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Abstract—In this work, we analyze the convergence of constant
modulus algorithm (CMA) in blindly recovering multiple signals
to facilitate grant-free wireless access. The CMA typically solves a
non-convex problem by utilizing stochastic gradient descent. The
iterative convergence of CMA can be affected by additive channel
noise and finite number of samples, which is a problem not
fully investigated previously. We point out the strong similarity
between CMA and the Wirtinger Flow (WF) algorithm originally
proposed for Phase Retrieval. In light of the convergence proof of
WF under limited data samples, we adopt the WF algorithm to
implement CMA-based blind signal recovery. We generalize the
convergence analysis of WF in the context of CMA-based blind
signal recovery. Numerical simulation results also corroborate
the analysis.

Index Terms—Constant-modulus algorithm, Wirtinger Flow,
blind signal recovery, optimization.

I. INTRODUCTION

Recent advances in next generation networking technologies
are enabling ubiquitous connection for a broad range of sen-
sors, devices, and processors in developing smart cities, haz-
ard monitoring, and intelligent transportation systems, among
other applications [1]. Generally, wireless networks are based
on either random access (e.g., WiFi) or controlled scheduling
(e.g., cellular). Contention based random access schemes, such
as the CSMA-CA protocol adopted in IEEE 802.11a/g/n/ac,
possess the advantage of simplicity but suffer from lower
spectrum efficiency due to access collision when the number
of active devices is large. Controlled user scheduling based
on centralized access grants can achieve high spectrum ef-
ficiency but requires elaborate network-user interaction and
higher energy consumption. A typical IoT application involves
sporadic communications of small amounts of data between
a significant number of transceivers, triggered by external
events. Such systems are better served by low-latency and
grant-free communications.

In grant-free access, multiple unscheduled signal trans-
missions could collide at receivers [2]. A classical solution
is exploit spread-spectrum for interference suppression and
signal recovery by using near-orthogonal sequences such as
CAZAC sequences, which exhibit high autocorrelation when
synchronized, and low cross-correlations among different se-
quences. Unfortunately, the number of such sequences is lim-
ited. Another approach is to implement joint multi-user signal
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detection at the receiving access station [3], [4]. However,
such receivers require rather accurate channel state information
to mitigate co-channel interference effect, thereby requiring
significant pilot/training overhead for synchronization and
channel estimation.

Hence, existing approaches face at least two challenges in
massive IoT deployment. First, transmitting pilot or training
signals consumes precious device energy and bandwidth re-
sources in large scale IoT deployment. Such extra overhead
can be significant when data packets are short as in IoT
scenarios. Second, to reduce training overhead requires shorter
pilot sequences. However, to accommodate grant free access
for a large number of IoT devices, many orthogonal train-
ing sequences are required. Since the number of available
orthogonal sequences equals to the sequence length, massive
IoT deployment further exacerbate the pilot overhead problem.
Clearly, for IoT applications involving large number of devices
in grant-free applications, the burden on both spectrum and
power [5] strongly motivates the investigation and deployment
of blind signal receivers.

Thus, blind signal recovery techniques deserve a re-
examination for its ability to support grant-free access and
its potential to improve IoT power and bandwidth efficiency.
Blind signal recovery such as blind equalization and blind
source separation [6] does not require known pilots or pream-
bles for channel probing. By exploiting high-order statistics
or known characteristics of source signals, receivers can re-
cover source signals directly from outputs of unknown linear
dynamic channels.

The Constant Modulus Algorithm (CMA) by Godard [7] is
perhaps the best known blind algorithm owing to its simplicity
and practical effectiveness [6]. CMA has also been shown as
global convergent in noiseless scenarios under full rank chan-
nel conditions [8]. CMA minimizes a non-convex cost function
which traditionally uses stochastic gradient descent iteration.
Other works have further proposed different variations to the
basic stochastic gradient descent algorithm. However, one of
its major issues in its practical applications is the presence of
local minima in the constant modulus (CM) cost function as
a result of additive channel noise [9], [10]. The convergence
properties of such stochastic gradient descent algorithms have
not been fully understood under limited samples and additive
channel noise [6], [11], [12].

An alternative approach is to minimize the CM cost is to
transform the CM cost minimization into a convex optimiza-
tion problem via semidefinite relaxation [13]–[15]. However,
the semidefinite relaxation requires lifting of parameter space
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to the extent that the problem size grows drastically. For
multiple users and large number of parameters, such convex
CMA algorithms become rather impractical in many scenar-
ios. Furthermore, projection from high-dimensional positive
semidefinite matrix back to the original parameter space via
rank 1 decomposition remains difficult and elusive [16].

Another alternative line of attack tries to solve CMA prob-
lems analytically [17], [18]. These solutions and its variants
[19], [20] are not iterative with direct analytical solutions.
They tend to be more complex in general, and usually re-
quire stricter assumptions, such as constant modulus of the
modulation symbols. There are also multistage schemes [21],
that depend heavily on the estimation error being close to the
MMSE estimate in the first stages; otherwise the error would
accumulate substantially through different stages [22].

In recent years, there has been a strong wave of renewed
interest in developing faster and more robust algorithms to
directly solve the originally nonconvex optimization problems.
Among a number of successful outcomes are the phase re-
trieval [23], [24], matrix completion [25], [26], and blind
demixing of multiple sources [27], among others. Direct
solutions are attractive for several reasons. First, they do
not require parameter lifting into a higher dimensional space
that makes larger size problems such as multiple source
recovery prohibitive. Second, they do not require the additional
projection back into the original parameter space and tend
to provide more consistent results. Third, their performance
analysis is more direct and offers better insight in terms of
convergence characteristics. They do not require large problem
size or approximate relaxations. Thus, these techniques can be
better suited for grant-free access in resource limited networks.

In this paper, we consider a prominent non-convex algorithm
known as Wirtinger Flow (WF) for minimizing the constant
modulus cost. The WF algorithm has shown strong promises
recently in the literature related to the blind signal recovery
problem, both in terms of single source or multiple sources
recovery. Our major contributions in this work are as follows.
We demonstrate that the WF algorithm in the context of CMA
is in fact a generalization of the phase retrieval problem that
has recently gathered a lot of interest [23], [24]. In fact, we can
formulate the CM minimization as Phase Retrieval based on
mean amplitude information. Another interesting observation
is that the WF algorithm for CM cost minimization in fact
coincides with the previously proposed “normalized” CMA or
NCMA. The convergence properties of NCMA have only been
addressed via simulation examples. Our major contribution lies
in the analysis of WF to clearly characterize the convergence
conditions of WF-based CMA and identify explicit choices of
the iteration stepsize.

We organize our manuscript as follows. Section II presents
the signal model for blind recovery problem and the formula-
tion for minimization of constant modulus cost. We shall dis-
cuss the basic properties of the CM cost functions. Section III
introduces the proposed WF-based optimization algorithms for
the single-source and multi-source recovery problem. We show
that the WF algorithms in fact coincide with NCMA. Sec-
tion IV provides detailed theoretical convergence properties
and complexity analysis of the proposed algorithms. Section V

presents numerical simulations in different scenarios, and
finally Section VI concludes the work.

Notations: In the following, vectors and matrices will be
denoted with small and capital boldface letters, such as z and
Z respectively. Complex conjugation is denoted with z. The
transpose, element-wise complex conjugation and conjugate
transpose are denoted by zT, z and zH, respectively. For a
complex scalar a, we use Re(a), Im(a), |a| and ∠(a) to denote
its real part, imaginary part, magnitude and angle, respectively.
The Euclidean norm of vectors and spectral norm of matrices
is denoted by ∥ · ∥. diag(z) represents a diagonal matrix that
uses elements of vector z on its diagonal, and we define the
operator ddiag(Z) which yields a diagonal matrix which only
retains the diagonal elements of Z. E{·} denotes expectation.
Finally, 1[expr] is the indicator function, that is equal to 1 if
expr is true, and 0 otherwise.

