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a b s t r a c t

Origami-based mechanical metamaterials have recently received significant scientific interest due to
their versatile and reconfigurable architectures. However, it is often challenging to account for all possi-
ble geometrical configurations of the origami assembly when each origami cell can take multiple phases.
Here, we investigate the reconfigurability of a tessellation of origami-based cellular structures composed
of bellows-like unit cells, specifically Tachi-Miura Polyhedron (TMP). One of the unique features of the
TMP is that a single cell can take four different phases in a rigid foldable manner. Therefore, the TMP tes-
sellation can achieve various shapes out of one original assembly. To assess the geometrical validity of the
astronomical number of origami phase combinations, we build a graph-theoretic framework to describe
the connectivity of unit cells and to analyze the reconfigurability of the tessellations. Our approach can
pave the way to develop a systematic computational tool to design origami-based mechanical metama-
terials with tailored properties.
� 2021 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mechanical metamaterials can have a wide range of mechanical
properties by leveraging the design freedom in their architectures
[1–3]. Origami has helped this emerging platform to add the tun-
ability of its shapes and behaviors after fabrications [4,5]. Recently,
an extensive amount of research on origami-based metamaterials
has been conducted to show their various characteristics in both
mathematical and mechanical aspects [6–9]. Particular interest
has been placed on the realization of reconfigurable mechanical
metamaterials via the concept of origami, kirigami, or equivalent
architectures [10–17]. While most research focuses on the homo-
geneous arrangements of origami units and their intrinsic proper-
ties, the cross-linkage of heterogeneous origami cells and their
effective global characteristics have been relatively unexplored.
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To address this connectivity and reconfigurability problem of
heterogeneous origami architectures, Tachi-Miura Polyhedron
(TMP) can serve as an ideal platform [18,14]. TMP is one of the
origami-based mechanical metamaterials with bellows-like 3D
unit cells composed of two different sheets (Fig. 1a). This TMP-
based metamaterial features several mechanical characteristics,
such as flat and rigid foldability, negative Poisson’s ratio, multista-
bility, and load-bearing capabilities [19,14]. Notably, each TMP cell
can take four different states (i.e., phases) while maintaining rigid
foldability. Specifically, in addition to the well-known bellows-like
TMP state, by flattening certain creases of the structure, we can
achieve origami tube minus (OT�, which is a left-parallelepiped
tube) and origami tube plus (OT+, a right-parallelepiped tube)
(Fig. 1b). Furthermore, by flattening all creases, we can obtain a
defect state that does not hold any volume (See Fig. 1c for all four
states). Thus, when we combine them into a multi-cell structure,
we can construct a tessellation of heterogeneous origami cells.
However, we cannot arbitrarily assign one of four states to each
Fig. 1. Folding behavior of a single Tachi-Miura Polyhedron (TMP) unit cell. a, crease patte
angles of blue and green creases decide the reconfigurable states of a unit cell. When blue
B;W , and H correspond to the width, breadth, and height of the structure, respectively. A
respectively. c, 3D rendered images of the transition from the flat state to four reconfigura
three reconfigurable states of TMP, OT+, and OT�. e, images of paper prototypes with cor
figure legend, the reader is referred to the web version of this article.)
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unit cell randomly, because it can result in a geometrically invalid
configuration. Therefore, we have to consider connectivity of TMP
cells and find a method to discover geometrically valid tessella-
tions efficiently. If we follow the brute-force method, the number
of possible configurations that need to be assessed becomes 4n,
where n is the total number of the TMP cells. This exponential
increase of the search space is often called the ‘‘curse of dimension-
ality”, also known as the combinatorial explosion. This leads the
search for the geometrically valid configuration impossible for a
large tessellation.

