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Abstract— Mobile telepresence robots (MTRs) allow people
to navigate and interact with a remote environment that is in a
place other than the person’s true location. Thanks to the recent
advances in 360

◦ vision, many MTRs are now equipped with
an all-degree visual perception capability. However, people’s
visual field horizontally spans only about 120

◦ of the visual
field captured by the robot. To bridge this observability gap
toward human-MTR shared autonomy, we have developed a
framework, called GHAL360, to enable the MTR to learn a
goal-oriented policy from reinforcements for guiding human
attention using visual indicators. Three telepresence environ-
ments were constructed using datasets that are extracted from
Matterport3D and collected from a real robot respectively.
Experimental results show that GHAL360 outperformed the
baselines from the literature in the efficiency of a human-MTR
team completing target search tasks. A demo video is available:
https://youtu.be/aGbTxCGJSDM

I. INTRODUCTION

Telepresence is an illusion of spatial presence, at a

place other than the true location [1]. Mobile telepresence

robots (MTRs) enable a human operator to extend their

perception capabilities along with the ability of moving and

actuating in a remote environment [2]. The rich literature of

mobile telepresence robotics has demonstrated applications

in domains such as offices [3], [4], academic conferences [5],

[6], elderly care [7], [8], and education [9], [10].

Recently, researchers have equipped MTRs with a 360
◦

camera to perceive the entire sphere of a remote environ-

ment [11], [12]. In comparison to traditional monocular cam-

eras (including the pan-tilt ones), 360◦ visual sensors have

equipped the MTRs with the capability of omnidirectional

visual scene analysis. However, the human vision system,

by nature, is not developed for, and hence not good at

processing 360
◦ visual information. For instance, computer

vision algorithms can be readily applied to visual inputs

with varying spans of degrees, whereas the binocular visual

field of the human eye spans only about 120◦ of arc [13].

The portion of the field that is effective to complex visual

processing is even more limited, e.g., only 7
◦ of visual

angle for facial information [14]. How can one leverage the

MTRs’ 360◦ visual analysis capability to improve the human

perception of the remote environment? One straightforward

idea is to project 360
◦ views onto equirectangular video

frames (e.g., panorama frames). However, people tend to

focus on small portions of equirectangular videos, rather than

the full frame [15]. This can be seen in Google Street View,
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which provides only a relatively small field of view to the

users, even though the 360
◦ frames are readily available.

Toward long-term shared autonomy, we aim to bridge the

observability gap in human-MTR systems equipped with

360
◦ vision.

In this paper, we propose a framework, called Guiding

Human Attention with Learning in 360
◦ vision (GHAL360).

To the best of our knowledge, GHAL360, for the first time,

equips MTRs with simultaneous capabilities of 360
◦ scene

analysis and guiding human attention. We use an off-policy

reinforcement learning (RL) method [16] to compute a policy

for guiding human attention to areas of interest. The policies

are learned toward enabling a human to efficiently and

accurately locate a target object in a remote environment.

More specifically, 360◦ visual scene analysis produces a set

of detected objects, and their relative orientations; and the

learned policies map the current world state, including both

human state (current attention), and the scene analysis output,

to an action of visual indication.

We have evaluated GHAL360 using target search tasks.

Three virtual environments have been constructed for demon-

stration and evaluation purposes—two of them using the

Matterport3D datasets [17], and one using a dataset collected

from a mobile robot platform. We have compared GHAL360

with existing methods including [18], [19]. From the results,

we see that GHAL360 significantly improved the efficiency

of the human-MTR system in locating target objects in a

remote environment.

II. RELATED WORK

There is rich literature on the research of mobile telepres-

ence robots (MTRs). Early systems include a telepresence

system using a miniature car model [18], and a telepres-

ence robot for enabling remote mentoring, called Telemen-

toring [20]. Those systems used monocular cameras that

produce a narrow field of view over remote environments.

MTR systems were developed to use pan-tilt cameras to

perceive the remote environment [21], [22], [23], where the

human operator needs to control both the pan-tilt camera and

the robot platform. To relieve the operator from the manual

control of the camera, researchers leveraged head motion

to automatically control the motion of pan-tilt cameras

using head-mounted displays [24], [25]. While such systems

eliminated the need of controlling a pan-tilt camera’s pose,

they still suffered from the limited visual field. In comparison

to the above-mentioned methods and systems, GHAL360

(ours) leverages 360
◦ vision to enable the MTR to perceive

the entire sphere of the environment.
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Algorithm 1

Require: κ, objDet
1: Initialize an empty list C to store the control commands as ∅
2: Initialize a quaternion H (Human Pose) as (0,0,0,0)
3: Initialize a 2D image F with all pixel values set as 0
4: Initialize a dictionary P ={}
5: π ←− random policy ⊲ Initialize a policy
6: while True do

