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Reasoning with Scene Graphs for Robot Planning
under Partial Observability
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Abstract—Robot planning in partially observable domains is
difficult, because a robot needs to estimate the current state and
plan actions at the same time. When the domain includes many
objects, reasoning about the objects and their relationships makes
robot planning even more difficult. In this paper, we develop an
algorithm called scene analysis for robot planning (SARP) that en-
ables robots to reason with visual contextual information toward
achieving long-term goals under uncertainty. SARP constructs
scene graphs, a factored representation of objects and their rela-
tions, using images captured from different positions, and reasons
with them to enable context-aware robot planning under partial
observability. Experiments have been conducted using multiple
3D environments in simulation, and a dataset collected by a
real robot. In comparison to standard robot planning and scene
analysis methods, in a target search domain, SARP improves
both efficiency and accuracy in task completion. Supplementary
material can be found at https://tinyurl.com/sarp22

Index Terms—Planning under Uncertainty, Probabilistic Infer-
ence, Semantic Scene Understanding.

I. INTRODUCTION

HERE has been great progress in development of service

robots in the recent years, e.g., [1], [2]. Those robots
are able to conduct everyday tasks in human-inhabited envi-
ronments over extended periods of time. Robot perception in
such domains is partial and unreliable, which brings a major
challenge to robot decision making.

Partially Observable Markov Decision Process (POMDP)
is a framework that models the uncertainty in both observa-
tions and action outcomes [3], and has been used for pol-
icy generation in partially observable domains. However, the
challenges are two-fold. First, constructing POMDPs requires
that the robot has a complete world model, which tends to be
infeasible in practice. In particular, real-world environments
(say a kitchen) frequently include many objects, making it
troublesome to use POMDPs to have a universal representation
of all objects. Second, the complexity of reasoning about these
objects and their relationships grows exponentially as more
objects are considered. In this paper, we aim to develop an
approach that reasons with contextual information for scene
analysis to enable POMDP-based robot planning.

One of the recent advancements in computer vision has
been scene graph generation networks [4]-[10]. Given an
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image, scene graph systems generate a graph consisting of
detected objects (e.g, a book and a table), their corresponding
bounding boxes, and the relationships among the objects
(e.g., book on a table). Scene graphs provide a robot with
a structured understanding of the world in terms of objects,
and their relations. From the robotics perspective, however,
current scene graph research has the limitation that the context
analysis does not go beyond individual images, even though
a robot can easily capture images from different angles and
locations for analysis purposes. With the active perception
capabilities of robots, we have the objective of developing
an approach for domain-wide active scene analysis for mobile
robots.

In this work, we develop an algorithm called scene analysis
for robot planning (SARP) for planning robot actions for
context-aware, object-centric scene analysis. SARP uses local
scene graphs of single images to build and augment global
scene graphs toward context-aware robot planning under par-
tial observability. An overview of SARP is shown in Figure 1.
More specifically, a global scene graph is incrementally con-
structed “on the fly” using local scene graphs generated at
different locations when new objects are perceived. Reasoning
with this global scene graph produces useful information to
help the robot estimate the current world state. This enhanced
state estimation enables the robot to improve its performance
in goal achievement.

We have evaluated SARP using target search tasks where
a robot needs to locate an object in an indoor environment.
We use POMDPs to model the robot’s perception and actuation
skills [3], use Neural Motifs [4] to compute local scene graphs,
and use approximate inference methods to build Markov
networks computed from large datasets. We have extensively
evaluated SARP through comparisons with competitive base-
lines in simulation. Results show that SARP reduced the
overall action costs by 16% compared with a predefined action
policy. Also, SARP helps the robot maintain its policy quality
in the presence of an increased number of objects, and enables
the robot to focus on the areas that are most relevant to the
current task.

