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Abstract

Prior studies in multilingual language model-
ing (e.g., Cotterell et al., 2018; Mielke et al.,
2019) disagree on whether or not inflectional
morphology makes languages harder to model.
We attempt to resolve the disagreement and
extend those studies. We compile a larger
corpus of 145 Bible translations in 92 lan-
guages and a larger number of typological
features.! We fill in missing typological data
for several languages and consider corpus-
based measures of morphological complexity
in addition to expert-produced typological
features. We find that several morphological
measures are significantly associated with
higher surprisal when LSTM models are
trained with BPE-segmented data. We also
investigate linguistically motivated subword
segmentation strategies like Morfessor and
Finite-State Transducers (FSTs) and find that
these segmentation strategies yield better
performance and reduce the impact of a lan-
guage’s morphology on language modeling.

1 Introduction

With most research in Natural Language Pro-
cessing (NLP) directed at a small subset of the
world’s languages, whether the techniques devel-
oped are truly language-agnostic is often not
known. Because the vast majority of research fo-
cuses on English, with Chinese a distant second
(Mielke, 2016), neither of which is morphologi-
cally rich, the impact of morphology on NLP tasks
for various languages is not entirely understood.
Several studies have investigated this issue in
the context of language modeling by comparing a
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number of languages, but found conflicting results.
Gerz et al. (2018) and Cotterell et al. (2018)
find that morphological complexity is predictive
of language modeling difficulty, while Mielke
et al. (2019) conclude that simple statistics of a
text like the number of types explain differences
in modeling difficulty, rather than morphological
measures.

This paper revisits this issue by increasing the
number of languages considered and augmenting
the kind and number of morphological features
used. We train language models for 92 languages
from a corpus of Bibles fully aligned at the
verse level and measure language modeling
performance using surprisal (the negative log-
likelihood) per verse (see §4.5). We investigate
how this measure is correlated with 12 linguist-
generated morphological features and four corpus-
based measures of morphological complexity.

Additionally, we contend that the relation be-
tween segmentation method, morphology, and
language modeling performance needs further
investigation. Byte-Pair Encoding (BPE; Shibata
etal., 1999) is widely used in NLP tasks including
machine translation (Sennrich et al., 2016) as
an unsupervised information-theoretic method for
segmenting text data into subword units. Variants
of BPE or closely related methods such as
WordPiece (Kudo, 2018) are frequently used by
state-of-the-art pretrained language models (Liu
et al., 2019; Radford et al., 2019; Devlin et al.,
2019; Yang et al., 2019). However, BPE and other
segmentation methods may vary in how closely
they capture morphological segments for a given
language, which may affect language modeling
performance.

Therefore, this paper focuses on the following
two research questions:

1. Does a language’s morphology influence
language modeling difficulty?
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2. If so, how do different segmentation methods
interact with morphology?

In order to answer the first question, we
train models using data sets segmented by
characters and BPE units. Our results show that
BPE language modeling surprisal is significantly
correlated with measures of morphological
typology and complexity. This suggests that BPE
segments are ineffective in mitigating the effect
of morphology in language modeling.

As for the second question, we consider more
linguistically motivated segmentation methods to
compare with BPE: Morfessor (Creutz and Lagus,
2007) and Finite-State Transducers (FSTs) (see
§4.3). Our comparison of the models using the
different segmentation methods shows that Mor-
fessor reduces the impact of morphology for
more languages than BPE. FST-based segmen-
tation methods outperform the other segmentation
methods when available. These results suggest
that morphologically motivated segmentations
improve cross-linguistic language modeling.

2 Modeling Difficulty Across Languages

Studies have demonstrated that different lan-
guages may be unequally difficult to model and
have tested the relations between such modeling
difficulty and morphological properties of lan-
guages, using different segmentation methods.

Vania and Lopez (2017) compared the effec-
tiveness of word representations based on different
segmentation methods in modeling 10 languages
with various morphological typologies. They
trained word-level language models, but utilized
segmentation methods to create word embeddings
that included segment-level information. Compar-
ing character, BPE, and Morfessor segmentations,
they concluded that character-based representa-
tions were most effective across languages, with
BPE always outperforming Morfessor. However,
models based on hand-crafted morphological
analyses outperformed all other segmentation
methods by a wide margin.

Gerz et al. (2018) trained n-gram and neural
language models over 50 languages and argued
that the type of morphological system is predictive
of model performance. Their results show that lan-
guages differ with regard to modeling difficulty.
They attributed the differences among languages
to four types of morphological systems: isolating,
fusional, introflexive, and agglutinative. While
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they found a significant association between
the morphological type and modeling difficulty,
Type-Token Ratio (TTR) was the most predictive
of language modeling performance.

Cotterell et al. (2018) arrived at a similar con-
clusion modeling 21 languages using the Europarl
corpus (Koehn, 2005). When trained with n-gram
and character-based Long Short-Term Memory
(LSTM) models, the languages showed differ-
ent modeling difficulties, which were correlated
with a measure of morphology, Morphological
Counting Complexity (MCC) or the number of
inflectional categories (Sagot, 2013).

However, Mielke et al. (2019) failed to repro-
duce the correlation with MCC when they in-
creased the scope to 69 languages, utilizing a Bible
corpus (Mayer and Cysouw, 2014). They also
reported no correlation with measures of morpho-
syntactic complexity such as head-POS entropy
(Dehouck and Denis, 2018) and other linguist-
generated features (Dryer and Haspelmath, 2013).
Rather, they found that simpler statistics, namely,
the number of types and number of characters
per word, correlate with language model sur-
prisal using BPE and character segmentation,
respectively.