II. SYSTEM MODEL

A. Blind Signal Recovery and Demixing

We consider the signal recovery of multiple users in an
access group in a grant-free access system, as depicted in
Fig.1. In particular, all potential uplink users in each access
group have acquired timing such that their uplink signal
transmission would occupy a given set of slots. The users
within each access group can randomly decide to transmit
within their allocated channel resources. Appropriate coding
and rate-matching is utilized by all source nodes to have
equal number of data symbols K within each access burst.
Furthermore, we assume that with very high probability that
the number of single-antenna active nodes L shall fall below
the number of diversity antennas M at the receiver node.
In particular, the receiver node does not necessarily know
L. Since the receiver recovers multiple user signals during
blind demixing without prior knowledge of their identities, the
receiver can utilize user-ID scrambled CRC to check which
recovered user signal belongs to which user, similar to the
blind detection of PDCCH by users using RNTI-scrambled
CRC in LTE [28], [29].

Thus, we define the received signal vector xk, the trans-
mitted signal vector sk, and the flat fading channel H ,
respectively, as

xk =

 x1[k]
...

xM [k]

 , sk =

s1[k]...
sL[k]

 , H =

 h11 · · · h1L

...
. . .

...
hM1 · · · hML

 .

(1)

Then the received signal vector can be written as

xk = Hsk + nk, (2)

where the MIMO channel matrix H ∈ CM×L is assumed to
have full column rank (with L ≤ M ) and nk ∈ CM is the
vector of AWGN in that resource block, following the same
convention as Eq.(1).

In blind demixing or blind signal recovery, we are interested
in finding vectors wj ∈ CM , j ∈ {1, . . . , J} that allow the
recovery of J sources with minimal interference, that is,

yj [k] = wH
j xk ≈ ŝℓj [k], for source ℓj ∈ {1, . . . , L}, (3)
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modulus source signals, e.g. 16-QAM, the CM cost is akin to
phase retrieval based on an “average magnitude”.

This similarity stimulates this study on the link between op-
timization methods for phase retrieval and the CMA problem.
However, there are some fundamental differences: (A) In phase
retrieval, there is a known reference signal rk as ground truth
which is fully exploited in its convergence analysis. However,
in CM-based demixing we only have a desired “average
magnitude” R2. (B) Phase retrieval has only one solution (up
to common rotations), where in blind demixing, there may be
many ideal demixer vectors to recover multiple source signals
in different order (up to common rotations). (C) The sampling
vectors ak are chosen typically as Gaussian by users in phase
retrieval. In CMA, xk is (noisy) channel output that is not
under user control and has a more complex distribution. (D) In
phase retrieval, the signal z typically does not have additional
constraints, whereas in CMA, the parameter vector w does
not have other constraints but the source signals often do.

B. Wirtinger Flow in Phase Retrieval
For such a problem formulation, the Wirtinger Flow (WF)

presented in [23] has received considerable attention as it
guarantees convergence to a solution via gradient-descent
with only O(M logM) measurements with Gaussian sampling
vectors, obtaining ϵ-accuracy within O(KM2 log ϵ) iterations.
This algorithm has received significant research attention and
several works have improved WF for the phase retrieval
problem [31]–[33] or adapted WF for seemingly different and
unrelated optimization problems [27], [34].

In more depth, WF is a two stage approach consisting
in spectral initialization and gradient descent updates. The
latter is characterized by the notion of Wirtinger calculus
(also known as CR-calculus [35]). The gradient of a real
value function p(z) with respect to a complex variable vector
z = zr + izi can be simply viewed as a complex vector

∇zp(z) =
∂p(z)

∂zr
+ i

∂p(z)

∂zi
. (11)

The same principle applies when deriving Hessians.
Spectral initialization yields (with high probability) an ini-

tial iterate for gradient descent that is located within the basin
of attraction of the ground truth, that is, a neighborhood of the
ground truth with defined convexity and smoothness. Defining

Ra =
1

K

K∑
k=1

rkaka
H
k , (12)

the initial iterate is a properly scaled eigenvector of Ra

corresponding to its leading eigenvalue. This initial iterate is
then highly correlated with ground truth, and has been proven
to be close to the ground truth with high probability [23].

C. Wirtinger Flow for Single Source Recovery (SSR)
We now reformulate WF for our CM-based source recov-

ery problem. Using CR-calculus, the gradient of the CMA
objective function f can be defined as

∇wf(w) =
1

K

K∑
k=1

(
|xH

kw|2 −R2

)
xkx

H
kw, (13)

and the gradient descent rule is

wt+1 = wt − µ

K∥wt∥2
K∑

k=1

(
|xH

kw
t|2 −R2

)
xkx

H
kw

t, (14)

where the stepsize µ > 0 could be constant or vary, either as a
predefined function of the iteration t [23] or using an adaptive
approach such as backtracking [36], among others.

This gradient rule, which notably shows a normalization
factor, has in fact been previously introduced for the CM
problem as Normalized CMA [37]–[39]. The idea is similar
to normalized LMS by adjusting the stepsize in to avoid
parameter divergence. Nevertheless, existing works have not
thoroughly analyzed how to select the stepsize µ in NCMA,
often resorting to trial-and-error. By connecting CMA to WF,
we aim to define the stepsize selection according to the local
geometry of CMA, thereby simplifying implementation and
improving the algorithm convergence rate. We call this new
approach WF-based Constant Modulus Algorithm or WF-
CMA.

Applying the spectral initialization of [23] for blind source
recovery yields the covariance matrix of the received signal
vectors xk (corresponding to the known observations) scaled
by the constant R2 (corresponding to desired outcomes):

1

K

K∑
k=1

R2xkx
H
k = R2Rx. (15)

The initial iterate for gradient descent is then chosen as
w0 = ηv̂1, where v̂1 is the normalized eigenvector corre-
sponding to the largest eigenvalue of R2Rx, and the magni-
tude η is equal to

η =

√
M
∑

k R2∑
k ∥xk∥2

=

√
MKR2∑
k x

H
kxk

. (16)

Algorithm 1 summarizes the steps for WF-CMA single
source recovery.

Algorithm 1 WF-CMA for Single Source Recovery

Given: xk ∈ CM , k ∈ {1, . . . ,K}, number of iterations
T and stepsize µ
A) Spectral Initialization:

1: Compute η =

√
MKR2∑
k ∥xk∥2

2: Let v̂1 be the normalized eigenvector corresponding to the
largest eigenvalue of R2

K

∑K
k=1 xkx

H
k

3: Set w0 = ηv̂1

B) Gradient Descent:
4: for t = 0, . . . , T − 1 do

5: wt+1 = wt− µ

K∥wt∥2
K∑

k=1

(
|xH

kw
t|2−R2

)
xkx

H
kw

t

6: end for

D. Wirtinger Flow for Multiple Signal Recovery (MSR)

In the case of multiple signal recovery, we can apply the
same principles. Using the sample covariance matrix in the
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cost function of (8), gradients with respect to each demixer
vector wj are

∇wj
g =

1

K

K∑
k=1

(
|xH

kwj |2 −R2

)
xkx

H
kwj

+ γ0

J∑
i ̸=j

Rxwiw
H
i Rxwj , (17)

and the new update rule is

wt+1
j = wt

j −
µ

∥wt
j∥2

∇wjg(w
t
1, . . . ,w

t
J). (18)

Analogously, spectral initialization in this case is an ex-
tension of the single source case, and considers the J unit
eigenvectors corresponding to the J largest eigenvalues of Rx:

w0
j =

√
λ−1
j v̂j , j ∈ {1, . . . , J}, (19)

where λj is the j-th leading eigenvalue of Rx and v̂j is its
corresponding eigenvector, normalized to unit magnitude.

