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Abstract—The past decade has witnessed the rising dominance
of deep learning and artificial intelligence in a wide range of
applications. In particular, the ocean of wireless smartphones and
IoT devices continue to fuel the tremendous growth of edge/cloud-
based machine learning (ML) systems including image/speech
recognition and classification. To overcome the infrastructural
barrier of limited network bandwidth in cloud ML, existing
solutions have mainly relied on traditional compression codecs
such as JPEG that were historically engineered for human-
end users instead of ML algorithms. Traditional codecs do not
necessarily preserve features important to ML algorithms under
limited bandwidth, leading to potentially inferior performance.
This work investigates application-driven optimization of pro-
grammable commercial codec settings for networked learning
tasks such as image classification. Based on the foundation
of variational autoencoders (VAEs), we develop an end-to-end
networked learning framework by jointly optimizing the codec
and classifier without reconstructing images for given data rate
(bandwidth). Compared with standard JPEG codec, the proposed
VAE joint compression and classification framework achieves
classification accuracy improvement by over 10% and 4%,
respectively, for CIFAR-10 and ImageNet-1k data sets at data rate
of 0.8 bpp. Our proposed VAE-based models show 65% —99% re-
ductions in encoder size, x1.5—x13.1 improvements in inference
speed and 25% —99% savings in power compared to baseline
models. We further show that a simple decoder can reconstruct
images with sufficient quality without compromising classification
accuracy.

Index Terms—Variational autoencoders, End-to-end, Classifi-
cation, Compression, Reconstruction.

I. INTRODUCTION

HE concept “Internet of Everything (IoE)” generalizes

the idea of internet of things (IoT) to a broader paradigm.
IoE nodes are connected by networks capable of commu-
nicating data generated from sensing and processing [1].
The power of IoE has already bolstered learning-intensive
technologies such as self-driving cars, surveillance cameras,
smart cities and smart transportation where deep learning (DL)
applications are increasingly integrated with network services.
As part of networked learning paradigm, these DL applications
together with network services facilitate machine-to-machine
and machine-to-cloud server communications [2]—[6].

One such example of networked learning is illustrated in
Fig. In automated inference systems such as pedestrian
detection or object tracking for applications like self-driving,
media data (image or video) collected by a source node
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Fig. 1. A networked ML instance: video/image frames from a camera are sent
to a server for vehicle detection, traffic monitoring, and used by vehicles with
an obstructed view for assisted/self-driving-related visualizations/decision-
making. E: Encoder, D: Decoder.

is transported to remote network cloud nodes to carry out
more complex inference processes. The data transmission can
be for multiple inference tasks (such as vehicle detection,
traffic monitoring, or risk warning) at the cloud servers or
visualization purposes at cloud or end nodes. For instance,
video/image frames captured by a street camera are sent to
a server for vehicular detection, crowd activity monitoring,
etc., and used by smart vehicles with an obstructed view for
assisted/self-driving-related visualizations/decision-making.

Given the explosive growth and deployment of IoT de-
vices [7] and massive data collected by such devices [8],
traditional cloud computing struggles to keep up with the
demands of large IoT networks. Typical IoT configuration
features source devices only as data collectors while cloud
nodes are responsible for processing and analysis, hence, is
limited by network link capacity, delay and losses, leading to
long latency, unreliable inference and scalability issues [9]—
[11]. Edge computing addresses these issues by deploying
computing services in proximity to IoT devices [12]. Many
image and video sensing devices such as smart phones, vehic-
ular sensors and home/street cameras have sufficient resources
to collect data and perform preliminary pre-processing and
feature extraction, but not enough to implement full machine
learning algorithms on-device [10]. With this new configu-
ration of networked AI coupled with edge computing, such
source devices can share a part of the computational burden by
performing pre-processing and feature extraction, and deliver
the extracted features to more powerful and resource rich
edge/fog nodes for complex machine learning tasks.

When designing communication networks specifically tar-
geting networked AI over edge/cloud for above such time-
sensitive tasks, source data transmitted to the edge/cloud
may fulfill two main requirements. On one hand, the data
transport must achieve high coding efficiency ensuring low
power usage, low latency and high bandwidth efficiency. On
the other hand, source data compression for transport must
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maintain high learning (task) accuracy. Therefore, there is a
clear design trade-off between source coding rate and learning
accuracy. This work designs a variational autoencoder (VAE)-
based compression and learning framework to achieve a better
coding rate and learning accuracy trade-off ensuring low power
usage, low latency and low memory usage.

Our focused investigation in this work is on an efficient im-
age codec for classification applications. Conventional classi-
fication applications begin by reconstructing images of interest
at the decoder before inference [13]-[15]. See Fig a). We
note the following two observations where the reconstruction
can introduce inefficiency in cloud-based Al applications.
First, when performing classification inference on the images
compressed with image codecs that are originally optimized
for rate-distortion performance targeting visualization applica-
tions, the classification accuracy suffers at high compression
ratios under limited data rate [16]—[20]. Second, inference on
images compressed with standard compression codecs such as
JPEG2000 demonstrates non-negligible inference speed and
accuracy degradation compared to with end-to-end-optimized
joint classification and compression frameworks [[17], [18]] that
bypass image reconstruction at decoders. Motivated by these
observations, the proposed VAE-based classifier bypasses the
reconstruction and is designed to naturally support end-to-end
optimization for rate-accuracy performance. See Fig. 2(b).

In terms of device complexity, conventional video/image
compression codecs such as VVC [21], HEVC [22] and
JPEG [23] featuring a more complex encoder and a simpler
decoder could be less desirable on low cost source devices.
Instead, a more desirable data compression and learning
model for massive deployment in a network-Al edge/cloud
should feature a simple encoder with low power and memory
usage and a relatively more complex decoding and learning
edge/cloud node. The trained encoder can reside in source
devices with low computational power and memory to encode
and compress data collections. Further, they can selectively
compress and transmit task-important underlying features
(e.g., latent) of the raw source data to other edge/cloud servers
dedicated for decoding and learning ensuring rate-accuracy
performance.

The approaches in [16]-[18] are likely sub-optimal in
terms of coding efficiency by optimizing only a part of pre-
engineered JPEG2000 encoding-decoding pipeline. Address-
ing this, as part of end-to-end optimization of the codec, some
recent DL-based image/video compression codecs showcase a
learning-based encoder (autoencoder) that can be optimized to
minimize a given loss function [20], [24]-[28]. They demon-
strated the importance of learning code word distribution for
efficient compression instead of using fixed code word tables
as in JPEG. However, the image encoders used in above
works are still high in complexity, demanding high memory
and power and resulting in lower inference speeds. Hence,
they are not suitable for broad IoT deployment. Thus, we
propose to use light-weight encoders and to model code word
distributions for VAE-based classifier achieving high coding
efficiency.

To achieve the aforementioned objectives in a networked Al
environment, we propose a VAE-based joint compression and

Encoder

Encoder

(b) Proposed: VAE-based classification

Fig. 2. (a). VAE-based reconstruction before classification: Encoder trans-
forms source image « to low dimensional z. Decoder reconstructs image &
based on z. (b). Proposed joint compression and classification: Without image
reconstruction, classifier directly generates class label y based on z.

classification model (shown in Fig. b)) that enables learning
on the latent feature space to efficiently encode/compress and
effectively classify images through end-to-end training. We
aim to achieve high accuracy, fast inference, low bandwidth
usage, and low latency over network links. Furthermore, our
proposed framework features simple encoders while ensuring
re-usability of the transmitted features.

