-

n
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ciple. For q = 2, the contraction principle no longer applies since the moment map M2(·)
is not continuous in Pq(R) for q < 2. We take a different approach to the proof for all 
cases q ∈ [1, 2], by looking directly at the norm, instead of using the LDP of empirical 
measures. In the special case when q = 2 and X(n) is uniformly distributed on the scaled 
�n

p ball of radius n1/p, with p ∈ [2, ∞] (or admits a slightly more general representation), 
the LDP for {Ỹ n

2,kn
}n∈N was also obtained in [4, Theorem B].

2.4. Results in the linear regime

Recall the definition of the second moment map M2(·) from (1.1).

Definition 2.13. For λ ∈ (0, 1], define Hλ : P(R) → [0, ∞] as

Hλ(ν) :=

⎧⎨⎩−λ h(ν) + λ
2 log(2πe) + 1−λ

2 log
(

1−λ
1−λ M2(ν)

)
, if M2(ν) ≤ 1/λ,

+∞, otherwise,
(2.10)

where we adopt the convention that 0 log 0 = 0 and hence, 0 log(0/0) = 0.

Note that if λM2(ν) = 1, then Hλ(ν) = ∞ when λ < 1, but (due to our convention) 
Hλ(ν) = −h(ν) + 1

2 log(2πe) when λ = 1.

Remark 2.14. Since h is strictly concave and M2 is linear, from the definition in (2.10), Hλ

is strictly convex. A direct verification shows that Hλ(γ1) = 0, and the strict convexity 
of Hλ shows that γ1 is the unique minimizer of Hλ.

Theorem 2.15 (linear, kn ∼ λn). Fix q ∈ [1, 2). Suppose {kn}n∈N grows linearly with rate 
λ ∈ (0, 1] and Assumption A holds with sequence {sn}n∈N and GRF JX . Then {Ln}n∈N

satisfies an LDP in Pq(R) at speed sn with GRF IL,λ : Pq(R) → [0, ∞], where

1. If sn = n, then for μ ∈ Pq(R),

IL,λ(μ) =
inf

c>
√

λM2(μ)

{
JX(c) − 1−λ

2 log
(

1 − λM2(μ)
c2

)
+ λ log(c)

}
− λh(μ) + λ

2 log(2πe) + 1−λ
2 log(1 − λ),

(2.11)

where we use the convention that 0 log 0 = 0.
2. If sn � n, then for μ ∈ Pq(R)

IL,λ(μ) :=
{

JX(c), μ = γc

+∞, otherwise.

The LDP of the sequence of �q norms of the randomly projected vectors is given in 
the following theorem.
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Theorem 2.16. Suppose {X(n)}n∈N satisfies Assumption A, and kn ∼ λn for some λ ∈
(0, 1]. Then, for q ∈ [1, 2] the sequence {n−1/qY n

q,kn
}n∈N defined in (2.4) satisfies an LDP 

at speed sn with GRF J lin
q,λ, where for x ∈ R+,

J lin
q,λ(x) :=

⎧⎨⎩infν∈P(R),c∈R+

{
Hλ(ν) + JX (c) : λMq(ν) =

(
x
c

)q}
, if sn = n,

JX

(
x

(λMq)1/q

)
, if sn � n,

(2.12)

with Mq the q-th moment map as in (1.1) and Mq the q-th absolute moment of a standard 
Gaussian random variable defined in (2.8).

The proof of Theorem 2.16 is deferred to Section 6.2. It is shown there that when 
q ∈ [1, 2), the result is an immediate consequence of Theorem 2.15 and an application 
of the contraction principle. However, even though the rate function still takes an anal-
ogous form when q = 2, the contraction principle is no longer applicable in that setting 
because the LDP of Theorem 2.15 only holds in the q-Wasserstein topology for q ∈ [1, 2). 
Despite this apparent gap, using a different argument in Section 6.2 we show that the 
result nevertheless holds. In the process, we provide an alternative representation for the 
rate function (2.12) for all q ∈ [1, 2] (see Proposition 6.1). This is a manifestation of a 
somewhat nuanced technical issue, which is elaborated upon in Remark 6.4.

3. Examples satisfying the main assumptions

In this section, we present several examples of sequences of random vectors {X(n)}n∈N

that satisfy the assumptions introduced in Section 2.

3.1. Product measures

Lemma 3.1 (i.i.d. case). Let X1, X2, . . . be a sequence of i.i.d. real-valued random vari-
ables, and let X(n) := (X1, . . . , Xn). Suppose that we have

Λ(t) := logE[etX2
1 ] < ∞

for t in some open ball of non-zero radius about 0, and let Λ∗ be the Legendre transform 
of Λ defined in (1.6). Then, {X(n)}n∈N satisfies Assumption A* with JX(x) := Λ∗(x2)
for x ∈ R+ and JX(x) := +∞ otherwise. Moreover, m =

√
E[|X1|2] is the unique 

minimizer of JX .

Proof. By Cramér’s theorem for sums of i.i.d. random variables [14, Theorem 2.2.1], 
the sequence {‖X(n)‖2

2/n}n∈N , satisfies an LDP at speed n with GRF Λ∗. By the 
contraction principle applied to the square root function, Assumption A* holds. As 
for the unique minimizer, this follows from the law of large numbers, with limit 
1 ∑n

i=1 X2
i

a.s.−−→ E[X2
1 ] = m2. �
n
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3.2. Scaled �n
p balls

In this section we consider random vectors uniformly distributed on scaled �n
p balls. 

More precisely, for n ∈ N and p > 0, define X(n,p) to be a random vector uniformly 
distributed on n1/pBn

p , where Bn
p denotes the unit �n

p -ball:

Bn
p :=

{
x ∈ Rn :

n∑
k=1

|xk|p ≤ 1
}

.

We introduce some preliminaries in Section 3.2.1, then verify our main assumptions for 
{X(n,p)}n∈N in the case when p ∈ [1, 2) in Section 3.2.2 and the easier case when p > 2
in Section 3.2.3. When combined with the results of Section 2, these yield LDPs for 
random projections of these �n

p balls.

3.2.1. Preliminaries
For p ∈ [1, ∞), let fp be the density of the p-generalized normal distribution:

fp(x) := 1
2p1/pΓ(1 + 1/p)

e−|x|p/p, x ∈ R,

where Γ denotes the Gamma function, and let ξ(p) denote a p-generalized normal random 
variable, namely one with density fp. We provide here a useful tail estimate: for t > 0,

2 exp
(

−1
p

tp/2 − p − 1
2 log t

)
≥ P (|ξ(p)|2 > t) ≥ tp/2

tp/2 + 1
exp
(

−1
p

tp/2 − p − 1
2 log t

)
.

(3.1)
This estimate was proved in [3, Lemma 5.3] for p ∈ [1, 2), but can easily be extended to 
include p = 2. Now, let

F ∗
p (y) := sup

t1,t2∈R

⎡⎣t1y + t2 − log

⎛⎝∫
R

et1x2+t2|x|p

fp(x)dx

⎞⎠⎤⎦ , y ∈ R, (3.2)

and

m(p) :=

⎛⎝p2/pΓ
(

1 + 3
p

)
3Γ
(

1 + 1
p

)
⎞⎠1/2

. (3.3)

Also, let U be a uniform random variable on [0, 1] and {ξ
(p)
i }i∈N be a sequence of 

i.i.d. random variables with density fp independent of U . For n ∈ N and p ∈ [1, ∞), 
denote ξ(n,p) = (ξ(p)

1 , . . . , ξ(p)
n ). In this section, we take advantage of the following useful 

representation of X(n,p) obtained in [51, Lemma 1]:
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X(n,p) (d)= n1/pU1/n ξ(n,p)∥∥ξ(n,p)
∥∥

p

. (3.4)

In view of the representation (3.4), we first establish a property of p-generalized normal 
random variables which we strengthen from the result in [46].

Lemma 3.2. Let p ∈ [1, 2], let {kn}n∈N satisfy kn → ∞ as n → ∞. Then, given any 
{bn}n∈N such that kn/bn → 0 as n → ∞, the sequence {b−1

n

∑kn

i=1(ξ(p)
i )2}n∈N satisfies 

an LDP at speed bp/2
n and GRF Jξ,p : R → [0, ∞] defined by

Jξ,p(t) :=
{

tp/2

p , t ≥ 0,

+∞, t < 0.

The proof is deferred to Appendix B.

3.2.2. Verification of Assumptions B and C when p ∈ [1, 2)
When p ∈ [1, 2), it should be noted that annealed LDPs associated with the random 

vectors {X(n,p)}n∈N defined in Proposition 3.7 occur at different speeds than in the case 
p > 2; see Theorem 2.3 of [21]. In particular, from Theorem 1.3 of [28] it follows that 
in this case the sequence of scaled norms {‖X(n,p)‖2/

√
n}n∈N satisfies an LDP at speed 

np/2. Thus, in this case {X(n,p)}n∈N satisfies Assumption A with sn = np/2 and unique 
minimizer m = m(p) defined in (3.3). In particular, Assumption A* is not satisfied. We 
show that nevertheless, Assumption B does hold. In what follows, let U, {ξ

(p)
i }i∈N , and 

ξ(n,p) be as in the representation of X(n,p) in (3.4), and note that then

√
sn

∥∥X(n,p)
∥∥

2
n

(d)= U1/n∥∥ξ(n,p)
∥∥

p
/n1/p

√
sn

∥∥ξ(n,p)
∥∥

2
n

, n ∈ N. (3.5)

Proposition 3.3. For p ∈ [1, 2), {X(n,p)}n∈N satisfies Assumption B with speed sn :=
n2p/(2+p) and GRF

JX,p(x) :=

⎧⎨⎩
xp

p
, x ≥ 0,

+∞, x < 0.
(3.6)

Proof. Fix p ∈ [1, 2). It follows from [21, Lemma 3.3] that {U1/n}n∈N satisfies an 
LDP at speed n, and from Cramér’s theorem and the contraction principle that 
{‖ξ(n,p)‖p/n1/p}n∈N also satisfies an LDP at speed n. Moreover, it is easy to see 
that both sequences converge almost surely to 1. Since, in addition, ξ(n,p) and U are 
independent, appealing again to the contraction principle it follows that their ratio 
Wn := U1/nn1/p/‖ξ(n,p)‖p also satisfies an LDP at speed n. Furthermore, since Wn → 1
almost surely as n → ∞, the LDP rate function for {Wn}n∈N has the unique min-
imizer 1. Given sn � n and the representation in (3.5), an application of (the last 
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assertion of) Lemma 1.9, with Wn as above, m = 1, γn = n, Vn := √
sn‖ξ(n,p)‖2/n, and 

βn = sn shows that to establish the proposition it suffices to prove that {Vn}n∈N satis-

fies an LDP with speed sn and GRF JX,p. To this end, using the relation 
√

sn

∥∥∥ξ(n,p)
∥∥∥

2
n =(

sn

n2

∑n
i=1(ξ(p)

i )2
)1/2

, the contraction principle, Lemma 3.2 with kn = n and bn = n2/sn

therein, and the property that sn � n, we can conclude that {√
sn‖ξ(n,p)‖2/n}n∈N satis-

fies an LDP at speed nps
−p/2
n with GRF JX,p given in (3.6). Finally, since sn = n2p/(2+p), 

we obtain nps
−p/2
n = sn. �

Next, we turn to verifying Assumption C. In the following lemma, we show that for 
1 ≤ p < 2, different conditions in Assumption C are satisfied according to the growth 
speed of kn.

Proposition 3.4. When p ∈ [1, 2), let JX,p be defined as in (3.6). Then {X(n,p)}n∈N

satisfies Assumption C with GRF J (r)
X = JX,p for all r ∈ [0, ∞], where sn is defined by

sn :=
{

npk
−p/2
n , if kn � n2p/(2+p),

n2p/(2+p), if kn = n2p/(2+p) or kn � n2p/(2+p).

Proof. Let sn be as defined in the proposition. As in Assumption C, let r ∈ [0, ∞] be 
the limit of sn/kn as n → ∞. It is easy to see that r = 0 if kn � n2p/(2+p), r = 1 if 
kn = n2p/(2+p), and r = ∞ when kn � n2p/(2+p). Now, set cn :=

√
n/kn if r ∈ [0, ∞)

and cn :=
√

n/sn if r = ∞ and note that cn → ∞ as n → ∞. By (3.4), we have the 
following representation

∥∥X(n,p)
∥∥

2
cn

√
n

(d)= U1/n∥∥ξ(n,p)
∥∥

p
/n1/p

∥∥ξ(n,p)
∥∥

2
cn

√
n

, n ∈ N.

We first claim that {‖ξ(n,p)‖2/(cn
√

n)}n∈N satisfies an LDP at speed sn � n. Indeed, 
by Lemma 3.2 with kn = n and bn = c2

nn there, the fact that bn → ∞ as n → ∞ and 
the contraction principle with the mapping x �→ √

x, 
{

‖ξ(n,p)‖2/(cn
√

n)
}

n∈N
satisfies 

an LDP at speed np/2cp
n with GRF JX,p given in (3.6). By [21, Lemma 3.3], Cramér’s 

theorem and the contraction principle, the independence of ξ(n,p) and U , and the con-
traction principle, we see that Wn := U1/nn1/p/‖ξ(n,p)‖p satisfies an LDP at speed n
and further, it also converges almost surely to 1. The lemma then follows upon applying 
Lemma 1.9 with Vn := ‖ξ(n,p)‖2/(cn

√
n) and Wn := U1/nn1/p/‖ξ(n,p)‖p, m = 1, γn = n

and βn := sn � n. �
When combined with the results of Section 2.3.1, the last two propositions imply the 

following LDPs for norms of projections in the constant and sublinear regimes. Here, 
we focus on the norm Y (n,p)

2,k , which is defined as in (2.4) but with X(n) replaced with 

n
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X(n,p). The corresponding results for the differently scaled norms {k
−1/2
n Y

(n,p)
2,kn

}n∈N were 
obtained in Theorem B of [4].

Theorem 3.5. Fix p ∈ [1, 2).

1. Suppose kn is constant at k ∈ N. Then {n−1/2AT
n,kX(n,p)}n∈N satisfies an LDP in 

Rk at speed sn = n2p/(2+p) with GRF IAX(p),k : Rk → [0, ∞] defined by

IAX(p),k(x) := p + 2
2p

‖x‖2p/(p+2)
2 , x ∈ Rk.

Moreover, {n−1/2Y
(n,p)

2,k }n∈N satisfies an LDP with GRF

J
Y

(p)
2,k

(x) :=
{

p+2
2p x2p/(p+2), x ≥ 0,

+∞, x < 0.
(3.7)

2. Suppose kn grows sublinearly.
(a) If kn � n2p/(2+p). Then {n−1/2Y

(n,p)
2,k }n∈N satisfies an LDP in R at speed 

n2p/(2+p) with GRF J
Y

(p)
2,kn

: R → [0, ∞], which is equal to J
Y

(p)
2,k

defined in 

(3.7).
(b) If kn = n2p/(2+p). Then {n−1/2Y

(n,p)
2,k }n∈N satisfies an LDP in R at speed 

n2p/(2+p) with GRF J
Y

(p)
2,kn

: R → [0, ∞] defined by

J
Y

(p)
2,kn

(x) :=
{

p+2
2p

xp

c̄(x)p − log(c̄(x)), x ≥ 0,

+∞, x < 0.

where c̄(x) ∈ [1 +xp/(p+2), ∞) is the unique positive solution to cp+2−cp−xp = 0.
(c) If kn � n2p/(2+p). Then {n−1/2Y

(n,p)
2,k }n∈N satisfies an LDP in R at speed 

npk
−p/2
n with GRF J

Y
(p)

2,kn

: R → [0, ∞] defined by

J
Y

(p)
2,kn

(x) :=
{

xp

p , x ≥ 0,

+∞, x < 0,

which is equal to JX,p in (3.6) of Proposition 3.3.

Proof. In the constant regime, Proposition 3.3 shows that {X(n,p)} satisfies Assump-
tion B with rate function JX,p taking the explicit form given in (3.6). Substituting this 
into Theorem 2.7, we see that {n−1/2AT

n,kX(n,p)}n∈N satisfies an LDP in Rk at speed 
sn = n2p/(2+p) with GRF

IAX(p),k(x) = inf
c>0

{‖x‖p
2

pcp
+ c2

2

}
= p + 2

2p
‖x‖2p/(p+2)

2 , x ∈ Rk. (3.8)
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The LDP for the norm follows from the contraction principle applied to x �→ ‖x‖2.
In the sublinear regime, Proposition 3.4 shows that {X(n,p)} satisfies Assumption C

with GRF JX,p (for all values of r ∈ [0, ∞]) and at speed sn = n2p/(2+p) in case (a), 
which corresponds to r = ∞, and in case (b), which corresponds to r = 1, and speed 
sn = npk

−p/2
n in case (c), which corresponds to r = 0. Together with Theorem 2.11(ii), 

this immediately implies case (c) and case (a) follows from the second equality in (3.8)
above. On the other hand, if case (b) holds, Theorem 2.11(ii) and the expression for JX,p

in (3.6) show that for x ≥ 0,

J
Y

(p)
2,kn

(x) := inf
c>0

{
c2 − 1

2 − log c + xp

pcp

}
= p + 2

2p

xp

c̄(x)p
− log(c̄(x)),

where c̄(x) is the unique positive solution to cp+2 − cp − xp = 0, whose existence and 
uniqueness is guaranteed by Descartes’ rule of signs (see e.g. [5]). Since x ≥ 0, the 
unique positive solution satisfies c̄(x) ≥ 1. Furthermore, c̄(x) = (c̄(x)p + xp)1/(p+2) ≥
(1 + xp)1/(p+2) ≥ 1 + xp/(p+2). �

In a similar fashion, applying Theorem 2.9 and Theorem 2.15, one can also deduce 
LDPs for the empirical measures of the coordinates of the sequences of projections of 
X(n) = X(n,p) in the sublinear and linear regimes. Furthermore, in the linear regime, 
similar LDP results for the norms of these projections can be deduced from Theorem 2.16
on noting that {X(n,p)}n∈N satisfies Assumption A. But, we do not state these results 
since they were already obtained in Theorem 1.2 of [3].