Algorithm 2 WF-CMA Multiple Source Recovery

Given: xk ∈ CM , k ∈ {1, . . . ,K}, number of sources to
recover J , number of iterations T and stepsize µ
A) Spectral Initialization:

1: Compute the J leading eigenvalues λj and corresponding
normalized eigenvectors v̂j of R2

K

∑K
k=1 xkx

H
k

2: Set w0
j =

√
λj v̂j ∀j = {1, . . . , J}

B) Gradient Descent:
3: for t = 0, . . . , T − 1 do
4: for j = 1, . . . , J do
5: wt+1

j = wt
j −

µ

∥wt
j∥2

∇wjg(w
t
1, . . . ,w

t
J)

6: end for
7: end for

It is important to note that, depending on the data and
channel, the initialization scheme for MSR might be ill-defined
as the data samples might lead to a degenerate case that it is
not possible to separate some sources [40]. Nevertheless, when
considering the noiseless scenario (i.e., removing AWGN noise
from the received signal vectors), the received signals are
linear combinations of independent transmitted signals under
independent Rayleigh channels. Thus, when K → ∞, Rx

converges to the scaled expected value of xxH thanks to the
Central Limit Theorem. This implies that, when K is large
enough, the leading eigenvectors of Rx will align with the
leading eigenvectors of E{xxH}, up to a scaling factor.

IV. THEORETICAL CONVERGENCE ANALYSIS

A. Convergence Guarantee of CMA

The global convergence properties of CMA for PAM and
QAM input signals in noiseless scenarios are well known
[6, Chapters 4, 7]. The presented CMA-based single source
recovery corresponds to a particular case of the MIMO-CMA
blind equalizer, where the MIMO channel has zero ISI and
only multi-user interference is to be suppressed. Thus, the

mean CM cost of Eq.(4) has been shown to only possess
global minima, each of which corresponds to the successful
recovery (demixing) of one source signal with a phase rotation
in the noiseless case if the channel matrix H has full column
rank. In other words, if H has full column rank, then the
minimization of the mean CM cost leads to guaranteed global
convergence in noiseless scenarios, regardless of initial con-
ditions [41]. Moreover, if H rank deficient a solution of the
mean CM cost is close to optimal Wiener solutions [42], which
further highlights the applicability of CMA-based blind signal
recovery in the presence of multiple sources. The resulting
combiner will exhibit some bounded interference, which is
tolerable in most practical implementations. Nevertheless, we
shall consider only the case when H has full-column rank that
guarantees global convergence for blind signal recovery.

We do not require the number of sources L to be known at
any point. In the case that the receiver tries to recover more
sources than the existing ones, i.e. J ≥ L, the receiver would
obtain L demixers that recover signals and J − L demixers
that only recover noise. In any case, the receiver can perform a
rank estimation procedure if it needs to estimate L [43], [44].

When considering noisy channels, it is well known that
channel noise introduces additional local minima to the mean
CM cost function [6]. Thus, even carefully selected stepsize
(based on trial and error) cannot guarantee convergence to
global minima. Thus, new results that can reveal better con-
vergence properties in stepsize selection are of special interest.

Given the known properties of the mean CM cost, what
remains unclear is the convergence of CMA under finite
data samples and additive noise. In this scenario, we aim to
determine convergence properties for CM-based demixing by
leveraging the convergence analysis of WF.

B. Adapting Wirtinger Flow to CMA

The convergence properties of the Wirtinger Flow phase
retrieval have been proven in [23] for Eq.(10). However, the
new WF-CMA exhibits two special characteristics different
from the original WF in phase retrieval:

• The spectral initialization proposed for WF in phase
retrieval [23] yields an eigendecomposition of the sam-
ple covariance matrix that is highly correlated with the
ground truth in expectation, and the initial iterate is
provably close to the ground truth to guarantee conver-
gence. However, the same initialization in CMA-based
SSR does not readily provide an initial estimate that is
highly correlated with the problem solutions.

• The sampling vectors ak are assumed to either have
a standard complex normal distribution, i.e. ak ∼
CN (0, I), or be admissible distributions for coded
diffraction patterns (CDPs). However, the received signal
vectors xk in CMA given by Eq.(2), are linear mixtures
of independent source signals by the channel matrix H ,
plus additive white Gaussian channel noise. They do not
correspond in general with these sampling vector models,
or even with those from recent work using subgaussian
variables [45]. Moreover, the elements of xk are linear
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mixtures of independent QAM signals which are non-
Gaussian, and are not mutually independent, a distinct
issue that makes convergence analysis difficult.

We first examine spectral initialization. Consider the noise-
less case and assume all source signals have equal symbol
energy Es without loss of generality. This assumption can
be made as the different symbol energies of the sources Es,ℓ

can be included in the channel as H = H ′D1/2, with H ′

modeling only the channel fading across sources and receiver,
and D = diag(Es,1/Es, . . . , Es,L/Es).

Taking expectation on the scaled sample covariance matrix
in Eq.(15) for initialization:

E{R2Rx} =
R2

K

K∑
k=1

HE{sksHk}HH = R2EsHHH, (20)

which depends on the channel but is not explicitly dependent
on the solutions. From (3), the global CMA solutions satisfy

ŵHHsk = eiφsℓj [k], ℓj ∈ {1, . . . , L}, θ ∈ [0, 2π]. (21)

Thus, the optimal demixers are not directly extractable from
the sample covariance matrix. Therefore, our work shall not
analyze this initialization effect on WF-CMA. Nevertheless,
we will show later in experiments that such initialization
appears to benefit WF-CMA convergence. Thus, we still
include this spectral initialization for CMA in Algorithm 1.

With respect to the dependent elements of xk, recall that
the fading channel matrix has full column rank. Under this
assumption, we can rewrite

y[k] = wHxk = wHHsk +wHnk = qHsk + n̆[k], (22)

where q = HHw is the combined (channel plus demixer)
parameter vector, and n̆k is demixer output noise. Given full
column rank H , we can study the WF-CMA in the combined
parameter space q, which directly interacts with independent
source signals. This parameter transformation mitigates the
challenge posed by dependent signals in the WF algorithm.
We now study the convergence of WF in the q domain since
the q space can be fully spanned by adjusting w.

Onwards, our approach to specifying the local convergence
properties of WF is to characterize the local behavior of the
CM cost function in the q domain, in which we describe the
gradient and Hessian of the CM-cost in the neighborhood of
a ground truth. We show that the local geometry near each
ground truth admits convergence to a global minimum using
gradient-descent based WF algorithm.

C. Convergence of WF-CMA for single source recovery

In the following, and without loss of generality, we assume
that all sources use the same square QAM constellation of size
Q with equally likely symbols. These correspond to discrete
finite sets, and as such, signals of each source at each time k
are bounded random variables, and by definition, subgaussian
random variables [46, Definition 5.7]. In other words, the
signal vectors sk are supported on an exponentially large
set of size QL, and thus are subgaussian random vectors for
the purposes of concentration of measure and non-asymptotic

approaches [47, Section 3.4.2]. We will use this fact to support
our theoretical analysis.