Our two main contributions of this work are:

e« A new information theoretical formulation of a VAE-
based end-to-end, joint compression and classification
framework.

« Development of power saving, low-complexity-encoder
and faster-inference-classifier for edge/cloud-based net-
worked image classification applications.

Furthermore, because encoded images may serve the dual-
use of human visual perception and machine learning in
certain practical applications, we investigate the feasibility
of adapting the VAE-based classifier as a dual-use codec for
efficiently encoding image features delivered to the cloud for
both accurate image classification and image reconstruction of
sufficiently high quality (PSNR).

We organize this manuscript as follows. Sec. [ presents the
basic problem formulation and review the concept of varia-
tional autoencoders. Sec. [IlI| introduces our new proposal of a
VAE-based end-to-end solution for classification by describing
the basic learning model and the rate-accuracy function for
joint classification-compression. In Sec. we describe our
experiment setup and present our test results. Additionally,
Sec. |V| presents benchmark comparison of model complexity,
inference speed, and power consumption for our proposed
models. In Sec. we discuss how to adapt the proposed
models for joint classification and reconstruction. Sec.
further provides theoretical basis that connects the proposed
VAE-based approaches to frameworks such as information
bottleneck [29], [30].

II. RELATED WORKS
A. End-to-End Learning Framework

Originally designed to target remote human vision appli-
cations over resource constrained channels, popular image
compression codecs such as JPEG [31] and JPEG2000 [32]
feature an engineered data processing workflow. This work-
flow mainly consists of a level offset, a color transformation
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TABLE I
SUMMARY OF NOTATIONS

Notation Meaning
X set of input images
X input image
b reconstructed image
Ygt ground truth label of image x
Y estimated label of image x
z latent vector representation of x
Z quantized z
dy quantization level
D set of quantization levels d;

Dx,0 probability distribution of x parameterized by 6
Dz|x,0 conditional distribution of z parameterized by 6
dz|x,é approximated distribution of p,|x ¢

parameterized by ¢
Pe(y|x) estimated class label distribution with a model
parameterized by € given the latent x
1o (y|z) estimated class label distribution with a model
parameterized by € given the latent z
P; g, (2|x) conditional probability of the latent value 2; that

takes the value of the quantization level dy,

Qi e, (Ygt|2) class label probability for each Z; that takes the

value of dy,

KL(p, q) KL divergence between distributions p and ¢
CE(ygt,y) cross entropy between distribution of ygt and y
H(px,0) entropy of variable x with distribution px g
B, trade-off coefficients for rate, distortion.

(e.g., RGB to YCbCr), a domain transformation such as
Discrete Cosine Transformation (DCT) or Discrete Wavelet
Transformation (DWT), a quantizer and a block encoder (e.g.,
Huffman or Arithmetic) to convert the quantized transform
domain coefficients to a bit-stream for transmission.

These engineered blocks of conventional image codecs can
often achieve good reconstruction results for a given data
rate. Similarly, for a given image quality/distortion, such
codecs can generate low rate bit-streams for transmission
over low bandwidth network channels. However, these popular
image/video codecs such as JPEG and JPEG2000 are not
optimized for remote learning tasks. Thus, a naive and direct
adoption of these codecs for cloud-based learning applications
do not guarantee good performance or high spectrum effi-
ciency. Conceptually, source codecs should be customized and
optimized for specific cloud-based learning tasks [18], [20].
Therefore, our objective in this work aims to optimize rate-
accuracy performance in terms of encoding/compression rate
and classification accuracy.

B. Source Data Reconstruction with VAEs

When designing codecs for source compression to achieve
optimized rate-distortion performance, accurate modeling of
the data distribution is of vital importance. Depending on
the underlying input distribution, the process of “generative
modeling” can be challenging. Often, the input data (X)
manifold is high-dimensional and is complex to characterize.

Several likelihood-based methods have been proposed in
the literature for generative modeling, such as auto-regressive

models [33], flow-based methods [34], [35] and VAEs [36]. In
this work, we leverage the concept of VAE for joint classifica-
tion and compression. Without relying on strong assumptions,
VAE exhibits fast training with back-propagation [37]. Such
property is advantageous in comparison with model based
approaches relying on strong assumptions or requiring high
computation complexity such as the Markov Chain Monte
Carlo (MCMC) [36]. Further, VAE-based models are amenable
to naturally interpretable loss terms that are directly related to
rate-distortion trade-off in lossy compression [38], as shown
later.

We can capture the general concept of VAE via Fig.[2[a). A
VAE consists of an encoder for mapping the high dimensional
input x into a latent representation z, followed by a decoder
in charge of reconstructing the input that is denoted as input
estimate X. The encoder’s output z is a low-dimensional latent
vector representing distinct features from the input data x. The
encoder functionality is to compress and to extract critical
features by mapping input x into z. The decoder can rely on
z to reconstruct x for various remote applications. Thus, the
VAE encoder makes it possible to store and transmit z instead
of x to preserve bandwidth and storage.

In the VAE formulation, the observable input data set X
is assumed to consist of i.i.d. samples of x which are gener-
ated by some random processes that involves an unobserved
random variable z and generative model parameters 8 via

Pxo(T) = /pz,e(Z)px|z,g(w|z)dz. )

Neither the true parameters 6 nor z are known.

Within this framework [36], the encoder can be viewed as
to provide an efficient posterior estimate of the latent vector
z from an observed input x for a given parameter setting 6.
The decoder provides an approximate marginal inference of
x upon reception of the latent vector z from the encoding
transmitter.

C. Variational Bound for Reconstruction

VAE considers the general case when the posterior
Pzix,0(z|x) is intractable for which an approximation
z/x,4(z|T) parameterized by ¢ is introduced to act as the
encoder. For an arbitrary distribution ¢, x 4(z|x), We can
derive the “variational bound” that follows the outlines of
[36], [37] with detailed proof below for both reconstruction
and classification. Throughout the presentation, we denote an
instance of the random variables x as x. Further in Table. [I]
we summarize the notations used in the current work. Assume
z € X is a random sample of the random variable x
which follows a generative model parameterized by 6 from
an unobserved random variable z. We can write:

pxo(T) = /pz,o(Z)px|z’9(ac|z)dz. )
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For an arbitrary distribution qz,d,(z), we can write,

px,G(:E) = /pz,@(z)px|z,0(w|z)dz

= /pxlz,e(w\z)pz,a(z)%(z)dz (3)

red]

=Eq, . [px|z,e(l'|z)

Taking — log of both sides leads to

Pz0(2)
Gz.6(2)
Applying Jensen’s inequality to (4), we write,

logpro(@) = —log B, , [pxz,9<:c|z> } _—

Pz B(Z)
—logpxe(x) < By, , — log {pxz x|z)=— }
9( ) 9z,¢ | 79( ‘ )qz7¢(z)

< _qu,¢ 10gpx|z,9($|z)
Dz G(Z)
- FE, ,log [ : ] .
277 | gr0(2)
Following the definition of KL divergence, we write,

®)

—logpxe(x) < —Eqy, ,10g px|z0(x|2) + KL(¢z,¢|P2,6)-
(6)

Since ¢, ¢(z) is arbitrary, we can replace g, ¢(z) with con-
ditional density g,x,¢(2|2) and write [36], [37],

—logpxe(x) < —Ey, ., [108 Dxjz0(x|2)]
+ KL(z|x,|Pz.60) (7)

where KL denotes the Kullback Leibler divergence.