Remark 3.6. Theorem 3.5 shows that when p ∈ [1, 2), the speed of the LDP for Euclidean 
norms of kn-dimensional projections of �n

p balls exhibits an interesting phase transition 
depending on whether the ratio kn/n2p/(2+p) is asymptotically finite or infinite, and the 
form of the rate function also differs depending on whether the limit is zero, strictly 
positive or infinite. Indeed, note that xp ≥ xp/c̄(x)p = c̄(x)2 − 1 ≥ x2p/(p+2). Hence, 
a comparison of cases (b) and (c) of the last theorem above shows that the faster the 
growth of the speed kn, the faster the growth of the rate function J

Y
(p)

2,kn

(x), as x → ∞. 
This disproves a conjecture in [3] (see the statement after Theorem 1.2 therein), which 
states that the LDP (that is, speed and rate function) of these Euclidean norms should be 
the same in the constant and sublinear cases. This behavior is in contrast to the case of 
�p balls, with p > 2, where the rate functions of the (Euclidean) norms of the projections 
in the sublinear and constant cases coincide (see Proposition 3.7 and Remark 3.9).

3.2.3. Verification of Assumption A* when p ∈ [2, ∞)
The verification of the asymptotic thin shell condition is much easier in the case 

p ∈ [2, ∞) than when p ∈ [1, 2).
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Proposition 3.7. For n ∈ N and p ∈ [2, ∞), {X(n,p)}n∈N satisfies Assumption A* with 
sn = n and GRF JX,p where

JX,2(x) :=
{

− log x if x ∈ (0, 1],
+∞ otherwise,

and for p > 2,

JX,p(x) :=
{

infy≥x[ 1
2 log y2

x2 + F ∗
p (y)] if x ∈ (0, 1),

+∞ otherwise.

Moreover, JX,p has a unique minimizer at m := m(p) defined in (3.3).

Proof. In the case p = 2, by (3.4), clearly ‖X(n,p)‖2/
√

n
(d)= U1/n. Thus, Lemma 3.3 of 

[21] shows that {X(n,p)}n∈N satisfies Assumption A* with GRF JX,2, and the explicit 
form of JX,2 implies it has a unique minimum at m(2) = 1. On the other hand, when 
p > 2, the LDP follows from [28, Theorem 1.2] and uniqueness of the minimizer from 
[28, Theorem 1.1 (a)], with d = 1 and qi = 2 (note that the �n

p ball is scaled differently 
there but the results nevertheless follow). �

The last result can also be deduced from Proposition 3.11 on Orlicz balls in Section 3.3
by choosing V (x) = |x|p. However, we presented the self-contained proof above since the 
special case of �p balls with p ≥ 2 is easier due to the representation (3.4). Finally, 
Proposition 3.7 and Theorem 2.7 together yield the following corollary.

Corollary 3.8. Fix p ∈ [2, ∞), let kn be constant at k ∈ N and let JX,p be defined as in 
Proposition 3.7. Then {n−1/2AT

n,kX(n,p)}n∈N satisfies an LDP in Rk at speed n with 
GRF IAX(p),k : Rk → [0, ∞] defined by

IAX(p),k(x) := inf
0<c<1

{
JX,p

(
‖x‖2

c

)
− 1

2 log
(
1 − c2)} , x ∈ Rk.

The particular case when kn ≡ 1, for all range of p ∈ [1, ∞) was studied in [21]; see 
Theorem 2.2 therein. Our method is different in that we take advantage of the equivalent 
representation in Lemma 4.2 and hence a different form of the rate function is obtained 
here.

Remark 3.9. One may combine Proposition 3.7, Theorem 2.11 and Theorem 2.16 to 
obtain LDPs for {n−1/2‖AT

n,kn
X(n,p)‖2}n∈N in the sublinear and linear regimes when 

p ∈ [2, ∞). We omit these results, since they were already obtained in Theorem 1.1 
of [3]. LDPs for empirical measures of the coordinates of the projections of the �n

p balls 
with p ∈ [2, ∞) in the sublinear and linear regimes can also be deduced on combining 
Proposition 3.7 with Theorem 2.9 or Theorem 2.15.
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3.3. Orlicz and generalized Orlicz balls

We now consider the class of Orlicz and generalized Orlicz balls. These form a natural 
class of examples because, like the uniform measure on any convex set, the uniform 
measure on a generalized Orlicz ball is logconcave, and much like �n

p balls, the coordinates 
of a uniformly distributed random vector satisfy a certain “subindependence” property 
known as “negative association” [49], and (under suitable conditions) the Orlicz ball 
satisfies the KLS conjecture [37].

Definition 3.10. We say V is an Orlicz function if V : R → R+ ∪ {∞} is convex and 
satisfies V (0) = 0 and V (x) = V (−x) for x ∈ R. Let the domain of V be DV := {x ∈
R : V (x) < ∞}. We say V is superquadratic if

V (x)/x2 → ∞, as x → ∞. (3.9)

In particular, 2-convex Orlicz functions are superquadratic in the sense of Definition 3.10, 
and this includes the case V (x) = |x|p, with p > 2. Fix a superquadratic Orlicz function 
V , and denote the associated symmetric Orlicz ball by

Bn
V :=

{
x ∈ Rn :

n∑
i=1

V (xi) ≤ n

}
. (3.10)

We also discuss so-called generalized Orlicz balls, associated with a sequence of su-
perquadratic Orlicz functions Vi : R → R+, i ∈ N. These generalized Orlicz balls, which 
are induced by a norm defined by functions that vary with dimension, are also known in 
the literature as Musielak-Orlicz balls [45]. For n ∈ N, define the set

Bn
V1,...,Vn

:=
{

x ∈ Rn :
n∑

i=1
Vi(xi) ≤ n

}
. (3.11)

In contrast with the usual (symmetric) Orlicz ball, the generalized Orlicz ball Bn
V1,...,Vn

need not be invariant to permutations of the coordinates.
We verify Assumption A* for symmetric and generalized Orlicz balls in Sections 3.3.1

and 3.3.2, respectively. As mentioned above, the special case Bn
V = n1/pBn

p , with p > 2, 
was analyzed in Section 3.2.3. However, unlike Bn

p , whose study is facilitated by the 
probabilistic representation (3.4), there is no analogous representation for general Bn

V , 
making its analysis significantly more complicated. Instead, our proof shows that one can 
represent Bn

V in terms of an exponential Gibbs measure; this idea has been subsequently 
further exploited in [27]. Conditions like 2-convexity (and 2-concavity) often arise in the 
local theory of Banach spaces. In our case this condition arises naturally because we are 
also considering 2-norms in this section. However, it would be interesting to investigate 
whether an analogous analysis can be carried out for Orlicz balls defined via superlinear 
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but subquadratic Orlicz functions V (it is worth noting that we have been able to cover 
the special case of �n

p balls with p ∈ [1, 2)) or whether there is a more fundamental 
obstruction. In the following, by a slight abuse of notation, we use |A| to denote the 
volume of a measurable set A ⊂ Rn and use dx to denote the integral over Lebesgue 
measure in R or Rn.

3.3.1. Symmetric Orlicz balls
In analogy with (1.1), for ν ∈ P(R), define MV : P(R) → R+ as

MV (ν) :=
∫
R

V (x)ν(dx), (3.12)

for ν such that the integral in the last display is finite. Also, for b > 0, define μV,b ∈ P(R)
as follows: for x ∈ DV , where DV is the domain of V as specified in Definition 3.10,

μV,b(dx) := 1
ZV,b

e−b V (x)dx, (3.13)

with ZV,b being the normalizing constant ZV,b :=
∫

DV
e−bV (x)dx. Moreover, define

J(u, v) := sup
s<0,t∈R

⎧⎨⎩su + tv − log

⎛⎝∫
DV

esV (x)+tx2
dx

⎞⎠⎫⎬⎭ for u, v ∈ R+, (3.14)

We now state the main result of this section.

Proposition 3.11 (Annealed example, Orlicz). Suppose V is a superquadratic Orlicz func-
tion and for n ∈ N, let X(n) ∼ Unif(Bn

V ). Then {X(n)}n∈N satisfies Assumption A* with 
JX = JX,V , where

JX,V (z) := J(1, z2) − sup
s<0

⎧⎨⎩s − log

⎛⎝∫
DV

esV (x)dx

⎞⎠⎫⎬⎭ , z ∈ R+. (3.15)

Moreover, there exists a unique b∗ > 0 such that MV (μV,b∗) = 1 and JX,V has a unique 
minimizer m :=

√
M2(μV,b∗), with M2 as defined in (1.1).

The proof of Proposition 3.11, which is given at the end of the section, relies on certain 
properties of the function J specified in (3.14), which we state in the lemma below, whose 
proof is relegated to Appendix C. For s < 0, t ∈ R, define νs,t ∈ P(R) as

νs,t(dx) := 1
esV (x)+tx2

dx, x ∈ DV ,

Zs,t
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where Zs,t is the normalizing constant Zs,t :=
∫

DV
esV (x)+tx2

dx, which is finite since V
is superquadratic and s < 0.

Lemma 3.12. Suppose V is a superquadratic Orlicz function and let J be defined in (3.14).

1. For u, v ∈ R+ and (u, v) lying in the interior of the domain of J, there exists a 
unique (s, t) ∈ R− × R such that the supremum in the definition of (3.14) of J(u, v)
is attained. Moreover, this (s, t) satisfies MV (νs,t) ≤ u and M2(νs,t) = v.

2. There exists a unique constant b∗ > 0 such that MV (μV,b∗) = 1. Moreover, v �→
J(1, v) is a convex function with minimizer m = M2(μV,b∗), and furthermore,

min
x∈R+

J(1, x) =J(1, m) = sup
s<0

⎧⎨⎩s − log

⎛⎝∫
DV

esV (x)dx

⎞⎠⎫⎬⎭ . (3.16)

3. For v > m, the supremum in the definition (3.14) of J(1, v) is attained at (s, t) ∈
R− × R+ while for 0 < v < m, the supremum is attained at (s, t) ∈ R− × R−.

4. For u, v ∈ R+ such that J(u, v) < ∞, ∂uJ(u, v) ≤ 0.

Remark 3.13. Let V, Ṽ be Orlicz functions, and suppose now that the definition of J in 
(3.14) is replaced with

J̃(u, v) := sup
s<0,t∈R

⎧⎨⎩su + tv − log

⎛⎝∫
DV

esV (x)+tṼ (x)dx

⎞⎠⎫⎬⎭ for u, v ∈ R+. (3.17)

Then, as can be seen from the proof in Appendix C, the conclusions of Lemma 3.12
continue to hold, with MṼ and J̃ in place of M2 and J, respectively, as long as 
V (x)/Ṽ (x) → ∞ as x → ∞.

Proof of Proposition 3.11. Fix a superquadratic Orlicz function V (see Definition 3.10). 
For a measurable set A ⊂ R, define Bn

2,V [A] := Bn
V ∩ {x ∈ Rn :

∑n
i=1 x2

i ∈ nA}, and note 
that

P

(
1
n

n∑
i=1

(Xn
i )2 ∈ A

)
=
∣∣Bn

2,V [A]
∣∣

|Bn
V | , (3.18)

which expresses a tail probability in terms of the ratio of volumes of two convex bodies. 
We now proceed in three steps to characterize the asymptotics of these volumes in order 
to estimate the tail probabilities.

Step 1. For any closed set F ⊂ R+, we will establish an upper bound on the numerator 
in (3.18),
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lim sup
n→∞

1
n

log
∣∣Bn

2,V [F ]
∣∣ ≤ − inf

x∈F
J(1, x). (3.19)

With b∗ > 0 as defined in property 2 of Lemma 3.12, and M2 as defined in (1.1), set 
m := M2(μV,b∗). Next, set α+ := min{x ∈ [m, +∞) ∩F} and α− := max{x ∈ [0, m] ∩F}. 
Assume α− < m < α+. Then

∣∣Bn
2,V [F ]

∣∣ ≤ ∣∣∣∣∣Bn
V ∩
{

x ∈ Rn :
n∑

i=1
x2

i ≥ nα+

}∣∣∣∣∣+
∣∣∣∣∣Bn

V ∩
{

x ∈ Rn :
n∑

i=1
x2

i ≤ nα−

}∣∣∣∣∣
=
∣∣Bn

2,V [[α+, ∞)]
∣∣+ ∣∣Bn

2,V [[0, α−]]
∣∣ . (3.20)

Fix s < 0 and t > 0, and note that then

Bn
2,V [[α+, ∞)] =

{
x ∈ Rn : exp

(
s

n∑
i=1

V (xi)
)

≥ ens, exp
(

t
n∑

i=1
x2

i

)
≥ entα+

}
,

and therefore, it follows that

∣∣Bn
2,V [[α+, ∞)]

∣∣ ≤ ∫
Bn

2,V [[α+,∞)]

exp
(

s

n∑
i=1

V (xi) − ns + t

n∑
i=1

x2
i − ntα+

)
dx

≤ e−ns−ntα+

∫
(DV )n

exp
(

s

n∑
i=1

V (xi) + t

n∑
i=1

x2
i

)
dx.

Hence, for every s < 0 and t > 0, we see that

lim sup
n→∞

1
n

log
∣∣Bn

2,V [[α+, ∞)]
∣∣ ≤ −s − tα+ + log

⎛⎝∫
DV

esV (x)+tx2
dx

⎞⎠ .

Taking the infimum over s < 0 and t > 0, we obtain

lim sup
n→∞

1
n

log
∣∣Bn

2,V [[α+, ∞)]
∣∣ ≤ inf

s<0,t>0

⎧⎨⎩−s − tα+ + log

⎛⎝∫
DV

esV (x)+tx2
dx

⎞⎠⎫⎬⎭
= − sup

s<0,t>0

⎧⎨⎩s + tα+ − log

⎛⎝∫
DV

esV (x)+tx2
dx

⎞⎠⎫⎬⎭
= −J(1, α+),

where, since α+ > m, the last equality follows by property 3 of Lemma 3.12.
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Similarly, once again fixing s < 0 but now also choosing t < 0, we have

lim sup
n→∞

1
n

log
∣∣Bn

2,V [[0, α−)]
∣∣ ≤ − sup

s<0,t<0

⎧⎨⎩s + tα− − log

⎛⎝∫
DV

esV (x)+tx2
dx

⎞⎠⎫⎬⎭
= −J(1, α−),

where, noting that α− < m, the last inequality once again follows by property 3 of 
Lemma 3.12. Together with (3.20), the last two displays show that

lim sup
n→∞

1
n

log |Bn
2,V [F ]| ≤ − min (J(1, α+), J(1, α−)) = − inf

x∈F
J(1, x),

where the last equality follows from the convexity of x → J(1, x) and the fact that m
is the unique minimizer of J(1, ·), as established in property 2 of Lemma 3.12, and the 
definitions of α− and α+. This proves the claim (3.19) in this case.

On the other hand, if α+ = m or α− = m, then by property 2 of Lemma 3.12, 
infx∈F J(1, x) = J(1, m). We first obtain an estimate of the volume of the Orlicz ball Bn

V . 
For s < 0,

1
n

log |Bn
V | ≤ 1

n
log

∫
∑n

i=1 V (xi)≤n

exp
(

s
n∑

i=1
V (xi) − ns

)
dx

≤ −s + log

⎛⎝∫
DV

esV (x)dx

⎞⎠ .

The claim (3.19) then follows in this case as well since

lim sup
n→∞

1
n

log
∣∣Bn

2,V [F ]
∣∣ ≤ lim sup

n→∞

1
n

log |Bn
V |

≤ − sup
s<0

⎧⎨⎩s − log

⎛⎝∫
DV

esV (x)dx

⎞⎠⎫⎬⎭
= − min

x∈R+
J(1, x)

≤ − min
x∈F

J(1, x),

where the second inequality follows on taking the infimum over s < 0 in the last display 
and the equality on the third line follows from (3.16).

Step 2. For any open set U ⊂ R+, we will show the lower bound

lim inf 1 log
∣∣Bn

2,V [U ]
∣∣ ≥ − inf J(1, x). (3.21)
n→∞ n x∈U
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Since infx∈U J(1, x) = infx∈U∩DJ(1,·) J(1, x), with the latter being infinity if the inter-
section is empty, it suffices to only consider U that lies in the interior of the domain of 
J(1, ·). By property 4 of Lemma 3.12, ∂uJ(u, v) ≤ 0, and so for each v ∈ R+, u �→ J(u, v)
is decreasing. By the convexity, and hence continuity, of (u, v) �→ J(u, v) in R+ × R+, 
for every ε > 0, there exist 0 < y < 1 and z ∈ U such that

inf
x∈U

J(1, x) > J(y, z) − ε. (3.22)

Pick δ > 0 small such that (z − δ, z + δ) ⊂ U . Let (sy, tz) be the value that attains the 
supremum in the expression (3.14) for J(y, z), which exists by property 1 of Lemma 3.12
since U lies in the interior of the domain of J(1, ·). Define

An
δ :=

{
x ∈ Rn : 0 ≤ 1

n

n∑
i=1

V (xi) < 1, z − δ <
1
n

n∑
i=1

x2
i < z + δ

}

and Z̄y,z := Zsy,tz
=
∫

DV
esyV (x)+tzx2

dx, which is finite by the definition of (sy, tz), the 
definition of J(y, z) in (3.14) and the finiteness of J(y, z). Suppose tz < 0. We then obtain 
the following estimate for the lower bound:

∣∣Bn
2,V [U ]

∣∣ ≥ ∫
An

δ

dx

=
∫

An
δ

(
Z̄y,z

)n
e−sy

∑n
i=1 V (xi)−tzx2

i

n∏
i=1

1
Z̄y,z

esyV (xi)+tzx2
i dx

≥ exp
(
n(log Z̄y,z − syy − tz(z − δ))

) ∫
An

δ

n∏
i=1

1
Z̄y,z

esyV (xi)+tzx2
i dx.

The case tz > 0 can be handled analogously, simply by replacing z − δ with z + δ on the 
right-hand side.