3 Morphological Measures

Different measures of morphology are used to
represent a language’s morphology.

3.1 Linguist-generated Measures

The most linguistically informed measures of
morphology involve expert descriptions of lan-
guages. The World Atlas of Language Structures
(WALS; Dryer and Haspelmath, 2013) has been
used frequently in the literature to provide typo-
logical information. WALS is a large database of
linguistic features gathered from descriptive mate-
rials, such as reference grammars. It contains 144
chapters in 11 areas including phonology, mor-
phology, and word order. Each chapter describes a
feature with categorical values and lists languages
that have each value. However, not all languages
in the database have data for all the features, and
for some languages there is no data at all.

The studies reviewed in §2 all relied on this
expert-description approach to quantify morpho-
logical properties. Gerz et al. (2018) focused
on WALS descriptions of inflectional synthe-
sis of verbs, fusion, exponence, and flexivity,
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while Mielke et al. (2019) looked at two WALS
features, 26A ‘‘Prefixing vs. Suffixing in Inflec-
tional Morphology’” and 81A ‘‘Order of Subject,
Object and Verb.”” Cotterell et al. (2018) used
UniMorph (Kirov et al., 2018), instead of WALS,
to calculate MCC. Vania and Lopez (2017) did
not cite any databases but provided descriptions
of four morphological types (fusional, aggluti-
native, root-and-pattern, and reduplication) and
categorized 10 languages into these types.

A major issue with this approach to representing
morphology is that there is not enough expert
data available to enable comparisons across many
different languages. In fact, Mielke et al. (2019)
chose their two WALS features because data for
these features existed for most of their languages.
Moreover, Bentz et al. (2016) showed that their
WALS-based measure had lower correlations
with other measures of morphological complexity
due to this issue of missing data.

3.2 Corpus-based Measures

In contrast, corpus-based measures of morphology
can be easily calculated on a given data set.
These measures include the number of types, TTR,
Moving-Average TTR (MATTR; Covington and
McFall, 2010), and Mean Length of Words
(MLW). The exact definition of the measures
may vary depending on studies, but we define
them as in Table 1, where a word token is a
string separated by spaces in the training set after
tokenization but before segmentation.

While some studies (e.g., Mielke et al., 2019)
consider these measures as simple statistics of
a corpus, other studies have found that they can be
used as approximate measures of morphological
complexity. Kettunen (2014) showed that TTR,
MATTR, and MLW can capture the overall rank-
ing of morphological complexity generated by
information-theoretic and expert-generated mea-
sures of morphological complexity. Bentz et al.
(2016) compared different measures of mor-
phological complexity for 519 languages across
101 families and showed a strong correlation
between all measures, which were based on cor-
pus statistics, linguistic expertise, information
theory, and translation alignment. They argued
that corpus-based measures, including TTR, and
other measures of morphological complexity can
be used interchangeably. In addition, Gerz et al.
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Measure Definition
Types Number of unique word tokens
TTR Number of unique word tokens divided by total

number of word tokens

MATTR  Average TTR calculated over a moving window
of 500 word tokens

MLW Average number of characters per word token

Table 1: Corpus-based measures of morphology
defined for this study. These measures are
calculated on tokenized data sets before applying
any segmentation method.

(2018) showed that TTR is influenced by the mor-
phological typology of a language. According to
them, isolating languages tend to have small TTR
values and are often easier to model while the
opposite is true for agglutinative languages.

Given the previous literature, we utilize
these corpus-based measures, as well as expert-
generated WALS features, as a proxy for mor-
phological differences among languages in our
study.

4 Methods

We design our experiments to test whether a lan-
guage’s morphology is correlated with language
model performance, depending on the segmenta-
tion method. We represent a language’s morpho-
logy using WALS features and corpus statistics.
We train language models for Bible translations
in 92 languages based on five different segmenta-
tion methods: character, BPE, Morfessor, and FST
with BPE or Morfessor back-off strategies (FST
+BPE & FST+Morfessor). We use surprisal per
verse (Mielke et al., 2019) as the evaluation
metric to compare language modeling perfor-
mance across different languages and different
segmentation methods. Additionally, we quan-
tify the difference in surprisal per verse between
segmentation methods to compare the relative
strength of each segmentation method with regard
to morphological complexity.

4.1 Data

Our data consist of 145 Bible translations in 92
languages covering 22 language families,? fully

2For each language, we report the family assigned by
WALS (Dryer and Haspelmath, 2013): 6 Afro-Asiatic,
1 Algic, 1 Altaic, 2 Austro-Asiatic, 6 Austronesian, 1
Aymaran, 3 Dravidian, 4 Eskimo-Aleut, 1 Guaicuruan, 33
Indo-European, 1 Japanese, 1 Korean, 1 Mande, 6 Mayan,
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aligned at the verse level. The majority of the
data came verse-aligned from Mielke et al. (2019)
(original data from Mayer and Cysouw, 2014).
We added more Bibles from another corpus
(Christodoulopoulos and Steedman, 2014) and
from online Bible resources (see Appendix A
for more information). We refer to each language
by ISO 639-3 code when applicable.