This variational bound can serve as an optimization surro-
gate when direct minimization of — log px ¢ () is intractable.
Functionally, ¢4, models the probabilistic encoder and
Dx|z,0 models the reconstruction decoder as in Fig. a). The
first RHS term in Eq. is the conditional entropy of x given
z which quantifies the reconstruction loss. The second RHS
term KL(q,|x,4|Pz,0) is related to the coding cost of the latents
as shown later. Hence, the variational bound can be utilized
to form the classical variational loss for reconstruction [36].

£97¢,(£C) = qu\x,qs[* 10gpx|z,0(m|z)]+ KL(Qz\x,qb pz,@) ()

When minimizing the variational bound as the loss function
given in Eq. that consists of two parts, a hard constraint
can be imposed on the coding cost KL(gyx,q|Pz0) While
minimizing the reconstruction loss. To this extent, the authors
of [39] further suggested adding a trade-off parameter 5(> 1)
to Eq. to reformulate a 3-VAE loss function also adopted
in [14], [27], [38] as

£oa¢($) :EqZ\x,¢[_ logpx\zﬂ(mLz)} +BKL(qz|x,¢"pz,9)' (9)

Note that we can leverage the definition of cross entropy (CE)
to rewrite

KL(Qz\x,¢|pZ,9) = CE(Qz\x,(pvpz,H) - H(Qz|x,¢>)'

The term CE(qg|x,4,Pz,0) averages the entropy — log(ps.e)
over the encoder distribution gy, and captures the average
encoding “cost” of latent representation z. Following the
approach of [38]], if we consider only the deterministic encoder

z = ¢(x) for which g, 4(zlx) = (2 — ¢(x)) and

H(qyzx,¢) = 0, we have

KL(qZ‘X,(ﬁ'pZ}e) - CE(QZ\X,Q’)apz,G) (10)

= CE((S(Z - ¢(w))vpz,0(z))
= —log pse(¢(x)).

From Eq. (10), the 3-VAE loss function for a deterministic
encoder can be expressed as [38],

£97¢($) = qu|x,¢ [_ 10gpx|z,0(w|z) - BIngz,e(z)] (11)
= —log pyjz,0(x|p(x)) — Blog pae(P(x)).

When g =1, Eq. corresponds to the VAE loss function
in Eq (9). Setting 3 > 1 can impose a hard constraint on the
latent representation [39] to limit the coding cost. In short,
the approximated 3-VAE loss is the sum of the reconstruction
loss and the cost of encoding z weighted by 5. The weight
[ facilitates a rate-distortion trade-off parameter. One extreme
case would be to encode nothing, i.e., z = 0, in which case
the encoding cost is zero whereas the reconstruction loss from
z = 0 would be gigantic. The other extreme case would be to
encode x directly, i.e., z = X, in which case the reconstruction
loss is O whereas coding cost would be high.

D. VAE-Based Classifier

When reviewing the VAE framework, data reconstruction
from z is typically the learning objective. We note, however,
that for automated learning tasks such as image classification,
reconstruction of x may not always be the end goal [20], [40]
and may be unnecessary in many cases. For example, a prac-
tical security-related automated object detection system would
rely on Al or DL algorithm trained on the latent vector z for
object detection and/or recognition. Hence, the reconstruction
of image frame X is unnecessary for inference. Only at rare
occasions such as evidence collection or inspection, the system
may have to recover RGB frames for human visualization.
Thus, the image reconstruction step can be performed only
when required from the stored latent vectors.

Considering these practical Al/learning applications, we
propose a VAE-based classifier by removing the VAE decoder
in Fig. [2(a) to directly connect the latent code z with a data
classifier to perform the learning task, as shown in Fig. [2[b).
In this framework, variable y denotes the label of the output
class based on z. Our framework aims to jointly optimize the
encoder and the classifier with end-to-end training.

Before presenting details of our proposed VAE framework,
we first examine some related recent works on the joint learn-
ing of compression and classification based on autoencoders.
Among others, one approach constructs a loss function by
combining the latent entropy H (z) with the classification cross
entropy loss L resulting from classification v (&) according
to the reconstructed &(z) from z (as shown in Fig. a)).

L(x, yge) = Lon(Yest, 10(2(2)) + BH (z|z)

Here y, denoted the ground truth class of image sample x.
Clearly, this approach requires a reconstruction step prior to
classification [41], [42].

12)
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Fig. 3. Overview of the proposed VAE classifier during inference: Quantized latent vector Z is encoded into bit stream by a context-adaptive arithmetic
encoder (AE) assisted by probability estimator (PE). At receiver, probability of each symbol Z; (shown in cyan) is estimated by using a learned PE based

on previously decoded latents 2; 1, - -
approximate pg ~ q¢ during training.

Another approach is to construct the loss function by
combining the latent entropy H(z) with the classification
CE loss based directly on the latent representation z. Hence,
the loss considering the classification v4(z) directly based on
encoded z(x) is,

L(@,yg1) = Lon(Yer, v1(2(2))) + BH (z]).

Compared with the first approach, this formulation can po-
tentially generate faster and more efficient training/inference
models by skipping the reconstruction step [43]. For example,
the authors of [16], [18] introduced an image classification
model by jointly training to optimize both the JPEG2000
encoder and the CNN classifier without image reconstruction.
While achieving faster inference and higher accuracy, there is
limited improvement since the proposed end-to-end framework
only optimizes the quantization block of the encoder. Fur-
ther, the majority of existing VAE-based image classification
frameworks either still perform this unnecessary reconstruction
step [13]-[15] or neglect the bandwidth aspect of the latent
representation [44] making them impractical for wide IoT
deployment in cloud-based image classification.

13)

III. A NEW VAE CLASSIFICATION FRAMEWORK

In this work, we focus on the second approach described in
Eq. and develop a novel VAE model for joint compression
and classification encoding. Specifically, we design a VAE-
based classifier for direct image classification based on the
latent vectors without image reconstruction, as seen from
Fig. [2| Targeting cloud-based classification over bandwidth-
limited network data links, we implement adaptive entropy
coders with context modeling aimed at improving overall rate-
accuracy performance trade-off. Further, we demonstrate that
spatial domain RGB images can also be reconstructed for
practical applications by fine-tuning a separate decoder under
the proposed classification setting.

