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In today’s economy, it becomes important for Internet platforms to consider the sequential information design
problem to align its long term interest with incentives of the gig service providers (e.g., drivers, hosts). This
paper proposes a novel model of sequential information design, namely the Markov persuasion processes
(MPPs), in which a sender, with informational advantage, seeks to persuade a stream of myopic receivers
to take actions that maximize the sender’s cumulative utilities in a finite horizon Markovian environment
with varying prior and utility functions. Planning in MPPs thus faces the unique challenge in finding a
signaling policy that is simultaneously persuasive to the myopic receivers and inducing the optimal long-term
cumulative utilities of the sender. Nevertheless, in the population level where the model is known, it turns
out that we can efficiently determine the optimal (resp. 𝜖-optimal) policy with finite (resp. infinite) states and
outcomes, through a modified formulation of the Bellman equation that additionally takes persuasiveness into
consideration.

Our main technical contribution is to study the MPP under the online reinforcement learning (RL) setting,
where the goal is to learn the optimal signaling policy by interacting with with the underlying MPP, without
the knowledge of the sender’s utility functions, prior distributions, and the Markov transition kernels. For such
a problem, we design a provably efficient no-regret learning algorithm, the Optimism-Pessimism Principle for
Persuasion Process (OP4), which features a novel combination of both optimism and pessimism principles. In
particular, we obtain optimistic estimates of the value functions to encourage exploration under the unknown
environment, and additionally robustify the signaling policy with respect to the uncertainty of prior estimation
to prevent receiver’s detrimental equilibrium behavior. Our algorithm enjoys sample efficiency by achieving a
sublinear

√
𝑇 -regret upper bound. Furthermore, both our algorithm and theory can be applied to MPPs with

large space of outcomes and states via function approximation, and we showcase such a success under the
linear setting.

The full paper is available at https://arxiv.org/abs/2202.10678
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