Let {Ξi}∞
i=1 be a sequence of i.i.d. continuous random variables with density 

1
Z̄y,z

esyV (x)+tzx2 . Since (sy, tz) attains the supremum in (3.14) of J(y, z), by property 

1 of Lemma 3.12, E[V (Ξi)] ≤ y < 1 and E[Ξ2
i ] = z. Then the integral in the last display 

can be rewritten as

∫
An

δ

n∏
i=1

1
Z̄y,z

esyV (xi)+tzx2
i dx = P

(
0 ≤ 1

n

n∑
i=1

V (Ξi) < 1, z − δ <
1
n

n∑
i=1

Ξ2
i < z + δ

)
,

which converges to 1 by the weak law of large numbers and finiteness of the respective 
moments. Thus, combining the last two displays with the expression for J(y, z) in (3.14)
and the definition of (sy, tz), we obtain
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lim inf
n→∞

1
n

log
∣∣Bn

2,V [U ]
∣∣ ≥ log Z̄y,z − sy(y − δ) − tz(z − δ)

= −J(y, z) + syδ + tzδ

≥ − inf
x∈U

J(1, x) + ε + syδ + tzδ,

where the last inequality invokes (3.22). Since ε and δ are arbitrary, this implies the 
desired lower bound in (3.21).

Step 3. We claim that the denominator of (3.18) satisfies

lim
n→∞

1
n

log |Bn
V | = − sup

s<0

⎧⎨⎩s − log

⎛⎝∫
DV

esV (x)dx

⎞⎠⎫⎬⎭ . (3.23)

Since Bn
V = Bn

2,V [R+], applying (3.19) with F = R+ and (3.21) with U = (0, ∞), we 
obtain

lim
n→∞

1
n

log |Bn
V | = − inf

x∈R+
J(1, x).

The claim then follows from (3.16) of Lemma 3.12.
Finally, the combination of (3.23), (3.19) and (3.21) with (3.18) yields an LDP for 

{ 1
n

∑n
i=1(Xn

i )2}n∈N at speed n with rate function

J(1, x) − sup
s<0

⎧⎨⎩s − log

⎛⎝∫
DV

esV (x)dx

⎞⎠⎫⎬⎭ .

The proposition then follows by an application of the contraction principle to the map-
ping x �→ √

x. �
Remark 3.14. The relation (3.23) provides the asymptotic logarithmic volume of an Or-
licz ball. A careful inspection of the argument shows that this limit result does not require 
the super-quadratic restriction on the Orlicz function; it is the LDP for the norms that 
uses this restriction. Indeed, let V and Ṽ be Orlicz functions such that V (x)/Ṽ (x) → ∞
as x → ∞, let J̃ be defined as in (3.17). and for any measurable set A ⊂ R define 
Bn

Ṽ
[A] := {x ∈ Rn :

∑n
i=1 Ṽ (xi) ∈ nA}. Then, we see from Step 1 in the proof of 

Proposition 3.11 that the following more general inequality holds:

lim sup
n→∞

1
n

log
∣∣Bn

V [A] ∩ Bn
Ṽ

[B]
∣∣ ≤ − inf

x∈A,y∈B
J̃(x, y), for closed sets A, B ⊂ R+.

Remark 3.15. After the first version of this paper was posted on arXiv, the asymptotic 
logarithmic volume of an Orlicz ball was also obtained in [27], where they also established 
further refined estimates using ideas from sharp large deviations estimates (see, e.g., 
[7,40]).
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3.3.2. Generalized Orlicz balls
Suppose that Bn

V1,...,Vn
is close to a symmetric Orlicz ball in the following sense: there 

exists an Orlicz function V̄ : R+ → R+ such that as n → ∞,

1
n

log
∣∣Bn

V̄
ΔBn

V1,...,Vn

∣∣∣∣∣Bn
V̄

∪ Bn
V1,...,Vn

∣∣∣ → −∞, (3.24)

where Bn
V̄

is the Orlicz ball as defined in (3.10), and for any sets A, B ⊂ Rn, AΔB =
[A \ B] ∪ [B \ A] represents the symmetric difference of A and B.

Lemma 3.16 (Generalized Orlicz). Fix Orlicz functions {Vi}i∈N and V̄ that satisfy 
(3.24), and are uniformly superquadratic in the sense that there exists a constant 
cV ∈ (0, ∞) such that for x > cV , Vi(x) > x2 for i ∈ N and V̄ (x) > x2. Suppose 
X(n) ∼ Unif(Bn

V1,...,Vn
). Then, {X(n)}n∈N satisfies Assumption A* with JX,V̄ , defined as 

in (3.15), but with V replaced with V̄ .

Proof. Let X̄(n) ∼ Unif(Bn
V̄

), U (n) ∼ Unif(Bn
V̄

∪ Bn
V1,...,Vn

) and X(n) ∼ Unif(Bn
V1,...,Vn

)
be independent random vectors defined on a common probability space. Define

W (n) := U (n)1{U(n)∈Bn
V1,...,Vn

} + X(n)1{U(n) /∈Bn
V1,...,Vn

},

W̄ (n) := U (n)1{U(n)∈Bn
V̄

} + X̄(n)1{U(n) /∈Bn
V̄

}.

First note that conditioned on {U (n) ∈ Bn
V1,...,Vn

}, U (n) has the same distribution as 
X(n). By definition, X(n) is supported on Bn

V1,...,Vn
. For a measurable set A ⊂ Bn

V1,...,Vn
, 

we have

P
(

W (n) ∈ A
)

= P
(

W (n) ∈ A
∣∣∣U (n) ∈ Bn

V1,...,Vn

)
P
(

U (n) ∈ Bn
V1,...,Vn

)
+ P
(

W (n) ∈ A
∣∣∣U (n) /∈ Bn

V1,...,Vn

)
P
(

U (n) /∈ Bn
V1,...,Vn

)
= P
(

U (n) ∈ A
∣∣∣U (n) ∈ Bn

V1,...,Vn

)
P
(

U (n) ∈ Bn
V1,...,Vn

)
+ P
(

X(n) ∈ A
∣∣∣U (n) /∈ Bn

V1,...,Vn

)
P
(

U (n) /∈ Bn
V1,...,Vn

)
= P
(

X(n) ∈ A
)
P
(

U (n) ∈ Bn
V1,...,Vn

)
+ P
(

X(n) ∈ A
)
P
(

U (n) /∈ Bn
V1,...,Vn

)
= P
(

X(n) ∈ A
)

.

Hence, W (n) (d)= X(n). A similar argument can be used to show that W̄ (n) (d)= X̄(n), thus 
providing a useful coupling between the uniform measures on Bn

V ,...,V and Bn
¯ . Due 
1 n V
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to the contraction principle applied to x �→ √
x, Proposition 3.11 and Remark 1.6, it 

suffices to show that {‖W (n)‖2
2/n}n∈N is exponentially equivalent (see Definition 1.5) to 

{‖W̄ (n)‖2
2/n}n∈N .

To this end, let κ :=
√

c2
V + 1, where cV is the positive finite constant stated in the 

lemma, and note that Bn
V1,...,Vn

⊂ κ
√

nBn
2 and Bn

V̄
⊂ κ

√
nBn

2 since for x ∈ Bn
V1,...,Vn

, ∑n
i=1 x2

i ≤
∑n

i=1(c2
V + Vi(xi)) ≤ (c2

V + 1)n = κ2n, where the last inequality uses (3.11), 
and for x ∈ Bn

V̄
, 
∑n

i=1 x2
i ≤

∑n
i=1(c2

V + V̄ (xi)) ≤ (c2
V + 1)n = κ2n, where the last 

inequality uses (3.10). Thus,∣∣∣‖W̄ (n)‖2
2

n − ‖W (n)‖2
2

n

∣∣∣ = 1
n

∣∣∣‖W̄ (n)‖2
2 − ‖W (n)‖2

2

∣∣∣ ≤ κ1{U(n) /∈(Bn
V̄

∩Bn
V1,...,Vn

)}.

Therefore, for every δ > 0,

1
n

logP
(∣∣∣‖W̄ (n)‖2

2/n − ‖W (n)‖2
2/n
∣∣∣ > δ

)
≤ 1

n
logP

(
κ1{U(n) /∈(Bn

V̄
∩Bn

V1,...,Vn
)} > 0

)
= 1

n
logP

(
U (n) ∈ (Bn

V̄
ΔBn

V1,...,Vn
)
)

= 1
n

log
∣∣Bn

V̄
ΔBn

V1,...,Vn

∣∣∣∣∣Bn
V̄

∪ Bn
V1,...,Vn

∣∣∣ ,
which converges to −∞ as n → ∞ by (3.24). This establishes the desired exponential 
equivalence and thus completes the proof. �
3.4. Gibbs measures

We now consider the case when the random vector X(n) is drawn from a Gibbs measure
on configurations of n interacting particles. To be precise, let F : R → (−∞, ∞] be a 
“confining” potential, G : R × R → (−∞, ∞] an “interaction” potential, and for n ∈ N, 
define a Hamiltonian Hn : Rn → (−∞, ∞] given by

Hn(x) := 1
n

n∑
i=1

F (xi) + 1
n2

n∑
i=1

n∑
j=1,j 
=i

G(xi, xj), x ∈ Rn.

As in [17], we assume that there exists a non-atomic, σ-finite measure � on R which, 
along with the potentials F and G, satisfies the following conditions:

1. F and G are lower semicontinuous on the respective sets on which they are finite;
2. there exists a ∈ [0, 1) and c ∈ R such that F satisfies 

∫
R e−(1−a)F (x)�(dx) < ∞, 

infx F (x) > c, and inf(x,y)∈R×R [G(x, y) + a(F (x) + F (y))] > c;
3. there exists a Borel measurable set A ⊂ R with �(A) > 0 such that∫

[F (x) + F (y) + G(x, y)] �(dx)�(dy) < ∞;

A×A
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4. for all λ ∈ R, we have∫
R×R

exp
[
λ(x2 + y2) − F (x) − F (y) − G(x, y)

]
�(dx)�(dy) < ∞.

Under the above conditions, it is straightforward to verify that for n ∈ N, Zn :=∫
Rn e−nHn(x)�⊗n(dx) is finite and so we can define Pn ∈ P(R) as follows:

Pn(dx) := 1
Zn

e−nHn(x)�⊗n(dx), x ∈ Rn. (3.25)

Further, let Qn ∈ P(R) be the empirical measure of the coordinates of X(n), when the 
latter is drawn from Pn; more precisely, set Qn := 1

n

∑n
i=1 δ

X
(n)
i

, which is a random 

P(R)-valued element.

Theorem 3.17 (Theorem 2.7 and Lemma 2.6 of [17]). Under the conditions stated above, 
{Qn}n∈N satisfies an LDP in P2(R) equipped with the 2-Wasserstein topology, at speed 
n, with GRF I∗ : P2(R) → [0, ∞] defined by

I∗(μ) := I(μ) − inf
μ∈P2(R)

I(μ), (3.26)

I(μ) := H(μ|�) + 1
2

∫
R×R

G(x, y)μ(dx)μ(dy) +
∫
R

F (x)μ(dx),

with H being the relative entropy functional defined in (1.5).

Proposition 3.18 (Gibbs measures). Suppose F, G and � satisfy the conditions stated 
above, and for n ∈ N, suppose X(n) is drawn from Pn of (3.25). Then {X(n)}n∈N

satisfies Assumption A* with GRF

JX(x) := inf
{
I∗(μ) : μ ∈ P2(R), x =

√
M2(μ)

}
, x ≥ 0,

with I∗ as defined in (3.26).

Proof. The LDP for {‖X(n)‖2
2/n}n∈N , follows from an application of the contraction 

principle to the empirical measure LDP of Theorem 3.17 and the second moment map M2
of (1.1), which is continuous with respect to the 2-Wasserstein topology. Assumption A* 
then follows on applying the contraction principle with the map x �→ √

x. �
Remark 3.19. In a similar fashion, the large deviation results in the recent work of 
[41, Theorem 2.8] can be combined with the contraction principle to show that As-
sumption A* is also satisfied by sequences of Gibbs measures associated with a class of 
interaction potentials G : Rk → (−∞, ∞] that capture k-tuple interactions, for fixed 
k ∈ N.
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4. Proofs of LDPs for the random projections

In this section, we prove the main large deviation results, namely, Theorems 2.7, 2.9
and 2.15, stated in Section 2, which deal with the constant, sublinear and linear regimes, 
respectively. At many points, we will refer to certain properties of the top row of An,kn

, 
which we first establish in Section 4.1. Sections 4.2, 4.3 and 4.4 consider the regimes 
of {kn} constant, sublinear and linear, respectively. Throughout, let ζ1, ζ2, . . . , denote a 
sequence of i.i.d. standard Gaussian random variables, let ζ(n) := (ζ1, . . . , ζn) ∈ Rn, let 
e1 := (1, 0, . . . , 0) ∈ Rn.

4.1. The top row of An,kn

Lemma 4.1. Fix k, n ∈ N such that k ≤ n. Then the following relation holds:

An,k(1, · ) = (An,k(1, 1), . . . , An,k(1, k)) (d)= (ζ1, . . . , ζk)
‖ζ(n)‖2

. (4.1)

Proof. Let On be a random n × n orthogonal matrix (i.e., sampled from the normalized 
Haar measure on the group of n × n orthogonal matrices). Let In,k be the n × k matrix 
of ones on the diagonal and zeros elsewhere. Note that

AT
n,k

(d)= IT
n,kOn,

which implies that An,k(1, · ) is equal in distribution to the vector of the first k elements in 
the top row of On. The marginal distribution of the top row of On is the uniform measure 
on the unit sphere of Rn, which establishes the identity (4.1), due to the classical fact 
that ζ(n)/‖ζ(n)‖2 is uniformly distributed on the unit sphere in Rn (see, e.g., [44]). �
Lemma 4.2. Fix n ∈ N and k ≤ n. Suppose X(n) is an n-dimensional random vector 
independent of An,k. Then the following relation holds:(

AT
n,k

X(n)

‖X(n)‖2
, ‖X(n)‖2

) (d)=
(

AT
n,ke1, ‖X(n)‖2

)
.

Proof. As in Lemma 6.3 of [21], which considered the case k = 1, this result is eas-
ily deduced from the fact that the distribution of An,k is invariant under orthogonal 
transformations and independent of X(n). In particular, fix n ∈ N and given any n × n

orthogonal matrix On and x ∈ Rn, we have(
AT

n,k

x

‖x‖2
, ‖x‖2

)
(d)=
(

AT
n,kO−1

n

x

‖x‖2
, ‖x‖2

)
.

Now, given e1 ∈ Sn−1, for any y ∈ Sn−1 let R(y) ∈ Vn,n be the unique orthogonal matrix 
On such that O−1

n y = e1. It is easy to see that R : Sn−1 �→ Vn,n is a measurable map. 
Then, for any x ∈ Rn, substituting On = R(x/‖x‖2) in the last display it follows that
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(
AT

n,k

x

‖x‖2
, ‖x‖2

)
(d)=
(

AT
n,k

(
R

(
x

‖x‖2

))−1
x

‖x‖2
, ‖x‖2

)
=
(
AT

n,ke1, ‖x‖2
)

.

Since AT
n,k is independent of X(n), the above relation holds when x is replaced with 

X(n). �
In the settings in which {kn}n∈N grows, we will first analyze the empirical measure 

of the kn elements in the top row of 
√

nAn,kn
. That is, let

μ̂n
A := 1

kn

kn∑
j=1

δ√
nAn,kn (1,j), n ∈ N. (4.2)

Recall that P(R) is always equipped with the weak topology unless otherwise stated.

Lemma 4.3. For n ∈ N, let X(n) be independent of An,kn
and recall the definition of Ln

given in (2.1). Then we have

Ln(·) (d)= μ̂n
A( · ×

√
n/‖X(n)‖2).

Moreover, the map P(R) × (0, ∞) � (ν, c) �→ ν( · × c−1) ∈ P(R) is continuous.

Proof. For each n ∈ N, using the definition of Ln from (2.1) and Lemma 4.2, we have

Ln(·) = 1
kn

kn∑
j=1

δ
‖X(n)‖2

(
AT

n,kn

X(n)

‖X(n)‖2

)
j

(·) (d)= 1
kn

kn∑
j=1

δ ‖X(n)‖2√
n

√
n
(

AT
n,kn

e1

)
j

(·)

= 1
kn

kn∑
j=1

δ√
nAn,kn (1,j)( · ×

√
n/‖X(n)‖2),

from which the first assertion of the lemma follows by (4.2). Continuity of the map 
(ν, c) �→ ν( · × c−1) follows if and only if as n → ∞ a sequence of random variables 
{Bn}n∈N converging in distribution to B and a sequence of constants {cn} converging 
to c implies that cnBn converges to cB in distribution as n → ∞, which follows from 
Slutsky’s theorem [36, Theorem 13.18]. �
Lemma 4.4. Suppose {μ̂n

A}n∈N and {‖X(n)‖2/
√

n}n∈N satisfy LDPs, both at speed sn, 
and with GRFs I1 : Pq(R) → [0, ∞] and I2 : R+ → [0, ∞], respectively. Then {Ln}n∈N

satisfies an LDP at speed sn with GRF defined by

I(μ) = inf
{
I1(ν) + I2(c) : μ = ν( · × c−1)

}
, μ ∈ Pq(R).
ν∈Pq(R),c∈R+
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Proof. By the independence of An,kn
and X(n), {μ̂n

A, ‖X(n)‖2/
√

n}n∈N satisfies an LDP 
at speed sn with GRF

Pq(R) × R+ � (ν, c) �→ I1(ν) + I2(c) ∈ [0, ∞].

The claim follows on applying the contraction principle to the mapping F : Pq(R) ×R+ →
Pq(R) defined by F (ν, c) = ν(· × c−1) �
Lemma 4.5. Let {ζj}j∈N be i.i.d. N(0, 1) random variables, ζ(n) = (ζ1, . . . , ζn) and con-
sider the sequence

νn := 1
kn

kn∑
j=1

δζj
, n ∈ N. (4.3)

Then {νn}n∈N satisfies an LDP in P(R) with respect to the weak topology, at speed kn, 
with GRF H(·|γ1). Moreover, for a sequence {sn}n∈N such that sn � kn, {νn}n∈N

satisfies an LDP in P(R) with respect to the weak topology at speed sn with GRF

χγ1(ν) :=
{

0 if ν = γ1
+∞ else

, ν ∈ P(R). (4.4)

Proof. The first claim is a direct conclusion of Sanov’s theorem [14, Theorem 2.1.10]
while the second claim follows since H(·|γ1) : P(R) → [0, ∞] is convex with a unique 
minimizer at γ1, as in the observation of Remark 1.3. �

We now document an elementary observation since it will be used multiple times in 
the sequel.