A. Variational Bound and Loss for Classification

The performance of a classifier can be measured by cross
entropy loss from labeling. Consider an i.i.d. data sample =
and corresponding label y that belongs to a set ) of unique

,Z1 (shown in gray). Without groundtruth distribution of the latent elements qg (Z|a) at the receiver, PE learns to

labels, with {(z,y)|z € D,y € Y}. We can denote 79 (y|z)
as the estimated label distribution with a model parameterized
by 6 given the latent z. For a latent z mapped from given x,
the estimated label distribution is simply

mM@Z/%@MmM@M- (14)

Similar to (3), we introduce an arbitrary function gg(z|x)
parameterized by ¢.

polvle) = [ na(ul=)po(xIe)d=
pe(ZIw)}

99 (22)

Once again, taking — log on both sides leads to

=@”@h@w

o po(aia)
108 folyle) = 108 i [mlol) 220519

Applying Jensen’s inequality, we write,

e . . Pelz)
log po(ylz) < —Eq,, , log {na(?ﬂ )Q¢(Z|w)]

IN

—Eq, . 108 M0(y|2)
B po(z|x)
qulx.cp log [q¢(z|az)] . (16)

Following the definition of KL divergence, we write,

- IOg ﬁ@(y|w) < _qu\x,qp IOg 770(y|Z) + KL(Qz\x,q’)'pz\x,B)'
(17)

We denote the ground truth class of sample x as yg¢. The

true distribution p of y given x can be written as following
by using the Kronecker delta function J|]

1 —
p(ym)—é[y—ygt]—{ 0. Yy et (18)

y?’éygt

With the above notion, we write the cross entropy between
the true and the estimated label distributions as:

CEyjz(p: po) = — Y _ p(y = clz)log po(y = clz).
cey

19)
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From (I7) and (19), we can derive the variational bound for
classification.

CE,ja(p. o) = = ply = clz)log pa(y = clz)

cey
<= ply = clx){Ey,, ,logne(y = clz)}
cey
+ Z p(y x){KL(qz/x,6|Pzx,0)} (20)
cey

The bound can be further simplified into

CEyx(p, o) < — > _ ply = clz){E,, . ,logne(y = clz)}
cey

+ KL(Qz|x,¢|pz|x,G)-

Using (I8), we obtain the variational bound for classification

21

CEyjz(p; Po) < —Eg, 00 log 16 (Ygt|2)
+ KL(QZIX,¢‘pz|x,0)

Following the approach [38] discussed in Sec. [I-C| we can
define the $-VAE loss function for a single sample x as

(22)

=FEq [—log ne (yet|2)]
+ ﬁEQzlx,d) [_ logpg(z|w)] )
with a control parameter 5. We can interpret the first term as

the conditional classification loss and the second term as the
coding cost or rate.

£9,¢(w7 ygt)
(23)

B. Learning Model

Our end-to-end compression-classification learning model
consists of an encoder (E), a probability estimator (PE) and
a classifier (CL) as shown in Fig. |3| Following the approach
in [27], we use a context model to estimate the conditional
probabilities in PE. Consider the following setting.

x5H2%2 %y (24)

¢ 6

x is the input image to the model with dimensions (w X h X
3). The encoder, parameterized by ¢, maps x to the latent
representation z of dimension (% x % x K = m). A quantizer
(Q) further maps z to Z by assigning each element z; (1 =
1,---,m) to the closest quantization levels D = {d,;, ¢ =
1,---, L}. For instance, multiple z; values can be mapped to
the same d, such that,

2, =Q(z) = argg}e%l llz: — d]|2. (25)

The quantization centers {d,} are learned through training.
The CL, parameterized by 0, takes the Z as the input and
predicts the class label y for the given image sample «. Taking
quantization into account for practical applications, Eq.
can be rewritten as follows.

= By, .o [~ 10870 (ygt|2)]
+ BEq, . [~ logpe(2|z)]

We now examine how to obtain each term for the loss function

in Eq. (26).

Lo,p (T, Ygt)
(26)

C. Rate Loss

The second RHS term of Eq. represents the cross
entropy between two conditional distributions of z: pg(Z|x)
and ¢g(z|x). The distribution gg(Z|x) is deterministic and
readily available after the deterministic encoding step (E).
During training, we estimate the distribution pg(Z|x) with a
PE using a conditional context model following [27], [38].
The latent representation Z as discussed in Sec. is a 3D
tensor containing m number of latent elements. We can index
this 3D tensor Z given T as a vector in raster-scan order and
write pg(Z|x) as

m
peo(2|w) = Hpe Zi|Zic1, o0 21, ). @27)

With PE, we can efficiently estimate the conditional prob-
ability of the latent value Z; that takes the value of the
quantization center dy, which can be defined as P; ¢, (Z|z) =
po(2 = dg,|2i-1, -+ ,%1,2) for notional simplicity. With
this notation, can write the approximate coding rate (Lg) as
follows.

= CEz|(q¢,Po)
= EQi\x,¢ [_ 10gp0(2|x)]

m L
= =2 apléinlz)log P, (2]2)

i=1 ;=1

Here gg(2i ¢, |®) is the probability of Pr(2; = dg,|x). Any Z;
can take only one particular quantization value dp,.

Similar to [27], through end-to-end training, we learn
the distribution pg(Z|x) in order to optimally approximate
Do ~ qg. Through context-based adaptive arithmetic encoding
process (CABAC) [45], g4(Z|z) is available for the proba-
bility estimation, only at the encoder. Once the encoded bit-
stream is received at the context-based adaptive arithmetic
decoder, the learned conditional probability pg(Z|x) is used
for probability estimation to recover Z whereas qg(Z|x) is
not available [46]. For this reason, we learn the distribution
peo(Z|x) to approximate pg ~ ¢4 which makes pg the “context
modeler” as commonly referred in the literature [45], [46]. See
Fig.[3] When the learning succeeds by training, with Eq. (28),
we observe that the coding rate Lgg,4)(2|z) reduces to the
entropy H(Z|x).

Lr(6,¢)(Z|)

(28)

D. Classification Loss

We interpret the first RHS term of Eq. as the classifi-
cation loss Ly (6,4) (2|2, ygt). Following the rate approach as
given in Sec. we can rewrite the classification loss term
as follows.

= E(Ii\x,¢ [_ log Tle (ygt|2)]

m L
== > ap(Zie @) 10g Qie, (ye|2)

i=1¢;=1

['CL(G,d))(z‘wv ygt)

Here, we have to estimate the class label probability for each
%0, which is defined as Q; ¢, (yet|Z) = no(Yes|2i = do,).
We note that estimating the conditional label probability given
each individual Z; can be challenging.
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Fig. 4. Classification accuracy vs rate results for end-to-end compression and classification on (a) CIFAR-10 and (b) CIFAR-100 data sets. The proposed VAE
based compression and classification framework outperforms popular commercial image compression codecs in terms of rate-accuracy, at lower bandwidths.

On the other hand, given Z, we can efficiently predict the
class label using a trained CNN classifier such as ResNet [47].
Hence, we can easily estimate — log 7 (yg¢|2) given the entire
sequence of Z rather than for one individual element Z; therein.
In standard stochastic gradient optimizers, we have only one
sequence sample Z at a time. Hence, the stochastic expectation
of Ey, .., [—10g7m6(yst|2)] can be approximated simply by
—log ng(ygt|Z) [37]. We can reduce this approximation error
by iterating sufficiently over same . This simple approxima-
tion leads to general classification loss,

CCL(0,¢)(2|wvygt) = Eqi|x,¢ [~ log ﬁs(ygt\i)]
~ —log 16 (gt |2)-

With this formulation, we express the total loss Lg ¢ (2, yst)
of the joint classification and compression model for image
sample x as,

(29)

Lo ¢(x,ygt) = Lcv(o,¢) (21T, Ygt) + BLR(0,o) (2]T)
~ —log ne(Ygt|2)

m L
— B> ap(Gis|z)log Py, (2lz).  (30)
i=14;=1
Similar to the rate-distortion loss in reconstruction [27], [38],
[48], B controls the rate versus mis-classification trade-off.