7: if new frame is available then

8: Obtain current frame F of the remote environment
9: P ←− objDet(F) ⊲ Section III-B

10: L = P[κ] ⊲ Get the location of the object of interest
11: Overlay bounding box for object of interest over F
12: Render the frame as a sphere ⊲ Section III-C
13: Obtain current human head pose H
14: Render a viewport F

′

to match the human operator’s head pose
15: if κ in P then

16: s = getState(P, κ,H) ⊲ Egocentric state representation
17: a = π(s) ⊲ Section III-D
18: if a == left or right then

19: Overlay the visual indicator on F
′

20: end if

21: Present F
′

to the user via the interface
22: Observe r and s′ ⊲ Immediate reward and next state
23: Q(s, a)← Q(s, a)+α [r + γmax

a
′ Q(s′, a′)−Q(s, a)]

24: π(s)←− argmaxaQ∗(s, a) ⊲ Update policy
25: end if

26: I ←− pf(H) ⊲ Section III-E
27: C ←−controller(I) ⊲ Control signal based on human intention
28: for each c ∈ C do ⊲ Section III-F
29: ψ ←− τ(c) ⊲ Generate a teleop message
30: ψ is sent to the robot for execution
31: Updated map is presented via the interface
32: end for

33: end if

34: end while

robot motion in the remote environment.

In the following subsections, we describe the key compo-

nents of GHAL360.

B. Scene Analysis

Once a new frame (F) is obtained, GHAL360 analyzes the

remote scene information using an object detection system,

where we use a state-of-the-art convolutional neural network

(CNN)-based framework YOLOv3 [39]. All the objects

(keys) in the frame along with their locations (values) are

stored in a dictionary P (Line 9). In our implementation, we

divide the 360
◦ frame into eight equal 45

◦ wedges. These

eight wedges together represent all the four cardinal and four

intercardinal directions, i.e. [N, S, E, W, NE, NW, SE, SW].

Every wedge can have four different values based on the

objects detected in that wedge:

W : {w0, w1, w2, w3}

• w0: represents a wedge with no objects detected

• w1: represents a wedge with clutter

• w2: represents a wedge that contains only the object of

interest

• w3: represents a wedge containing clutter as well as the

object of interest

where clutter indicates that the wedge contains one or more

objects that are not the target object. The output of scene

analysis is stored as a vector where each element represents

the status of one of the wedge. The human operator can

be focusing on one of these eight wedges. The getState

function in Line 16 takes the output of the scene analysis

along with the target object and current human head pose

as input. The output of getState function is an egocentric

state representation of the vector representing the locations of

objects with respect to the wedge human is currently focusing

on (W0). The generated egocentric version of the vector is

then sent to the RL agent as the state representation of the

current world, including both the output of scene analysis

and the current status of the human operator.

C. Equirectangular Frame Rendering

One of the ways to represent 360-degree videos is to

project them onto a spherical surface. Consider the human

head as a virtual camera inside the sphere. Such spherical

projection helps to track the human head pose inside the 360◦

frames. In our implementation, we construct a sphere and use

F as the texture information of the sphere. Inside the sphere,

based on the yaw and pitch of the human head, the pixels in

the human field of view are identified. Based on the human

operator’s head pose obtained in Line 13, the viewport is

rendered from the sphere. We use A-Frame, an open-source

web framework for building virtual reality experiences 1, for

rendering the equirectangular frames to create an immersive

360
◦ view of the remote environment.

D. Policy for Guiding Human Attention

We use a reinforcement learning approach [16], Q-

Learning, to let the agent learn a policy (for guiding human

attention) by interacting with the environment. The mathe-

matical representation of the state space is:

S : W0 ×W1 × · · · ×WN−1

where Wi represents the state of a particular wedge, as

defined in Section III-B. In our case, N = 8, so |S| = 4
8,

and s ∈ S. The state space (S) of the RL agent consists of

a set of all possible state representations of the 360
◦ frames.

All the state representations are egocentric, meaning that they

represent the state of the world (locations of objects) with

respect to the wedge human is currently focusing on. The

domain consists of three different actions:

A : {left, right, confirm}

where left and right actions are the guidance indicators,

while the confirm action checks if the object of interest

is present in the currently focused wedge or not. Based on

s, the policy generated from the RL approach (π) returns

an action (a), which can be a guidance indicator to enable

the human to find the object of interest in the remote

environment. Once the agent performs the action, it observes

the immediate reward (r) and the next state (s′). Using

the tuple (s, a, r, s′), the agent updates the Q-value for the

state-action pair. Finally, the agent updates the policy at

runtime based on its interaction with the environment. We

1https://aframe.io/
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