Remark 4.6. Let {ζj}j∈N be i.i.d. N(0, 1) random variables, let {kn}n∈N be a sequence 
of positive integers that converges to infinity and let Cn := 1

kn

∑kn

j=1 ζ2
j , n ∈ N. It is 

easy to see that the log moment generating function of ζ2
1 is given by −1

2 log(1 − 2t)
for t < 1/2 and infinity, otherwise. Hence, it is an immediate consequence of Cramér’s 
theorem [14, Theorem 2.2.1] that {Cn}n∈N satisfies an LDP in R at speed kn with GRF 
Jζ2 : R → [0, ∞] of the form

Jζ2(t) := sup
s∈R

{
st + 1

2 log(1 − 2s)
}

=
{

t−1
2 − 1

2 log t, t > 0,

+∞, t ≤ 0.
(4.5)

4.2. Proof of the LDP for random projections in the constant regime

This section is devoted to the proof of Theorem 2.7. Throughout this section, fix 
k ∈ N and suppose kn = k for each n ∈ N. We first give the main idea behind the proof. 
Due to Lemma 4.2 we have
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1√
n

AT
n,kX(n) (d)= 1√

n
AT

n,ke1‖X(n)‖2 = An,k(1, ·)‖X(n)‖2√
n

(4.6)

where {An,k(1, ·)}n∈N is independent of {X(n)}n∈N . Thus, the question essentially re-
duces to understanding the following: suppose two independent sequences of random 
vectors {Vn}n∈N and {Wn}n∈N (with at least one-being real-valued) satisfy LDPs at 
speeds {βn}n∈N , and {γn}n∈N with GRFs JV and JW , respectively. Then we want to 
understand when an LDP with a non-trivial rate function can be deduced for the prod-
uct sequence Zn := VnWn, n ∈ N. When βn = γn, then this is a simple application of 
the contraction principle. We will see that this is the case when Assumption A* holds, 
that is, when {‖X(n)‖2/

√
n}n∈N satisfies an LDP at speed n, by showing that then 

{An,k(1, ·)}n∈N also satisfies an LDP at speed n. On the other hand, if βn � γn or 
βn � γn, then the idea is to find sequences {bn}n∈N and {sn}n∈N such that {bnVn}n∈N

and {b−1
n Wn}n∈N both satisfy non-trivial LDPs at the same speed sn, and once again 

apply the contraction principle. This falls into the case of Assumption B, which states 
that {bn‖X(n)‖2/

√
n}n∈N , with bn =

√
sn/n, satisfies a non-trivial LDP at speed sn, 

and thus the proof in this case follows by showing that {b−1
n An,k(1, ·)}n∈N also satisfies 

a non-trivial LDP at speed sn.

Proof of Theorem 2.7. We consider two cases.

Case 1. Suppose Assumption A* holds with GRF JX .

First, note that by Lemma 4.1, we can apply the LDP in [8, Theorem 3.4] to find that 
{An,k(1, ·)}n∈N satisfies an LDP in Rk at speed n with GRF Jk(y) := −1

2 log(1 − ‖y‖2
2), 

when ‖y‖2 ≤ 1, and Jk(y) := +∞ otherwise. Since {X(n)}n∈N is independent of 
{An,k}n∈N , and the case assumption shows that {‖X(n)‖2/

√
n}n∈N satisfies an LDP 

with speed n and GRF JX , Lemma 1.9 implies that {An,k(1, ·), ‖X(n)‖2/
√

n}n∈N sat-
isfies an LDP at speed n with GRF Jk(y) + JX(α) for y ∈ Rk and α ∈ R+. The 
contraction principle applied to the mapping Rk × R+ � (y, α) �→ αy ∈ Rk implies that 
{n−1/2AT

n,kX(n)}n∈N satisfies an LDP with GRF

IAX,k(x) := inf
y∈Rk,z∈R

{
−1

2 log(1 − ‖y‖2
2) + JX(z) : x = yz, ‖y‖2 ≤ 1, z ≥ 0

}
, x ∈ Rk.

We can without loss of generality restrict the range of z in the infimum to z > 0; then, 
substituting y = x/z and noting that the constraint ‖y‖2 ≤ 1 is equivalent to ‖x‖2 ≤ z, 
it follows that

IAX,k(x) = inf
z≥‖x‖2

{
−1

2 log
(

1 − ‖x‖2
2

z2

)
+ JX(z)

}
= inf

z>‖x‖2

{
−1

2 log
(

1 − ‖x‖2
2

z2

)
+ JX(z)

}
, x ∈ Rk.



S.S. Kim et al. / Advances in Applied Mathematics 134 (2022) 102306 39
On rewriting the above in terms of c = ‖x‖2/z, we obtain the form (2.3) for the rate 
function IAX,k.

Case 2. Suppose Assumption B holds with sequence {sn}n∈N and GRF JX .

From Lemma 4.2 and (4.1), denoting ζ(n) := (ζ1, . . . , ζn) with {ζi}i∈N i.i.d. N(0, 1)
random variables, we have

1√
n

AT
n,kX(n) (d)= An,k(1, ·)

∥∥X(n)
∥∥

2√
n

(d)=
ζ(k)/

√
sn∥∥ζ(n)

∥∥
2 /

√
n

√
sn

∥∥X(n)
∥∥

2
n

, (4.7)

Now, consider the sequence of vectors

Rn :=
(

ζ(k)
√

sn
,

√
n∥∥ζ(n)
∥∥

2
,

√
sn

∥∥X(n)
∥∥

2
n

)
, n ∈ N,

which are almost surely well-defined. Then ζi/
√

sn is a N(0, 1/sn) random variable with 
sn → ∞ as n → ∞. Hence, by the Gärtner-Ellis theorem, the sequence {ζ(k)/

√
sn}n∈N

satisfies an LDP in Rk at speed sn with GRF x �→ ‖x‖2/2. Assumption B implies that 
{√

sn‖X(n)‖2/n}n∈N satisfies an LDP, also at speed sn, and with GRF JX . Finally, by 
Remark 4.6, the contraction principle applied to x �→ 1/

√
x and the strong law of large 

numbers, {√
n/‖ζ(n)‖2}n∈N satisfies an LDP at speed n and converges almost surely to 

1, which implies that the associated GRF has a unique minimum at 1.
Together with the independence of {ζi}i=1,...,k and X(n), and Lemma 1.9 (with Un =

ζ(k)/
√

sn, Vn = √
sn‖X(n)‖2/n, Wn =

√
n/‖ζ(n)‖2 and m = 1), this implies that Rn

satisfies an LDP with GRF given by Rk × R+ × R+ � (r1, r2, r3) �→ ‖r1‖2
2

2 + JX(r3) if 
r2 = 1 (and +∞ otherwise). Combining this with (4.7) and the contraction principle 
for the continuous mapping Rk × R2

+ � (r1, r2, r3) �→ r1r2r3 ∈ Rk, it follows that the 
sequence of k-dimensional vectors, {n−1/2AT

n,kX(n)}n∈N , satisfies an LDP at speed sn

with GRF

IAX,k(x) = inf
{

‖r1‖2
2

2 + JX(r3) : r1 ∈ Rk, r3 > 0, x = r1r3

}

= inf
c>0

{
JX

(‖x‖2
c

)
+ c2

2

}
,

which coincides with the expression given in (2.3). This completes the proof of Theo-
rem 2.7. �
4.3. Proof of the empirical measure LDP in the sublinear regime 1 � kn � n

We now present the proof of Theorem 2.9. We first start with an auxiliary result.
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Proposition 4.7. Fix q ∈ [1, 2). Suppose {kn}n∈N grows sublinearly. Then, {μ̂n
A}n∈N

defined in (4.2) satisfies an LDP in Pq(R) at speed kn with GRF H(·|γ1) : P(R) → [0, ∞].

Proof. Recall that {ζj}j∈N are i.i.d. N(0, 1) random variables, ζ(n) = (ζ1, . . . , ζn). Due 

to (4.2) and Lemma 4.1, {μ̂n
A}n∈N

(d)= {ν̃n}n∈N , where

ν̃n := 1
kn

kn∑
j=1

δ√
nζj/‖ζ(n)‖2 , n ∈ N.

We now claim (and justify below) that {νn}n∈N defined in Lemma 4.5 is exponentially 
equivalent (at speed kn) to the sequence {ν̃n}n∈N defined in (4.3).

To prove the claim, let zn :=
√

n/‖ζ(n)‖2 and let dBL denote the bounded-Lipschitz 
metric (which metrizes weak convergence). Then, letting BL(R) denote the space of 
bounded Lipschitz functions f : R → R with Lipschitz constant 1,

dBL(νn, ν̃n) ≤ sup
f∈BL(R)

1
kn

kn∑
j=1

|f(ζj) − f(ζjzn)|

≤ 1
kn

kn∑
j=1

|ζj − ζjzn| = |zn − 1| · 1
kn

kn∑
j=1

|ζj |.

Hence, for δ, ε > 0, we have

P (dBL(νn, ν̃n) > δ) ≤ P

⎛⎝|zn − 1| · 1
kn

kn∑
j=1

|ζj | > δ

⎞⎠
≤ P

⎛⎝ 1
kn

kn∑
j=1

|ζj | >
δ

ε

⎞⎠+ P (|zn − 1| > ε).

Since ζ1 has a finite exponential moment, Cramér’s theorem [14, Theorem 2.2.1] implies

lim
n→∞

1
kn

logP

⎛⎝ 1
kn

kn∑
j=1

|ζj | > δ/ε

⎞⎠ = −I(δ/ε),

for some convex and superlinear rate function I. Also, by Cramér’s theorem for ∑n
i=1 ζ2

i /n, the continuity of x �→ 1/
√

x on (0, ∞) and the contraction principle, the 
sequence {zn}n∈N satisfies an LDP at speed n. Hence, due to the sublinear growth of 
kn, we have

lim 1 logP (|zn − 1| > ε) = −∞.

n→∞ kn
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Combining the last three displays, we find that

lim
n→∞

1
kn

logP (dBL(νn, ν̃n) > δ) ≤ −I(δ/ε).

The claim of exponential equivalence follows on sending ε → 0, due to the superlinearity 
of I.

In light of Remark 1.6, the last observation taken together with Lemma 4.5 implies 
that {μ̂n

A}n∈N satisfies an LDP in P(R) at speed kn with GRF H(·|γ1). In order to 
strengthen the LDP for {μ̂n

A}n∈N , by [14, Corollary 4.2.6], it suffices to show that 
{μ̂n

A}n∈N is exponentially tight in Pq(R). Since {μ̂n
A}n∈N

(d)= {ν̃n}n∈N and for each 
j > 0, the set K2,j defined in (1.2) is compact with respect to Pq(R) due to Lemma 1.1, 
it suffices to show that for ε > 0, there exists M < ∞ such that

lim
n→∞

1
kn

logP (ν̃n ∈ Kc
2,M ) = lim

n→∞
1

kn
logP (M2(ν̃n) > M) < −ε. (4.8)

Now note that {M2(ν̃n) = n
kn

∑kn

j=1
ζ2

j

‖ζ(n)‖2
}n∈N and by Remark 4.6, {‖ζ(kn)‖2

2/kn}n∈N

and {‖ζ(n)‖2
2/n}n∈N satisfy LDPs at speed kn and n, respectively, both with the same 

GRF Jζ2(x) defined in (4.5). Thus, {n/‖ζ(n)‖2
2}n∈N also satisfies an LDP at speed n by 

the contraction principle. Together with Lemma 1.9 and the fact that Jζ2 has a unique 
minimizer at 1, this implies the sequence {M2(ν̃n)}n∈N satisfies an LDP at speed kn

with GRF Jζ2 . Now, for ε > 0, pick M such that Jζ2(M) > ε. We then obtain

lim
n→∞

1
kn

logP (M2(ν̃n) > M) ≤ −Jζ2(M) < −ε,

which proves (4.8), and thus concludes the proof of the lemma. �
Proof of Theorem 2.9. By Assumption A, ‖X(n)‖2/

√
n satisfies an LDP at speed sn

with GRF JX and when sn � kn by Remark 1.3 (and the additional assumption that 
JX has a unique minimizer m), {‖X(n)‖2/

√
n}n∈N also satisfies an LDP at speed kn

with (degenerate) rate function χm. Also, by Proposition 4.7 and Remark 1.3, {μ̂n
A}n∈N

satisfies an LDP at speed kn with GRF H(·|γ1) and, when sn � kn, {μ̂n
A}n∈N also 

satisfies an LDP at speed sn with (degenerate) GRF χγ1 defined in Remark 1.3 (see also 
Lemma 4.5).

Combining the above observations with Lemma 4.4, we see that {Ln}n∈N satisfies an 
LDP at speed sn ∧ kn with GRF IL,kn

, where when sn � kn,

IL,kn
(μ) = inf

ν∈Pq(R),c∈R+

{
H(ν|γ1) + χm(c) : μ = ν( · × c−1)

}
= H(μ( · × m)|γ1)

= H(μ|γ1( · × m−1))
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= H(μ|γm),

when sn = kn,

IL,kn
(μ) = inf

ν∈Pq(R),c∈R+

{
H(ν|γ1) + JX(c) : μ = ν( · × c−1)

}
= inf

c∈R+
{H(μ|γc) + JX(c)} ,

and when sn � kn,

IL,kn
(μ) = inf

ν∈Pq(R),c∈R+

{
χγ1(ν) + JX(c) : μ = ν( · × c−1)

}
=
{

JX(c), μ = γc

+∞, otherwise.

This proves Theorem 2.9. �
4.4. Proof of the empirical measure LDP in the linear regime kn ∼ λn

Throughout this section, suppose {kn}n∈N grows linearly with rate λ ∈ (0, 1]. As in 
the sublinear regime, we first analyze the sequence of empirical measures {μ̂n

A}n∈N of 
(4.2) as a precursor to the analysis of {Ln}n∈N of (2.1).

Proposition 4.8. Fix q ∈ [1, 2). Suppose kn grows linearly with rate λ ∈ (0, 1]. Then, the 
sequence {μ̂n

A}n∈N satisfies an LDP in Pq(R) at speed n with GRF Hλ of (2.10).

The proof of the above result is deferred to the end of this section. Taking it as given, 
we now prove the main LDP in the linear regime.

Proof of Theorem 2.15. Suppose Assumption A is satisfied with corresponding sequence 
{sn}n∈N . First, suppose sn = n. Then, along with Proposition 4.8 and Lemma 4.4, this 
implies that {Ln}n∈N satisfies an LDP at speed n with GRF ÎL,λ, defined by

ÎL,λ(μ) := inf
ν∈P(R),c∈R+

{
Hλ(ν) + JX(c) : μ(·) = ν( · × c−1)

}
,

= inf
c∈R+

{Hλ(μ(· × c)) + JX(c)} , μ ∈ P(R).

In turn, since Hλ(ν) = ∞ if M2(ν) > 1/λ and M2(μ(· × c)) = M2(μ)/c2, this implies

ÎL,λ(μ) = inf
c>
√

λM2(μ)
{Hλ(μ(· × c)) + JX(c)} , μ ∈ P(R). (4.9)

Now for μ ∈ P(R) and c >
√

λM2(μ), the definitions of Hλ and h in (2.10) and (1.4), 
respectively, imply
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Hλ(μ( · × c)) = −λ h(μ( · × c)) + λ
2 log(2πe) + 1−λ

2 log
(

1−λ
1−λ M2(μ( ·×c))

)
= −λ h(μ) + λ log(c) + λ

2 log(2πe) + 1−λ
2 log

(
1−λ

1−(λ/c2) M2(μ)

)
= λ log(c) − 1−λ

2 log
(

1 − λM2(μ)
c2

)
− λh(μ) + λ

2 log(2πe) + 1−λ
2 log(1 − λ).

When substituted back into (4.9), this shows that for every μ ∈ P(R), ÎL,λ(μ) = IL,λ(μ), 
with the latter defined as in (2.11).

Next, consider the case sn � n. By Lemma 4.8, {μ̂n
A}n∈N satisfies an LDP at speed 

sn with GRF Hλ. Therefore, by Remark 1.3 and Remark 2.14, {μ̂n
A}n∈N also satisfies 

an LDP at speed sn with GRF χγ1 . Then, by Assumption A and Lemma 4.4, {Ln}n∈N

satisfies an LDP at speed sn with GRF

inf
ν∈P(R),c∈R+

{
χγ1(ν) + JX(c) : μ = ν( · × c−1)

}
=
{

JX(c), μ = γc,

+∞, otherwise,

which coincides with the expression for IL,λ(μ) given in Theorem 2.15 for the case sn �
n. �
Remark 4.9. Note that the above proof in particular shows that, under Assumption A, 
the rate function IL,λ(μ) from Theorem 2.15 in the linear regime in the case sn = n, 
satisfies, for λ > 0,

IL,λ(μ) = inf
c∈R+

{Hλ(μ(· × c)) + JX(c)} ,

with Hλ defined as in (2.10).

The rest of this section is devoted to the proof of Proposition 4.8, which is broken 
down into the intermediate steps given by Lemmas 4.10 and 4.11 below.