IV. EXPERIMENTS AND RESULTS

This section presents several experiment results of classi-
fication using the proposed VAE approach of Sec. We
tested the accuracy of classification on three well-known data
sets: CIFAR-10 [49], CIFAR-100 [50] and ImageNet-1k [51].
CIFAR-10 consists of 10 classes with 5000 images for training
and 1000 images for testing per class. CIFAR-10 images are
in RGB format of size 32x32. Similar to CIFAR-10, CIFAR-
100 data set contains 50k training and 10k test RGB images
of size 32x32 in 100 classes. ImageNet-1k consists of 1000
classes, each of which consists of up to 1300 training images
and 50 validation images of mostly 256x256 RGB.

Our experiments used the same quantizer and the context
model as [27] to estimate probabilities. Instead of separately
training the encoder-decoder and the context model (PE) as
in [27], the training of PE takes place simultaneously with
encoder and classifier training.

A. VAE-based Joint Compression and Classification models

When designing the joint model, we began with a
ResNet [47] and split into 2 parts as Encoder (E) and classifier
(CL). Next, we added a batch normalization layer and a
quantizer block to the encoder and further modified the number
of filters and strides. For each CIFAR-10, CIFAR-100 and
ImageNet-1k data sets, we considered 2 different encoders-
classifier combinations. Figs. [5[a)-(g) depict the structural
details of 4 proposed VAE models labeled as AE-V;, AE-
Vi, AE-V3 and AE-V,4. We use typical notations in CNNs
to denote their components. For example, “Conv 16 (3x3-2)”
represents a 2D convolution block with 32 filters of size 3 x
3 and a stride of 2. “Res 16 (3x3-2)” denotes a basic ResNet
block with a down-sampling factor of 2.

To compare the performance gains of the proposed ap-
proach, we mainly used JPEG (4:2:0 as the benchmark
technique to compress images within the data sets at different
quality (Q) values. One can vary the quality value Q € [1, 100]
during compression to set image quality. We then trained
a ResNet classifier based on these compressed images for
each Q value. To calculate the required channel bandwidth
(i.e., image size), we averaged the bits-per-pixel (bpp) for
each coded image over the data set. For fair comparison,
we only consider the data bits of the images according to
bpp without counting packet headers. Following similar steps,
we generated rate-accuracy performance for popular standard
codecs: JPEG200 Web and BP to be used as baselines.

Uhttp://www.openjpeg.org/
Zhttps://kakadusoftware.com/
3https://developers.google.com/speed/webp/download
4https://bellard.org/bpg/
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Fig. 5. Encoders and classifiers for the proposed end-to-end compression and classification models AE-V1, AE-Va, AE-V3 and AE-V4. “Conv 16 (3x3-2)”
represents a 2D convolution block with 32 filters of size 3x3 and stride of 2. “Res 16 (3x3-2)” represents a basic ResNet block [47]] with down-sampling

factor 2.

In the joint compression and classification model, we vary
the number of quantization centers (L) to compress images at
different BPP values without changing the E and CL model
architectures. As proposed in [27], one can alter the encoder-
decoder/classifier architecture to generate latent of different
dimensions to obtain the requisite bpp as well.

We selected 3 = 2 for all experiments. During model
training, we used a ‘Momentum’ Optimizer for the E-CL part
of the network and an ‘Adam’ optimizer for the PE with a
learning rate of 0.0005 and reduced the learning rate by x0.1
at 0.25 and 0.75 of total epochs over 90 epochs. In contrast to
[27], we concurrently train both E-CL and PE to also enable
back-propagation from PE to E. This configuration facilitates
model convergence at lower bpp.

B. CIFAR-10 Experiments

For CIFAR-10, we used the models AE-V; and AE-V,
of different complexities. Figs. [5(a)-(d) provide the structural
details of both VAE models. As the baseline classification
model, we used a ResNet-18. Fig. a) shows the result for
CIFAR-10 data set with different combinations of E-CL in
comparison with popular standard codecs: JPEG, JPEG2000,
WebP and BPG. Both AE-V; and AE-V5 achieve substantial
performance improvement over the traditional JPEG (4:2:0)
in terms of rate (bpp) and accuracy trade-off. At 0.8 bit/pixel,
our joint compression-classification accuracy improves from
77% to 87%. More importantly, this performance improvement
is achieved with significantly lighter-weight models, resulting
impressive inference speed improvements and power savings
compared to the baseline classifiers as will be discussed in
Sec. Further, compared to JPEG2000, WebP and BPG,
the proposed VAE-based codecs maintain the rate-accuracy
performance specially at lower bandwidth end. In particular,
both VAE-based models demonstrate over 5% accuracy im-
provement at 0.9 bpp compared to BPG.

C. CIFAR-100 Experiments

As the baseline classification model, we used a ResNet-18
model with a fully connected layer of 100 neurons instead
of 10 in the original model designed for CIFAR-10. For
the VAE models for classification, we used AE-V; and AE-
Vs, each with same encoder (shown in Figs. [5(a), (c)) and
the Classifier (Figs. b), (d)) with a fully connected layer
of 100 neurons (Fc-100) instead of Fc-10. For training, we
follow the same settings as in CIFAR-10. Fig. [4(b) compared
the rate-accuracy performance of AE-V; and AE-V5 models
for CIFAR-100 validation set. The proposed method achieves
similar improvement as observed in CIFAR-10.

D. ImageNet Experiments

For ImageNet experiments, we followed the same process as
used for CIFAR-10 to generate the JPEG (4:2:0) baseline. As a
part of data augmentation, we resized the images to 256256

ImageNet-1k
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Fig. 6. Classification accuracy vs rate on ImageNet-lk for end-to-end

compression and classification. The proposed VAE based compression and
classification framework (AE-Vy4) significantly outperforms JPEG commercial
image compression codecs in terms of rate-accuracy.
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and cropped them down to 160x160 in training and testing
to obtain the desired dimensions of the latent Z. We propose
modified VAE models AE-V3 and AE-V, for ImageNet. See
Figs. e)-(g) for model architectures.

For a fair performance comparison, we fine-tuned the base-
line ResNet models with the JPEG encoded images at each
quality level (Q) to record the best accuracy achievable at
given Q as benchmark results. For the same reason, we do not
include packet header in bpp calculation.

Testing the E-CL combinations AE-V3 and AE-V4 on
ImageNet generates the results of Fig. [6] The performance of
the two shallower VAEs is compared against the benchmark
ResNet-18 and ResNet-34 operated on JPEG encoding. Our
results demonstrate clear performance improvement in terms
of rate-accuracy trade-off, without increasing complexity as
discussed in Sec.|V| In fact, the proposed VAE delivers com-
parable performance as conventional ResNet-34 that requires
21.8M parameters which is twice as many compared to AE-V3
and AE-V,4 models.

V. COMPLEXITY COMPARISON

Simpler encoder models are practically more favorable for
wide deployment on low cost devices, which are severely con-
strained in memory, power, and computation capacity. In this
section, we compare the complexity of the proposed models in
terms of model size (number of parameters), inference speed
and power consumption to the baseline models.

A. Model size comparison

Considering practical constraints in low cost sensors, our
encoder design has significantly fewer number of parameters
in comparison with the typical cloud-based classifier. See
Table [II| for a complexity comparison in terms of number
of parameters for the VAE models used in CIFAR-10 and
ImageNet-1k experiments. Percentages provided in the table
indicates the reduction of the number of parameters compared
to the baseline classifier.