II. RELATED WORK

This work aims to enable a robot to represent and reason
with contextual information to guide robot planning under
uncertainty. Researchers have developed algorithms that rea-
son with contextual knowledge to guide sequential decision
making [11]. The contextual knowledge can be in a vari-
ety of forms, such as commonsense knowledge [12], action
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Fig. 1. An overview of SARP, where the robot takes an action using the policy, and receives an observation from the world, updating the belief using the
action and observation. In each timestep, a graph is accumulated using the perception sensor to bias the belief. This biased belief provides the contextual
information to the policy. Top dashed lines show that the belief biasing not occurring in every iteration. The bottom dashed line indicates that the scene graph

network is trained offline.

knowledge [13], [14], and graph-based knowledge [7], [15].
Such contextual knowledge can also be leveraged to guide RL
agents. In this section, we examine each of these categories.

a) Rule-based human commonsense knowledge: Re-
searchers have used rule-based commonsense knowledge to
guide the robot planning under uncertainty [16]-[18]. In their
methods, a robot reasons about human knowledge to compute
an informative prior to help a probabilistic planner estimate
the current world state, enabling the robot to achieve complex
goals with less information-gathering behaviors. Our previous
work added a learning component to further improve a robot’s
reasoning and planning capabilities from its task completion
experience [19]. Another example is an algorithm that uses
first-order logic to construct decision tree policies for goal-
oriented factored POMDPs [20]. Others have used action
knowledge to build a hierarchical robot planner where the
higher level computes a sequence of abstract actions and the
lower level implements the higher-level actions using primitive
behaviors [21]. Algorithm iCORPP enables a robot to reason
with contextual knowledge to compute parameters of a plan-
ning agent’s reward and transition functions [22]. Others have
used commonsense knowledge to guide a classical planner to
reason and plan in open worlds [23], [24]. Compared to those
methods, SARP uses contextual, object centric information, in
the form of a graph, to estimate the current world state and
guide robot planning under uncertainty.

b) Hierarchical frameworks: Researchers have been us-
ing hierarchies to construct their framework’s knowledge-base
or planner [21], [25]. In a recent work, researchers used a
visual hierarchical planning algorithm for long-horizon ma-
nipulation tasks. Their framework integrates neuro-symbolic
task planning and graph- based motion generation on graph-
based scene representations [25]. Their method has two-level
abstractions of a manipulation scene with geometric scene
graphs and symbolic scene graphs. To enable a robot to
operate in open-world domains, researchers have developed
a three-layer hierarchy for reasoning about action knowledge
and default knowledge [26]. In particular, the knowledge at
a higher level was used for correcting lower-level knowledge
to guide probabilistic planning. In comparison, SARP (ours)

incrementally builds and reasons about scene graphs to guide
robot planning under uncertainty.

c) Graph-based human knowledge: Graph-based repre-
sentations have been used for reasoning with contextual infor-
mation to guide robot planning [25], [27], [28]. For instance,
researchers have used Conditional Random Fields [29] to
construct contextual knowledge bases for robot target search
by maintaining a belief over the locations of target objects
and landmark objects while exploiting the knowledge of their
co-appearances [27].

Other methods were developed to extract prior knowledge
from data, e.g., using Long Short-Term Memory (LSTM)
networks [30], to guide a planning agent in navigating new
environments [28]. In comparison to those methods, SARP
leverages contextual information in the form of automatically
constructed scene graphs, avoiding domain experts manually
developing knowledge bases.

A very recent work leverages scene graph reasoning to
disambiguate human utterances when referring to various in-
stances of the same object [31]. Their framework reasons about
static domains, whereas our robot leverages scene analysis to
plan towards achieving long-term goals.

d) Knowledge-based RL: RL agents are able to lever-
age contextual information as well. For instance, existing
research has shown that an RL agent is able to reason with
action knowledge to decompose complex tasks into smaller,
tractable subtasks [32]. The concept of reward machines
has been introduced for using temporal knowledge toward
reusing interaction experience and creating extra feedback for
learning purposes [33]. Recent research has shown that action
knowledge can be used to guide a model-based RL agent by
providing optimistic, artificial interaction experience to speed
up the learning process [34], [35]. We assume the availability
of the world dynamics, and use planning under uncertainty
methods (instead of RL) for robot decision making. To the best
of our knowledge, SARP is the first that enables a planning
agent to automatically construct, and use scene graphs for
context analysis under partial observability.

e) POMDP-based target search: Several reasearchers
have used POMDPs for the target search task [36]-[39]. In
one work, a robot arm is tasked to search for an object in the
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clutter where it should learn the synergies of acting and seeing
objects. In this work, the policy learned by a POMDP model
could determine when is a good time to look at and detect
objects and when it should move objects around in order to
reduce the clutter [38]. In another work, a robot searched for
multiple objects by specifiying their locations from the user
query (e.g., Find the mugs in the kitchen and books in the
library) [37]. In their framework, a robot can associate the
locations to each object class so as to improve its search. To
the best of our knowledge, none of these works leverage graph
reasoning for target search tasks.