Lemma 4.10. Suppose kn/n → λ ∈ (0, 1] as n → ∞, and {ζj}j∈N is an i.i.d. sequence 
with common law γ1 (the standard normal distribution). If λ ∈ (0, 1), then the sequence⎛⎝ 1

kn

kn∑
j=1

δζj
,

1
n − kn

n∑
j=kn+1

δζj
,

1
n

n∑
j=1

ζ2
j

⎞⎠ , n ∈ N, (4.10)

satisfies an LDP in [P(R)]2 × R+ at speed n with GRF I1,λ defined by

I1,λ(μ, ν, s) := λ H(μ|γ1) + (1 − λ) H(ν|γ1) + 1 [s − λ M2(μ) − (1 − λ) M2(ν)] ,
2
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if λ M2(μ) + (1 − λ) M2(ν) ≤ s, and I1,λ(μ, ν, s) := +∞ otherwise. On the other hand, 
if λ = 1 then the sequence⎛⎝ 1

kn

kn∑
j=1

δζj
,

1
n

n∑
j=1

ζ2
j

⎞⎠ , n ∈ N,

satisfies an LDP in P(R) × R+ at speed n with GRF I1,1 defined by

I1,1(μ, s) := H(μ|γ1) + 1
2 [s − M2(μ)] ,

if M2(μ) ≤ s, and I1,1(μ, s) := +∞ otherwise.

Proof. Our approach is to apply the approximate contraction principle of Proposi-
tion A.1 and Corollary A.2 of the appendix, with the following parameters:

• Σ := R;
• X := R =: X∗;
• c(x) = x2, for x ∈ R;
• for n ∈ N, let L (1)

n := 1
kn

∑kn

j=1 δζj
∈ P(R), and L (2)

n := 1
n−kn

∑n
j=kn+1 δζj

∈ P(R);
• for n ∈ N, let C (i)

n :=
∫

cL
(i)
n =

∫
R c(x)L (i)

n (dx), for i = 1, 2.

First, let λ ∈ (0, 1), consider (Ln, Cn) = (L (1)
n , C (1)

n ). Then the domain D of (A.3) takes 
the form D = {α ∈ R : logE[eλ−1α ζ2

1 ] < ∞} = (−∞, λ2 ), and so 0 ∈ D◦ = D. Thus, 
F (x) = supα<λ/2 αx, which is equal to λx/2 if x ≥ 0, and equal to ∞ otherwise, and ∫

cdμ = M2(μ). Thus, by Corollary A.2, the sequence {L
(1)
n , C (1)

n }n∈N satisfies an LDP 

at speed n and with GRF J (1) = J
(1)
λ , defined by

J (1)(μ, t) :=
{

λH(μ|γ1) + λ
2 [t − M2(μ)] if M2(μ) ≤ t;

+∞ else.

Similarly, another application of Corollary A.2 shows that the sequence {L
(2)
n , C (2)

n }n∈N

satisfies an LDP at speed n with GRF J (2) = J
(2)
λ , defined by

J (2)(ν, u) :=
{

(1 − λ)H(ν|γ1) + 1−λ
2 [u − M2(ν)] if M2(ν) ≤ u;

+∞ else.

Due to the independence of ζj , j ∈ N, and the contraction principle applied to the 
mapping P(R) × R × P(R) × R � (μ, t, ν, u) �→ (μ, ν, λt + (1 − λ)u), the sequence{

L (1)
n , L (2)

n , λ

∫
c dL (1)

n + (1 − λ)
∫

c dL (2)
n

}
(4.11)
n∈N
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satisfies an LDP at speed n with GRF

(μ, ν, s) �→ inf
t,u∈R

{
J (1)(μ, t) + J (2)(ν, u) : λt + (1 − λ)u = s

}
= I1,λ(μ, ν, s).

To complete the proof, note that because kn/n → λ deterministically, the sequences⎧⎨⎩ λ

kn

kn∑
j=1

ζ2
j + 1 − λ

n − kn

n∑
j=kn+1

ζ2
j

⎫⎬⎭
n∈N

and

⎧⎨⎩ 1
n

n∑
j=1

ζ2
j

⎫⎬⎭
n∈N

are exponentially equivalent (recall Definition 1.5). Hence, the sequence in (4.11) is also 
exponentially equivalent to (4.10), and the latter thus satisfies an LDP at speed n with 
GRF I1,λ.

Now, let λ = 1. We see from the derivation above that the sequence {L
(1)
n , C (1)

n }n∈N

satisfies an LDP at speed n with GRF J (1), and that the two sequences { 1
kn

∑kn

j=1 ζ2
j }n∈N

and { 1
n

∑n
j=1 ζ2

j }n∈N are exponentially equivalent. Hence, from Remark 1.6, we obtain 
the desired LDP. �
Lemma 4.11. Suppose kn/n → λ ∈ (0, 1] and let {ζj}j∈N be as in Lemma 4.10. If 
λ ∈ (0, 1), the sequence of pairs of measures⎛⎝ 1

kn

kn∑
j=1

δ√
nζj/‖ζ(n)‖2 ,

1
n − kn

n∑
j=kn+1

δ√
nζj/‖ζ(n)‖2

⎞⎠ , n ∈ N, (4.12)

satisfies an LDP in [P(R)]2 at speed n with GRF I2,λ defined by

I2,λ(μ, ν) := I1,λ(μ, ν, 1)

= λ H(μ|γ1) + (1 − λ) H(ν|γ1) + 1
2 (1 − λ M2(μ) − (1 − λ) M2(ν)) ,

if λ M2(μ) + (1 − λ) M2(ν) ≤ 1, and I2,λ(μ, ν) := ∞ otherwise. On the other hand, if 
λ = 1, then the sequence { 1

kn

∑kn

j=1 δ√
nζj/‖ζ(n)‖2}n∈N satisfies an LDP in P(R) at speed 

n with GRF I2,1 defined by

I2,1(μ) = H(μ|γ1) + 1
2 (1 − M2(μ)) ,

if M2(μ) ≤ 1, and I2,1(μ, ν) := +∞ otherwise.

Proof. Below we present the proof only for the case λ ∈ (0, 1) since the case λ = 1 can 
be argued in an exactly analogous fashion. Due to Slutsky’s theorem, the map

[P(R)]2 × R+ � (μ̄, ν̄, s) �→
(

μ̄( · × s1/2), ν̄( · × s1/2)
)

,
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is continuous. Then, applying the contraction principle with this map to the LDP of 
Lemma 4.10, we find that the sequence in (4.12) satisfies an LDP with GRF:

(μ, ν) �→ inf
μ̄,ν̄∈P(R),s∈R+

{
I1,λ(μ̄, ν̄, s) : μ = μ̄( · × s1/2), ν = ν̄( · × s1/2)

}
= inf

s∈R+

{
λ H(μ( · × s−1/2)|γ1) + (1 − λ) H(ν( · × s−1/2)|γ1)

+ 1
2 [s − λs M2(μ) − (1 − λ)s M2(ν)] : s ≥ λs M2(μ) + (1 − λ)s M2(ν)

}
= inf

s∈R+

{
λ H(μ|γ1( · × s1/2)) + (1 − λ) H(ν|γ1( · × s1/2))

+ s
2 [1 − λ M2(μ) − (1 − λ) M2(ν)] : 1 ≥ λ M2(μ) + (1 − λ) M2(ν)

}
Assuming 1 ≥ λ M2(μ) + (1 − λ) M2(ν), noting that

log
(

dγ1

dγ1(· × s1/2)
(x)
)

= −1
2 log s − (1 − s)x2

2 ,

and using the chain rule for relative entropy, the right-hand side of the previous display 
is equal to

λ H(μ|γ1) + (1 − λ) H(ν|γ1)

+ inf
s∈R+

{
−λ
( 1

2 log s + 1−s
2 M2(μ)

)
− (1 − λ)

( 1
2 log s + 1−s

2 M2(ν)
)

+ s
2 [1 − λ M2(μ) − (1 − λ) M2(ν)]

}
= I2,λ(μ, ν) − 1

2 + 1
2 inf

s∈R+
{s − log s}

= I2,λ(μ, ν).

On the other hand, if 1 < λ M2(μ) +(1 −λ) M2(ν) is violated, then (by the convention that 
the infimum over an empty set is infinite) is infinite, which is again equal to I2,λ(μ, ν). 
This completes the proof. �

We now turn to the proof of Proposition 4.8. First, for λ ∈ (0, 1], define

J2,λ(z) :=
{

λ
2 log

(
λ
z2

)
+ 1−λ

2 log
(

1−λ
1−z2

)
, 0 < z < 1,

∞, otherwise,
(4.13)

where we use the convention 0 log 0 = 0 log(0/0) = 0.

Proof of Proposition 4.8. We first prove that {μ̂n
A}n∈N satisfies an LDP in P(R) with 

respect to the weak topology, with GRF Hλ of (2.10). Due to the representation for 
An,kn

(1, ·) established in Lemma 4.1, it suffices to show that the sequence
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ν̂n := 1
kn

kn∑
j=1

δ√
nζj/‖ζ(n)‖2 , n ∈ N, (4.14)

satisfies an LDP in P(R) at speed n with GRF Hλ.
We deduce in the following the case for λ ∈ (0, 1). The case for λ = 1 can be shown 

using a similar calculation and is hence omitted. Combining the LDP established in 
Lemma 4.11 with the contraction principle applied to the projection mapping: (P(R))2 �
(π1, π2) �→ π1 ∈ P(R), it follows that {ν̂n}n∈N satisfies an LDP at speed n with GRF 
given by μ �→ infν∈P(R) I2,λ(μ, ν). Now, note that for μ, ν ∈ P(R) such that λM2(μ) +
(1 − λ)M2(ν) ≤ 1, we have

I2,λ(μ, ν) = −λh(μ) + λ
2 log(2π) + λ

2 M2(μ)

− (1 − λ)h(ν) + 1−λ
2 log(2π) + 1−λ

2 M2(ν)

+ 1
2 (1 − λ M2(μ) − (1 − λ) M2(ν))

= −λh(μ) − (1 − λ)h(ν) + 1
2 log(2πe),

where h is the entropy functional defined in (1.4). Thus,

inf
ν∈P(R)

I2,λ(μ, ν)

= −λh(μ) + 1
2 log(2πe) + inf

ν∈P(R)
{−(1 − λ)h(ν) : (1 − λ) M2(ν) ≤ 1 − λ M2(μ)}

= −λh(μ) + 1
2 log(2πe) + (1 − λ) inf

ν∈P(R)

{
−h(ν) : M2(ν) ≤ 1 − λ M2(μ)

1 − λ

}
.

Since M2(ν) ≥ 0, the right-hand side above is equal to infinity if 1 < λM2(μ). On the 
other hand, if λM2(μ) ≤ 1, then recalling that the maximum entropy probability measure 
under a second moment upper bound of z is the Gaussian measure with mean zero and 
variance z (see, e.g., Section 12 of [12]), we have

inf
ν∈P(R)

I2,λ(μ, ν) = −λh(μ) + 1
2 log(2πe) − 1−λ

2 log
(

2πe 1−λ M2(μ)
1−λ

)
= −λh(μ) + λ

2 log(2πe) + 1−λ
2 log

(
1−λ

1−λ M2(μ)

)
= Hλ(μ).

Thus, we have shown that the rate function is Hλ(μ), as desired.
To strengthen the LDP on P(R) to an LDP on Pq(R) (i.e., with respect to the q-

Wasserstein topology), via an appeal to [14, Corollary 4.2.6] it suffices to show that 
{μ̂n

A}n∈N is exponentially tight in Pq(R). Since for each j > 0, the set K2,j defined 
in (1.2) is compact in the q-Wasserstein topology by Lemma 1.1. By the definition of 



48 S.S. Kim et al. / Advances in Applied Mathematics 134 (2022) 102306
K2,j , the definition of M2 in (1.1), and the identity μ̂n
A

(d)= ν̂n established in (4.2) and 
Lemma 4.1, and the definition of ν̂n in (4.14),

{μ̂n
A ∈ Kc

2,M } = {ν̂n ∈ Kc
2,M } = {M2(ν̂n) > M} =

{√
n

kn

‖ζ(kn)‖2

‖ζ(n)‖2
>

√
M

}
. (4.15)

When kn/n → λ ∈ (0, 1], by [3, Lemma 4.2], {‖ζ(kn)‖2/‖ζ(n)‖2}n∈N satisfies an LDP at 
speed n with GRF J2,λ defined in (4.13), and {

√
M2(ν̂n)}n∈N is exponentially equivalent 

to {‖ζ(kn)‖2/(
√

λ‖ζ(n)‖2)}n∈N at speed n by Remark 1.7. Combining this with (4.15)
and Remark 1.6, when M = 4/λ, we obtain

lim
n→∞

1
n

logP (μ̂n
A ∈ Kc

2,M ) = lim
n→∞

1
n

logP
(

‖ζ(kn)‖2√
λ‖ζ(n)‖2

>
√

M

)
≤ −J2,λ(2) = −∞.

This proves the desired exponential tightness of {μ̂n
A}n∈N in Pq(R). �

5. Proofs of q-norm LDPs in the sublinear regime, 1 � kn � n

In this section we prove Theorems 2.11 and 2.12. Recall from (2.4) that Y n
2,kn

=
‖A�

n,kn
X(n)‖2.

Proof of Theorem 2.11. Fix {kn}n∈N that grows sublinearly. From Lemma 4.2 and (4.1), 
we have the following distributional identity,

n−1/2Y n
2,kn

(d)=
∥∥ζ(kn)

∥∥
2∥∥ζ(n)
∥∥

2

∥∥X(n)
∥∥

2√
n

=
∥∥ζ(kn)

∥∥
2 /

√
kn∥∥ζ(n)

∥∥
2 /

√
n

√
kn

∥∥X(n)
∥∥

2
n

. (5.1)

Suppose Assumption A* holds, in which case {
∥∥X(n)

∥∥
2 /

√
n}n∈N satisfies an LDP at 

speed n with GRF JX . On the other hand, by [3, Lemma 4.2], {‖ζ(kn)‖2/‖ζ(n)‖2}n∈N

satisfies an LDP at speed n with GRF

Jζ(x) :=
{

− 1
2 log(1 − x2), x ∈ [0, 1),

+∞, otherwise.
(5.2)

Due to the independence of ζ(n) and X(n), the result follows by Lemma 1.9.
Now, suppose Assumption C holds with sequence {sn}n∈N , r ∈ [0, ∞] and GRF 

J
(r)
X . We will make repeated use of the following simple observation: by Remark 4.6

and the contraction principle applied to the map x �→ √
x, {‖ζ(kn)‖2/

√
kn}n∈N and 

{‖ζ(n)‖2/
√

n}n∈N satisfy LDPs at speed kn and n, respectively, with the same GRF 
Jζ2(x2), and hence, {√

n/‖ζ(n)‖2}n∈N also satisfies an LDP at speed n, and all three 
sequences converge almost surely to 1 by the strong law of large numbers. We now 
consider three cases.
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Case 1. Suppose r = 0. Then sn � kn � n. By the case assumption, {
√

kn‖X(n)‖2/n}n∈N

satisfies an LDP at speed sn with GRF J (0)
X . Hence, the result in this case follows by (5.1), 

the observation above and a dual application of Lemma 1.9 with (Vn, Wn) therein first 
being (

√
kn‖X(n)‖2/n, ‖ζ(kn)‖2/

√
kn) and then (‖ζ(kn)‖2‖X(n)‖2/n, 

√
n/‖ζ(n)‖2).

Case 2. Suppose r ∈ (0, ∞). By Remark 2.10, {
√

kn‖X(n)‖2/n}n∈N satisfies an LDP at 
speed kn and with GRF rJ

(r)
X (

√
rx). Then (5.1), the independence of X(n) and ζ(n), the 

observation above and Lemma 1.9 together show that {n−1/2Y n
2,kn

}n∈N satisfies an LDP 
at speed kn with GRF

J sub
2 (x) := inf

c>0

{
c2 − 1

2 − log c + rJ
(r)
X

(√
rx

c

)}
.

Case 3. Suppose r = ∞. Again from the reformulation (5.1), we have

n−1/2Y n
2,kn

(d)=
∥∥ζ(kn)

∥∥
2 /

√
sn∥∥ζ(n)

∥∥
2 /

√
n

√
sn

∥∥X(n)
∥∥

2
n

. (5.3)

Since ∥∥ζ(kn)
∥∥

2√
sn

=
(

1
sn

kn∑
i=1

ζ2
i

)1/2

,

and (because r = ∞) kn/sn → 0 as n → ∞, by Lemma 3.2 (with p = 2) and the 
contraction principle applied to t �→

√
t, {‖ζ(kn)‖2/

√
sn}n∈N satisfies an LDP at speed 

sn with GRF Jζ(t) = t2/2 if t ≥ 0, and Jζ(t) = ∞ otherwise. By the case assumption, 
{√

sn‖X(n)‖2/n}n∈N satisfies an LDP at speed sn with GRF J (∞)
X . The independence 

of {ζi}i∈N and X(n), together with the contraction principle applied to the product 
mapping (x, y) �→ xy, then implies that {Vn := ‖ζ(kn)‖2‖X(n)‖2/n}n∈N satisfies an 
LDP at speed sn with GRF infc>0{c2/2 + J∞

X (x/c)}. The lemma follows on applying 
Lemma 1.9 with {Vn}n∈N defined above, Wn := (‖ζ(n)‖2/

√
n)−1, n ∈ N, and m = 1. �

Proof of Theorem 2.12. Fix q ∈ [1, 2] and suppose kn grows sublinearly. From Lemma 4.2
and (4.1), we have the following reformulation

k−1/q
n Y n

q,kn

(d)=

∥∥ζ(kn)
∥∥

q
/k

1/q
n∥∥ζ(n)

∥∥
2 /

√
n

∥∥X(n)
∥∥

2√
n

, (5.4)

where ζ(n) := (ζ1, . . . , ζn) with {ζi}i∈N being i.i.d. N(0, 1) random variables. Consider 
the following sequence of random vectors

Rn :=
(∥∥ζ(kn)

∥∥
q

1/q
,

∥∥ζ(n)
∥∥

2√
n

,

∥∥X(n)
∥∥

2√
n

)
, n ∈ N.
kn
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By Assumption A, {‖X(n)‖2/
√

n}n∈N satisfies an LDP at speed sn with GRF JX . By 
Cramér’s theorem and the contraction principle, {‖ζ(kn)‖q/k

1/q
n }n∈N satisfies an LDP at 

speed kn with GRF Jζ,q(x) := Λ∗
q(xq) if x ≥ 0, with Λq defined in (2.7), and Jζ,q(x) =

∞ if x < 0. Note that Λ∗
q is strictly convex with unique minimizer M1/q

q . Similarly, 
{‖ζ(n)‖2/

√
n}n∈N satisfies an LDP at speed n with GRF Jζ,2(x) := Λ∗

2(x2) if x ≥ 0 (and 
is equal to infinity otherwise) with unique minimizer 1.