TABLE II
COMPLEXITY COMPARISON OF THE MODELS FOR CIFAR-10 AND
IMAGENET. ALL PARAMETERS ARE IN MILLIONS (M). THE PERCENTAGE
REDUCTION IS CALCULATED COMPARED TO THE BASELINE.

Data set Model Encoder Classifier Baseline
CIFAR-10 AE-V;  0.245 (65%.) 0.372 (47%)) 0.704
AE-V5  0.025 (96%.) 0.687 2%.) ResNet-18
ImageNet-1k AE-V3  0.100 (99%.) 11.35 3%.) 17
AE-Vy  1.550 (87%.) 11.35 3%.) ResNet-18
ImageNet- 1k AE-V3  0.100 (99%.) 11.35 (48%)) 218
AE-Vy 1550 (99%/) 11.35 (48%.|) ResNet-34

All the proposed encoder and classifier models show param-
eters savings compared to their corresponding baseline models.
The achieved parameter savings range from 65%—99% for en-
coders and 2%—48% for classifiers. Such balance of complex-
ity reductions are highly practical for wide IoT deployment
since classifiers at the server side are equipped with more

TABLE 111
SPEED COMPARISON IN TERMS OF “IPS”. THE INFERENCE RESULTS ARE
BASED ON A NVIDIA TITAN-V GPU. THE PROPOSED VAE-BASED
CLASSIFIER IS X 1.5 AND X2.25 FASTER COMPARED TO RESNET-18 AND
RESNET-34 BASELINES.

Model Encode (E) Classifier (CL) E-CL Baseline CL.
AE-V; 1702 20283 (x13.11)  1570(1) 1547
AE-Vs 2114 6524 (x427)  1596(1)  ResNet-18
AE-V3 4691 5122 (x1.57) _24480) 3330
AE-V, 2417 1642(])  ResNet-18
AE-V3 4691 5122 (x2251) 248D 2268
AE-V, 2417 1642(]))  ResNet-34

resources compared to the source encoders at the embedded
devices.

1) Task vs Model size: When comparing the model com-
plexity versus task difficulty, more challenging classification
tasks often require more complex encoders. Note that both
models AE-V3 and AE-V,4 use the same network architecture
as the classifier for ImageNet data set. Furthermore, from
Table[lI] it is clear that the proposed VAE classifiers of AE-V3
and AE-V, have the same complexity in terms of the number
of parameters while AE-V, model uses a relatively more
complex encoder than AE-V3. Since complex encoders with
more parameters are capable of extracting more discriminate
features, Fig. @ shows AE-V, with higher rate-classification
performance than AE-Vj, especially when handling more
challenging tasks such as ImageNet classification with 1000
classes.

We observe similar trend in rate-classification in Fig. [4(b)
for CIFAR-100 data set with 100 classes: A relatively increase
of encoder complexity may achieve better performance than a
simple encoder through feature extraction for classification.
Note in Table |II| that the model complexity in number of
parameters is x 10 smaller for AE-V5 when compared to AE-
V;. However, for relatively simple classification task such as
CIFAR-10 with only 10 classes, a simpler encoder used in
AE-Vj, is stronger to preserve enough features to generate the
latent vector. In fact, even in such case, having a relatively
complex classifier with more parameters to process the ex-
tracted features has some benefit, although the resulting rate-
classification performance improvement is rather modest.

B. Inference speed comparison

We also observe considerable reduction in inference time
by directly classifying on the latent/feature maps without
reconstruction. In Table [III] we list the inference speed in terms
of average images per second (ips) for CIFAR-10 test set and
ImageNet-1k validation set.

The proposed end-to-end-trained AE-V; and AE-V; classi-
fiers record x13.1 and x4.2 speed gains on CIFAR-10 data
set, respectively, compared to the ResNet-18 classifier. Image
patches used at inference have the size of 32x32. Similarly,
our proposed classifier is x1.5 faster in comparison with
the ResNet-18 baseline and x2.25 faster in comparison with
ResNet-34 baseline, on ImageNet-1k data set where image
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TABLE IV
NUMBER OF FLOPS (x10%) COMPARISON FOR THE PROPOSED MODELS.

Model Encoder Classifier Baseline
Input: 32x32x3
AE-V; 0.037 (93%/)  0.005 (99%.|) 0.557
AE-V5 0.013 97%) 0.013 (97%.) ResNet-18
Input: 160x160x3
AE-V3 0.107 (88%/) 1.229 (32%7) 0.928
AE-V4 1.399 (50%1) 1.229 (32%71) ResNet-18
Input: 160x160x3
AE-V3 0.107 (94%.) 1.229 (34%.) 1.873
AE-Vy 1.399 (25%]) 1.229 (34%.|) ResNet-34

patches have the size of 160x160. Since the inference speed
of the encoder for the baseline can vary based on the codec
(JPEG, BPG etc.), we only highlight the inference speed gains
of the classifiers (CL) for fairness. Moreover, due to the
simplicity of the proposed AE-V; and AE-V, encoders, the
inference speed including the encoding time (E-CL column)
surpasses the baseline CL speed calculated even without the
encoding time.

C. Power savings comparison

When measured on the same device (GPU), the number
of floating point operations per second (FLOPS) is directly
proportional to the power consumption. The proposed en-
coders are not only less complex in terms of number of
parameters, but also demand significantly lower number of
arithmetic operations which is an essential feature for IoT,
mobile and wireless applications [52]. In Table [IV|we list the
required computational operations in floating point operations
per second (FLOPs) for the proposed encoders. We indicate
the power savings as a percentage compared to the baseline.

The proposed encoders and classifiers of AE-V; and AE-
V5 models achieve power savings in the range of 93%—97%
compared to ResNet-18 classifier. AE-V3 and AE-V,; models
with larger input image sizes show less power savings in the
classifier compared to the encoder due to the high number of
parameters. However, this low power savings are compensated
by the resource rich servers at the cloud. More importantly,
the proposed encoders display significant power savings that
enable wide deployment of power constrained low-end source
embedded devices. Modern smart phones are capable of pro-
viding over 10x 10° FLOPs [52], [53].

VI. DISCUSSION

A. Joint Compression and Classification with Simultaneous
Reconstruction

Thus far, our proposed joint compression and classification
model allows the classifier to operate directly in latent space.
We bypass the image reconstruction step unlike the im-
age/video systems [13]—[15], [20], [41] that perform classifica-
tion on reconstructed data. In practical systems, however, there
also exist several application scenarios which may require both
autonomous image classification and image reconstruction for
users. For example, RGB images may need to be stored on

the cloud to be retrieved later after successful classification.
These reconstructed and stored RGB images may be required
for other subsequent learning tasks such as object detection
and segmentation trained on RGB images. To accommodate
such potential dual compression objectives of simultaneous
classification and reconstruction, we further modify the current
VAE to incorporate a parallel decoder at the remote node (or
cloud).

Classifier

pe(¥12)

Encoder
g (z]x)

Decoder
X Latent

Fig. 7. Proposed joint classification and compression model with reconstruc-
tion. Encoder transforms input @ to a latent vector z that is optimized for
rate-classification-distortion performance.