III. PRELIMINARIES

In this section, we describe the three building blocks of
this research, namely scene graphs, and partially observable
Markov decision processes.

A. Scene Graphs

Scene graph G is a representation of the semantic con-
tent of an image, consisting of a set of bounding boxes
B = {by,...,b,}, a set of objects V = {0g,01,---}, and a
set of binary predicates £ = {rg,r1,---} [40], A triplet of
object-predicate-object is called a relationship. Given an image
I, the probability distribution of the scene graph pr(G|I) is
decomposed into three components:

pr(G|I) = pr(B{)pr(V|B, Dpr(E|V,B,I) (1)

where the bounding box component pr(B|I) generates a set of
candidate regions from the input image, pr(V|B,I) predicts
the class label for each predicted region, and pr(E|V, B,I)
predicts the predicate among objects, which is conditioned on
the predicted labels.

B. Partially Observable MDPs

Markov decision processes (MDPs) can be used for sequen-
tial decision making under full observability [41]. Partially
observable MDPs (POMDPs) generalize MDPs by assuming
current state being partially observable [3]. A POMDP is
represented as a tuple (S, A,T,R,Z,0,v) where S is the
state-space, A is the action set, 71" is the state-transition
function, R is the reward function, Z is the observation set,
O is the observation function, and -y is a discount factor that
determines the planning horizon.

A robot maintains a belief state distribution b based on
observations (z € Z) using the Bayes update rule:

b (s) = O(¢',a,z2) ZSES T(s,a,s)b(s)
pr(za,b)

where s is a state, a is an action, pr(z|a, b) is a normalizer, and

z is an observation. Solving a POMDP produces a policy that

maps the current belief state distribution to an action toward

maximizing long-term utilities.

In this research, scene graphs and POMDPs are used for rep-
resenting and reasoning about objects (and their relationships),
and planning actions toward achieving long-term goals. The
main contribution of this paper is the novel interplay between
scene graphs and POMDPs for context-aware robot planning
under partial observability.

2

C. Markov Networks

A Markov network is a graph that consists of variables
(nodes) X = {X1, -+, X, } and undirected edges connecting
pairs of nodes (X;, X;) [15]. Each edge is parameterized
using a potential function (factor) ¢ that captures the affinities
between the variables. The joint distribution of all variables
are:

1 m
P(Xy,, Xn) = - [ [ 6(Di) (3)
=1

where D; is the ith edge of the network. A potential function
of the edge connecting nodes X; and X, consists of | X;||X;|
values.

In the next section, we describe the algorithmic contribution
of this work.

IV. ALGORITHM

a) Problem Formulation: In this work, we are interested
in the problem of target search. A mobile robot receives
the task of searching for object ) and can navigate in the
environment E in order to find the object. The robot is
provided with the environment map and is localized initially.
Once the robot navigates in the environment sufficiently, it
reports the location of the target object. In order for the
robot to better reason about (), robot requires the scene graph
network that is pretrained on a scene graph dataset D.

b) POMDP model: In order to solve this target search
task, we first define the POMDP model M as the tuple
< S,A,T,R,0,Z,~ >. Its factored state space set S, is a
Cartesian product of two dimensions, and the terminal state.
S¥ includes a set of discrete partially observable locations of
Q (the target object) and S% includes the set of robot’s fully
observable locations. We define these equidistant, discrete
locations manually in the robot’s motion planning workspace.
SARP’s action set A consists of navigation and termination
actions. The robot can take navigation action go, € A to
go to the location ¢. We model the action transition function
T(s'|s,a) so that the robot can only go to its closest neigh-
boring locations in the absence of obstacles. Each navigation
action has a cost (negative value, R(s,a) < 0), which is
proportional to the distance the robot needs to travel to reach
that location. The robot can take the termination action, and
receive bonus (penalty) if it correctly locates (not find) the
target object. Observation set Z is {Detected, NotDetected,
NotApplicable} where Detected happens when the perception
detects the query object, NotDetected happens when the query
object is not detected, and NotApplicable when the agent takes
the termination action. To maximize its planning horizon,
we set v to 0.99. SARP assigns the observation function
O = pr(z|s, a) based on the target’s object detection accuracy
on a test set of D.

c) Algorithm Description: After defining the problem
and the POMDP model, we present our novel algorithm, called
scene analysis for robot planning (SARP), for context-aware
robot planning under partial observability. SARP computes
a policy that enables a robot to accomplish its task using
less action cost using the contextual knowledge. SARP is an
object-centric algorithm that bridges the representation gap
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between visual scene analysis and robot planning under partial
observability.