We also denote the second moment, fourth moment, and
kurtosis of the transmitted signals as

m2 = E{|s[k]|2}, m4 = E{|s[k]|4}, κ = m4 − 2m2
2 < 0. (23)

Additionally, as QAM constellations are discrete and
bounded, with probability 1 we have ∀ k ∈ {1, . . . ,K}∣∣sℓ[k]∣∣ ≤√ 3m2

Q− 1
(
√
Q− 1) = B ⇒ ∥sk∥ ≤ B

√
L. (24)

We need some definitions. Let z be a solution to the CM
cost in the q-domain, i.e. z minimizes f(·). Also, note that as
z is related only to the channel H as implied in Eqs.(21) and
(22), is independent of the signals sk. For any vector q ∈ CL

we define

dist(q, z) = min
ϕ∈[0,2π]

∥q − eiϕz∥. (25)

We define a set of solutions due to a rotation factor ϕ as

P := {eiϕz : ϕ ∈ [0, 2π]} (26)

and the set of vectors within ϵ distance from P is

E(ϵ) := {q ∈ CL : dist(q, P ) ≤ ϵ}. (27)

For any q ∈ CL, we define the alignment phase ϕ(q) as

ϕ(q) := argmin
ϕ∈[0,2π]

∥q − eiϕz∥ = ∠(zHq), (28)

such that
dist(q, z) = ∥q − eiϕ(q)z∥. (29)

By defining

A(q) =
1

K

K∑
k=1

|sHkq|2sksHk , (30a)

B(q) =
1

K

K∑
k=1

(sHkq)
2sks

T
k , S =

1

K

K∑
k=1

sks
H
k , (30b)

the Wirtinger Hessian of the cost function f is simply

∇2f(q) =

[
2A(q)−R2S B(q)

B(q) 2A(q)−R2S

]
. (31)

We now present our main convergence result for single
source recovery.

Theorem 1. Consider the signal vectors sk ∈ CL with i.i.d.
elements from a square QAM constellation of size Q. Let z be
a solution of the CMA problem with cost function (5). Addi-
tionally, let α ≥ 3+ 80 · 1[Q ̸= 4], β ≥ 235+ 724 · 1[Q ̸= 4],
ϵ = (10B

√
L)−1 and δ = 0.01. There exist C1 > 0 and c1 > 0

such that, if the number of measurements K ≥ C1L, then for
all q ∈ E(ϵ), the cost function f(·) satisfies the generalized
regularity condition

Re
(〈

∇f(q)−∇f(eiϕ(q)z), q − eiϕ(q)z
〉)

≥ 1

α
dist2(q, z) +

1

β

∥∥∇f(q)−∇f(eiϕ(q)z)
∥∥2 (32)
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with probability of at least 1 − 6e−c1K . Furthermore, by
selecting a stepsize 0 < µ ≤ 2/β, if qt ∈ E(ϵ), then the
update of Algorithm 1

qt+1 = qt − µ∇f(qt) (33)

leads to qt+1 ∈ E(ϵ) and contraction

dist2(qt+1, z) ≤
(
1− 2µ

α

)
dist2(qt, z). (34)

The proof of Theorem 1 is an extension and modification of
the original Wirtinger Flow proof [23], but considering sub-
gaussian signal vectors (QAM constellations) and an average
modulus, as the actual magnitude samples are unknown. The
steps of the proof are summarized below:

1) Establishing concentration of measure of the Hessian
and deriving related scalar inequalities. In Lemma 1,
we show that with high probability, the WF-CMA Hes-
sian is close to its expectation given sufficient samples.

2) Characterizing the local geometry of the CMA objec-
tive function. We show that the cost function has strong
convexity and smoothness in the ϵ-vicinity of the ground
truth, which are respectively proven in Lemmas 2 and 3
based on the concentration of Hessian and the resulting
inequalities. These results describe the geometry of the
cost function in the neighborhood of any local minimum,
which are known to correspond to global minima in
noiseless CMA-based equalization.

3) Proving that the WF-CMA update rule is a contrac-
tion. In Lemma 4, we finally show that the update rule
is a contraction with geometric rate within the basin of
attraction E(ϵ).

We first tackle the concentration of measure of the Hessian
of f(·) in the following lemma.

Lemma 1 (Concentration of the Hessian). Let z be a solution
of (5) and independent of the signal vectors sk under the setup
of Theorem 1, and δ > 0. There exist C1(δ) > 0 and c1(δ) > 0
such that, if K ≥ C1(δ)L, then∥∥∇2f(z)− E{∇2f(z)}

∥∥ ≤ δ (35)

holds with probability of at least 1− 6e−c1(δ)K .

Proof. Refer to Appendix B for details. ■

The local geometry of the cost function can be characterized
using both lemmas below. Combined, they yield inequality
(32). In particular, Lemma 2 describes the strong convexity of
the cost function, and Lemma 3 proves the cost function is
well behaved near local optimizers.

Lemma 2 (Local Curvature Condition). Under the conditions
of Lemma 1, let α ≥ 3 + 80 · 1[Q ̸= 4], ϵ = (10B

√
L)−1 and

δ = 0.01. Then, for all vectors q ∈ E(ϵ), the cost function
f(·) satisfies

Re
(〈

∇f(q)−∇f(eiϕ(q)z), q − eiϕ(q)z
〉)

≥
( 1
α
+

2m2
2 −R2m2 − δ

19

)
dist2(q, z)

+
1

20K

K∑
k=1

∣∣∣sHk (q − eiϕ(q)z)
∣∣∣4. (36)

Proof. See Appendix C. ■

Lemma 3 (Local Smoothness Condition). Under the condi-
tions of Lemma 1, let β ≥ 235 + 724 · 1[Q ̸= 4], ϵ =
(10B

√
L)−1 and δ = 0.01. Then, for all vectors q ∈ E(ϵ),

the cost function f(·) satisfies
1

β

∥∥∇f(q)−∇f(eiϕ(q)z)
∥∥2

≤ 2m2
2 −R2m2 − δ

19
dist2(q, z)

+
1

20K

K∑
k=1

∣∣∣sHk (q − eiϕ(q)z)
∣∣∣4. (37)

Proof. See Appendix D. ■

Finally, based on the local behavior of the cost function, we
establish the contraction of the iterative rule of Algorithm 1.

Lemma 4 (Contraction of Update Rule). Under the conditions
of Theorem 1, consider 0 < µ ≤ 2/β and qt ∈ E(ϵ). Using
the update rule of Algorithm 1,

qt+1 = qt − µ∇f(qt), (38)

we have that qt+1 ∈ E(ϵ) and contraction

dist2(qt+1, z) ≤
(
1− 2µ

α

)
dist2(qt, z). (39)

Proof. This proof follows [23, Lemma 7.10], as our problem
also has non-unique global solutions. ■

D. Convergence for Multiple Source Recovery

Recall that our cost function for MSR is a simpler version of
the one in [41], which has been shown to exhibit global conver-
gence properties under noiseless full rank channel conditions.
Thus, in a way similar to the SSR case, we will describe the
local geometry of the CM cost for MSR and show how the WF
algorithm recovers source signals with high probability. For
full column rank channel matrix, we can use the overall system
parameter space as in Eq.(22) by introducing q = [qT

1 . . . qT
J ]

T

as the aggregation of the J demixers:

yj [k] = wH
j xk = qH

j sk + n̆j [k]. (40)

Thus, the cost function is

g(q) =

J∑
j=1

f(qj) + γ0

J∑
j=1

J∑
i ̸=j

∣∣qH
i Sqj

∣∣2 (41)

where S is the sample covariance matrix defined in Eq.(30b).
For the MSR proofs, we need to generalize the previous

definitions. Let z = [zT
1 . . . zT

J ]
T ∈ CJL be a solution that

minimizes g(·) and is independent of the signals sk. For any
vector q ∈ CJL,

dist(q, z) =

( J∑
j=1

min
ϕ∈[0,2π]

∥qj − eiϕzj∥2
) 1

2

. (42)

We define the set of all vectors that differ from the solution
by a rotation factor in each demixer as

P :=
{
[eiϕ1zT

1 . . . eiϕJzT
J ]

T : ϕj ∈ [0, 2π] ∀j ∈ {1, . . . , J}
}
.