As shown in Fig.|7} we include a basic DL-based image de-
coder (D) to the proposed joint compression and classification
model. This framework of joint compression and classification
model with reconstruction (E-CL-D) can be trained similarly
to the proposed VAE. In consideration of the reconstruction
accuracy, we construct a modified loss function of

L=Lc+ BLR +7Lp.

We use the mean square error (MSE) between x and X as the
distortion loss L£p and empirically choose a control parameter
~ smaller than § to favor high classification accuracy over
rate-distortion.

In our experiment, we applied a deep learning decoder
similar to the architecture of [27] with modified numbers
of convolution kernels to reduce the number of parameters.
The DNN decoder has 0.308 M parameters which is only
449% of the ResNet-18 baseline model. We fine-tuned the
training of the proposed joint architecture with the modified
loss. Fig. |8| shows the classification accuracy for E-CL-D
model for CIFAR-10. Note that the classification accuracy
loss due to reconstruction is smaller compared to the rate-
accuracy gain from standard JPEG, JPEG2000, WebP and
BPG codecs. For joint compression classification and recon-
struction experiments on ImageNet-1k, we would freeze the
Encoder-Classifier (E-CL) and PE parameters optimized for
joint compression and classification as described in Eq.
for AE-V3 model and re-trained only the decoder to minimize

3D

TABLE V
RECONSTRUCTION QUALITY FOR CIFAR-10 AND IMAGENET-1K. L IS
THE NUMBER OF QUANTIZATION CENTERS.

Data set L=2 L=3 L=6
PSNR (dB)
CIFAR-10 19.24 21.42 22.84
ImageNet-1k  20.18 21.68 2222
MS-SSIM
ImageNet-1k  81.04 86.73 88.35
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Fig. 8. Classification accuracy vs rate on CIFAR-10 for joint compression-
classification with reconstruction: AE-V5-Recon. Note that rate-accuracy
performance of AE-V3-Recon is still sufficiently good compared to popular
commercial codecs, at lower rates.

the MSE between x and X. A frozen E-CL and PE guarantees
the same rate-classification performance as in Fig. [6] with
reconstruct-ability. Table lists reconstruction PSNR and
MS-SSIM values for the two test data sets at three bpp
settings. The observed lower image quality, observed for the
images reconstructed from the rate-accuracy optimized latents,
is consistent with the reconstruction quality recorded in [20]]
for COCO-2017 [54] data set when the codec is optimized for
joint compression and object detection.

B. Visualization of reconstructed images

As the decoder models, we used modified architectures of
the decoders proposed in [27]. See Fig. [9] ‘up’ indicated
the up-sampling with transposed convolution. Fig. [10(a) and
Fig. [I0(b) show some of the reconstructed images from
‘airplane’ class of CIFAR-10 [49] and ImageNet-1k [51[]. The
reconstructed results look blurry compared to the original
images since the MSE loss is minimized by the average of the
image. We observe significantly higher distortion when only 2
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Fig. 9. Decoder design for AE-Vy and AE-V3.
with transposed convolutions.

‘up’ indicates up-sampling

quantization levels are used during compression even though
the classification accuracy is less compromised (in Fig. [8)) as
required.

C. Robustness to visual corruptions

In this section we demonstrate the robustness of the pro-
posed model against common visual corruptions of images
based on CIFAR-10-C [55] data set. CIFAR-10-C data set
provides corrupted versions of CIFAR-10 [49] test data set
for visual corruptions such as noise, blur, pixelation etc. at 5
different severity levels of each corruption.

We selected the proposed AE-V, VAE model with L = 6
trained on CIFAR-10 data as discussed in Sec. during
inference on CIFAR-10-C test data set. For 9 types of cor-
ruptions namely Fog, Motion Blur, Defocus Blur, Frost,
Pixelation, Elastic transformation, Impulse noise, Gaussian
noise and Shot noise, we repeated the above inference for
classification at 5 severity levels. Figures a)-(c) show the
results. ‘RGB’ baseline corresponds to the inference accuracy
with ResNet-20 classifier trained on CIFAR-10 training set.

We note that AE-V, VAE classifier outperforms ResNet-
20 baseline classifier at inference on images corrupted with
fog, motion blur and defocus blur at 3-5 severity levels by
a significant margin. Further the proposed model performs
slightly worse than the baseline classifier on images corrupted
with impulse, Gaussian and shot noise.

D. Visualization of latent maps

Figs. a), (b) and (c) show the latent maps Z of a sample
image x for L = 6, 3, 2 related to the model AE-V3. For each
sub figure, top-left color image is the original and bottom
left color image is the reconstructed from the latent maps
visualized next to them. We visualize 32 latent maps (each
of size 20 x 20) before (z) and after quantization maps (Z).
Starting from the first row, the z maps are given in every other
row. The corresponding quantized Z is given right below each
z map. Each map is normalized before visualization.

Observe that for each number of quantization centers L, the
quantized maps Z has only L different colors. Some of the Z
maps for L = 6 show clearly identifiable snow leopard figures
implying that high level information of x is preserved during
training and helpful for classification.

E. Implementation details: Effect of (5 adjustment

Recall that the VAE loss of the proposed method for a
sample «x is given by,

Lo.¢(T,Ygt) = Lco.p) (2T, ygt) + BLr(0,p) (2]2)  (32)

where Lg(g,4)(2|x) is the bandwidth of z transmitted over
a network link. We measure the bandwidth (rate) in BPP in
our experiments. The effect of the trade-off parameters g for
CIFAR-10 data set is shown in Fig. [13(a).

In order to achieve optimal rate-classification accuracy
performance at a given rate (r;), we minimize the following
loss instead of the loss given in Eq. (32).

= Lc(6,0) (2|2, ygt)
+ Bmax (ER(97¢)(2\:1:) —

Lo,6(T, Ygt)

r,0)  (33)
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Fig. 10. Examples of (a) CIFAR-10 and (b) ImageNet-1k reconstructed images from the latent space at L =6, 3 and 2. In (b), Q=25 and Q=10 show JPEG
compressed images. We observe significantly higher distortion when only 2 quantization levels are used during compression.

We observed better classification accuracy by this approach
at a rate slightly above the requirement r,. In Fig. [13[b) we
illustrate the loss curves for a selected 5 and an r; value.

VII. FURTHER THEORETICAL EXPLANATIONS
A. Relationship to the Information Bottleneck

In this section, we theoretically derive the relationship
between the proposed VAE framework for classification and
the well-known Information Bottleneck principle [29], [30].
Consider the random variables Y, x and z related according
to a Markov chain as follows.

Y ox Sz (34)
¢

In the context of image classification with auto-encoders Y,
x and z can be viewed as variables corresponding to image
label, image and latent encoding of the image respectively. z
is mapped from x with an Encoder (E) parameterized by ¢.
Hence, we can denote z as z(¢), which is often written as z
for simplicity.