Algorithm 1 presents SARP, whose input is an object of
interest that a mobile robot needs to locate ()). SARP requires
a POMDP solver for policy generation, a pre-trained scene
graph generation network, a domain map for navigation, and
a dataset D that consists of scene graphs. In Line 1, SARP
constructs a POMDP according to the object of interest (Q),
and computes policy 7 using the provided POMDP solver.
After that, there are a few steps for initializing beliefs (over
object locations), and a scene graph (Lines 2-4). It should be
noted that we maintain two beliefs b and b’ over the location
of the target object, where b is updated using POMDP obser-
vations, and b" is updated using the current b and available
contextual information. This design allows the robot to use
different beliefs for decision making and action selection, and
avoids possible issues caused by error propagation. Also, this
mechanism enables a SARP agent to avoid reusing contextual
information in belief updates. This mechanism enables a SARP
agent to avoid reusing contextual information in belief updates.

Lines 5-20 form the main control loop of SARP, and it
terminates when the current state is a terminal state. In each
iteration, the robot uses a captured image to generate G*, a
local scene graph (Line 6), and uses this local scene graph to
update G, the global scene graph (Line 8).

After that, SARP computes a potential function ¢ (Line 9)
values for each edge, using the function CALC¢ (Algo-
rithm 2). This function calculates four values for each relation
(v,€,0") in G¥ that serve as the potential function. CALC¢
queries the dataset D, to find out the ratio of the times that each
object (v, v’ or both) in a relation has appeared (not appeared)
in D, resulting in four values to form the potential function.

We use ¢ to form a Markov network together with global
scene graph G in Line 10 where SARP queries the number of
times that each pair of nodes of an edge in G has appeared
(not appeared) in D scene graphs.

In our implementation, N is incrementally updated in
each iteration, if the robot detects new scene graphs (that
were not previously detected), it will add the new nodes
and relationships to the existing global scene graph G¢. We
use the robot’s localization and the camera depth sensor to
approximately localize the detected objects on the map, in
order to distinguish different instances of the same objects.

Lines 11-19 correspond to the belief update, and action
selection processes of POMDPs. Contextual knowledge in the
form of a Markov network (N) is used for biasing belief b
only if the object of interest is visually detected in the current
image. This is because of avoiding the bias drift that could
result from too many biasing at every timestep. We use a
belief propagation' method [42] to compute the probability
of () being collocated with objects V' (Line 15).

pr(Q|V') = Belief Propagation(N,Q, V) 4)

where the computations of pr(Q|V) and b are independent.
In Line 16, SARP uses pr(Q|G) to compute ', the posterior
belief distribution.

! Any approximate inference method can be used.

Algorithm 1 SARP
Input: Query object
Require: a POMDP solver, a scene graph generation network, a
domain occupancy grid map, robot localization software, scene
graph dataset D.
1: Construct a POMDP based on @, and compute policy 7
2: Uniformly initialize beliefs b and b’ over S
3: Initialize vertices V = {Q, Q'} and edges € = {eg_¢- }, where
Q' is a duplicate of Q
4: Initialize a scene graph: G + (V,€)
5: while current state is not terminal do
6:  Take an image, and generate local scene graph G* = (V'  £'),
where V' are detected evidence objects
7. Ve VUV E+—Ecug
8 GY«— (V&)
9:  Compute potential function ¢ = CALC ¢(G*, D)
10:  Form a Markov network: A+ (G€, ¢)
11:  Select action a <+ 7 (b’), and execute a
12:  Make observation z on
13:  Update b based on a and z
14:  if z is Detected then

15: pr(Q|V) <+ Belief Propagation(N,Q,V)
16: b+ n-pr(Q|V)-b

17:  else if z is NotDetected then

18: b b

19:  end if

20: end while

Algorithm 2 CALCy
Input:
GL

1: Initialize the potential function set ¢ as empty
2: for (v,¢,v')* in G do

Scene graph dataset D, local scene graph

3: m < number of images in D containing v or v'.