To prove the theorem, we will use Lemma 1.9 to show that in each of the three regimes, 
{Rn}n∈N satisfies an LDP at speed sn ∧kn with a GRF JR that we identify in each case. 
In view of (5.4) and the contraction principle, this would imply that {k

−1/q
n Y n

q,kn
}n∈N

satisfies an LDP at speed sn ∧ kn with GRF

Ĵ sub
q (u) := inf

{
JR(x, y, z) : u = xz

y
, x, y, z > 0

}
. (5.5)

Case 1. Suppose kn � sn. Then we also have kn � n, and by Lemma 1.9 and the 
additional assumption that JX has a unique minimizer m, {Rn}n∈N is exponentially 
equivalent at speed kn to (‖ζ(kn)‖q/k

1/q
n , 1, m), which satisfies an LDP at speed kn with 

GRF JR(x, y, z) = Jζ,q(x) when y = 1 and z = m, and JR(x, y, z) = +∞ otherwise. 
Then (5.5) shows that Ĵ sub

q (u) = Jζ,q(u/m) = Λ∗
q(uq/mq) for u ≥ 0, and is equal to 

positive infinity otherwise.

Case 2. Suppose sn = kn. Since kn � n, again invoking Lemma 1.9 and the additional 
assumption that JX has a unique minimizer m, we have the exponential equivalence at 
speed kn between {Rn}n∈N and {(‖ζ(kn)‖q/k

1/q
n , 1, ‖X(n)‖2/

√
n)}n∈N . Hence, {Rn}n∈N

satisfies an LDP at speed kn with GRF JR(x, y, z) = Jζ,q(x) + JX(z) when y = 1, 
and JR(x, y, z) = +∞ otherwise. Moreover, (5.5) shows that Ĵ sub

q (u) = infx>0{Λ∗
q(xq) +

JX(u/x)} if u > 0, (and is equal to +∞ otherwise).

Case 3. Suppose sn � kn. Then kn � n implies sn � n, and so Lemma 1.9 and the 
observation that the GRF Jζ,q has M1/q

q as its unique minimizer imply that {Rn}n∈N is 
exponentially equivalent at speed sn to the sequence {(M1/q

q , 1, ‖X(n)‖2/
√

n)}n∈N , and 
therefore satisfies an LDP at speed sn with GRF JR(x, y, z) = JX(z) when x = M

1/q
q

and y = 1, and JR(x, y, z) = +∞ otherwise. When combined with (5.5) this implies that 
Ĵ sub

q (u) = JX(u/M
1/q
q ) if u ≥ 0 (and is equal to +∞ otherwise). �

6. Proofs of q-norm LDPs in the linear regime

The goal of this section is to prove Theorem 2.16. Throughout, fix λ ∈ (0, 1], and 
assume kn ∼ λn. Also, for q ∈ [1, 2] and n, k ∈ N, k ≤ n, recall the definition 
n−1/qY n

q,kn
= n−1/q‖AT

n,kn
X(n)‖q given in (2.4). Section 6.1 contains a simple proof 

that is valid when q ∈ [1, 2). Section 6.2 is devoted to the more involved case of q = 2 in 
the linear regime, which also then provides an alternative proof and alternative form of 
the rate function in the case q ∈ [1, 2).
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6.1. The case q ∈ [1, 2)

Proof of Theorem 2.16 when q ∈ [1, 2). Fix q ∈ [1, 2), and observe that with Mq, Ln, 
Y n

q,kn
and An,kn

defined as in (1.1), (2.1), (2.4) and Section 2, respectively, it follows 
that

(
kn

n
Mq(Ln)

)1/q

= n−1/q‖AT
n,kn

X(n)‖q = n−1/qY n
q,kn

.

Then, the LDP for {Ln}n∈N in Theorem 2.15 and the contraction principle applied to 
the continuous map Pq(R) � ν �→ (λMq)1/q(ν) ∈ R imply that {λMq(Ln)}n∈N satisfies 
an LDP with GRF

J lin
q,λ(x) := inf

μ∈P(R)
{IL,λ(μ) : (λMq(μ))1/q = x}.

Since kn

n Mq(Ln) is exponentially equivalent to λMq(Ln) at speed n by Remark 1.7, this 
implies (by Remark 1.6) that {n−1/qY n

q,kn
}n∈N also satisfies an LDP at speed n with 

GRF J lin
q,λ.

If x < 0, we infimize over an empty set, and so J lin
q,λ(x) = −∞. Now, if sn = n, using 

the expression for IL,λ given in Remark 4.9, we see that for x ≥ 0,

J lin
q,λ(x) = inf

c∈R+, μ∈P(R)

{
Hλ(μ(· × c)) + JX(c) : [λMq(μ)]1/q = x

}
,

= inf
c∈R+, ν∈P(R)

{
Hλ(ν) + JX(c) : [λMq(ν(· × c−1))]1/q = x

}
,

= inf
c∈R+, ν∈P(R)

{
Hλ(ν) + JX(c) : [λMq(ν)]1/q = x

c

}
,

which coincides with (2.12).
On the other hand, if sn � n, using the identity IL,λ(μ) = JX(c) if μ = γc (and 

infinity, otherwise) established in Theorem 2.15, we have for x ≥ 0,

J lin
q,λ(x) = inf

c∈R+
{JX(c) : (λMq(γc))1/q = x}

= inf
c∈R+

{JX(c) : (λcqMq)1/q = x}

= JX

(
x

(λMq)1/q

)
,

where Mq is as defined in (2.8). This proves (2.12). �
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6.2. The case q = 2 and alternative proof for q ∈ [1, 2)

We now provide an alternative proof of Theorem 2.16 for q ∈ [1, 2), which also extends 
to the case q = 2. This yields an alternative representation for the rate function J lin

q,λ of 
(2.12). To introduce this representation, fix q ∈ [1, 2] and define the following functions. 
Let

ΛA,q(t1, t2) := log
∫
R

1√
2π

exp
(
t1|x|q + (t2 − 1

2 )x2) dx, (t1, t2) ∈ R2. (6.1)

Note that for q ∈ [1, 2), we have ΛA,q(t1, t2) < ∞ when t1 ∈ R and t2 < 1
2 . On the other 

hand, for q = 2, we have ΛA,q(t1, t2) < ∞ when t1 + t2 < 1
2 . We also define

ΛB(t3) := log
∫
R

1√
2π

exp
(
(t3 − 1

2 )x2) dx, t3 ∈ R. (6.2)

Note that ΛB(t3) < ∞ for t3 < 1
2 . Let Λ∗

A,q and Λ∗
B denote the Legendre-Fenchel trans-

forms of ΛA,q and ΛB, respectively. For q ∈ [1, 2) and λ ∈ (0, 1), define

Jq,λ(z) := inf
(x1,x2,x3)∈R3

{
λΛ∗

A,q

(
(x1, x2)

λ

)
+ (1 − λ)Λ∗

B

(
x3

1 − λ

)
: z = x

1/q
1

(x2 + x3)1/2

}
,

(6.3)
and define for λ = 1,

Jq,1(z) := inf
(x1,x2)∈R3

{
Λ∗

A,q ((x1, x2)) : z = x
1/q
1

(x2)1/2

}
. (6.4)

Also, recall the definition of J2,λ, λ ∈ (0, 1], from (4.13).
We then have the following result.

Proposition 6.1. Fix q ∈ [1, 2]. Suppose {kn}n∈N grows linearly with rate λ ∈ (0, 1], 
and that Assumption A holds with associated GRF JX . Then, the sequence of scaled �n

q

norms of random projections, {n−1/qY n
q,kn

= n−1/q‖AT
n,kn

X(n)‖q}n∈N , satisfies an LDP 
at speed n with GRF

J̄ lin
q,λ(x) := inf

y,z∈R
{Jq,λ(z) + JX(y) : x = yz} , x ∈ R+. (6.5)

The proof of Proposition 6.1 relies on an auxiliary result stated in Lemma 6.2, which 
concerns an LDP related to the top row of the matrix An,kn

. As in Section 4, let ζ1, ζ2, . . .

denote a sequence of i.i.d. standard Gaussian random variables, independent of X(n), 
and let ζ(n) := (ζ1, . . . , ζn) ∈ Rn. Due to Lemmas 4.2 and 4.1, we have
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AT
n,kn

X(n) = AT
n,kn

X(n)

‖X(n)‖2
‖X(n)‖2

(d)= AT
n,kn

e1 ‖X(n)‖2
(d)= (ζ1, . . . , ζkn

)
‖ζ(n)‖2

‖X(n)‖2 ∈ Rkn .

Therefore, for n ∈ N and all q ∈ [1, ∞], we have

n−1/qY n
q,kn

= n−1/q‖AT
n,kn

X(n)‖q
(d)= n1/2−1/q ‖ζ(kn)‖q

‖ζ(n)‖2

‖X(n)‖2√
n

. (6.6)

Given (6.6) and Assumption A, a natural step to proving Proposition 6.1 is to establish 
an LDP for the sequence {n1/2−1/q‖ζ(kn)‖q/‖ζ(n)‖2}n∈N .

Lemma 6.2. Suppose {kn}n∈N grows linearly with rate λ ∈ [0, 1]. For q ∈ [1, 2], the 
sequence

n1/2−1/q ‖ζ(kn)‖q

‖ζ(n)‖2
= n1/2−1/q ‖(ζ1, . . . , ζkn

)‖q

‖(ζ1, . . . , ζn)‖2
, n ∈ N, (6.7)

satisfies an LDP in R at speed n with GRF Jq,λ of (6.3) and (6.4) for q ∈ [1, 2) and 
(4.13) for q = 2.

Proof. Fix q ∈ [1, 2). For n ∈ N. We start with the observation that the quantity in (6.7)
can be represented in terms of a continuous mapping of a vector of scaled i.i.d. sums: for 
each n ∈ N,

n1/2−1/q ‖ζ(kn)‖q

‖ζ(n)‖2
= T (Zn), Zn :=

⎛⎝ 1
n

kn∑
i=1

|ζi|q ,
1
n

kn∑
i=1

ζ2
i ,

1
n

n∑
j=kn+1

ζ2
j

⎞⎠ , (6.8)

where T is the continuous map

T : R3 � (x1, x2, x3) �→ x
1/q
1

(x2 + x3)1/2 ∈ R.

We now establish an LDP for the sequence {Zn}n∈N . To this end, for fixed λ ∈ (0, 1), 
we first establish LDPs of the related sequences

An,q := λ

kn

kn∑
i=1

(|ζi|q, ζ2
i ), Bn := 1 − λ

n − kn

n∑
j=kn+1

ζ2
j , n ∈ N.

Note that for q ∈ [1, 2], the origin (0, 0) lies in the interior of the domain of ΛA,q, which is 
the logarithmic moment generating function of (|ζ1|q, ζ2

1 ). Since the {ζi}i∈N are i.i.d., by 
Cramér’s theorem [14, Theorem 2.2.1] the sequence {An,q}n∈N satisfies an LDP in R2 at 
speed kn with GRF Λ∗

A,q(·/λ), and hence (by Remark 1.4 and the fact that kn/n → λ) 
also satisfies an LDP in R2 at speed n with GRF λΛ∗

A,q(·/λ). Similarly, since 0 belongs 
to the interior of the domain of ΛB, the logarithmic moment generating function of ζ2

1 , 
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the sequence {Bn}n∈N satisfies an LDP in R at speed n with GRF (1 − λ)Λ∗
B(·/(1 − λ)). 

Since kn/n → λ and (n − kn)/n → 1 − λ deterministically, by Remarks 1.6 and 1.7, 
{ 1

n

∑kn

i=1(|ζi|q, ζ2
i )}n∈N and { 1

n

∑n
j=kn+1 ζ2

j }n∈N satisfy LDPs at speed n with the same 
GRFs as {An,q}n∈N and {Bn}n∈N , respectively. Combined with the independence of An,q

and Bn, and Lemma 1.9, it follows that the sequence {Zn}n∈N satisfies an LDP in R3

at speed n with GRF

(x1, x2, x3) �→ λ Λ∗
A,q

(
(x1, x2)

λ

)
+ (1 − λ) Λ∗

B

(
x3

1 − λ

)
, x ∈ R3

+,

and with the GRF equal to −∞ otherwise. Finally, use (6.8), the LDP for {Zn}n∈N and 
the contraction principle for the map T defined above to show that the sequence in (6.7)
satisfies an LDP with the GRF Jq,λ of (6.3).

Next, suppose λ = 1. We see that the sequence {An,q}n∈N is exponentially equivalent 
to {( 1

n

∑kn

i=1 |ζi|q, 1
n

∑n
i=1 ζ2)}n∈N by Remark 1.7. An application of the contraction 

principle to the map (x1, x2) �→ x
1/q
1 /x

1/2
2 yields the LDP for the sequence in (6.7) with 

speed n and GRF (6.4).
The case q = 2 was also considered in [3, Lemma 4.2]), but can be obtained via (a 

simpler form of) the argument given above. To be self-contained, we provide some details. 
In this case, the quantity of interest is T̃ (Z̃n), where Z̃n, is the R2-valued random vector 
that coincides with the second and third components of Zn, and T̃ maps (x2, x3) �→
x2/(x2 + x3)1/2, and the arguments above show that {Z̃n}n∈N satisfies an LDP at speed 
n with GRF λΛ∗

B (·/λ) + (1 − λ)Λ∗
B (·/(1 − λ)) and thus, by the contraction principle, 

{‖ζ(kn)‖/‖ζ(n)‖}n∈N satisfies an LDP with GRF

J2,λ(z) := inf
(x2,x3)∈R2

{
λΛ∗

B

(x2

λ

)
+ (1 − λ)Λ∗

B

(
x3

1 − λ

)
: z2 = x2

x2 + x3

}
.

Noting that ΛB is the log moment generating function of the chi-squared distribution, it 
follows from Remark 4.6 that Λ∗

B(x) = Jζ2(x) = 1
2 (x − 1 − log x), for x > 0 and infinity, 

otherwise. Substituting this into the expression for J2,λ(z) in the last display and solving 
the optimization problem yields (4.13). �
Proof of Proposition 6.1. Recall from Lemma 6.2 that the sequence {n1/2−1/q‖ζ(kn)‖q/

‖ζ(n)‖2}n∈N satisfies an LDP with GRF Jq,λ. In addition, Assumption A states that the 
sequence {‖X(n)‖2/

√
n}n∈N satisfies an LDP with GRF JX . Given the equality in distri-

bution of (6.6), the contraction principle applied to the continuous function (y, z) �→ yz

yields that the sequence of scaled �n
q norms of random projections, {Y n

q,kn
}n∈N , satisfies 

an LDP at speed n with GRF J̄ lin
q,λ of (6.5). �

Remark 6.3. Note that it follows from Proposition 6.1 and the proof of Theorem 2.16 for 
q ∈ [1, 2) in Section 6.1 that J̄ lin

q,λ = J lin
q,λ for all q ∈ [1, 2).

To complete the proof of Theorem 2.16 we show that this relation also holds for q = 2.
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Proof of Theorem 2.16 in the case q = 2. First, consider the case sn = n. Fix λ ∈ (0, 1). 
The result for λ = 1 follows on using the convention that 0 log 0 = 0 log 0/0 = 0 every-
where in the derivation below. By Proposition 6.1, it suffices to show that J̄ lin

2,λ = J lin
2,λ. 

In view of (2.12), (6.5), and (4.13), it clearly suffices to show that for z2 ∈ (0, 1),

J2,λ(z) = λ

2 log
(

λ

z2

)
+ 1 − λ

2 log
(

1 − λ

1 − z2

)
= inf

ν∈P(R):z2=λM2(ν)
Hλ(ν). (6.9)

since when z2 /∈ (0, 1) both J2,λ(z) and the right-hand side above are infinite. For 
z2 ∈ (0, 1), substituting the expression for Hλ from (2.10), we obtain

inf
ν∈P(R):z2=λM2(ν)

Hλ(ν)

= inf
ν∈P(R):z2=λM2(ν)

{
−λ h(ν) + λ

2 log(2πe) + 1−λ
2 log

(
1−λ

1−λ M2(ν)

)}
= − sup

ν∈P(R):z2=λM2(ν)
λ h(ν) + λ

2 log(2πe) + 1−λ
2 log

(
1−λ
1−z2

)
.

Recall that the maximum entropy probability measure constrained to have second mo-
ment z2/λ is the Gaussian measure with mean zero and variance z2/λ (see, e.g., Ex. 
12.2.1 of [12]). Since the entropy of such a Gaussian equals 1

2 log(2πez2/λ), we have

inf
ν∈P(R):z2=λM2(ν)

Hλ(ν) = −λ
2 log(2πez2/λ) + λ

2 log(2πe) + 1−λ
2 log

(
1−λ
1−z2

)
= J2,λ(z),

which proves (6.9). This completes the proof of the equality J̄ lin
2,λ = J lin

2,λ in this case.

Now, suppose sn � n. By (6.6), it follows that n−1/2Y n
2,kn

(d)= VnWnW ′
n, where Vn =

‖X(n)‖2/
√

n, Wn :=
√

kn/n‖ζ(kn)‖2/
√

kn and W ′
n =

√
n/‖ζ(n)‖2. Noting that kn/n → λ

as n → ∞, we see that {Wn}n∈N and {W ′
n}n∈N converge almost surely to (λM2)1/2 and 

1, respectively (by the strong law of large numbers), and satisfy LDPs at speed n (by 
Remark 4.6 and the contraction principle). Since by assumption, {Vn}n∈N satisfies an 
LDP at speed sn � n with GRF JX , by Lemma 1.9 the sequence {V ′

n := VnW ′
n}n∈N

satisfies an LDP at speed sn with GRF JX . Since the GRF of {W ′
n}n∈N has a unique 

minimum at m := (λM2)1/2, by Lemma 1.9 {V ′
nWn}n∈N satisfies an LDP at speed sn

with GRF JX(·/m), which coincides with the expression in (2.12). �
Remark 6.4. Recall that in the sublinear/linear regime, when q = 2 the contraction 
principle cannot be applied because the LDP of Theorem 2.15 holds with respect to 
the q-Wasserstein topology only for q ∈ [1, 2). Moreover, the LDP for {μ̂n

A}n∈N of (4.2)
as stated in Proposition 4.8 also holds with respect to the q-Wasserstein topology only 
for q < 2. However, in the case q = 2, (6.9) still establishes a variational problem that 
explicitly relates the rate function J2,λ of (4.13) to the rate function Hλ of (2.10), in 
the same manner as if the contraction principle were applicable. We claim that this 
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inconvenient gap is related to a more fundamental obstacle. To illustrate this concretely, 
consider the case where X1, X2, . . . are i.i.d. exponential random variables with mean 1. 
It is known that:

1. Due to Sanov’s theorem, the sequence of empirical measures { 1
n

∑n
i=1 δXi

}n∈N sat-
isfies an LDP in P(R) with GRF H(·‖ Exp(1)), where we write Exp(1) to denote the 
exponential distribution with mean 1.