We followed Mielke et al.’s (2019) method to
split the data into training, development, and test
sets: The verse-aligned data were divided into
blocks of 30 verses, with the first five verses
being assigned to the development set, the next
five to the test set and the rest to the training set.
The resulting training set had 16,926 verses while
development and test sets had 4,225 verses each.

It should be noted that both Mielke et al. (2019)
and Christodoulopoulos and Steedman (2014)
provided tokenized data. We tokenized the
newly added Bibles using Mielke and Eisner’s
(2019) tokenizer, following Mielke et al. (2019).
When both tokenized and untokenized versions
were available, we included the tokenized versions
only.

We chose to replace characters that only
occurred one time with a special UNK symbol.
Mielke et al. (2019) applied this procedure to
characters that appear less than 25 times in
the training set except for Chinese, where only
singleton characters were replaced. Because we
added several languages where the original
strategy would have resulted in removing too
much data, we preprocessed singleton characters
across the board.

We also corrected several errors present in the
data. For example, the Bible translations in Shona
(sna) and Telugu (tel) were mis-coded as Shan
(shn) and Tecpatlan Totonac (tcw), respectively.

4.2 Morphological Measures Selected

In this paper, we adopt two approaches to
representing a language’s morphology. First, we
rely on expert descriptions of languages in WALS,
manually augmenting the database to rectify
the issue of missing data. Second, we utilize
corpus-based measures like TTR to represent the
morphological complexity of a given language.

WALS Features While some previous studies
(e.g., Gerz et al., 2018; Vania and Lopez, 2017)

6 Niger-Congo, 4 Quechuan, 5 Sino-Tibetan, 1 Songhay, 1
Tai-Kadai, 2 Tupian, 2 Uralic, 2 Uto-Aztecan, 2 Creoles.
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categorized relatively well-known languages into
a small number of morphological types, such
categorization is not always clear. Some other
studies (e.g., Cotterell et al., 2018; Mielke et al.,
2019) selected a small number of available typo-
logical features to compare, but their conclusions
were at odds, possibly calling for exploration
of other measures. Therefore, we consider all
available morphological features described by
WALS to explore which features affect language
modeling and how. Instead of making theoretical
claims about morphological typology, we explore
which typological features make a language’s
morphology more complex for LSTM language
models.

To that end, we augmented the existing WALS
database by consulting reference grammars for
each language. Of the 92 languages in our corpus,
six were not in the WALS database.? In addition,
many of the languages in the database had missing
data for some features. For example, we had no
data for any of the morphological features of
Afrikaans (afr). We manually assigned missing
features where possible following the descriptions
in the relevant WALS chapters regarding the
procedures used to assign feature values to
languages.

Of the almost 200 features in WALS, the
editors of the database labeled 12 of them as
morphological features. Therefore, we considered
these 12 features, listed in Table 2 and described
below,* to test the hypothesis that morphological
complexity correlates with modeling difficulty.

Feature 20A describes how closely grammatical
markers (inflectional formatives) are phonologi-
cally connected to a host word or stem. The
markers can be isolating, concatenative, or even
nonlinear (i.e., ablaut and tone).

Features 21A and 21B measure the exponence
of selected grammatical markers. Exponence
refers to the number of categories that a single
morpheme expresses. For 21A, the selected gram-
matical markers were case markers. For 21B, they
were tense-aspect-mood markers.

Feature 22A measures how many grammatical
categories may appear on verbs in a language.
These categories include tense-aspect-mood, ne-
gation, voice, and agreement.

3ikt, lat, nch, tbz, wbm, zom.
4See https://wals.info/chapter for more
details and examples of these features.
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ID Name
20A Fusion of Selected Inflectional Formatives
21A Exponence of Selected Inflectional Formatives

21B Exponence of Tense-Aspect-Mood Inflection

22A Inflectional Synthesis of the Verb

23A Locus of Marking in the Clause

24A Locus of Marking in Possessive Noun Phrases
25A Locus of Marking: Whole-language Typology
25B Zero Marking of A and P Arguments

26A Prefixing vs. Suffixing in Inflectional Morphology
27A Reduplication

28A Case Syncretism

29A Syncretism in Verbal Person/Number Marking

Table 2: The 12 morphological features in WALS.

Features 23A through 25B describe the exis-
tence and locus of marking in different kinds of
phrases. A phrase may have marking on either
its head, its dependent(s), both, or neither. In full
clauses, the verb is the head, and the subject and
object arguments are dependents. In possessive
noun phrases, the possessed noun is the head
while the possessor is dependent.

Feature 26A measures the degree to which
languages use prefixes versus suffixes in their
inflectional morphology. Feature 27A describes
which languages use reduplication produc-
tively and whether or not both full and partial
reduplication are used.

Both Features 28A and 29A measure syn-
cretism. Syncretism occurs when a single inflected
form corresponds to more than one function. 28A
measures case syncretism specifically while 29A
measures syncretism in the subject agreement
marking of verbs.

Types, TTR, MATTR, and MLW We cal-
culated the number of types, TTR, MATTR, and
MLW using an adapted script from the Python
module LexicalRichness.” We used a window size
of 500 for MATTR, following previous studies
(e.g., Kettunen, 2014). The definitions of the
measures are found in Table 1. All measures were
calculated based on the word tokens in the training
set before applying any segmentation method.

