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Abstract— Human-robot collaboration frequently requires
extensive communication, e.g., using natural language and ges-
ture. Augmented reality (AR) has provided an alternative way
of bridging the communication gap between robots and people.
However, most current AR-based human-robot communication
methods are unidirectional, focusing on how the human adapts
to robot behaviors, and are limited to single-robot domains.
In this paper, we develop AR for Robots Collaborating with a
Human (ARROCH), a novel algorithm and system that supports
bidirectional, multi-turn, human-multi-robot communication in
indoor multi-room environments. The human can see through
obstacles to observe the robots’ current states and intentions,
and provide feedback, while the robots’ behaviors are then
adjusted toward human-multi-robot teamwork. Experiments
have been conducted with real robots and human partici-
pants using collaborative delivery tasks. Results show that
ARROCH outperformed a standard non-AR approach in both
user experience and teamwork efficiency. In addition, we have
developed a novel simulation environment using Unity (for AR
and human simulation) and Gazebo (for robot simulation).
Results in simulation demonstrate ARROCH’s superiority over
AR-based baselines in human-robot collaboration.

I. INTRODUCTION

Robots are increasingly present in everyday environments,

such as warehouses, hotels, and airports, but human-robot

collaboration (HRC) is still a challenging problem. As a

consequence, for instance, the work zones for robots and

people in warehouses are separated [1]; and hotel delivery

robots barely communicate with people until the moment

of delivery [2]. When people and robots work in shared

environments, it is vital that they communicate to collaborate

with each other to avoid conflicts, leverage complementary

capabilities, and facilitate the smooth accomplishment of

tasks. In this paper, we aim to enable people and robot teams

to efficiently and accurately communicate their current states

and intentions toward collaborative behaviors.

Augmented reality (AR) technologies focus on visually

overlaying information in an augmented layer over the real

environment to make the objects interactive [3]. AR has been

applied to human-robot systems, where people can visualize

the state of the robot in a visually enhanced form [4]. Most

existing research on AR-based human-robot collaboration

focuses on the visualization of robot status, and how people

leverage the augmented information to adapt to robot be-

haviors, resulting in unidirectional communication [5], [6].

Another observation is that many of those methods from the

literature were limited to human-single-robot, in-proximity
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scenarios [7], [8]. In this paper, we focus on human-multi-

robot, beyond-proximity settings, where the robots need to

collaborate with each other and with people at the same time,

in indoor multi-room environments. Our developed algorithm

(and system) is called ARROCH, short for AR for robots

collaborating with a human.

ARROCH supports bidirectional human-robot commu-

nication. On the one hand, ARROCH enables the human

to visualize the robots’ current states, e.g., their current

locations, as well as their intentions (planned actions), e.g.,

to enter a room. For instance, a human might see through

an opaque door via AR to “X-ray” a mobile robot waiting

outside along with its planned motion trajectory. On the

other hand, leveraging a novel AR interface, ARROCH

allows the human to give feedback to the robots’ planned

actions, say to temporarily forbid the robots from entering

an area. Accordingly, the robots can incorporate such human

feedback for replanning, avoiding conflicts, and constructing

synergies at runtime. ARROCH supports beyond-proximity

communication by visually augmenting the robots’ states and

intentions, which is particularly useful in indoor multi-room

environments.

ARROCH (algorithm and system), as the first contribu-

tion of this paper, has been evaluated in simulation and using

real robots. The robots help people move objects, and the

human helps the robots open doors (the robots do not have an

arm, and cannot open the doors). Results from the real-world

experiment suggest that ARROCH significantly improves the

efficiency of human-robot collaboration, compared with a

standard non-AR baseline. The simulation platform is con-

structed using Unity [9] for simulating the AR interface and

human behaviors, and using Gazebo [10] for simulating robot

behaviors. To the best of our knowledge, this is the first open-

source simulation platform for simulating AR-based human-

multi-robot behaviors, which is the second contribution

of this research. In the simulation, ARROCH significantly

improved human-robot teamwork efficiency in comparison to

baseline methods with different communication mechanisms.

II. RELATED WORK

Human-Robot Communication Modalities: Humans and

robots prefer different communication modalities. While hu-

mans employ natural language and gestures, the information

in digital forms, such as text-based commands, is more

friendly to robots. Researchers have developed algorithms

to bridge the human-robot communication gap using natural

language [11], [12], [13], [14] and vision [15], [16], [17].