To overcome this hurdle, we can consult the graph-theoretic
method to describe and analyze the TMP-based tessellations.
Graph theory is a field in discrete mathematics, which is used to
represent pairwise relations between objects [20]. In this mathe-
matical schematization, the objects are referred to as vertices,
and the connected pairs of the objects are called edges. In diagram-
matic ways, graphs are often represented with dots (or circles) for
vertices and lines for edges. Generally, graphs are classified into
rns and geometrical parameters of two flat sheets composing the TMP. b, the folding
(green) creases are folded flat, the unit cell takes the OT+ (OT�) phase. Dimensions
lso, axis numbers 1, 2, and 3 have the same direction as width, breadth, and height,
ble states. d, 3D rendered images of a TMP unit cell with the initial flat state and the
responding configurations to d. (For interpretation of the references to colour in this
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two types: undirected graphs and directed graphs. The former have
edges without direction (two-way relationship), whereas the latter
has edges with direction (one-way relationship). This simple-yet-
efficient mathematical structure can be utilized to model various
types of connections in general. Therefore, it has been applied to
numerous systems, such as physical [21], biological [22], and infor-
mation [23] ones. However, this versatile feature of graph theory
has not been fully leveraged to model and analyze tessellations
of mechanical metamaterials composed of unit cells, to the best
of the authors’ knowledge.

In this work we aim at: (i) estimating the total number of valid
configurations of TMP tessellations; and (ii) assessing the reconfig-
urability and the resultant tunability of the mechanical properties
in the TMP tessellations. By using the efficient graph-theoretic
algorithm we develop, we achieve high efficiency in calculating
all possible combinations of TMP cells in a given tessellation. We
find that the computation time by this graph-theoretic approach
is 20 to 100 times faster than the brute-force (slowest) algorithm
as a benchmark. As an outcome of this calculation, we find that
TMP tessellation has the vast possibility to manipulate both
mechanical properties and shape in an efficient and controllable
manner. Thanks to the versatile nature of TMPs, this mechanical
platform can achieve various unique characteristics simultane-
ously: rich heterogeneity, flat-foldability, negative Poisson’s ratio,
reconfigurability after fabrication, 3D-space filling feature, and
tunability in terms of mechanical properties and shape. Thus, such
versatility is the advantage of the proposed system over those
investigated in the previous research works
[24,13,17,12,10,25,26]. While this platform can be applied to vari-
ous mechanical, aerospace, and medical purposes, we specifically
note that two engineering applications: one is the structures for
space engineering where the flat-foldability and reconfigurability
after fabrication are important due to the rigorous volumetric
requirement in the rocket fairings and scarce launch opportunities.
Another application is human bones where the combination of
positive and negative Poissonś ratio and wide range of mechanical
tunability are required [27]. The graph-theoretic approach devel-
oped herein will be useful in a broad spectrum of scientific and
engineering disciplines.
2. Methods and materials

2.1. TMP tessellation and its transformation

It is well known that TMP can take finite volume or be collapsed
to zero volume during its folding process [19] (see ‘‘TMP” and ‘‘flat”
state in Fig. 1). In this study, we also consider two other geome-
tries, so-called origami tube minus and origami tube plus, which
can be generated from the flat state without deviating from the
rigid-foldable assumption (see Supplementary Movie 1 for the
demonstration of a paper prototype, and Supplementary Movie 2
for the 3D rendered transformation). Thus, in this study, we con-
sider four possible states of unit cells: TMP, OT�, OT+, and Defect.
Here, defect mode means the flat state, which does not occupy any
volume.

Fig. 1(a) explains the components of TMPs with geometrical
parameters ðl;m; d;aÞ. In Fig. 1(b), we see that the folding angle
of blue and green creases decides the reconfigurable states of a unit
cell. If blue (green) creases are folded flat, unit cells become OT+
(OT�). Fig. 1(c) shows the transition of the unit cell from the flat
state to four reconfigurable states of TMP, OT+, OT�, and Defect.
Fig. 1(d) and (e) depict those states and transformations between
them for the 3D-rendered model and paper prototype,
respectively.
3

The TMP cells can further be assembled into a tessellation in
both horizontal and vertical manner as shown in Fig. 2(a), and it
can have multiple cells with different states (see Supplementary
Movie 3 for a transformation of the tessellation). For example,
Figs. 2(b) and (c) show some exemplary configurations of the 3-
by-3 tessellation in the 3D-rendered graphics and the correspond-
ing paper prototype images. Here, TMP, OT�, and OT+ are repre-
sented by gray, blue, and red colors, respectively. By including
the defect mode, we have four different states that can be assigned
for each unit. Therefore, we can consider 4n patterns of configura-
tions within a n-cell tessellation. However, there exists a kinematic
relationship between the adjoined TMP cells, and a large portion of
the 4n patterns are not valid. Fig. 3 illustrates this problem by using
two-cell and three-cell tessellations. By simulating the stacking of
unit cells, we can tell that some configurations are invalid due to
the unmatching of the geometrical boundaries of the unit cells.