(43)
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The sets of vectors close to P and Pi are

E(ϵ) := {q ∈ CJL : dist(q, P ) ≤ ϵ}, (44)

and, for any vector q ∈ CJL we define the phases ϕi(q) as

ϕj(q) := ϕ(qj) = argmin
ϕ∈[0,2π]

∥qj − eiϕzj∥ = ∠(zH
j qj) (45)

such that

dist(q, z) =

( J∑
j=1

∥qj − eiϕ(qj)zj∥2
) 1

2

. (46)

The Wirtinger Hessian of the cost function g is

∇2g(q) = Bdiag
({

∇2f(qj)
}J
j=1

)
+ γ0

 G1(q) · · · H1J(q)
...

. . .
...

HJ1(q) · · · GJ(q)

 (47)

where Bdiag() constructs a block diagonal matrix out of the
matrices

∇2f(qj) =

[
2A(qj)−R2S B(qj)

B(qj) 2A(qj)−R2S

]
. (48)

A(qj), B(qj), and S have been defined in Eq.(30) and

Gj(q) =

[
Cj(q) 0

0 Cj(q)

]
, Cj(q) =

J∑
i ̸=j

Sqiq
H
i S. (49)

Furthermore, we have

Hji(q) =

[
Eji(q) Fji(q)

Fji(q) Eji(q)

]
,

Eji(q) = qH
i SqjS, Fji(q) = Sqiq

T
j S

T. (50)

We now introduce the convergence analysis of Algorithm 2.

Theorem 2. Consider signal vectors sk ∈ CL with i.i.d
elements from a square QAM constellation of size Q. Let
J ≥ 2 and z be a solution to the MSR CMA problem with
cost function (8). Additionally, let α ≥ 4 + 223 · 1[Q ̸= 4],
β ≥ 730 + 267(J − 1) +

(
1234 + 127(J − 1)

)
· 1[Q ̸= 4],

ϵ = (10JB
√
L)−1, γ0 = 1 and δ = 0.001. There exist C2 > 0

and c2 > 0 such that, if the number of samples K ≥ C2L, then
for all q ∈ E(ϵ), the cost function g(·) satisfies the generalized
regularity condition

J∑
j=1

Re
(〈

∇jg(q)−∇jg(e
iϕ(qj)z), qj − eiϕ(qj)zj

〉)
≥ 1

α
dist2(q, z) +

1

β

J∑
j=1

∥∥∇jg(q)−∇jg(e
iϕ(qj)z)

∥∥2
(51)

with probability of at least 1 − 12e−c2K . Furthermore, by
selecting a stepsize 0 < µ ≤ 2/β and qt ∈ E(ϵ), the MSR
WF-CMA updates from Algorithm 2

qt+1
j = qt

j − µ∇jg(q
t) (52)

will lead to qt+1 ∈ E(ϵ) and contraction

dist2(qt+1, z) ≤
(
1− 2µ

α

)
dist2(qt, z). (53)

The proof of Theorem 2 follows a similar approach as proof
of Theorem 1, with requisite modifications to account for the
additional terms in the cost function g(·), i.e. the multiple
CM costs for each demixer and the pairwise covariances of
demixers in Eq.(41). To summarize:

1) Establish concentration of measure for the MSR
Hessian. Lemma 5 proves that the MSR Hessian is also
close to its expected value with high probability.

2) Describe local geometry of the MSR cost function.
We show that the MSR cost function exhibits strong
convexity and smoothness in the ϵ-vicinity of the ground
truth. These properties are proven in Lemmas 6 and 7
by way of Lemmas 1, 2, 3 and 5.

3) Prove that the MSR update is a contraction. This
is shown in Lemma 8 for iteration within the basin of
attraction E(ϵ).

The detailed proofs of the following lemmas are omitted for
brevity, and can be found with our supplemental material [48].

Lemma 5 (Concentration of the MSR Hessian). Let z be a
solution to (8) independent of the signal vectors sk, under the
setup of Theorem 2. Then, there exists C2 > 0 and c2 > 0
such that, if K ≥ C2L, then

∥∥∇2g(z)− E{∇2g(z)}
∥∥ ≤ δ (54)

holds with probability of at least 1− 12e−c2K .

Lemma 6 (MSR Local Curvature Condition). Under the
conditions of Lemma 5, let α ≥ 4 + 223 · 1[Q ̸= 4],
ϵ = (10JB

√
L)−1, γ0 = 1 and δ = 0.001. Then for all

vectors q ∈ E(ϵ), the cost function g(·) satisfies

J∑
j=1

Re
(〈

∇jg(q)−∇jg(e
iϕ(qj)z), qj − eiϕ(qj)zj

〉)
≥ 1

α
dist2(q, z) +

2m2
2 −R2m2 − δ

19
dist2(q, z)

+
1

20K

K∑
k=1

J∑
j=1

∣∣∣sHk (qj − eiϕ(qj)zj)
∣∣∣4

+ γ2
0

J∑
j=1

J∑
i ̸=j

∣∣(qi − eiϕ(qi)zi)
HS(qj − eiϕ(qj)zj)

∣∣2.
(55)

Lemma 7 (MSR Local Smoothness Condition). Under the
conditions of Lemma 5, let β ≥ 730 + 267(J − 1) +

(
1234 +

127(J − 1)
)
· 1[Q ̸= 4], ϵ = (10JB

√
L)−1, γ0 = 1 and

δ = 0.001. Then for all vectors q ∈ E(ϵ), the cost function
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g(·) satisfies

1

β

J∑
j=1

∥∥∇jg(q)−∇jg(e
iϕ(qj)z)

∥∥2
≤ 2m2

2 −R2m2 − δ

19
dist2(q, z)

+
1

20K

K∑
k=1

J∑
j=1

∣∣∣sHk (qj − eiϕ(qj)zj)
∣∣∣4

+ γ2
0

J∑
j=1

J∑
i ̸=j

∣∣(qi − eiϕ(qi)zi)
HS(qj − eiϕ(qj)zj)

∣∣2.
(56)

Lemma 8 (Contraction of MSR Update Rule). Under the con-
ditions of Theorem 2, consider qt ∈ E(ϵ) and 0 < µ ≤ 2/β.
Using the update rules of Algorithm 2,

qt+1
j = qt

j − µ∇jg(q
t), (57)

we have that qt+1 ∈ E(ϵ) and contraction

dist2(qt+1, z) ≤
(
1− 2µ

α

)
dist2(qt, z). (58)

E. Computational Complexity

The complexity of our algorithm lies in its initialization, its
iteration, and number of iterations.

1) The initialization step is dominated by the computation
of sample covariance matrix Rx, whose complexity is
of O(M2K). Computing the largest eigenvector of Rx

typically has a cost of O(M2) [23].
2) The iteration cost is dominated by the products xkx

H
kw,

whose complexity is of O(M2K). Other operations in-
cluding scalar multiplications and divisions are of O(M)
or O(MK) over sample-related quantities. Therefore,
the iteration cost becomes dominant over the initializa-
tion cost after a few iterations.

The same analysis applies to multiple signal recovery with
J sources. Succinctly, each operation repeats J times, as now
there are J gradients. Therefore, the dominant cost of the
multiple signal recovery variations for both algorithms are
increased by a factor of J , and the resulting total cost is J
times than the single source recovery case. Table I summarizes
the complexity of both proposed algorithms, where T is the
number of iterations in each case.

TABLE I: Computational complexity of proposed algorithms.