Despite those successes, augmented reality (AR) has its

unique advantages of providing a communication medium
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Jointly planning for multiple agents to compute the opti-

mal solution is NP-hard [34]. We adapt an iterative inter-

dependent planning (IIDP) approach to compute joint plans

for multiple robots [35]. IIDP starts with independently

computing one plan for each robot toward completing their

non-transferable tasks. After that, in each iteration, IIDP

computes an optimal plan for a robot under the condition

of other robots’ current plans (i.e., this planning process

depends on existing plans). While IIDP does not guarantee

global optimality, it produces desirable trade-offs between

plan quality and computational efficiency.

In the implementation of ARROCH, we use ASP to

encode the action knowledge (for each robot) that includes

the description of five actions: approach, opendoor,

gothrough, load, and unload. For instance,

open(D,I+1) :- opendoor(D,I),

door(D), step(I).

states that executing action opendoor(D,I) causes door

D to be open at the next step. The following states that a

robot cannot execute the opendoor(D) action, if it is not

facing door D at step I. Such constraints are provided by

Restrictor, as described in Section III-B.

:- opendoor(D,I), not facing(D,I).

The output of Pt is P , a set of task plans (one for each

robot). For instance, pi ∈ P can be in the form of:

load(O,0). approach(D,1). opendoor(D,2).

gothrough(D,3). unload(O,4).

suggesting the ith robot to pick up object O, approach door

D, enter a room through D, and drop off the object. Next,

we describe how ARROCH handles the visualization of

robots’ current states and their planned actions through an

AR interface.

D. AR Visualizer

ARROCH uses an AR interface to bridge the communi-

cation gap in human-multi-robot teams, where Visualizer V

in Line 13 of Algorithm 1 plays a key role. The input of

V includes the robots’ current configurations in C-Space, ω,

and their intended motion trajectories, I . The output of V

are spatially visualizable 3D objects which are augmented

over the real world. To accurately overlay virtual objects

over the real world, AR devices need to localize itself in

3D environments. ARROCH assumes the availability of a

set of landmark objects with known 3D poses (position and

orientation). Using visual localization, ARROCH computes

the pose of the AR device, and then accordingly augments

visual information over the mobile device. We use a tablet

for AR, though ARROCH is compatible with other mobile

devices, e.g., head-mounted displays. Fig. 1 (b) presents an

example of the illustrative visualization.

In this section, we describe the ARROCH algorithm and

system, the first contribution of this paper. Next, we delineate

a novel simulation platform (our second contribution of

this paper) for prototyping and evaluating AR-based human-

multi-robot collaboration algorithms.

(a) Gazebo: office (b) Gazebo: robots

(c) Unity: office (d) Unity: robots

(e) Unity: AR (1st person POV) (f) Unity: AR (3rd person POV)

Fig. 3. (a)-(b), Gazebo environment for simulating multi-robot behaviors;
(c)-(d), Unity environment for simulating human behaviors and her AR-
based interactions with the robots; and (e)-(f), Simulated AR interface.

IV. SUGAR2: SIMULATION WITH UNITY AND GAZEBO

FOR AUGMENTED REALITY AND ROBOTS

Our simulation platform has been open-sourced under

the name of SUGAR2.2 SUGAR2 is built on Gazebo [10]

for simulating robot behaviors, and Unity [9] for simulating

human behaviors and AR-based interactions. Fig. 3 shows the

Gazebo and Unity environments, including a simulated AR

interface. Gazebo does not support the simulation of AR-

based interactions, and Unity is weak in simulating robot

behaviors, which motivated the development of SUGAR2.

V. EXPERIMENTS

We have conducted experiments in simulation and using

real robots. We aim to evaluate two hypotheses: I) ARROCH

improves the overall efficiency in human-multi-robot team

task completion, determined by the slowest agent of a team,

in comparison to AR-based methods that do not support

bidirectional human-robot communication; and II) ARROCH

produces better experience for non-professional users in

human-multi-robot collaboration tasks in comparison to non-

AR methods. Hypothesis-I was evaluated in simulation and

using real robots, whereas Hypothesis-II was only evaluated

based on questionnaires from real human-robot teams.

In both simulation and real-world environments, a human-

multi-robot team works on collaborative delivery tasks. The

robots help people move objects from different places into

a storage room, while the human helps the robots open a

door that the robots cannot open by themselves. At the same

2https://github.com/kchanda2/SUGAR2
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