4.3 Segmentation Methods

We chose to train only open-vocabulary lan-
guage models for fair comparison. Word-level
models will predict UNK for out-of-vocabulary
word tokens and cannot be fairly compared with

Shttps://github.com/LSYS/LexicalRichness.
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character- and subword-level models as a result.
Specifically, we trained language models using
five segmentation methods: character, BPE, Mor-
fessor, FST+BPE, and FST+Morfessor. These
segmentation methods provide a way to segment
any given text into smaller pieces, some of which
approximate morphemes.

A morpheme is the smallest meaning-bearing
morphological unit while a morph is the surface
representation of one or more morphemes. Lin-
guistically motivated methods like Morfessor and
FSTs are designed with the goal of producing sub-
word segments that are closely aligned to the true
morphs constituting a word. While BPE was not
designed with morpheme segmentation in mind,
its resulting subwords are commonly believed to
align with morphs to some degree due to morph
subsequences being frequent in the data.

Segmenting words into morphs may reduce the
impact of rich morphology as highly inflected
words can be broken into smaller pieces that are
likely to contribute similar meanings across con-
texts in the corpus. Table 3 provides examples of
the segmentation methods we used to train lan-
guage models. The original verse is provided for
reference only and was not used to train any
models.

Character We trained character-based lan-
guage models, following previous studies (Mielke
et al., 2019; Gerz et al., 2018; Cotterell et al.,
2018). Character language models are trained to
predict the next character given the preceding con-
text, and the vocabulary includes an underscore
(_) to denote word boundaries.

BPE We trained BPE-based language models,
following Mielke et al. (2019). Starting with
character segmentation, BPE operations combine
characters into larger chunks based on their
frequencies to create units somewhere between
characters and words with the number of merge
operations as the hyperparameter (Sennrich et al.,
2016). We used 0.4 X types as the number of
merges, as Mielke et al. (2019) reported that to be
most effective with their corpus.® BPE language
models are trained to predict the next BPE unit.
The double at sign (@QQ@) is used to indicate
segments that are not word-final.

6 Additional static numbers of merge operations were also
tested, with nearly identical results.
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Segmentation Example

Tokenized Yuhannanin kardesi Yakubu kiligla o6ldirdid .

Character Yuhannanin_-kardesi_-Yakubu_-ki1li¢la-86ldurd?u.
BPE Yuhan@@ nanin kardesi Yakubu kiligla 6ldirdd .

Morfessor Yuhanna@@ nin kardes@@ i Yakub@@ u kilig@@ la &6ldurdiu .

FST+BPE Yuhan@@ nanin kardes@@ i Yakub@@ u kilig@@ la 61@Q@ dur@e@ du .

FST+Morfessor Yuhanna@@ nin kardes@@ i Yakub@@ u ki1lig@Q@ la 61@Q@ dur@@ du .

Table 3: Turkish examples for different segmentation methods. An English translation is ‘‘And he
killed James the brother of John with the sword’” (Acts 12:2). FST does not produce analyses for
Yuhannanmin (*‘John’s’’), for which BPE or Morfessor back-off was used. The segmentation created
by human experts was the same as FST+Morfessor. (@@) denotes subword segmentation and (_)
encodes space between word tokens for character segmentation.

Morfessor Morfessor (Creutz and Lagus, 2007)
is a word segmentation method explicitly designed
for morphological segmentation. The default im-
plementation utilizes a unigram language model
to find morph-like constructs. While like BPE
this approach is information-theoretic, it selects
segments top—down and includes a prior term for
the length of segments, regularizing segments to
be more plausible morphemes.

Using the default settings with Morfessor 2.0
(Virpioja et al., 2013), we trained Morfessor on
the training set and applied the segmentation to
all data sets. Just like BPE, the language models
are trained to predict the next morph unit.

FST Whereas segmentation based on BPE and
Morfessor may or may not resemble actual mor-
phemes, morpheme segmentation from FSTs
provides a knowledge-based method to segment
a text into morphemes. Finite-state morphologi-
cal analyzers are rule-based systems that take a
surface string as input and produce all possible
morphological analyses as output. To use FSTs for
segmentation, we changed existing morphological
analyzers into segmenters and developed a heuris-
tic to select one analysis for a given word token.
FSTs for Plains Cree (Arppe et al., 2014-2019),
German (Schmid et al., 2004), English (Axelson
et al., 2015), Finnish (Pirinen, 2015), Indonesian
(Larasati et al.,, 2011), Cuzco Quechua (Vilca
et al., 2012), and Turkish (Coltekin, 2014, 2010)
were used as morphological segmenters.

Most FSTs are designed to provide analyses for
surface forms, not morphological segmentations.
Fortunately, morpheme boundaries are frequently
part of FSTs due to their relevance for lexico-
phonological phenomena. By modifying the FST
before the cleanup rules that remove morpheme
boundaries can apply, we create a morphological

266

segmenter that takes in a surface form and re-
turns the surface form with morpheme boundary
markers. If the analyzer provides segmentations,
the transducer is used as-is.

For example, the Turkish FST produces a
morphological analysis for the surface form kilicla
(“‘with the sword’’) in the example in Table 3:
k111¢<NOUN><Case:instrumental>. In-
stead of producing such an analysis for the given
word, the segmenter produces the segmented sur-
face form k111¢@@ la, which is used in the
FST segmentation methods.

Because a FST may return multiple analyses
or segmentations given a single word, a heuristic
method was used to determine which segmentation
to select. In general, we chose the segmentation
with the fewest segments. However, the English
segmenter based on Axelson et al. (2015) always
returns the input string itself as a possible segmen-
tation if covered by the analyzer. For example,
walks would produce two segmentations in the
English segmenter: walks and walk@@ s. For
this segmenter, we selected the fewest number of
segments excluding the input string itself (e.g.,
choosing walk@@ s over walks).