Iteration cost Total cost
WF-SSR O(M2K) O(M2KT )
WF-MSR O(JM2K) O(JM2KT )

V. SIMULATION RESULTS

In our simulation tests, we consider a grant-free access
scenario as described in Eqs.(1) and (2), in which there
are L sources each sequentially transmitting K indepen-
dent QAM symbols with normalized average energy. The
receiver has M antennas and aims to recover J distinct
sources. A stationary Rayleigh channel H has i.i.d. elements

Hml ∼ N (0, 0.5) + iN (0, 0.5). The channel noise vector nk

has i.i.d. and circularly symmetric complex normal elements
nm[k] ∼ CN (0, σ2

w). To evaluate the recovery efficacy, we
measure the total interference to signal (power) ratio TISR for
each recovered source [6], defined as

TISRj =

∑
i |qj,i|2 −maxi |qj,i|2

maxi |qj,i|2
, (59)

where qj = HHwj is the equalized channel at demixer j. In
SSR tests, J = 1 and we can drop the j index.

Our simulation uses MATLAB on a PC with an Intel Core
i7-7700HQ CPU, 16GB of RAM and 64-bit OS to implement
the algorithms and run the simulations. We use T = 1000
iterations per run of the WF algorithm, and average 100 runs
to obtain our results.

A. Single source recovery

To test the convergence of WF-CMA in SSR, we first
consider an adaptive demixer to recover one source. We define
a step-size µ = 5 · 10−4 < 2/β as determined according to
Theorem 1.

Fig. 2a presents the probability of successful recovery of a
single source in a noiseless system with L = 4 sources and
M = 8 receiving antennas. We define “success” as the event
of TISR reaching below −20 dB after T = 1000 iterations.
Two modulations (QPSK and 16-QAM) are tested. The results
show that for QPSK, WF-CMA can actually converge to a
solution even with a very small number of samples. For the
higher-order modulation of 16-QAM, successful convergence
requires about 10 times more data samples. More important,
our test results show that spectral initialization of WF achieves
better convergence than the traditional initialization that sets a
random, unique tap of the demixer to 1 and others as 0. The
higher probability of success achieved by spectral initialization
empirically justifies its additional computational cost.

Fig. 2b illustrates the average TISR under QPSK modulation
under different SNR values. In this test, we used K = 400
samples, L = 4 sources and M = 8 receiver antennas.
The results demonstrate desirable convergence with increasing
number of iterations. On the other hand, Fig. 2c shows the
average TISR for 16-QAM modulation under the same test
settings. For QPSK, the total interference to signal ratio
can drop below −27 dB even for 10 dB of SNR. For 16-
QAM, the interference power remains several dB higher. Such
results are expected for a more complex modulation without
constant modulus. Nevertheless, as shown in our analytical
results, the WF-CMA converges with the stepsize chosen
according to Theorem 1 and successfully suppresses multi-
user interference.

We repeat the experiments for a larger problem size of
L = 9 sources and M = 16 receiver antennas. Under similar
conditions, the success probability of the WF-CMA under
different sample sizes K are also clearly shown in Fig. 2d.
These results further demonstrate the superior performance
achieved using spectral initialization. Correspondingly, the
average TISR is shown in Fig. 2e and Fig. 2f for QPSK and
16-QAM, respectively. According to our analysis, we lowered
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(a) Success probability, M = 8, L = 4. (b) QPSK, M = 8, L = 4. (c) 16-QAM, M = 8, L = 4.

(d) Success probability, M = 16, L = 9. (e) QPSK, M = 16, L = 9. (f) 16-QAM, M = 16, L = 9.

Fig. 2: Numerical results of WF-CMA for single source recovery.

the stepsize to µ = 10−4 since the basin of attraction for size
ϵ (depending on B) decreases with the number of sources L.
The resulting WF-CMA also shows successful recovery of a
single source with sufficiently high interference suppression
in for both QPSK and 16-QAM at different levels of SNR.

B. Multiple source recovery

We now replicate the experiments above, attempting to
simultaneously recover J = 2 sources at a time. We also set
γ0 = 1 and µ = 1 · 10−3 < 2/β according to Theorem 2.

Fig. 3a shows the probability of successful recovery of both
sources given different numbers of samples in a noiseless
system. We considered L = 4 sources, M = 8 receiving
antennas for two different modulations of QPSK and 16-QAM.
In the MSR case, success is defined as achieving less than
−20 dB TISR after T = 1000 iterations in each demixer, both
recovering distinct sources. Once again, the required number
of samples for successful QPSK recovery appears quite small,
whereas the number of samples required for successful 16-
QAM recovery is approximately 10 times higher.

In Fig. 3b we show the average TISR of both demixers for
QPSK signals under different levels of SNR. We let K = 400
samples, L = 4 sources and M = 8 receiver antennas. Fig. 3c
shows the achieved TISR for 16-QAM signals under the same
setup. For QPSK source signals, the average TISR drops below
−30 dB for SNR of 20dB and 30dB within 400 iterations. For
16-QAM source signals, the convergence rate is noticeably
slower as 16-QAM constellation exhibits variable moduli.

Next, we also consider the larger problem size with L = 9
sources and M = 16 receiver antennas. We use a stepsize of
µ = 10−4 for the same reasons explained in the single source

recovery case. Fig. 3d shows the probability of successful
recovery of both sources with under −20 dB TISR after 1000
iterations. The number of samples required for recovery in-
creases with a larger system size, but not significantly. Fig. 3e
and Fig. 3f show the achieved average TISR for QPSK and 16-
QAM sources, respectively. Both figures show that WF-CMA
is able to recover two signals reliably at the same time.

VI. CONCLUSION

In this work, we establish the connection between Wirtinger
Flow used in phase retrieval and the constant modulus al-
gorithm for blind signal recovery in grant-free access. As
a result, we present a Wirtinger Flow algorithm for CMA-
based signal recovery. We generalize the convergence analysis
of WF for our WF-CMA algorithm by incorporating new
conditions of subgaussian signal sources and average modulus,
demonstrating its global convergence for blind signal recovery
with high probability under limited data samples. We charac-
terize the local geometry of the CM cost function in terms of
smoothness and convexity, which enables parameter updates to
remain within the basin of attraction for a defined stepsize. Our
analysis demonstrates that the WF-CMA algorithm can solve
CMA-based blind signal recovery with a fast convergence rate
and reasonable computational cost.

Future work may consider stronger initialization methods
with provable convergence improvement for source signals
without constant modulus, or theoretical analysis and conver-
gence properties under noisy scenarios. Other lines of research
could focus on the inclusion of additional information for
successful signal recovery, such as forward error correction
codes, or adapting the algorithm for signals that change
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(a) Success probability, M = 8, L = 4. (b) QPSK, M = 4, L = 8. (c) 16-QAM, M = 8, L = 4.

(d) Success probability, M = 16, L = 9. (e) QPSK, M = 16, L = 9. (f) 16-QAM, M = 16, L = 9.

Fig. 3: Numerical results of WF-CMA for multiple source recovery. We recover either J = 2 or J = 3 signals in each setting.

constellation size over the duration of the data packet, e.g.
WiFi, which has QPSK preambles and M -QAM payloads.

APPENDIX A: TECHNICAL LEMMAS AND COROLLARIES

Here, we establish several useful results to prove Theorem 1.

Lemma 9 (Concentration of sample covariance). Consider
independent subgaussian vectors ak ∈ CL. For every δ > 0,
there exist C(δ) > 0 and c(δ) > 0 such that for K ≥ C(δ)L,∥∥∥∥ 1

K

K∑
k=1

aka
H
k − E{aka

H
k}
∥∥∥∥ ≤ δ,

holds with probability of at least 1− 2e−c(δ)K .