We can write the objective function of the Information
Bottleneck (IB) principle [29], as the following.

max By, v (¢) = 1(2(¢); Y) — fl(x;2(¢)), 20
(35)

I(x;z) is the Mutual Information (MI) between the random
variables x and z. We rewrite this as a minimization objective
to match the above VAE narrative.

m(;n —1(z(¢);Y) + BI(x;2(¢)), B>0 (36)
Following the definition of MI we write,
I(z;Y) = /p(y, z)log p]gz(/?f)dy dz. 37)

In order to track the distribution p(y|z) we employ a
classifier (CL) parameterized by 6 and estimate the con-
ditional label distribution 7g(y|z) as in Eq. (14). Since
KL(p(Y|z)|ne(Y|z)) > 0 we can write the inequality,

/ p(yl2) log p(y|2)dy > / p(yl2)logne(yl2)dy.  (38)
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Fig. 11. Robustness comparison for visual corruptions: fog, motion blur, defocus blur, frost, pixelation, elastic transformation, impulse noise, Gaussian noise,

shot noise on CIFAR-10-C data set.
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(@ L=6 ‘ b L=3 (©)L=2

Fig. 12. Latent maps Z of a sample image x for L = 6, 3 and 2 related to the model AE-V3. For each sub figure, top-left color image is the original and
bottom left color image is the reconstructed from the latent maps visualized next to them. Some of the Z maps for L = 6 show clearly identifiable snow
leopard figures implying that high level information of x is preserved during training and helpful for classification.

We utilize this inequality to bound for I(z;Y) in Eq. (37). following the definition of MI, we write,

I(z;Y) = /p(y,Z)logp(yIZ)dy dz — /p(y) log p(y)dy

I(x;2) = /qu(w,Z)lOg%(ZIw)dz dx
> /p(y,z)logne(yIZ)dy dz +H(Y) (39)

- /q¢(z)logq¢(z)dz. 41)

Leveraging the Markov assumption in Eq. , ply, z,x) =
P(x,Y)qe(2z|x) with the encoder distribution gg(z|x), we can

express the bound in Eq. for I(z; Y) as the following. With the definition of KL divergence, for an arbitrary r(z)

we write the following inequality similar to Eq. (38).
1Y) > [ ply.2,2) g a(yl)de dy dz+ HY)

> /p(m,y)q¢(z|a:) logne(y|z)dx dy dz /%(z) log g (z)dz > /q¢(z)logr(z)dz. (42)
+H(Y) (40)

For the second term of the IB objective given in Eq. (36), We combine Eq. and to obtain an upper bound for
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(a) Effect of 8 (b) Convergence of losses

Fig. 13. (a). CIFAR-10 results for end-to-end compression and classification for different 5 values. Black dash lines connect the points for AE models with
the same [ value. (b). CIFAR-10 average validation losses obtained with Eq. at 8 = 2 and v = 0.6 for AE-V;, L = 3 model. Note the smooth
convergence of the rate Lcy, around 0.6 at higher number of epochs.
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I(x;2).
16x2) < [ 4ol ) og gs(<la)dz da
—/q¢(z) logr(z)dz
/q¢(m z)log T((Z|) )d dx

~ [ aaol= |w>log((zz')dz o @
/ (x, y)q¢,(z|m)log (( |) )d:c dy dz (44)
Eq. follows from Eq. (43) since p(z) = [ p(z,y)dy.

Similar to [56]], we approximate p(x,y) w1th an empirical
distribution based on data samples (x,,y,) € S s.t.,

S|

\5|Z o ()0

Hence the approximated IB loss for minimization can be
written as the following.

p(x,y) 45)

IBX,Z,Y(‘b; 0)
< - /p(fv,y)%(ZIw)lOg ne(ylz)dx dy dz
— H(Y)
+ﬁ/ x,Y)qe(z|z) log (( I) )da: dy dz
(46)
Kl
=5t [ tozlzn) 0z (w212
+B/Q¢. z|@,,) log (()")d} H(Y)
47
&
= (51 21 [ selelen) os mlunl=az
+B/q¢ 2l log E : gdz} H(Y)
(48)

From Eq. to Eq. (48), we replace the arbitrary r(z) with
polzz,).

Using the definition of KL divergence, we re-write Eq.
as the following which is upper bounded by the 3-VAE loss
Lg ¢ for classification.

IBx,z,Y(¢7 6)
|S|

SpA Z{ ] oot

5 KL[CI¢(Z|SCn)7pe(Z|~’En)]} —H(Y)
S|

|S‘ Z{EGd) mn,yn)} H( )

‘mn) IOg 770(yn|z)

(49)

A Similar result has been shown in [56] for image recon-
struction.

B. An alternative problem formulation

Assuming the same setting as we discussed above, we
provide an alternative derivation the loss function for joint
image classification and compression as follows.

We start with the classification cross entropy loss between
the true and estimated label distributions. From Egs. (18)(19),
we can write the cross entropy loss as:

CE,(a(p: o) = = Y _ ply = cl) log pe(y = cl)
cey

= —log pe(Ygt|). (50)

For the setting with an Encoder (E) with the density g4(2z|x),
we have

x?z—>y. (51

0
Considering different instances of z for a given sample x,
Eq. can be re-written to formulate the following problem
to maximize Pg(yg|®) in order to minimize classification
Cross entropy.
rg%)x Egpio (10 (Yet|2)] (52)
Since the density gq(z|x) is not available at the Decoder
(D), we employ a Probability Estimator pg(z|x) to closely

estimate g (z|x). This introduces a constraint to the problem
in Eq. with € > 0 [26], [39].

IE%X qu|x,s [no(ygdZﬂ

st. 0< KL(Qz|x,¢|pz|x,9) <e (53)

This can be re-written as a minimization problem by intro-
ducing a monotonic — log() function.

%ud? —log By, o [16(Yet|2)]
s.t. KL(Gz)x,¢|Pzx,0) < € (54)
According to Jensen’s inequality, we can write,
—log By, o [0 (Yet|2)] < Eq, . o [=log(ne(yet[2))] . (55)

Instead of directly minimizing the optimization problem in
Eq. (54), we can minimize its upper bound as follows.

min B, , [—log(ne (ygt|2))]

s.t. KL(QZ|X,¢|pz|x,9) é € (56)

By re-writing the problem in Eq as a Lagrangian under
KKT [57] conditions for the Lagrangian multiplier 8 > 0, we
write,

]:97¢($’ ygt) = qu\x,qs [_ IOg(WB(ygt|Z))]

+ B [KL(qz|x,4|P21x,0) — €] -

With this we can arrive at the [-VAE loss function for
classification.

(57)

= B, .4 [~ 108(n0 (yge|2))]
+ BKL( o). (58)

Fo.6(T,Ygt) < Lo,p(T, Ygt)
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VIII. CONCLUSIONS

In this work, we propose a VAE-based end-to-end frame-
work for joint compression and classification that au-
tonomously learns on the latent features to efficiently compress
and classify images in a networked Al edge/cloud environ-
ment. Starting from the classification cross entropy loss, we
present the theoretical foundation of the solution from infor-
mation theory perspective to define a rate-classification loss
similar to rate-distortion in image reconstruction. Test results
of our VAE learning networks on CIFAR-10, CIFAR-100, and
ImageNet-1k data sets demonstrate significant improvement of
image classification accuracy at the same bit rate. In particular,
the proposed VAE-based joint compression and classifica-
tion framework demonstrates over 10% and 4% classification
accuracy improvement for CIFAR-10 and ImageNet-1k data
sets respectively, at data rate of 0.8 bpp in comparison with
the popular JPEG standard codec. We also achieve over x3
bandwidth reduction for a given classification accuracy on
the two data sets over JPEG. Extending the optimization
of rate-classification performance of the proposed framework
to address computation complexity is an interesting future
direction to explore.
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