4: ¢;1,U/1 + (number of images in D containing v, v’, and €)/m

5: ¢;07v,0 < (number of images in D containing v, v’, but not €)/m
6: (152071),1 < (number of images in D containing v’ without v)/m
7: o) 0 (number of images in D containing v without v’)/m
8 P+ opUP

9: end for

10: return ¢

d) CALC function: CALC function that takes as input
the scene graph dataset D and the local scene graph G*. For
each pair of nodes v and v’ that are connected in the ith edge
€, the algorithm calculates four values by querying the number
of times each node and their corresponding edge have (not)
appeared in the dataset D. We denote v' as the node exists
in D and v° when it does not exist. It returns the computed
potential function ¢.

SARP enables the agent to leverage contextual information
towards task completion through building and reasoning with
global scene graphs to guide a probabilistic planner. Next, we
discuss our experiments for evaluating SARP.

V. EXPERIMENTS

We conducted two sets of experiments in simulation where
the robot is tasked with finding a target object accurately and
as quickly as possible. In all the trials, the robot is provided
with a domain map, a dataset of scene graphs, and a pretrained
network for generating scene graphs. It receives 360-degree
images of the environment as the input, where we leveraged
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Fig. 2.

(Left): Map of the environment where the robot can navigate. The
discretized locations are shown in blue color. (Right): The Segway RMP110
mobile platform, equipped with 360-degree vision, used in this research.

our previous research on 360-degree robot vision [43], and the
output is the location of the target object. Our first baseline
method is a naive POMDP planner [38] (with uniform prior
belief) where the robot action policy solely depends on the
model of the world. The second baseline uses a predefined
policy where the robot exhaustively visits all discrete positions,
updates the belief at each timestep, and reports the object’s
location based on the argmax of the belief. Our third baseline
method is CORPP [16] as another competitive baseline where
only the initial belief is biased based on the commonsense
rules defined by the human developer in the form of logical
probabilistic rules (e.g., a book is likely to be on a desk with
0.8 probability). Similar to SARP, all the baselines maintain
a belief of the object’s location and update it at each timestep
using Bayes update rule. However, none of them use graph
reasoning like SARP. We have two evaluation metrics. First,
the average action cost that represent the average execution
time of all actions taken until the terminal state. Second, is
the average success rate in finding the target object’s location
correctly. By using SARP, we hypothesize that:

1) The robot’s overall action cost would be less compared
to baselines (H-1).

2) SARP performs better than the baselines in action cost
and success rate in domains with a large number of
objects (H-2).

The reward of successfully finding the target object is 100,
and the penalty of failure in finding the target object is —100.
The reward for all actions go; is —10 which is proportional
to the time it takes for the robot to execute the action. We
solve the POMDP model using an off-the-shelf point-based
system [44].

We use Neural Motif [4] for generating local scene graphs
where there are a total of 50 predicate classes. The most
prevalent objects in this dataset are humans and the most
appeared predicates are in, on, and belongs. Given an input
image, Neural Motifs produces a scene graph which is a
list of objects, their probabilities, relationships and bounding
boxes. SARP requires a dataset to assign the Markov network
potential function (Line 9 in Algorithm 1). We are using Visual
Genome [45] that contains round 108K images, 3.8M objects,
2.8M relationships.

A. Setup

We used the robot to navigate through the environment
and collect images in a hallway in an indoor educational
environment (Figure 2) in order to build a dataset. We call it
the hybrid dataset. We used this dataset to simulate robot’s
behavior in the experiments. We manually placed multiple
objects including banana, laptop, human, books, mug, etc. at
different locations.

In addition to the dataset collected by the robot, we collected
rendered images using an embedded agent in AI2THOR [46],
an open-source interactive environment for embodied AL
AI2THOR provides 30 instances of four types of environments
(shown in Figure 4): Kitchens, Living Rooms, Bedrooms, and
Bathrooms, totaling 120 environments where an embedded
robot is able to take navigation actions. Navigation actions
include moving and rotating in orthogonal directions. To make
both datasets consistent, we manually create 360 images using
the AI2THOR monocular camera. We use the default value of
1.5m for the camera visibility and 90 degrees for the field of
view. The actions executions are stochastic with the default
Gaussian noise of average 0.001 and standard deviation of
0.005. There are a total of 125 objects in AI2THOR platform?,
while for each scene in the platform, there are 61 number of
objects on average. We randomly select one of those objects
for each individual trial in the experiments. For inference on
the scene graph, we use pgmpy library [47].