2. Due to Cramér’s theorem [14, Theorem 2.2.1], the sequence of empirical means 
{ 1

n

∑n
i=1 Xi}n∈N satisfies an LDP in R with GRF

L(β) := β − log β − 1.

3. An explicit calculation establishes the expression

L(β) = inf
μ∈P(R)

⎧⎨⎩H(μ‖ Exp(1)) :
∫
R

x dμ = β

⎫⎬⎭ .

Note that if the map μ �→
∫
R x dμ were continuous, then the LDP of point 2. above 

would follow from point 1., point 3., and an application of the contraction principle. 
However, the map μ �→

∫
R x dμ is not continuous with respect to the weak topology on 

probability measures. Moreover, the result of [55, Theorem 1.1] applied to the exponential 
distribution indicates that the LDP of point 1. does not hold with respect to the 1-
Wasserstein topology. This suggests that the apparently cryptic transition at q = 2 in 
the nature of the proof of Theorem 2.16 and the result of Theorem 2.15 is in a sense 
a manifestation of a more common sticking point in large deviations theory. In other 
words, even in the simple setting of i.i.d. random variables, the continuity required by the 
contraction principle fails to hold, but the consequences (i.e., a large deviation principle 
and a variational formula for the rate function) do still hold in many instances.
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Appendix A. An approximate contraction principle

In this appendix, we recall the approximate contraction principle established in Section 
6.2 of [10], and establish a corollary of it that we use in the proof of the LDP in the 
linear regime in Section 4.4. Recall that given a, b ∈ R, we will use a ∨ b and a ∧ b to 
denote max(a, b) and min(a, b), respectively.

Let Σ be a Polish space. Let X be a separable Banach space with topological dual 
space X∗, and let 〈·, ·〉 : X∗ ×X → R denote the associated dual pairing. Fix a continuous 
map c : Σ → X, and let {Ln}n∈N be a sequence of P(Σ)-valued random elements. For r ∈
(0, ∞] and a continuous function W : Σ → R such that P -a.s., 

∫
Σ(W (x) ∨0)Ln(dx) < ∞

for all n ∈ N, let

Λr(W ) := lim sup
n→∞

1
n

logE
[
en
(∫

Σ W (x)Ln(dx)∧r
)]

, (A.1)

and also let

Λ̄(W ) := sup
r>0

Λr(W ). (A.2)

We introduce the “domain” of Λ̄, defined in the following manner: let

D := {α ∈ X∗ : Λ̄(〈α, c(·)〉) < ∞}, (A.3)

D◦ := {α ∈ X∗ : ∃p > 1, pα ∈ D}.

Then, for x ∈ X, let

F (x) := sup
α∈D◦

〈α, x〉. (A.4)

Lastly, for n ∈ N, we define the X-valued random variable Cn :=
∫

Σ c(x) Ln(dx).

Proposition A.1 (Proposition 6.4 of [10]). Suppose that:

1. {Ln}n∈N satisfies an LDP in P(Σ) at speed n with GRF I0;
2. {Ln, Cn}n∈N satisfies an LDP in P(Σ) × X at speed n with some convex GRF I;
3. for any sequence {Wn}n∈N , in the set

{V + 〈α, c(·)〉 : V : Σ → R continuous and bounded, α ∈ D◦} (A.5)

such that Wn ↓ W∞ to a limit W∞ : Σ → R that is continuous and bounded above, 
we have

lim sup Λ̄(Wn) ≤ Λ̄(W∞). (A.6)

n→∞
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Then, we have the following representation for the GRF I, for all μ ∈ P(Σ) and s ∈ X:

I(μ, s) :=
{

I0(μ) + F
(
s −
∫

Σ c dμ
)

if I0(μ) < ∞,

+∞ else,
(A.7)

with F as defined in (A.4).

The following corollary considers a special case where the conditions of Proposition A.1
can be easily verified.

Corollary A.2. Let Σ be a Polish space and X be a separable Banach space. Suppose that 
{kn}n∈N grows sublinearly with rate λ ∈ (0, 1], each Ln is the empirical measure of kn

i.i.d. Σ-valued random variables η1, . . . , ηkn
with common distribution μ (that does not 

depend on n), and for continuous W : Σ → R, define

Λ̂(W ) := logE[eλ−1W (η1)] (A.8)

Also, let c : Σ → X be a continuous map such that 0 lies in the interior D◦ of the set

D :=
{

α ∈ X∗ : Λ̂(〈α, c(·)〉) < ∞
}

, (A.9)

and let Cn :=
∫

Σ c(x)Ln(dx). Then {Ln, Cn} satisfies an LDP with GRF given by (A.7), 
where I0(ν) := λH(ν|μ) and F (x) = supα∈D◦〈α, x〉.

Proof. We start by verifying the conditions of Proposition A.1.
The fact that {Ln}n∈N satisfies an LDP in P(Σ) at speed kn with GRF H(·|μ) follows 

from Sanov’s theorem on the Polish space P(Σ) (see, e.g., Theorem 6.6.9 of [30]). Since 
kn/n → λ, this immediately implies that {Ln}n∈N satisfies an LDP at speed n with 
GRF I0(·) := λH(·|μ), so condition 1. of Proposition A.1 is satisfied.

Next, note that (Ln, Cn) = 1
kn

∑kn

j=1(δηj
, c(ηj)) ∈ P(Σ) ×X. Therefore, it follows from 

Cramér’s theorem on any locally convex topological space (see, e.g., Theorem 6.1.3 and 
Corollary 6.16 of [14]), with an appeal to the assumption that 0 lies in D◦, the interior 
of the set D of (A.9), that {(Ln, Cn)}n∈N satisfies an LDP in P(Σ) ×X at speed kn with 
a convex GRF. Since kn/n → λ ∈ (0, 1], condition 2. of Proposition A.1 is satisfied.

As for condition 3., first consider any sequence {Wn}n∈N such that for each n ∈ N, 
Wn = Vn+〈αn, c(·)〉 for Vn bounded and continuous, and αn ∈ D . Due to the assumption 
that α1 ∈ D◦ and the boundedness of V1, we have Λ̂(W1) < ∞, so if Wn ↓ W∞, then by 
the dominated convergence theorem,

lim
n→∞

Λ̂(Wn) = Λ̂(W∞). (A.10)

To complete the proof, it clearly suffices to show that D = D, for the domains D and 
D defined in (A.9) and (A.3), respectively, and that relation (A.10) holds when Λ̂ is 



S.S. Kim et al. / Advances in Applied Mathematics 134 (2022) 102306 59
replaced with Λ̄. In turn, to show the latter, it suffices to prove that Λ̄ = λΛ̂. Indeed, 
note that for any continuous W : Σ → R such that P -a.s., 

∫
Σ(W (x) ∨ 0)Ln(dx) < ∞ for 

all n ∈ N, by the definitions of Λ∞ and Λ̄ from (A.1) and (A.2), respectively, the i.i.d. 
assumption on {ηi}kn

i=1 and the fact that kn/n → λ, we have

Λ̂(W ) = λ−1Λ∞(W )

≥ λ−1Λ̄(W )

≥ λ−1 lim
R→∞

Λ̄(W ∧ R)

= λ−1 lim
R→∞

Λ∞(W ∧ R)

= lim
R→∞

Λ̂(W ∧ R)

= Λ̂(W ),

where the first inequality uses the elementary observation that Λr ≤ Λ∞ for every r

implies Λ̄ ≤ Λ∞, and the second equality uses this observation along with the fact that 
the converse inequality also holds when both functions are evaluated at W ∧ R, since 
then 

∫
Σ(W (x) ∧ R)Ln(dx) ≤ R implies Λ∞(W ∧ R) = ΛR(W ∧ R) ≤ Λ̄(W ∧ R). Thus, 

we have shown Λ̂ = λ−1Λ∞, which completes the verification of condition 3.
The corollary then follows from Proposition A.1 and the identity D◦ = D0. �

Appendix B. LDP for generalized normal random variables

The aim of this section is to prove Lemma 3.2, which concerns an LDP for weighted 
sums of stretched exponential random variables.

Proof. Fix p ∈ [1, 2), t > 0, and denote ξ := ξ
(p)
i . Define m := E[ξ2

1 ] and for n ∈ N

define Sn :=
∑kn

i=1(ξ2
i − m). Since kn/bn → 0 as n → ∞, by Theorem 3 in [46], with n, 

xn therein and ε replaced by kn, bnt and 1 − p/2, we see that

P (Sn > bnt) = knP
(
ξ2

1 − m > bnt
)

(1 + o(1)).

Hence, by (3.1) and the convergence kn/bn → 0 as n → ∞,

lim
n→∞

1
b

p/2
n

logP
(

1
bn

Sn > t

)
= −Jξ,p(t). (B.1)

For p = 2, the sum 
∑kn

i=1 ξ2
i is distributed as a chi-squared distribution with kn degrees 

of freedom. Hence for t > 0, we have the following tail probability estimate:

P (Sn > bnt) = 1
2kn/2Γ(kn/2)

(bnt + m)kn/2−1e−(bnt+m)/2.
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Since kn/bn → 0 as n → ∞, we again have

lim
n→∞

1
bn

logP
(

1
bn

Sn > t

)
= − t

2 + lim
n→∞

[
kn/2 − 1

bn
log(bnt + m) − kn

2bn
log 2 − kn/2 + 1/2

bn
log(kn/2) − kn/2

bn

]
= − t

2 + lim
n→∞

[
kn

2bn
log bnt + m

kn
− log(bnt + m)

bn
− kn

2bn
− log kn

2bn

]
= − t

2 , (B.2)

where the second equality follows from Stirling’s approximation.
Let Tn := b−1

n

∑kn

i=1 ξ2
i = Sn + mkn/bn. We now combine the two estimates (B.1)

and (B.2) to show that {Tn}n∈N satisfies an LDP at speed bp/2
n with GRF Jξ,p. Fix a 

closed set F ⊂ R. If 0 ∈ F , then infx∈F Jξ,p(x) = 0, and the large deviation upper bound 
is automatic since P (Tn ∈ F ) ≤ 1. Suppose 0 /∈ F . Let b := inf{β > 0 : β ∈ F}. Then 
for b > τ > 0, by the positivity of Tn, (B.1) or (B.2) and the monotonicity of Jξ,p,

lim sup
n→∞

1
b

p/2
n

logP (Tn ∈ F ) ≤ lim sup
n→∞

1
b

p/2
n

logP (Tn ∈ [b, ∞))

≤ lim sup
n→∞

1
b

p/2
n

logP (Tn ∈ [b − τ, ∞))

= −Jξ,p(b − τ).

Letting τ → 0 and appealing to the continuity and monotonicity of Jξ,p we obtain

lim sup
n→∞

1
b

p/2
n

logP (Tn ∈ F ) = − inf
x∈F

Jξ,p(x),

which completes the proof of the upper bound.
Next, fix an open set U ⊂ R. If 0 ∈ U , then infx∈U Jξ,p(x) = 0. Since U is open, 

there exists ε > 0 such that (−ε, ε) ⊂ U . Since kn/bn → 0 as n → ∞, the strong 
law of large numbers implies limn→∞ P (Tn ∈ (−ε, ε)) = 1. Hence, the large deviation 
lower bound follows. Next suppose 0 /∈ U . For δ > 0, there exists β ∈ U such that 
Jξ,p(β) < infx∈U Jξ,p(x) + δ. Pick ε > 0 such that (β − ε, β + ε) ⊂ U . If β < 0, then the 
large deviation lower bound is trivial. Suppose β > 0. Then for ε > τ > 0,

lim inf
n→∞

1
b

p/2
n

logP (Tn ∈ U)

≥ lim inf
n→∞

1
b

p/2
n

logP (Sn ∈ (β − ε, β + ε − τ))

= lim inf
n→∞

1
p/2 log [P (Sn ∈ (β − ε, ∞)) − P (Sn ∈ [β + ε − τ, ∞))]
bn
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= lim inf
n→∞

1
b

p/2
n

logP (Sn ∈ (β − ε, ∞))

= −Jξ,p(β − ε)

≥ − inf
x∈U

Jξ,p(x) − δ,

where the third equality follows by the monotonicity of Jξ,p and the last inequality by 
the continuity of Jξ,p on choosing ε sufficiently small. The large deviation lower bound 
then follows on sending δ to 0. This completes the proof of the lemma. �
Appendix C. Properties of the rate function J of (3.14)

We recall here the definition of the subdifferential of a convex function. Let f : R →
R ∪ {∞} be a convex function. Then the subdifferential at a point x ∈ Rn is defined to 
be

∂f(x) := {s ∈ Rn : f(y) ≥ f(x) + 〈s, y − x〉 fo all y ∈ Rn}.

Note that when f is differentiable at x, the subdifferential ∂f(x) has only one element, 
which is the gradient ∇f(x). For further discussion of subdifferentials, the reader is 
referred to Chapter X in [23].

Proof of Lemma 3.12. Before proving the individual properties, we make a general ob-
servation. Recall that DV is the domain of V . For u, v ∈ R+, define H : R− × R → R

to be

H(s, t) := su + tv − log
∫

DV

esV (x)+tx2
dx. (C.1)

By definition, H is differentiable. We first show that H is concave. For this, by (C.1)
it suffices to show that (s, t) �→ log

∫
DV

esV (x)+tx2
dx is convex. Indeed, by Hölder’s 

inequality, for λ ∈ (0, 1) and (s1, t1), (s2, t2) ∈ R− × R, we see that

log
∫

DV

e(s1λ+s2(1−λ))V (x)+(t1λ+t2(1−λ))x2
dx

≤ log

⎛⎜⎝
⎛⎝∫

DV

es1λV (x)+t1λx2
dx

⎞⎠1/λ⎛⎝∫
DV

es2(1−λ)V (x)+t2(1−λ)x2
dx

⎞⎠1/(1−λ)
⎞⎟⎠

= 1
λ

log
∫

DV

es1λV (x)+t1λx2
dx + 1

1 − λ
log
∫

DV

es2(1−λ)V (x)+t2(1−λ)x2
dx.

In particular, H is strictly concave if and only if V �≡ 0 in the domain of V .
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We now turn to the proof of property 1. Let (u, v) ∈ R2
+ be in the interior of the 

domain of J. Then by [23, Theorem 1.4.2], since J is convex, the subdifferential at (u, v) is 
nonempty, ∂J(u, v) �= ∅. Therefore there exists s ∈ R−, t ∈ R such that (s, t) ∈ ∂J(u, v). 
Since J and (s, t) �→ log

∫
DV

esV (x)+tx2
dx are both convex, both functions satisfy the 

condition in [23, Theorem 1.4.1]. Hence, we see that there exist s ∈ R− and t ∈ R such 
that J(u, v) = H(s, t). If H is strictly concave, then automatically (s, t) is the unique 
maximizer in the supremum of J(u, v) in (3.14). If H is not strictly concave, then V ≡ 0
in its domain, and so by (3.14), J(v) = sups<0,t∈R+

{
su + tv − log(

∫
DV

etx2
dx)
}

, from 

which it clearly follows that (0, t) is the unique maximizer (since v ≥ 0). Next, again by 
the last display and [23, Theorem 1.4.1], we see that (u, v) ∈ ∂ log

∫
DV

esV (x)+tx2
dx. By 

the definition of a subdifferential, we conclude that

u ≥ d

ds
log

⎛⎝∫
DV

esV (x)+tx2
dx

⎞⎠ =
∫

DV

V (x)νs,t(dx) = MV (νs,t),

v = d

dt
log

⎛⎝∫
DV

esV (x)+tx2
dx

⎞⎠ =
∫

DV

x2νs,t(dx) = M2(νs,t), (C.2)

where (C.2) holds due to the differentiability of t �→ log
∫

DV
esV (x)+tx2

dx. This proves 
property 1.

To see why property 2 holds, note that by the duality of the Legendre transform [56, 
Equation (12)], the minimizer of J(1, ·) is obtained at m such that

d

dv
J(1, v)

∣∣∣∣
v=m

= t(m) = 0. (C.3)

Substituting this relation back into (C.2), we obtain 1 = MV (νs(m),0) and m =
M2(νs(m),0). Setting b∗ = −s(m) > 0 and observing that νs,0 = μV,−s for any s, 
we conclude that 1 = MV (νs(m),0) = MV (μV,b∗) and m = M2(νs(m),0) = M2(μV,b∗). 
Now, (3.16) follows since the supremum on the right-hand side of (3.16) is attained at 
1 = MV (νs(m),0) and (C.2) is uniquely solvable. This proves property 2.

For the remaining properties, first note that by the duality of the Legendre trans-
form, the supremum in the definition (3.14) of J(u, v), when finite, is attained at 
(∂uJ(u, v), ∂vJ(u, v)) ∈ R− ×R. This proves property 4. By the convexity of v �→ J(1, v)
and the fact that it uniquely attains its minimum at the value m defined above, we see 
that ∂vJ(1, v) > 0 if v > m and ∂vJ(1, v) < 0 if 0 < v < m. This proves property 3, and 
completes the proof of the lemma. �
References

[1] D. Alonso-Gutiérrez, J. Bastero, Approaching the Kannan-Lovász-Simonovits and Variance Con-
jectures, vol. 2131, Springer, 2015.

http://refhub.elsevier.com/S0196-8858(21)00144-5/bibED78ED9061FED907F719101F079B8C51s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibED78ED9061FED907F719101F079B8C51s1


S.S. Kim et al. / Advances in Applied Mathematics 134 (2022) 102306 63
[2] D. Alonso-Gutiérrez, J. Prochno, Thin-shell concentration for random vectors in Orlicz balls via 
moderate deviations and Gibbs measures, J. Funct. Anal. (2021) 109291.