When a FST produces no analyses for a given
word, as in the case of Yuhannanin (John’s) in
Table 3, we adopt the FST-augmented BPE seg-
mentation (FST+BPE) and FST-augmented Mor-
fessor segmentation (FST+Morfessor), where we
fall back to BPE or Morfessor segmentation when-
ever FST segmentation is unavailable. As shown
in the table, FST+BPE and FST-+Morfessor
only differ in the segmentation of the unanalyzed
word. For this particular verse, the human segmen-
tation agrees with the FST+Morfessor segmen-
tation. FST+BPE and FST+Morfessor models
are trained just like BPE or Morfessor models to
predict the next subword unit.
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4.4 Models

Following Mielke et al. (2019), we trained Long
Short-Term Memory (LSTM) models introduced
by Merity et al. (2018) for each of the seg-
mentation methods. Three LSTM models using
character, BPE, and Morfessor segmentation were
trained for all languages. For a select group of lan-
guages, we also trained models using FST+BPE
and FST+Morfessor units. The neural architec-
ture consisted of an initial embedding layer, mul-
tiple LSTM layers, and a linear decoder layer.
For our particular experiments, we adopted the
hyperparameters from Mielke et al. (2019) (see
Merity et al., 2018, for their character PTB sett-
tings). The batch size used for character models
was 128 with 500 epochs of training. All other
models used a batch size of 40 and were trained
for 200 epochs.

4.5 Metrics

Surprisal per Verse One major evaluation
metric for language models is the negative
log-likelihood on a test set. The negative log-
likelihood, or surprisal, is the amount of infor-
mation a language model needs to generate the
next unit. Following Mielke et al. (2019), we
define the surprisal at the verse level, where
NLL (v;;) = —log, p(vi;) with a verse v;; (for
ith verse in language j). Because each verse is
intended to express the same meaning across lan-
guages, differences in per-verse surprisal across
languages primarily indicate differences in cross-
linguistic language model quality (rather than
differences in meaning content).

For each language j, we average the negative
log-likelihood across the 4,225 verses in the test

set, making Lj = 5= 3°1%3" NLL (vy).

Surprisal Difference Additionally, we quantify
the difference between segmentation methods
in language modeling performance as shown in
Equation 1. This quantity compares the relative
strength of one segmentation method to another.

Asj8, = Y Tk I
1,052 — 1

5L+ L)
Sj1 and Sjp are two segmentation methods to
compare and L;; and Ly represent the surprisal
per verse for the language models based on the
two segmentation methods. If Ag;, s, is positive,
S resulted in a higher surprisal than S, and S}
was more effective in modeling a given language.

)]
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5 Results

We now present results from our experiments.
We report the strong association between several
morphological features and surprisal per verse
for BPE language models, compared to language
models based on other segmentation methods.
Then, we show the trade offs between different
segmentation methods and how they interact with
morphological complexity. Our assumption is
that, if a segmentation method reduces the impact
of morphology, the surprisal values of language
models based on that segmentation will have
weaker correlations with measures of morphology.

5.1 Correlation Studies with Character and
BPE Models

We investigated correlations between surprisal per
verse and various measures of morphology (i.e.,
WALS features, number of types, TTR, MATTR,
MLW). Benjamini and Hochberg’s (1995) pro-
cedure was used to control the false discovery
rate, so only p < £ -0.05 (=~ 0.027) is considered
significant.

WALS Features We tested for association
between surprisal and each selected WALS fea-
ture with the Kruskal-Wallis test, or one-way
ANOVA on ranks. This non-parametric test was
chosen because the distribution of surprisal values
did not meet the assumption of normality. A
significant test result in this context means that
there are significant differences in the median
surprisal values between categories for a given
feature. In order for the test to be effective, only
feature values with a sample size > 5 were tested.

For the character models, no features showed
significant association with surprisal. However,
for the BPE models, half of the morphological
features had significant association with surprisal.
These features were 21A ‘‘Exponence of Selected
Inflectional Formatives,”” 23A ‘‘Locus of Mark-
ing in the Clause,”” 24A ‘‘Locus of Marking in
Possessive Noun Phrases,”” 25A “‘Locus of Mark-
ing: Whole-language Typology,”” 25B ‘‘Zero
Marking of A and P Arguments,’’ and 29A “‘Syn-
cretism in Verbal Person/Number Marking.”’

For the features shown to have an effect on
the BPE surprisal, we calculated the effect sizes
and performed post-hoc comparisons to determine
which categories were significantly different. In
this context, effect size (%) indicates the propor-
tion of variance in surprisal per verse explained by

d-ao1e/[0B)/NP8e W I08.Ip//:dnY Woly papeojumod

0 € 108Y/8511Z61/S9E00 € [9B)/Z91L L 01/10P/4P!