B. Results

Table 1 shows the result of the first set of experiments
that evaluates the first hypothesis (H-1) where we ran this
experiment 1500 times over three batched of 500 experiments.
We ran the experiment both using the dataset collected by
the real robot and by AI2THOR. We call the first one, the
hybrid dataset and the latter one, the rendered dataset. In
the hybrid dataset, the average cost of target search for our
robot is consistently less than all the baselines while all the
methods maintain a high success rate. In the rendered dataset,
we categorize the results based on the four different types
of indoor environments: kitchen, living room, bedroom and
bathroom. We randomly selected five environment from each
of the four types, totaling 20 different environments. In each
environment, we conducted 100 target searches. Except for
the bedroom and bathroom environments where the predefined
policy has lower cost, SARP produced the lowest average ac-
tion cost while maintaining the highest accuracy consistently.
The reason is that, in bedroom and bathroom environments,
robot has a smaller navigation area. As a result, it takes less
action costs using the predefined policy. To evaluate the second
hypothesis (H-2), we incrementally added more objects to the
POMDP baseline, and to the scene graph of SARP. Figure 5,
shows that SARP’s average cost remains almost the same
with an average of 50.6 s while the POMDP baseline’s cost
increases as the number of additional objects is increased. With
an increase in the number of non-target objects, the uniform
POMDP baseline tries to take more actions to find the target

Zhttps://ai2thor.allenai.org/ithor/documentation/objects/object-types/



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

Paner 1

o { ]

Shorts1

Chir

FILrTIE

Tebled
ables W

EbieR, =

Book{ |
Chair

——

/Cv? N

‘\
N Bananaf

Fig. 3.

Paper1 on Table1
e o
L Human1 3
Ld wearing  Hatl
2
©? 2
Chair Shorts1
........ [P o e e
near Book2
Laptop'
&\e?)\
Table4 Table3
near = 0 mm .
) >

neel Paper2
Banana1

>

. Chair2

Table5

Tong Bag1 Chair6

near
near

Table6
avie vear  Chairs

on

Mug1 Paper3

The global scene graph being constructed incrementally as the robot navigates. Solid lines indicate the relationships between the detected objects,

and dashed lines show how the global scene graph is completed from the local scene graphs. At timestep 4, the global scene graph is not augmented, since

the robot has not detected new instances of objects.

object with more confidence, however with more than two non-
target objects, it finds that taking more actions is not helpful
any more, and therefore is not successful. Also, the POMDP
baseline failed to maintain the success rate at a high value due
to its poor-quality policy.

C. Enumerating objects of the same instance

As the robot is navigating the environment, it may perceive
different instances of the same objects. Our scene graph
network is not able to enumerate these objects. To better
differentiate these instances, we use a hashmap to store the
labels and location(s) of the detected objects. This facilitates
the situations where multiple instances of the same objects
need to be distinguished. We approximate the detected objects’
locations using the centroid of the bounding boxes outputted
by the scene graph. This provides the relative location of the
object with respect to the robot. Then, we use coordinates
transformation to get the object global scene graph. For the
real robot experiments, we use the “Robot Operating System
(ROS) [48] transforms” package to transform the locations to

global coordinates. It should be noted that vision-based object
association is generally difficult, and introduces errors into our
system, which is beyond the scope of this paper.

V1. DEMONSTRATION

In this demonstration trial, the robot was assigned the task
of searching for a banana as shown in Figure 3 while its initial
location is in location (. In Table II, we show an example trial
where the robot is tasked with the search of a banana located
at s¥. As the robot takes action suggested by the policy, it
updates its belief over possible locations of the target object.
In this example, the robot follows the trajectory of 0 — 1 —
4 — 5 — 4 until it terminates the trial and reports successfully
that banana is in location 4. The robot visits locations 0, 1,4,
and 5 to build and augment its scene graph. Figure 3 shows
the graph generated at each location. At timesteps 1 and 3,
robot visits the location that it can easily detect the banana,
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TABLE I
THE EXPERIMENTAL RESULTS FROM THE HYBRID AND RENDERED DATASETS SHOW THAT ON AVERAGE OF 1500 TRIALS, SARP PERFORMS WITH LESS
OVERALL ACTION COSTS. BOLD FONT SHOWS THE BEST RESULT. THE AVERAGE NUMBER INDICATES THE AVERAGE NUMBER OF OBJECTS INVOLVED IN
A SINGLE EPISODE CONDUCTED IN THAT ENVIRONMENT.