[3] D. Alonso-Gutiérrez, J. Prochno, C. Thäle, Large deviations for high-dimensional random projec-
tions of �n

p -balls, Adv. Appl. Math. 99 (2018) 1–35.
[4] D. Alonso-Gutiérrez, J. Prochno, C. Thäle, Large deviations, moderate deviations, and the KLS 

conjecture, J. Funct. Anal. 280 (1) (2021) 108779.
[5] B. Anderson, J. Jackson, M. Sitharam, Descartes’ rule of signs revisited, Am. Math. Mon. 105 (5) 

(1998) 447–451.
[6] M. Anttila, K. Ball, I. Perissinaki, The central limit problem for convex bodies, Trans. Am. Math. 

Soc. 355 (12) (2003) 4723–4735.
[7] R. Bahadur, R. s Rao, On deviations of the sample mean, Ann. Math. Stat. 31 (4) (1960) 1015–1027.
[8] F. Barthe, F. Gamboa, L. Lozada-Chang, A. Rouault, Generalized Dirichlet distributions on the 

ball and moments, ALEA Lat. Am. J. Probab. Math. Stat. 7 (2010) 319–340.
[9] F. Barthe, O. Guédon, S. Mendelson, A. Naor, A probabilistic approach to the geometry of the 

�n
p -ball, Ann. Probab. 33 (2) (2005) 480–513.

[10] G. Ben Arous, A. Dembo, A. Guionnet, Aging of spherical spin glasses, Probab. Theory Relat. 
Fields 120 (1) (2001) 1–67.

[11] U. Brehm, J. Voigt, Asymptotics of cross sections for convex bodies, Beitr. Algebra Geom. 41 (2) 
(2000) 437–454.

[12] T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd ed., Wiley, 2001.
[13] I. Csiszár, Sanov property, generalized I-projection and a conditional limit theorem, Ann. Probab. 

(1984) 768–793.
[14] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, vol. 38, 2nd ed., Springer 

Science & Business Media, 2009.
[15] P. Diaconis, D. Freedman, Asymptotics of graphical projection pursuit, Ann. Stat. 12 (3) (1984) 

793–815.
[16] I.H. Dinwoodie, S.L. Zabell, Large deviations for exchangeable random vectors, Ann. Probab. 20 (3) 

(1992) 1147–1166.
[17] P. Dupuis, V. Laschos, K. Ramanan, Large deviations for configurations generated by Gibbs distri-

butions with energy functionals consisting of singular interaction and weakly confining potentials, 
Electron. J. Probab. 25 (2020).

[18] J. Freedman, J.W.T. Tukey, A projection pursuit algorithm for exploratory data analysis, IEEE 
Trans. Comput. 9 (1974) 881–890.

[19] D.J. Fresen, A simplified proof of CLT for convex bodies, Proc. Am. Math. Soc. 149 (1) (2021) 
345–354.

[20] N. Gantert, S.S. Kim, K. Ramanan, Cramér’s theorem is atypical, Adv. Math. Sci. (2016) 253–270, 
Research from the 2015 Association for Women in Mathematics Symposium.

[21] N. Gantert, S.S. Kim, K. Ramanan, Large deviations for random projections of �p balls, Ann. 
Probab. 45 (2017) 4419–4476.

[22] O. Guédon, E. Milman, Interpolating thin-shell and sharp large-deviation estimates for lsotropic 
log-concave measures, Geom. Funct. Anal. 21 (5) (2011) 1043.

[23] J. Hiriart-Urruty, C. Lemaréchal, Convex Analysis and Minimization Algorithms II, vol. 305, 
Springer Science & Business Media, 2013.

[24] P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing the curse of dimensionality, 
in: STOC ’98, Dallas, TX, 1999, pp. 604–613.

[25] W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space, in: Confer-
ence in Modern Analysis and Probability, New Haven, Conn., 1982, 1984, pp. 189–206.

[26] S. Johnston, J. Prochno, A Maxwell principle for generalized Orlicz balls, arXiv:e-prints, available 
at arXiv :2012 .11568, 2020.

[27] Z. Kabluchko, J. Prochno, The maximum entropy principle and volumetric properties of Orlicz 
balls, J. Appl. Math. Anal. Appl. 495 (1) (2021) 124687.

[28] Z. Kabluchko, J. Prochno, C. Thäle, High-dimensional limit theorems for random vectors in �n
p -balls, 

Commun. Contemp. Math. 21 (1) (2019) 1750092.
[29] Z. Kabluchko, J. Prochno, C. Thäle, High-dimensional limit theorems for random vectors in �n

p -balls. 
II, Commun. Contemp. Math. 23 (3) (2021) 1950073.

[30] D. Kannan, V. Lakshmikanthan, Handbook of Stochastic Analysis and Applications, First, Statis-
tics: a Series of Textbooks and Monographs, CRC Press, 2001.

[31] R. Kannan, L. Lovász, M. Simonovits, Isoperimetric problems for convex bodies and a localization 
lemma, Discrete Comput. Geom. 13 (3–4) (1995) 541–559.

http://refhub.elsevier.com/S0196-8858(21)00144-5/bibD650C39FAD032B65F760CFC61C699BB6s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibD650C39FAD032B65F760CFC61C699BB6s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib93D194B684D78A3B91FA4FA60A906C3Bs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib93D194B684D78A3B91FA4FA60A906C3Bs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib2B938FB9FD92CA33C21373B27DA36853s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib2B938FB9FD92CA33C21373B27DA36853s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibDFA229619ECFCB83CB63C3B11F5BC762s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibDFA229619ECFCB83CB63C3B11F5BC762s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibA8744D6C14F5A5CE3123CF77BDA35B0Es1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibA8744D6C14F5A5CE3123CF77BDA35B0Es1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibC13E4766F22DAE0ECD267A3BD4F090C6s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib0EE521B98ABA5C1C23E82CE3488B81FCs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib0EE521B98ABA5C1C23E82CE3488B81FCs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibF7FCAB20ABB3BE75604CFBC587310FB3s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibF7FCAB20ABB3BE75604CFBC587310FB3s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib174468DE10873096EB4953682EB0419As1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib174468DE10873096EB4953682EB0419As1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib0741C8E7DF8F077B08E85673083478EBs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib0741C8E7DF8F077B08E85673083478EBs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibA9B0C284C672C0E0FF13C187DA824523s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib057A7888799E2FDCBBE0CE95384DFCE1s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib057A7888799E2FDCBBE0CE95384DFCE1s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibC930C1BB508D0C70692542BBA5AA2FF2s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibC930C1BB508D0C70692542BBA5AA2FF2s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib80DD576C79FB551A53CED0ED625B65E0s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib80DD576C79FB551A53CED0ED625B65E0s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib2B34C54386DD335425753E755C970257s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib2B34C54386DD335425753E755C970257s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibEFDDD42694D2314C15097DC28313608As1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibEFDDD42694D2314C15097DC28313608As1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibEFDDD42694D2314C15097DC28313608As1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibA5AEB09EE28B18B3C5BEB491B9E4CB2Cs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibA5AEB09EE28B18B3C5BEB491B9E4CB2Cs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib463B0173632E8770249D99F10E5F30BCs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib463B0173632E8770249D99F10E5F30BCs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib000F5706FE3AC26FD38BBED2A9D023DBs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib000F5706FE3AC26FD38BBED2A9D023DBs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibD10C4CC66231A9E675E26D67603758DDs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibD10C4CC66231A9E675E26D67603758DDs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibB7541717AF04D44B47E7C5269C116897s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibB7541717AF04D44B47E7C5269C116897s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib80FC637359E8A8EACA32E8F119E33993s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib80FC637359E8A8EACA32E8F119E33993s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib7B73A12CA79BD71D53D2258C9A7938CCs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib7B73A12CA79BD71D53D2258C9A7938CCs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib11266A4BE459466985FAF9227C36BBFAs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib11266A4BE459466985FAF9227C36BBFAs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib30AA0AD0FC3855423295148625E4DED8s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib30AA0AD0FC3855423295148625E4DED8s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibB2A441FBAC171051A0BBA5B03E96F73Es1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibB2A441FBAC171051A0BBA5B03E96F73Es1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib2F3384F6CE14B131F9A9AD653AF13D69s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib2F3384F6CE14B131F9A9AD653AF13D69s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib0C22C143642EE6A2FEEDFD3ECE1CFE3Cs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib0C22C143642EE6A2FEEDFD3ECE1CFE3Cs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib35A17007FC80C5D689CCF2BC474D349Bs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib35A17007FC80C5D689CCF2BC474D349Bs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibC84B2F2D9FB7DC134DBBAC3913C28D8Cs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibC84B2F2D9FB7DC134DBBAC3913C28D8Cs1


64 S.S. Kim et al. / Advances in Applied Mathematics 134 (2022) 102306
[32] S.S. Kim, Problems at the interface of probability and convex geometry: Random projections and 
constrained processes, Ph.D. Thesis, 2017.

[33] S.S. Kim, K. Ramanan, A conditional limit theorem for high-dimensional �p-spheres, J. Appl. 
Probab. 55 (2018) 1060–1077.

[34] B. Klartag, A central limit theorem for convex sets, Invent. Math. 168 (2007) 91–131.
[35] B. Klartag, Power-law estimates for the central limit theorem for convex sets, J. Funct. Anal. 245 (1) 

(2007) 284–310.
[36] A. Klenke, Probability Theory: A Comprehensive Course, Springer Science & Business Media, 2013.
[37] A.V. Kolesnikov, E. Milman, et al., The KLS isoperimetric conjecture for generalized Orlicz balls, 

Ann. Probab. 46 (6) (2018) 3578–3615.
[38] Y.-T. Liao, K. Ramanan, Quenched sharp large deviations for multidimensional random projections 

of high-dimensional measures, preprint, 2021.
[39] Y.-T. Liao, K. Ramanan, Sharp large deviation estimates and their applications to asymptotic 

convex geometry, preprint, 2021.
[40] Y.-T. Liao, K. Ramanan, Geometric sharp large deviations for random projections of �n

p spheres, 
arXiv:e-prints arXiv :2001 .04053v3, 2020.

[41] W. Liu, L. Wu, Large deviations for empirical measures of mean-field Gibbs measures, Stoch. Pro-
cess. Appl. 130 (2) (2020) 503–520.

[42] O. Maillard, R. Munos, Compressed least-squares regression, Adv. Neural Inf. Process. Syst. 22 
(2009) 1213–1221.

[43] E. Meckes, Projections of probability distributions: a measure-theoretic Dvoretzky theorem, in: 
Geometric Aspects of Functional Analysis, 2012, pp. 317–326.

[44] M.E. Muller, A note on a method for generating points uniformly on n-dimensional spheres, Com-
mun. ACM 2 (4) (1959) 19–20.

[45] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer, 
1983.

[46] A.V. Nagaev, Integral limit theorems taking large deviations into account when Cramér’s condition 
does not hold. I, Theory Probab. Appl. 14 (1) (1969) 51–64.

[47] G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (5) (2006) 1021–1049.
[48] C.H. Papadimitriou, P. Raghavan, H. Tamaki, S. Vempala, Latent semantic indexing: a probabilis-

tic analysis, J. Comput. Syst. Sci. 61 (2) (2000) 217–235, Special issue on the Seventeenth ACM 
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Seattle, WA, 1998), 
MR1802556.

[49] M. Pilipczuk, J.O. Wojtaszczyk, The negative association property for the absolute values of random 
variables equidistributed on a generalized Orlicz ball, Positivity 12 (3) (2008) 421–474.

[50] S.T. Rachev, L. Rüschendorf, Approximate independence of distributions on spheres and their 
stability properties, Ann. Probab. 19 (3) (1991) 1311–1337.

[51] G. Schechtman, J. Zinn, On the volume of the intersection of two Ln
p balls, Proc. Am. Math. Soc. 

110 (1) (1990) 217–224.
[52] V.N. Sudakov, Typical distributions of linear functionals in finite-dimensional spaces of high dimen-

sion, Dokl. Akad. Nauk SSSR 243 (6) (1978) 1402–1405.
[53] C. Villani, Optimal Transport: Old and New, vol. 338, Springer Science & Business Media, 2008.
[54] H. von Weizsäcker, Sudakov’s typical marginals, random linear functionals and a conditional central 

limit theorem, Probab. Theory Relat. Fields 107 (3) (1997) 313–324.
[55] R. Wang, X. Wang, L. Wu, Sanov’s theorem in the Wasserstein distance: a necessary and sufficient 

condition, Stat. Probab. Lett. 80 (5) (2010) 505–512.
[56] R. Zia, E. Redish, S. McKay, Making sense of the Legendre transform, Am. J. Phys. 77 (7) (2009) 

614–622.

http://refhub.elsevier.com/S0196-8858(21)00144-5/bib7FE341FE8FD77ABF99CAEE3DF1878D3Fs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib7FE341FE8FD77ABF99CAEE3DF1878D3Fs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibA21595807E9D3D1A5F553B97BF4583EDs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibA21595807E9D3D1A5F553B97BF4583EDs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibA7C066DF758EF25BA077744BD0A2E119s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib1DD75DB85C953118A0E7A32020FB5B48s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib1DD75DB85C953118A0E7A32020FB5B48s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibD6B36C8AFDF05A343F091C0181BF073As1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib8E09D503EC537388F339CD107A0BD0AFs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib8E09D503EC537388F339CD107A0BD0AFs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib0D20DFC777D53FA8A0EAD5B442BA549Es1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib0D20DFC777D53FA8A0EAD5B442BA549Es1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib1B3DE4887DE69DEB32935BCCB131ACC6s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib1B3DE4887DE69DEB32935BCCB131ACC6s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibE41E379382EFD85B12E311B8C792148Es1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibE41E379382EFD85B12E311B8C792148Es1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib95C43201F7EA5DADC1F9EF1A34F2A98Cs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib95C43201F7EA5DADC1F9EF1A34F2A98Cs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib1945A889058DA5F8D7CCD75DAC6D5B8Es1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib1945A889058DA5F8D7CCD75DAC6D5B8Es1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibE51872A83A17ADA1FD7FDC6AEC9D5777s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibE51872A83A17ADA1FD7FDC6AEC9D5777s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibFDFDBD883D9839620FEA273A37E28939s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibFDFDBD883D9839620FEA273A37E28939s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib4623CE1DA771FC7418E13200740A68AFs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib4623CE1DA771FC7418E13200740A68AFs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib296D3B351A43C9AF1F0979875D426A8Fs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib296D3B351A43C9AF1F0979875D426A8Fs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibCA4FA36808B02F4B2B3BFA10CF32CB68s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib030D5AFE729495994B7ED9D53B8ED201s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib030D5AFE729495994B7ED9D53B8ED201s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib030D5AFE729495994B7ED9D53B8ED201s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib030D5AFE729495994B7ED9D53B8ED201s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib42E061336BBBF65E286835A64835E726s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib42E061336BBBF65E286835A64835E726s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib73F191029EC66361B46A4367E16D130Cs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib73F191029EC66361B46A4367E16D130Cs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib07A5311B46BA0CCB7D9DFB9C466F5585s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib07A5311B46BA0CCB7D9DFB9C466F5585s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibDDD6B3EE3F0CFCA212C7ADE7E92B0FCDs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibDDD6B3EE3F0CFCA212C7ADE7E92B0FCDs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bib126A6CDC1AAC7887A73B4544020ED855s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibF24B640D3D3944339797280997A410ABs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibF24B640D3D3944339797280997A410ABs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibF6439829BAB68D6F1C60937B88E0A659s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibF6439829BAB68D6F1C60937B88E0A659s1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibB526849D131191EA8EE86018C48E914Fs1
http://refhub.elsevier.com/S0196-8858(21)00144-5/bibB526849D131191EA8EE86018C48E914Fs1

	An asymptotic thin shell condition and large deviations for random multidimensional projections
	1 Introduction
	1.1 Motivation and context
	1.2 Contributions and outline of the paper
	1.3 Summary of prior work
	1.4 Basic definitions and background results

	2 Main results
	2.1 Projection regimes and assumptions
	2.2 Results in the constant regime
	2.3 Results in the sublinear regime
	2.3.1 LDPs for the empirical measures and norms of projected vectors
	2.3.2 LDP for an alternative scaling of q-norms of projections

	2.4 Results in the linear regime

	3 Examples satisfying the main assumptions
	3.1 Product measures
	3.2 Scaled lnp balls
	3.2.1 Preliminaries
	3.2.2 Verification of Assumptions B and C when p∈[1,2)
	3.2.3 Verification of Assumption A* when p∈[2,∞)

	3.3 Orlicz and generalized Orlicz balls
	3.3.1 Symmetric Orlicz balls
	3.3.2 Generalized Orlicz balls

	3.4 Gibbs measures

	4 Proofs of LDPs for the random projections
	4.1 The top row of An,kn
	4.2 Proof of the LDP for random projections in the constant regime
	4.3 Proof of the empirical measure LDP in the sublinear regime 1≪kn≪n
	4.4 Proof of the empirical measure LDP in the linear regime kn∼λn

	5 Proofs of q-norm LDPs in the sublinear regime, 1≪kn≪n
	6 Proofs of q-norm LDPs in the linear regime
	6.1 The case q∈[1,2)
	6.2 The case q=2 and alternative proof for q∈[1,2)

	Acknowledgments
	Appendix A An approximate contraction principle
	Appendix B LDP for generalized normal random variables
	Appendix C Properties of the rate function J of (3.14)
	References