Proof. Subgaussian vectors ak can be defined as the indepen-
dent rows of a K × L matrix A. Hence, Lemma 9 is a direct
consequence of [46, Theorem 5.39]. ■

Corollary 10. Under the conditions of Lemma 9, for K ≥
C(δ)L and h ∈ CL, with probability at least 1− 2e−c(δ)K ,

− δ∥h∥2 ≤ 1

K

K∑
k=1

|aH
kh|2 − hHE{aka

H
k}h ≤ δ∥h∥2.

The expectation of matrices A(q) and B(q) are:

E{A(q)} = m2
2(∥q∥2I + qqH) + κddiag(qqH),

E{B(q)} = 2m2
2qq

T + κddiag(qqT).

The solutions of the CMA problem of Eq.(5) are of the form
z = eiθeℓj , with ℓj ∈ {1, . . . , L}, θ ∈ [0, 2π].

Two corollaries are helpful to prove Lemmas 2 and 3:

Corollary 11. Let K ≥ C1(δ)L. Then, with probability of at
least 1 − 6e−c1(δ)K , for all h ∈ CL such that ∥h∥ = 1, we
have

(m2
2 − δ)∥h∥2 + (m2

2 + κ)|hHz|2

≤ 1

K

K∑
k=1

|sHkz|2|sHkh|2

≤ (m2
2 + δ)∥h∥2 + (m2

2 + κ)|hHz|2.

Proof. Note that 1
K

∑K
k=1 |sHkz|2|sHkh|2 = hHA(z)h and

from Lemma 1 it follows that −δI ⪯ A(z)−E{A(z)} ⪯ δI .
For the lower bound, we obtain

hHA(z)h ≥ m2
2(∥h∥2 + |hHz|2)− δ∥h∥2

+ κhH ddiag(zzH)h,

and knowing that z = eθeℓ, we have

κhH ddiag(zzH)h = κ

L∑
a=1

|haza|2 = κ|hHz|2.

The upper bound is obtained similarly. ■

Corollary 12. Let K ≥ C1(δ)L. Then, with probability of at
least 1 − 6e−c1(δ)K , for all h ∈ CL such that ∥h∥ = 1, we
have

m2
2 − δ

2
∥h∥2 + 3m2

2 + 2κ

2
Re(hHz)2 − m2

2

2
Im(hHz)2

≤ 1

K

K∑
k=1

Re
(
hHsks

H
kz
)2

≤ m2
2 + δ

2
∥h∥2 + 3m2

2 + 2κ

2
Re(hHz)2 − m2

2

2
Im(hHz)2.
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Proof. Lemma 1 states that δI ⪯ U(z) − E{U(z)} ⪯ δI .
For the lower bound, recall that 2Re(c)2 = |c|2 + Re(c2) for
c ∈ C, and

1

K

K∑
k=1

Re
(
hHsks

H
kz
)2

=
1

4

[
h

h

]H [
A(z) B(z)

B(z) A(z)

] [
h

h

]
≥ m2

2 − δ

2
∥h∥2 + 3m2

2

2
Re(hHz)2 − m2

2

2
Im(hHz)2

+
κ

2
Re
(
hH ddiag(zzH)h+ hH ddiag(zzT)h

)
.

Knowing that z = eθeℓ, the last term is equal to
κ

2
Re
(
hH ddiag(zzH)h+ hH ddiag(zzT)h

)
= κ

L∑
a=1

Re(haza)
2 = κRe(hHz)2.

The upper bound is obtained similarly. ■

APPENDIX B: PROOF OF LEMMA 1

Rewrite the Hessian

∇2f(z) =

[
A(z) B(z)

B(z) A(z)

]
+

[
A(z) 0

0 A(z)

]
−R2

[
S 0

0 S

]
= U(z) +A′(z)−R2S

′.

Observe that U(z) corresponds to the Hessian of the Phase
Retrieval problem, which differs from the CMA Hessian due
to the use of a desired average magnitude instead of known
sampled amplitudes. Using the triangle inequality, to prove the
lemma we show that∥∥S − E{S}

∥∥ ≤ δS = δ/(8R2), (60)∥∥A(z)− E{A(z)}
∥∥ ≤ δA = δ/8, (61)

∥U(z)− E{U(z)}∥ ≤ δU = δ/2. (62)

Recall that the signal vectors are independent for k ∈
{1, . . . ,K}. Moreover, QAM constellations are bounded.
Thus, the signal vectors are subgaussian. Hence, via Lemma 9,
Eq.(60) holds with probability of at least 1 − 2e−c3(δS)K by
choosing K ≥ C3(δS)L.

Let ak =
(
sHkz

)
sk, which are independent for k ∈

{1, . . . ,K}. Note that sHkz =
√
m2 e

iφsℓj [k]. Therefore, vec-
tors ak have bounded, discrete elements over an exponentially
large set, and as such they are subgaussian [47]. Additionally,
we have

A(z) =
1

K

K∑
k=1

aka
H
k .

Therefore, by invoking Lemma 9, Eq.(61) holds with prob-
ability of at least 1− 2e−c4(δA)K for K ≥ C4(δA)L.

Now define uH
k = [aH

k aT
k ]. Using a similar reasoning as

above, uk are also subgaussian and independent for k ∈
{1, . . . ,K}, and

U(z) =
1

K

K∑
k=1

uku
H
k .

Lemma 9 then states that Eq.(62) holds with probability of
at least 1− 2e−c5(δ/2)K by choosing K ≥ C5(δU )L.

Finally, set C1(δ) ≥ max{C3(δS), C4(δA), C5(δU )}. By
selecting K ≥ C1(δ)L, Lemma 1 holds with probabil-
ity of at least 1 − 6e−c1(δ)K , where we define c1(δ) =
min{c3(δS), c4(δA), c5(δU )}.

APPENDIX C: PROOF OF LEMMA 2

Let q ∈ E(ϵ) and h = e−iϕ(q)q − z. Hence ∥h∥ ≤ ϵ and
Im(hHz) = 0, as h and z are geometrically aligned:

hHz = e−i∠(qHz)qHz − zHz = |qHz| − ∥z∥2 ∈ R. (63)

The proof is equivalent to proving

Re
(〈

∇f(q)−∇f(eiϕ(q)z), q − eiϕ(q)z
〉)

=
1

K

K∑
k=1

(
2Re(hHsks

H
kz)

2 + 3Re(hHsks
H
kz)|sHkh|2

+
19

20
|sHkh|4 +

(
|sHkz|2 −R2

)
|sHkh|2

)
≥
( 1
α
+

2m2
2 −R2m2 − δ

19

)
∥h∥2

for all h satisfying Im(hHz) = 0 and ∥h∥ ≤ ϵ. It suffices to
show that for all h such that Im(hHz) = 0 and ∥h∥ = 1, and
for all ξ with 0 ≤ ξ ≤ ϵ, the following inequality holds

1

K

K∑
k=1

(
2Re(hHsks

H
kz)

2 + 3ξRe(hHsks
H
kz)|sHkh|2

+
19

20
ξ2|sHkh|4 +

(
|sHkz|2 −R2

)
|sHkh|2

)
≥ 1

α
+

2m2
2 −R2m2 − δ

19
.

Invoking Corollary 12, we show that for all h such that
Im(hHz) = 0 and ∥h∥ = 1, and for all ξ with 0 ≤ ξ ≤ ϵ,

1

K

K∑
k=1

(45
19

Re(hHsks
H
kz)

2 + 3ξRe(hHsks
H
kz)|sHkh|2

+
19

20
ξ2|sHkh|4 +

(
|sHkz|2 −R2

)
|sHkh|2

)
≥ 1

α
+

11m2
2 − 2R2m2 + 5δ

38
+

21m2
2 + 14κ

38
Re(hHz)2.

(64)

For constant modulus signals, the last averaging term of
the LHS of Eq.(64) is zero. For non-constant modulus QAM
signals, the term is bounded by Corollaries 10 and 11:

1

K

K∑
k=1

(
|sHkh|2|sHkz|2 −R2|sHkh|2

)
≥
(
m2

2 −R2m2 − (1 +R2)δ + (m2
2 + κ)|hHz|2

)
.