220z 1snbny 90 uo 3senb Aq ypd-goe0



Segmentation ID p-value n? Segmentation Measure Spearman’s p
21A 1.3e-05 0.28 Types 0.19*
23A 6.7¢-06 0.28 TTR 0.15
BPE 24A  22e04  0.228 Character MATTR 0.17*
25A 6.5e-05 0.253 MLW 0.06
25B 0.014 0.06 Types 0.80"**
29A 2.0e-04 0.198 BPE TTR 0.76**
21A 0.009 0.109 MATTR 0.68***
Morfessor 23A 0.002 0.135 MLW 0.61**
26A 0.022 0.064 Types 0.50**
29A 0.024 0.072 Morfessor TTR 0.44**
MATTR 0.39**
Table 4: p-values and effect sizes of WALS MLW 0.30%*

features that showed significant effect on surprisal
per verse. Large effect sizes (> 0.14) are in bold.

each WALS feature, and 772 > 0.14 is considered
a large effect (Tomczak and Tomczak, 2014).
The p-values and effect sizes are summarized in
Table 4. The effect size was large for all of the
significant features except for 25B.

For Feature 21A, the median surprisal value for
languages with no case was significantly lower
than the median value for other types. Similarly,
for 23A, the median surprisal value for languages
with no marking was significantly lower than the
value for other types. In the cases of both 24A and
25A, languages with double marking had higher
surprisal values than those with single or no mark-
ing. For 25B, languages with non-zero marking
had slightly higher surprisal values than those
with zero-marking. Lastly, for 29A, languages
without syncretism had higher surprisal values
than those with syncretism or with no marking.

In general, less inflectional morphology was
associated with lower surprisal while more inflec-
tional morphology was associated with higher
surprisal.

Corpus-based Measures A similar trend
emerged for corpus-based measures of mor-
phological complexity. The surprisal per verse
of BPE models was highly correlated with type
count, TTR, MATTR, and MLW. Yet with char-
acter models, the strength of the correlation
was weak and often insignificant. These results
suggest that BPE segmentation was ineffective in
reducing the impact of morphological complexity.

Table 5 summarizes the correlation coefficients
and corresponding p-values. For the character-
based models, only the number of types and

268

Table 5: Correlation between surprisal per verse
per segmentation method and morphological
complexity measures. *p < 0.027, **p < 0.0005.

MATTR showed a significant correlation in
Spearman’s rank-order correlation, and those
correlations were rather weak. In contrast, the
BPE models presented strong correlations with all
of the corpus-based measures at any reasonable
alpha value (p < 107!6). The number of types
showed the strongest correlation, followed by
TTR, MATTR, and MLW in that order.

5.2 Comparison with Morfessor and
Finite-State Transducer Models

We trained language models using three additional
segmentation methods: Morfessor, FST+BPE,
and FST+Morfessor. Because Morfessor is an
unsupervised method, we were able to utilize it
to segment all languages, but we were able to
generate FST segmentation for only a few lan-
guages. As such, we compare the character, BPE,
and Morfessor models for all languages before
looking into a subset of them where the FST
methods were available.

Morfessor Models Morfessor segmentation
performed better than both character and BPE
segmentation for the majority of languages.
Figure 1 shows the pairwise comparisons of the
surprisal per verse values of a given language on
different segmentation strategies. As shown in the
plot on the left, the relative strength between BPE
and character segmentation methods is not clear.
BPE segmentation produced slightly better results
for 49 of the 92 languages, but character segmen-
tation produced much lower surprisal values for
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Figure 1: Pairwise comparisons of surprisal per verse values for character, BPE, and Morfessor models. For the
majority of the languages, Morfessor segmentation resulted in lower surprisal per verse than character or BPE

segmentation.

the rest of the languages. In contrast, Morfessor
clearly outperformed character and BPE for most
of the languages, as shown in the plots in the
middle and on the right. Only 12 out of the 92
languages had higher surprisal values for Mor-
fessor segmentation than character, while a total
of 66 languages performed better with Morfessor
segmentation than with BPE.

In addition, Morfessor models’ surprisal per
verse showed weaker correlations with measures
of morphology. Only four WALS features showed
significant association with the Morfessor models:
21A “‘Exponence of Selected Inflectional Forma-
tives,”” 23A “‘Locus of Marking in the Clause,”’
26A ‘“‘Prefixing vs. Suffixing in Inflectional
Morphology,”” and 29A ‘‘Syncretism in Verbal
Person/Number Marking.”” The effect sizes were
also much smaller than those for the BPE models
as shown in Table 4.

Just as with the BPE models, the median sur-
prisal for languages with no marking was much
lower than the surprisal for other types for Fea-
tures 21A, 23A, and 29A. For 26A, there was only
a significant difference between weakly suffix-
ing languages and strongly prefixing languages,
with strongly prefixing languages having a lower
median surprisal per verse.

Asshownin Table 5, corpus-based statistics still
showed significant correlations with the surprisal
per verse value of Morfessor models, but the
correlations were moderate compared to those of
the BPE models.

FST Models When available, a FST segmen-
tation method resulted in the best performance.

130 character

BPE

Morfessor
FST+BPE
FST+Morfessor

125

120

115

110

Surprisal per verse

105

100

95—
crk deu eng fin ind quz tur

Figure 2: Surprisal per verse per segmentation method
including FST segmentation methods. FST+BPE or
FST+Morfessor models outperform all other models.

The graph in Figure 2 displays the surprisal of
FST+BPE and FST+Morfessor models in com-
parison to the segmentation methods discussed
above. For all seven languages, either FST+BPE
or FST+Morfessor segmentation (or both) shows
a clear decrease in the surprisal per verse com-
pared to the BPE and Morfessor segmentations.