While we can achieve various shapes with this reconfigurable
origami tessellation, it is hard to know the actual number of total
configurations within a given size of tessellation. Considering all
cases (e.g., 49 = 262,144 for 3-by-3 TMP tessellations) and sorting
out what are valid configurations one by one is computationally
expensive and even impossible for a large tessellation using con-
ventional computational power. To overcome this hurdle, we intro-
duce the idea of a graph-theoretic framework to discover the
possible configuration efficiently. With the aid of the graph repre-
sentation of a reconfigurable origami tessellation and adjacency
matrix obtained from the graph information, we are able to calcu-
late the total number of valid configurations systematically. In the
following sections, we introduce the graph representation and
adjacency matrices to assess the combinatorial problem of the
TMPs.
2.2. Graph representation of TMP tessellation

Recently, several researchers have tackled tessellation-related
problems for materials sciences with the aid of graph-theoretic
techniques. Arkus et al. utilized graph-theoretic enumerations of
adjacency matrices and distance matrices to find the finite sphere
packings [28]. Vlassis et al. applied graphs and graph convolutional
deep neural network for anisotropic hyperelasticity of polycrystal
materials [29]. Herein, we further leverage this technology to
investigate the reconfigurability of origami tessellations.

As a first step, we attempt to translate physical TMP tessella-
tions to graph representations. This idea of extracting characteris-
tic points from the geometry of an origami structure has been
previously reported [30]. This simplification of origami-based
metamaterials into the lattices of characteristic points shows a
great advantage to understand and analyze origami-based meta-
materials. Here, we utilize a similar process to schematize TMP tes-
sellations as graph structures. Figs. 4(a) and (b) show how we
define an undirected graph G ¼ ðV ; EÞ from a single unit cell and
a tessellation, respectively. Here, vertices V represent the six major
faces of a unit cell, and the edge set E consists of unordered pairs of
vertices. The number of vertices is jV j ¼ 6n, where n is the number
of unit cells in a tessellation. The edge set counts the connections of
faces both within one unit cell and between neighboring cells (see
dashed and solid lines in Fig. 4). Then, we also define a subgraph
G0 ¼ ðV 0; E0Þ such that V 0 #V and E0 # E, where V 0 and E0 represents
the interconnections among the unit cells. For example, in Fig. 4(b)
where we consider a 2-by-2 tessellation, we have V 0 ¼ f1;2;7;
11;12;14;15;16;22;23g and E0 ¼ fð1;16Þ; ð2;11Þ; ð7;22Þ; ð12;15Þ;
ð14;23Þg.

Based on this graph representation, we utilize graph-theoretic
enumeration of adjacency matrices. We introduce those definitions
in the following. A tessellation of n unit cells can be described by an
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Fig. 2. Connectivity of a 3-by-3 TMP tessellation and examples of its various configurations. a, 3D rendered images showing how a tessellation is built with the nine unit cells.
Certain faces of unit cells are adjoined altogether to form one tessellation. b, 3D rendered images of the 3-by-3 tessellation with four different configurations. c, digital images
of the paper prototypes corresponding to the four tessellations shown in b.

Fig. 3. Geometrical validity check of the TMP tessellation. Cases of a, two-cell tessellations and b, three-cell tessellations. In a, one unit cell (TMP, OT+, or OT�) is attached to
one TMP cell. The attachment of TMP and OT+ results in a valid configuration. However, we can see that the OT� tube does not fit with the upper-right side of the TMP cell.
Likewise, cases of three-cell stacking in b show that the attachment of TMP and OT� to a two-TMP stacking brings the valid configuration, whereas the attachment of OT+
tube makes the tessellation invalid.
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jV j � jV j adjacency matrix A. This matrix is defined with the graph
G and the subgraph G0. Therefore it details which vertices (faces in
physical unit cells) are in contact: Aij ¼ 1 if and only if ðui;ujÞ 2 E0

and otherwise Aij ¼ 0. This means that Aij ¼ 1 if ith and jth faces
are attached to each other, and Aij ¼ 0 if they are not. It should
be noted that each x-by-y tessellation has only one unique adja-
cency matrix – regardless of the phases of unit cells – because once
we define the size of the tessellation and its arrangement, we also
know which physical faces of unit cells to be connected to others.
The illustration of the adjacency matrix is also shown in Fig. 4(b).
Here, the dots denote the edge set E0, which represents the adjoin-
ing of TMP faces.
4