Let

Y (h, ξ) =
1

K

K∑
k=1

(45
19

Re(hHsks
H
kz)

2

+ 3ξRe(hHsks
H
kz)|sHkh|2 +

19ξ2

20
|sHkh|4

)
.
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Since (a− b)2 ≥ a2

2 − b2, we have that

Y (h, ξ)

≥

(√√√√ 45

19K

K∑
k=1

Re(hHsksHkz)
2 −

√√√√19ξ2

20K

K∑
k=1

|sHkh|4
)2

≥ 45

38K

K∑
k=1

Re(hHsks
H
kz)

2 − 19ξ2

20K

K∑
k=1

|sHkh|4.

By means of Corollary 10, with high probability we have

1

K

K∑
k=1

|sHkh|4 ≤ max
k

∥sk∥2
( 1

K

K∑
k=1

|sHkh|2
)
≤ B2L(m2 + δ).

Using this result and the first inequality of Corollary 12, for
∥h∥ = 1, it holds with high probability that

Y (h, ξ) ≥ 135m2
2 + 90κ

76
Re(hHz)2 +

45

76
(m2

2 − δ)

− 19B2L

20
ξ2(m2 + δ).

Hence, Lemma 2 holds under the following condition:

135m2
2 + 90κ

76
Re(hHz)2 +

45

76
(m2

2 − δ)− 19B2L

20
ξ2(m2 + δ)

+
(
m2

2 −R2m2 − (1 +R2)δ + (m2
2 + κ)|hHz|2

)
· 1[Q ̸= 4]

≥ 1

α
+

11m2
2 − 2R2m2 + 5δ

38
+

21m2
2 + 14κ

38
Re(hHz)2.

(65)

With ξ ≤ ϵ = (10B
√
L)−1 and δ ≤ 0.01, Eq.(65) holds for

α ≥ 3 for Q = 4,
α ≥ 83 for Q ̸= 4.

APPENDIX D: PROOF OF LEMMA 3

Let q ∈ E(ϵ) and h = e−iϕ(q)q− z. For any u ∈ CL such
that ∥u∥ = 1, let v = e−iϕ(q)u. Therefore, it suffices to show
that∣∣∣uH

(
∇f(q)−∇f(eiϕ(q)z)

)∣∣∣2
=

∣∣∣∣ 1K
K∑

k=1

vHsks
H
kz
(
|sHkh|2 + 2Re(hHsks

H
kz)
)

+
(
|sHkh|2 + 2Re(hHsks

H
kz) + |sHkz|2 −R2

)
vHsks

H
kh

∣∣∣∣2
≤
(

1

K

K∑
k=1

2|sHkz|2|sHkv||sHkh|+ 3|sHkz||sHkv||sHkh|2

+ |sHkh|3|sHkv|+
(
|sHkz|2 −R2

)
vHsks

H
kh

)2

≤ β
(2m2

2 −R2m2 − δ

19
∥h∥2 + 1

20K

K∑
k=1

|sHkh|4
)

holds for all h and v such that Im(hHz) = 0, ∥h∥ ≤ ϵ, and
∥v∥ = 1. Equivalently, we prove that for all h and v such that

Im(hHz) = 0, ∥h∥ = ∥v∥ = 1 and for all ξ with 0 ≤ ξ ≤ ϵ,
the following inequality holds(

1

K

K∑
k=1

2|sHkz|2|sHkv||sHkh|+ 3ξ|sHkz||sHkv||sHkh|2

+ ξ2|sHkh|3|sHkv|+
(
|sHkz|2 −R2

)
vHsks

H
kh

)2

≤ β
(2m2

2 −R2m2 + δ

19
+

ξ2

20K

K∑
k=1

|sHkh|4
)
.

Note that |sHkz|2 = m2 = R2 for constant-modulus signals,
and thus the last term in the LHS is zero if Q = 4, and non-
zero otherwise. Let D = 3 + 1[Q ̸= 4], and knowing that(∑n

i=1 ai
)2 ≤ n

∑n
i=1 a

2
i ,∣∣∣uH

(
∇f(q)−∇f(eiϕ(q)z)

)∣∣∣2
≤ 4D

( 1

K

K∑
k=1

|sHkz|2|sHkv||sHkh|
)2

+ 9Dξ2
( 1

K

K∑
k=1

|sHkz||sHkv||sHkh|2
)2

+Dξ4
( 1

K

K∑
k=1

|sHkh|3|sHkv|
)2

+
∣∣∣ 1
K

K∑
k=1

(
|sHkz|2 −R2

)
vHsks

H
kh
∣∣∣2 · 1[Q ̸= 4]

≤ 4DI1 + 9Dξ2I2 +Dξ4I3 + I4 · 1[Q ̸= 4].

We now bound these terms on the right-hand side. By means
of the Cauchy-Schwarz inequality and Corollary 11,

I1 ≤
( 1

K

K∑
k=1

|sHkz|2|sHkv|2
)( 1

K

K∑
k=1

|sHkz|2|sHkh|2
)

≤ (2m2
2 + κ+ δ)2,

and

I2 ≤
( 1

K

K∑
k=1

|sHkh|4
)( 1

K

K∑
k=1

|sHkv|2|sHkz|2
)

≤ 2m2
2 + κ+ δ

K

K∑
k=1

|sHkh|4.

Invoking Corollary 10, the bounded norm ∥sk∥ ≤ B
√
L,

and the Cauchy-Schwarz inequality, we obtain

I3 ≤
( 1

K

K∑
k=1

|sHkh|3 max
k

∥sk∥
)2

≤ B2L(m2 + δ)

K

K∑
k=1

|sHkh|4.

For non-constant modulus QAM signals, we can bound I4
by invoking Corollaries 10 and 11:

I4 =
∣∣∣hH
(
A(z)−R2S

)
h
∣∣∣2

≤
∣∣∣m2

2 −R2m2 − (1 +R2)δ
∣∣2 =

(
m2

2 + κ+ (1 +R2)δ
)2
.
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Therefore, we obtain∥∥∇f(q)
∥∥2 = max

∥u∥=1

∣∣∣uH
(
∇f(q)−∇f(eiϕ(q)z)

)∣∣∣2
≤ 4D(2m2

2 + κ+ δ)2

+
9Dξ2(2m2

2 + κ+ δ)

K

K∑
k=1

|sHkh|4

+
DB2Lξ4(m2 + δ)

K

K∑
k=1

|sHkh|4

+
(
m2

2 + κ+ (1 +R2)δ
)2 · 1[Q ̸= 4]

≤ β
(2m2

2 −R2m2 − δ

19
+

ξ2

20K

K∑
k=1

|sHkh|4
)
.

Hence, Lemma 3 holds under the following condition:

β ≥max
{76D(2m2

2 + κ+ δ)2

2m2
2 −R2m2 − δ

+
19(m2

2 + κ+ (1 +R2)δ
)2

2m2
2 −R2m2 − δ

· 1[Q ̸= 4],

180D(2m2
2 + κ+ δ) + 20DB2Lϵ2(m2 + δ)

}
.

(66)

With ϵ = (10B
√
L)−1 and δ ≤ 0.01, Eq.(66) holds for

β ≥ 235 for Q = 4,
β ≥ 959 for Q ̸= 4.
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