5.3 Surprisal Difference and
Morphological Complexity

In order to look into the effect of morphological
complexity on the relative strength of a given
segmentation method, we conducted correlation
studies with the difference between the surprisal
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Difference Measure Spearman’s p
Types 0.95**
TTR 0.92%**
£\ BPE, cha MATTR 0.77*
MLW 0.74**
Types 0.71%*
TTR 0.66"**
A Morfessor, char MATTR 0.50***
MLW 0.53**
Types 0.86"**
TTR 0.86*"*
A BPE, Morfessor MATTR 0 80***
MLW 0.75%*

Table 6: Correlation between surprisal differences
and morphological complexity measures for
character, BPE, and Morfessor models. All
p-values < 10711,

per verse for pairs of segmentation methods (the
A values as defined in §4.5). We considered only
the measures of morphological complexity that
were continuous variables (i.e., number of types,
TTR, MATTR, and MLW).

As shown in Table 6, all of the corpus-based
statistics were highly correlated to the A values.
The correlations range from moderate to high
using Spearman’s p (0.50 < p < 0.95). Even
though the strength of correlations varied slightly,
number of types, TTR, MATTR, and MLW all
showed a similar correlation with the difference
statistics. They all had a positive correlation with
A BpE, char- This indicates that the more morpho-
logically complex a language is, the better it
is modeled with character segmentation com-
pared to BPE segmentation. Similarly, there were
positive correlations between the morphological
measures and A worfessor, char> SUZEESsting that char-
acter segmentation works better than Morfessor
in modeling morphologically complex languages.
A BpE, Morfessor alS0 had positive correlations with
complexity measures. This means that languages
with higher morphological complexity tend to
record lower surprisal values with Morfessor seg-
mentation than BPE. While BPE and Morfessor
models outperformed character models on aver-
age as shown in §5.2, the positive correlations
with A Morfessor, char and ABPE, char SuggeSt that
character segmentation outperformed BPE and
Morfessor segmentation for languages with very
rich morphology.
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These results are supported by Figure 3, where
the surprisal per verse for different segmentation
models is plotted against MATTR.” For languages
with lower MATTR, BPE and Morfessor perform
better than character segmentation. However, for
languages with higher MATTR, character and
Morfessor models outperform BPE.

6 Discussion

Our results show that BPE models’ surprisal
per verse is highly correlated with a language’s
morphology, represented by several WALS fea-
tures and corpus-based measures. Morfessor
shows weaker correlations with such measures
and records better performance for most of the
languages. FST-based models outperform others
when available. In this section, we discuss the
implications of these findings in the context of
previous work and future research.

6.1 Morphology and Surprisal

In accordance with the prior work discussed in
§2, we found differences in modeling difficulty
between languages. The correlation studies in §5
provide evidence that morphology is a substan-
tial contributing factor to these differences. Six
WALS (Dryer and Haspelmath, 2013) morphol-
ogy features showed association with the surprisal
per verse of BPE language models. Corpus-based
statistics like number of types and MATTR
showed strong correlations with BPE surprisal,
supporting the relationship between modeling
difficulty and morphological complexity.

Our conclusion that a language’s morphology
impacts language modeling difficulty agrees with
Cotterell et al. (2018) and Gerz et al. (2018), but
is at odds with Mielke et al. (2019). We included
languages known for their rich morphology, such
as Western Canadian Inuktitut (ikt) and Central
Alaskan Yup’ik (esu), which may have increased
the variation in morphological complexity in the
corpus. We also augmented the WALS data by
consulting reference grammars, so we were able
to consider 11 more morphological WALS fea-
tures than Mielke et al. (2019). We found that the
morphological feature Mielke et al. (2019) consid-
ered, 26A ‘‘Prefixing vs. Suffixing in Inflectional

"The same trend was captured when we plotted with the
other corpus-based measures.
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Figure 3: Surprisal per verse plotted against MATTR for character, BPE, and Morfessor segmentation methods.
Lines indicate the regression estimate with 95% confidence intervals.

>

Morphology,”” indeed showed no correlation
with BPE surprisal. However, our results show
that there are aspects of morphology that affect
surprisal that were not considered before.

Previous work, such as Gerz et al. (2018),
focused only on aspects of morphology that they
believed a priori would predict language model
performance. In contrast, our study tested all of the
morphological features listed in WALS and also
tested each of them individually. We found that
two of the four features in Gerz et al. (2018), 20A
“‘Fusion of Selected Inflectional Formatives’” and
22A “‘“Inflectional Synthesis of the Verb,”” showed
no association with language model performance.
Additionally, we found several features that af-
fected language modeling performance, specif-
ically locus of marking and syncretism, which
were not mentioned in the literature. These results
show that the features tied to morphological com-
plexity in previous work are not necessarily the
same features that affect language modeling.

In addition to differences in results, our inter-
pretation of corpus-based statistics like TTR also
diverges from previous work. While Mielke et al.
(2019) reported high correlations between lan-
guage model performance and such statistics,
they considered them only as simple statis-
tics of the data. In fact, our results repli-
cate Mielke et al. (2019) in that the number
of types was the most predictive of BPE lan-
guage model surprisal among all the variables
considered. However, we argue that corpus-based
statistics can be used as an approximate measure
of morphological complexity based on previous
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studies. These corpus-based measures of morphol-
ogy are reported to capture the overall ranking
of morphological complexity (Kettunen, 2014;
Bentz et al.,, 2016) and can be interpreted in
relation to morphological typology (Gerz et al.,
2018). We also believe our results indicate that
TTR and the WALS features capture similar
information. For example, the positive correla-
tion of A gpg, Morfessor fOI corpus-based measures
corresponds to the smaller effect sizes of WALS
features found for Morfessor compared to BPE.
This indicates a lesser effect of rich morphology
on Morfessor models compared to BPE.