2.3. Combinatorial search for valid configurations

To analyze the reconfigurability of the TMP tessellations, we
utilize the aforementioned graph representation and algorithm.
The reconfigurability can be quantified by the number of unique
configurations that the tessellation can achieve. The search of valid
configurations consists of three steps: (i) definition of the size of
tessellation, (ii) graph representation and graph-theoretic enumer-
ation of the tessellation, and (iii) combinatorial search for valid
configurations. First, we define the size and shape of the tessella-
tion. Our graph-theoretic method is versatile and applicable to var-
ious types of tessellations. However, in order to make comparisons



Fig. 4. Examples of the graph representation for a, a single unit cell and b, a 2-by-2 tessellation. Red dots in a and b represent the midpoints of the major side edges of TMPs
(adjacent red dots in b are actually overlapping). In a graph representation, those red dots are considered as nodes. Dashed lines in a and b mean the connection of the nodes
within a unit cell. Solid lines in bmean the connection of the nodes between different unit cells. Italic numbers in blue circles denote the TMP unit cells, and upright numbers
denote the middle points in physical TMPs and the corresponding nodes in the graph. In the illustration of the adjacency matrix, the left and bottom labels show the node
numbers as represented in the graph. Likewise, right and top labels in italic numbers denote the TMP unit cells. Gray lines in the adjacency matrix show which part of the
matrix corresponds to the TMP unit cell numbers. Dots in this adjacency matrix indicate the connected nodes, i.e., adjoined faces in the TMP tessellation.
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and measure the effectiveness of the unit cell number on the
reconfigurability, we use a rectangular arrangement of X-by-Y tes-
sellation, where X and Y are the number of unit cells in horizontal
and vertical directions, respectively.

Secondly, we represent the tessellation via a graph and enumer-
ate the information about the connection of the unit cells using an
adjacency matrix. Again, the adjacency matrix is unique for each
tessellation and immutable in the process of tessellation search.
After establishing the information about tessellations, we move
to the final step, which is the combinatorial search for valid config-
urations. In this step, we utilize the complete list of 3-cell configu-
rations that are known a priori. It has 32 configurations as shown
in Supplementary Figure S2, and we combine those 3-cell configu-
rations to find configurations of larger tessellations.

The schematic illustration of the process of this combinatorial
search is shown in Fig. 5. The top row shows the graphical evolu-
tion of the TMP tessellation, the middle row shows their graph rep-
resentation, and the bottom panel explains how we use adjacency
matrices for this search process. Italic numbers with red boxes
show that unit cells have assignments of configurations, whereas
italic numbers with no boxes show that those unit cells do not
have assignments yet. By using this assignment information and
adjacency matrix, we detect an unassigned unit cell that is adja-
cent to the assigned ones. Blue arrows and boxes in the matrix
show the process of searching for an adjacent unit cell to assign.
5

To begin the search, we allocate configurations to the three cells
at the lower-left end. Then, based on the graph structure, we find
an adjacent cell and assign a configuration to the adjacent one by
looking up the list of the 3-cell configurations (see gray triangles
in Fig. 5b). We repeat this process until all unit cells have configu-
rations. Also, in this process, we check every one of the configura-
tions in the list. Therefore, at the end of the process, we can count
all valid configurations out of a given size of tessellation.
3. Results and discussion

3.1. Estimation and growth of reconfigurability

We start discussing the number and growth of reconfigurability
by changing the size of tessellations. The result of the searching for
the number of valid configurations with 14 different tessellation
sizes is summarized in Figs. 6(a) and (b) for selected results and
Table 1 for all results. To verify the result from our graph-
theoretic method, we also implement a brute-force method for
smaller sizes of tessellations as explained in Supplementary Note
A. We start to examine the unique configurations with 2-by-2 tes-
sellations with the total number of four unit cells. We then enlarge
the size of the tessellation by adding a row or a column of unit cells
up to 49 unit cells in total. If we follow the brute-force method for