Dataset Type | Average # of SARP (Ours) CORPP Uniform POMDP (Li et al.,2016) Predefined
objects
Cost (std.) Success | Cost (std.) | Success Cost (std.) Success Cost (std.) | Success
Hybrid | 15 52.1(13.1) 0.89 82.5 (8.9) 0.83 102.3 (14.6) 0.84 61.1 (0.0) 0.7
Rendered
Kitchen 70 41.7 (21.6) 0.87 55.5 (18.4) 0.84 594 (24.1) 0.82 513 (0) 0.79
Living room | 37 43.5 (19.1) 0.91 60.1 (33.8) 0.86 69.7 (23.9) 0.73 57.8 () 0.79
Bathroom 40 31.2 (16.4) 0.75 45.1 (17.6) 0.73 49.8 (21.7) 0.71 21.2 (0 0.69
Bedroom 35 23.9 (12.9) 0.74 244 (19.1) 0.75 43.7 (22.5) 0.68 19.4 (0) 0.64
| Overall | 45 | 357 (18.1) | 081 | 463215 | 079 [ 557(23.0) | 0.73 | 3730 | 072 |
l Kitchen | Bathroom
- —— Uniform POMDP 0.90

\ g ==

L
o
Bedroom

_

Fig. 4. Different types of environment provided by AI2THOR including
kitchen, bathroom, bedroom, and living room.

therefore it biases its belief by inferring the whole scene graph.
The overall cost for this trial is 60.
VII. CONCLUSION & FUTURE WORK

Probabilistic planning methods under partial observability
allow the robot to accomplish complex tasks toward maximiz-
ing long-term goal. Scene graphs allow the detection of objects
and their relationships in images. Aiming at robots capable
of accomplishing sophisticated tasks, we design a framework
where a robot can use scene understanding information to
obtain domain knowledge to provide contextual information
to the robot planner where limited perception is a bottleneck.
Results show that, by using our approach, the robot can benefit
from the contextual information in the form of graph network
by reducing action collection cost and avoiding scalability
issues.

This work was based on a few assumptions that are some-
times unrealistic. The object detection accuracy and the set of

—— SARP (ours)
—— Predefined

0.65

20l I\T i 1 l

0 1 2 3 4 5
# of non-target object in state-space

0.60

0 1 2 3 4 5
# of non-target object in state-space

Fig. 5. Results of the experiment conducted on the renderred dataset. The
state space consists of three locations, blue curve is the baseline that does not
use contextual information but includes non-target objects in its state space
incrementally, and the orange one is SARP that adds objects to the graph
incrementally.

TABLE II
AN EXAMPLE TRIAL WHERE THE ROBOT IS TASKED WITH THE SEARCH OF
A banana LOCATED IN sf WHILE ROBOT IS INITIALLY AT sgi .HERE, WE
SHOW HOW THE BELIEF IS UPDATED AT EACH TIMESTEP.

A: Action Robot’s belief of the target
Step O: Observe [sOE s 3{5 ,sf s ng ,sf,s%E 1
A:goll
O: No
0 Update: [0.18,0.09,0.18,0.18,0.18,0.18]
Bias:No
A:gold
O: Yes
1 Update: [0.15,0.07,0.15,0.15,0.33,0.15]
Bias:Yes [0.12,0.06,0.11,0.12,0.47,0.12]
A:go b
O: No
2 Update: [0.13,0.05,0.13,0.14,0.49, 0.07]
Bias:No
A:gold
O: Yes
3 Update: [0.09,0.03,0.07,0.10,0.68, 0.05]
Bias: Yes [0.07,0.01,0.04,0.06,0.81, 0.04]
4 A: terminate

are all limited to the scene graph generation model quality. The
scene graph we use, is incapable of face recognition, therefore
we assume that humans are stationary (e.g, they are sitting at
the time of the robot’s task execution). In the future, we intend
to further improve this work both in perception capabilities
(e.g., enabling face detection) and reasoning capabilities(e.g.,
considering cases where objects may be replaced during the
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task execution).
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