6.2 Segmentation Methods and Surprisal

While the primary goal of this work is to ana-
lyze the relation of a language’s morphology
to language modeling performance, we found
this to be entangled with the level and method
of segmentation. Our results show that there
is significant variation in the effectiveness of
segmentation methods cross-linguistically, and
suggest challenges to the status quo methods of
subword segmentation in particular. While the
subword segmentation methods we used gener-
ally outperformed character-level segmentation,
the higher the TTR, the smaller the difference in
surprisal for both BPE and Morfessor, suggesting
that these methods are less effective at segment-
ing languages with highly complex morphology.
Of pre-existing methods, we found Morfessor to
have the lowest surprisal per verse for most of the
languages considered. Morfessor’s weaker corre-
lations with WALS features and other measures
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like TTR suggest that its better performance may
be due to a better ability to model languages with
a wider range of morphological attributes. This
is in line with Bostrom and Durrett (2020), who
showed that Unigram LM (Kudo, 2018), a seg-
mentation algorithm similar to Morfessor, often
outperforms BPE and produces more morph-like
segmentation in the context of language model
pretraining in English and Japanese.

However, Morfessor was significantly outper-
formed by character segmentation for a small
subset of languages.® Many of these languages
have been classified as polysynthetic, suggest-
ing that perhaps Morfessor is ill-suited for
such languages (see Klavans, 2018; Tyers and
Mishchenkova, 2020; Mager et al., 2018, for dis-
cussions on challenges polysynthetic languages
pose for NLP tasks).

Additionally, for a typologically diverse sub-
set of languages for which we could obtain
FST morphological segmenters, we considered
novel segmentation methods: FST+BPE and
FST+Morfessor. We found this simple extension
of BPE and Morfessor with morphological infor-
mation achieved the lowest surprisal per verse
in all available languages. The overall success
of combining statistical segmentations with FSTs
further confirms the impact of morphology on
language modeling and yields significant promise
for the use of segmentation based on linguistic
morphological information.

7 Conclusion

A language’s morphology is strongly asso-
ciated with language modeling surprisal for
BPE-segmented language models. BPE model
surprisal is associated with 6 out of the 12 stud-
ied WALS morphology features, indicating that
there are aspects of some languages’ morphology
that BPE does not help mitigate. Strong correla-
tions with corpus-based measures of morphology
such as TTR further suggest that the more types
available in a language (often by means of rich
morphology), the harder it is to model based on
BPE units. Morfessor, which was designed with
morpheme induction in mind, performs better for
most languages and shows less association with
morphological features. When available, the lin-
guistically informed method of FST-augmented

8amh, arz, ayr, cmn, esu, heb, ike, ikt, kal, quh, tel, xho.
BPE outperformed Morfessor for cmn and heb.

BPE or Morfessor segmentation performs best,
indicating a further promise for using linguistic
knowledge to combat the effects of morphology
on language model surprisal.

These conclusions were only possible through
manual augmentation of typological databases and
expansion of studied languages. Future efforts
could adopt our approach for other areas of lan-
guage. Using linguistically informed resources
across many languages is an avenue for improving
neural models in NLP in both design and analysis.
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A Data

We began with the data used in Mielke et al.
(2019). This was originally a subset of a Bible
corpus (Mayer and Cysouw, 2014), which is
no longer publically available. We excluded
constructed languages (epo, tlh) from the data,
keeping a total of 104 verse-aligned Bibles
in 60 languages’ in 12 language families. To
increase the number of the languages and lan-
guage families represented, we added 41 Bibles
in 32 languages to the data. Thirteen Bible trans-
lations in 13 languages'® were sourced from
Christodoulopoulos and Steedman (2014). In

9afr, aln, arb, arz, ayr, bba, ben, bqc, bul, cac, cak, ceb,
ces, cmn, cnh, cym, dan, deu, ell, eng, fin, fra, guj, gur, hat,
hrv, hun, ind, ita, kek, kjb, lat, lit, mah, mam, mri, mya, nld,
nor, plt, poh, por, qub, quh, quy, quz, ron, rus, som, tbz, tel,
tgl, tpi, tpm, ukr, vie, wal, wbm, xho, zom.

10415, amh, dje, heb, isl, jpn, kor, pck, slk, slv, spa,
swe, tha.
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addition, we included 28 Bible translations in 21
languages scraped from various online sources.
Two of the Bibles scraped were in Spanish (spa)
and Telugu (tel), languages which were already
included in the Bible corpora (Mayer and Cysouw,
2014; Christodoulopoulos and Steedman, 2014).
These translations were included because the
new Spanish Bible was a parallel source of the
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Paraguayan Guarani (gug) translation, and the
Telugu Bible obtained from Mielke et al. (2019)
was originally mislabeled as Tecpatlan Totonac
(tcw). The Central Alaskan Yup’ik (esu) Bible was
from https://bibles.org. 26 Bibles in 19
languages!! were from http://bible.com.
The Greenlandic (kal) Bible was obtained from
http://o0ld.bibelselskabet.dk.

"erk, gug, gui, hin, ike, ikt, kan, mal, mar, nch, nep, nhe,
pes, pol, sna, spa, tel, tob, tur.
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