Fig. 5. An example of discovering a valid configuration for the 3-by-3 tessellation with logistic illustrations of the computation processes using adjacency matrices. In a and b,
cyan, red, blue, and yellow colors in the graph representation correspond to the TMP, OT+, OT�, and defect states of the unit cell, respectively. In a, 3d-rendered images
represent the graphical process of building tessellations. Likewise, in b, the pictures of graphs with colored parts show the schematic process of the tessellation search. Three
unit cells enclosed by gray lines in a and b indicate where the 3-cell configurations are referenced and adopted. In c, adjacency matrices are illustrated in the same way as
Fig. 4(b). Italic numbers with red boxes show that unit cells have assignments of configurations, whereas italic numbers with no boxes show that those unit cells do not have
assignments yet. Blue arrows and boxes in the matrix show the process of searching an adjacent unit cell to assign the proper unit cell configuration.
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this number of unit cells, we have to investigate 449 � 1029 candi-
dates of configurations that are almost impossible to examine even
with the aid of high-performance computers. Fig. 6(c) shows the
comparison of computation time between brute-force and graph-
based methods. In terms of computation time, our graph-based
method is generally 20 to 100 times faster than the brute-force
method to search configurations from 2-by-2 to 5-by-5 tessella-
6

tions with a personal desktop computer. Therefore, by utilizing
our method, we achieve a substantial amount of efficiency in esti-
mating the reconfigurability of the origami-based metamaterials.

As we increase the size of the tessellation, we see that the num-
ber of unique configurations increases exponentially for X-by-2
and 2-by-Y cases where X and Y are the number of horizontal
and vertical stacking, respectively. For N-by-N tessellation where



Fig. 6. The number of valid configurations and computation time for each tessellation size. a, 14 results of counting valid configurations with four configurations (TMP, OT+,
OT�, and Defect) based on the categorization of N-by-N, X-by-2, and 2-by-Y tessellations where X;Y , and N are the number of horizontal and vertical stackings of the
tessellation. b, 14 results of counting valid configurations with three configurations (OT+/OT�/Defect, TMP/OT+/Defect, TMP/OT�/Defect, and TMP/OT+/OT�). Each three-
state configuration has the same number of valid configurations. Other results and exact numbers are shown in Table 1. c, a comparison of computation time between brute-
force and graph-based methods. The results of 2-by-2, 3-by-3, 4-by-4, and 5-by-5 tessellations are used for the brute-force method. Besides those tessellations, an additional
result of 6-by-6 tessellations is shown for the graph-based method.

Table 1
Number of unique configurations for various tessellation sizes.

Size 4 states 3 states Increase Size 4 states 3 states Increase

2-by-2 32 13 146% 3-by-4 1024 120 753%
3-by-2 64 21 205% 4-by-4 2048 184 1013%
2-by-3 128 32 300% 8-by-2 2048 517 296%
4-by-2 128 37 246% 2-by-8 131072 4181 3035%
2-by-4 512 89 475% 5-by-5 16383 672 2338%
3-by-3 256 50 412% 6-by-6 131072 2480 5185%
4-by-3 512 82 524% 7-by-7 1048576 9312 11160%
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N is for both horizontal and vertical numbers, we see that the rate
of increase decays gradually. Furthermore, we observe that the rate
of increase in the number differs by the direction of adding a new
column or row (horizontally or vertically). Adding a column of unit
cells to the tessellation doubles the unique configurations to the
original one, whereas adding a row quadruples them. In Fig. 7,
we show an example of adding a row or a column to the 2-by-2
tessellation. While we obtain two different configurations in
Fig. 7(b) for 3-by-2 tessellations, we can achieve four configura-
tions for 2-by-3 tessellations in Fig. 7(c). We observe this differ-
ence is caused by the direction of the phase transition of unit
cells. Since the transition among TMP, OT+, and OT� is lateral
movement, the column-wise attachment of unit cells is more
bound to the existing tessellations than the row-wise attachment.
Actually, a column-wise attachment involves only TMP and OT+ in
Fig. 7(b). However, a row-wise addition includes TMP, OT+, OT�,
and defects in Fig. 7(c).

Returning to Fig. 6(a), the red line connects the results from 2-
by-2, 2-by-3, 2-by-4, and 2-by-8 tessellations. Likewise, the blue
line connects the results from 2-by-2, 3-by-2, 4-by-2, and 8-by-2
tessellations. Both lines show linear growth in log2 scale along
the y-axis because there is a pattern for the growth of the unique
configurations, as we state previously. The yellow line shows the
results up to 7-by-7 tessellations. Since these results are from
the combinations of the horizontal and vertical increments, the
increase rate is not constant.

Table 1 also includes the number of unique configurations only
with three states (OT+/OT�/Defect, TMP/OT+/Defect, TMP/OT�/
Defect, and TMP/OT+/OT�) and the rate of increase of the number
of configurations from using three states to four states. Here, each
combination of three states (OT+/OT�/Defect, TMP/OT+/Defect,
TMP/OT�/Defect, and TMP/OT+/OT�) has the same number of
valid configurations and is summarized in Fig. 6(b). The compar-
7

ison with the four states indicates that each TMP state equally con-
tributes to the excessive growth of reconfigurability. However, one
of the advantages of inducing defect states is that we can achieve
an enormous variety of reconfigurable shapes without incurring
volume increases. Based on the graph-theoretic evaluations, we
confirm that the increase of the phase number from three to four
contributes directly to the surge of the overall variety of the tessel-
lations. Further results and discussions about the effect of defect
modes are included in Supplementary Note B.
3.2. Highly heterogeneous configurations

Now we discuss some examples of configurations we discover
in the search process. Figs. 8(a)-(d) show the four examples of
anomalous configurations in 4-by-4 tessellations. Each configura-
tion consists of four different states (TMP, OT+, OT�, and Defect),
and the composition of the states is highly mixed and distributed
within the tessellation. For example, a tessellation in Fig. 8(a) con-
sists of six TMPs, two OT+, six OT�, and two Defects. We again note
in passing that unlike normal configurations that have a homoge-
neous occurrence of deformation states, such heterogeneous con-
figurations composed of a variety of the different states are hard
to be discovered by human heuristics.

In addition to the heterogeneity of the configurations, we find
that they have tunability in terms of Poisson’s ratio and mechanical
properties. Here, we examine two Poissonś ratios mHB and mHW
defined as follows:

mHB ¼ � dB=B
dH=H

; mHW ¼ �dW=W
dH=H

: ð1Þ

Revisit Fig. 1(b) for the definitions of H and B. Fig. 8(e) shows the
change of Poisson’s ratio mHB from the folding angle of 0� to 90�.



Fig. 7. a, an image of a 2-by-2 tessellation with four TMPs. Red box shows the position where the unit cells are attached to build 2-by-3 tessellations. Likewise, blue box
shows the position for 3-by-2 tessellations. b, 3-by-2 valid tessellations that are emerged from a 2-by-2 tessellation with four TMPs shown in a. c, 2-by-3 valid tessellations
that are emerged from a 2-by-2 tessellation with four TMPs shown in a. In both b and c, these tessellations are the only ones that can emerge from the 2-by-2 tessellation in a.
Cyan, red, blue, and yellow colors in the 3D rendered images correspond to the TMP, OT+, OT�, and defect states of the unit cell, respectively.

Fig. 8. Examples of heterogeneous configurations in 4-by-4 tessellations and their Poisson’s ratio and mechanical responses. a, a configuration consisting of 6 TMPs, 2 OT+, 6
OT�, and 2 defects (Case 1). b, a configuration consisting of 2 TMPs, 2 OT+, 5 OT�, and 7 defects (Case 2). c, a configuration consisting of 5 TMPs, 3 OT+, 5 OT�, and 3 defects
(Case 3). d, a configuration consisting of 1 TMP, 3 OT+, 5 OT�, and 7 defects (Case 4). e, Poisson’s ratio between height and breadth directions. For all cases, Poisson’s ratio mHB
is identical. f, Poisson’s ratio mHW between height and width directions. g, Stress–strain relationship of four cases. Here, stresses are calculated with normalized forces.
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Throughout the folding stage, mHB becomes both positive and nega-
tive (auxetic). While mHB is identical for all cases in Fig. 8(e), Pois-
son’s ratio mHW in Fig. 8(f) is different for each configuration and
always negative. These results suggest that we can tune one Pois-
son’s ratio while keeping a property in another direction. Besides,
the stress–strain relationships are shown in Fig. 8(g) where we
define a cross-sectional area as the area occupied by the tessella-
tions. Here, stress is obtained by using normalized force F0. Base
8

on this result, we can obtain normalized Youngś modulus of the
direction of height (3-axis) E03 at 2% strain for each configuration
defined as follows:

E03 ¼ r03
�3j2%

ð2Þ

For case 1 to 4 in Fig. 8, the values are 2:13� 10�3;2:55� 10�3;

2:19� 10�3, and 2:67� 10�3, respectively. We note that those
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values are calculated using normalized force, therefore they do
not have dimensions and we can apply the material properties
once we decide the material to use for the manufacturing. The
details of the mechanical analysis are described in Supplementary
Note C.

We further extend this result to see if they can simulate specific
geometries because such reconfigurability is one of the essential
aspects when we utilize these mechanical metamaterials for engi-
neering applications. To assess how much the tessellation’s recon-
figurability contributes to the ability to simulate the real-life
objects, we examine cross-sections of 4-by-4 tessellations and
compare them with some images in Supplementary Note D. The
result of simulating mechanical properties and the various types
of geometries (chair, buffalo, boot, and boat) suggests that this
platform of TMP tessellations has a great potential to satisfy the
mechanical and geometrical requirements for various engineering
applications. Furthermore, this rich versatility of TMP tessellations
manifests the importance of efficient methods to find valid config-
urations because it contributes not only to the fundamental prob-
lems of mathematical/geometrical combinations, but also to the
design of advanced mechanical metamaterials.
4. Conclusion

In this study, we have demonstrated a graph-theoretic approach
to discover the valid configurations of TMP tessellations. Given the
challenges of combinatorial problems of origami-based mechanical
metamaterials, we have built a computationally efficient frame-
work to account for a complete set of reconfigurable shapes of
the TMP tessellations. To this end, we have enumerated the infor-
mation about the connections of the TMP unit cells using adjacency
matrices. One of the unique features of this versatile graph-
theoretic approach is that it has the possibility to be applied for
designing various types of mechanical metamaterials. This simple
approach of using adjacency matrices has proposed an efficient
method to describe and analyze the tessellation of the mechanical
metamaterials. The result of the aforementioned analysis indicates
that the TMP tessellations have an abundance of reconfigurability
owing to the heterogeneity of the TMP cells and their versatile con-
nectivity. Besides, the analysis of mechanical properties, such as
Poisson’s ratio and elastic modulus, suggests that the various con-
figurations of the tessellations yield a wide range of design space.
Such reconfigurability can be exponentially improved by adopting
a larger number of TMP cells in the tessellation, and the exact num-
ber of possible configurations has been calculated by the proposed
graph-theoretic method in an accurate and efficient manner.

Given the simplicity of this framework, the graph-based
approach can be applied to the other types of the tessellations of
mechanical metamaterials (e.g., metal–organic hinged cube tessel-
lation [31], voxelated mechanical metamaterials [10,32], and other
origami lattices in 2D or 3D settings [33,15,24,34,16]) by building
graph representations for each architecture of mechanical meta-
materials and by understanding the connections within the tessel-
lations. For instance, 3D stacked miura-ori variant mechanical
metamaterials[16] have multistability in their unit cells that is
similar to TMP unit cells. Furthermore, they can form tessellations.
Therefore, there is a rich reconfigurability, and the analysis using
this graph-based framework can be highly useful. Also, the ability
to simulate the various mechanical responses, shapes and mor-
phologies suggest the possibility of answering the following ques-
tion; given the target geometry and properties we want to achieve,
can we dial-in the local phases in unit cells and find the optimal
metamaterial configurations globally? This can be assessed by uti-
lizing the graph-theoretic framework developed herein and com-
bining it with combinatorial optimization techniques.
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