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Reasoning with Scene Graphs for Robot Planning

under Partial Observability
Saeid Amiri, Kishan Chandan, and Shiqi Zhang

Abstract—Robot planning in partially observable domains is
difficult, because a robot needs to estimate the current state and
plan actions at the same time. When the domain includes many
objects, reasoning about the objects and their relationships makes
robot planning even more difficult. In this paper, we develop an
algorithm called scene analysis for robot planning (SARP) that en-
ables robots to reason with visual contextual information toward
achieving long-term goals under uncertainty. SARP constructs
scene graphs, a factored representation of objects and their rela-
tions, using images captured from different positions, and reasons
with them to enable context-aware robot planning under partial
observability. Experiments have been conducted using multiple
3D environments in simulation, and a dataset collected by a
real robot. In comparison to standard robot planning and scene
analysis methods, in a target search domain, SARP improves
both efficiency and accuracy in task completion. Supplementary
material can be found at https://tinyurl.com/sarp22

Index Terms—Planning under Uncertainty, Probabilistic Infer-
ence, Semantic Scene Understanding.

I. INTRODUCTION

THERE has been great progress in development of service

robots in the recent years, e.g., [1], [2]. Those robots

are able to conduct everyday tasks in human-inhabited envi-

ronments over extended periods of time. Robot perception in

such domains is partial and unreliable, which brings a major

challenge to robot decision making.

Partially Observable Markov Decision Process (POMDP)

is a framework that models the uncertainty in both observa-

tions and action outcomes [3], and has been used for pol-

icy generation in partially observable domains. However, the

challenges are two-fold. First, constructing POMDPs requires

that the robot has a complete world model, which tends to be

infeasible in practice. In particular, real-world environments

(say a kitchen) frequently include many objects, making it

troublesome to use POMDPs to have a universal representation

of all objects. Second, the complexity of reasoning about these

objects and their relationships grows exponentially as more

objects are considered. In this paper, we aim to develop an

approach that reasons with contextual information for scene

analysis to enable POMDP-based robot planning.

One of the recent advancements in computer vision has

been scene graph generation networks [4]–[10]. Given an
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image, scene graph systems generate a graph consisting of

detected objects (e.g, a book and a table), their corresponding

bounding boxes, and the relationships among the objects

(e.g., book on a table). Scene graphs provide a robot with

a structured understanding of the world in terms of objects,

and their relations. From the robotics perspective, however,

current scene graph research has the limitation that the context

analysis does not go beyond individual images, even though

a robot can easily capture images from different angles and

locations for analysis purposes. With the active perception

capabilities of robots, we have the objective of developing

an approach for domain-wide active scene analysis for mobile

robots.

In this work, we develop an algorithm called scene analysis

for robot planning (SARP) for planning robot actions for

context-aware, object-centric scene analysis. SARP uses local

scene graphs of single images to build and augment global

scene graphs toward context-aware robot planning under par-

tial observability. An overview of SARP is shown in Figure 1.

More specifically, a global scene graph is incrementally con-

structed “on the fly” using local scene graphs generated at

different locations when new objects are perceived. Reasoning

with this global scene graph produces useful information to

help the robot estimate the current world state. This enhanced

state estimation enables the robot to improve its performance

in goal achievement.

We have evaluated SARP using target search tasks where

a robot needs to locate an object in an indoor environment.

We use POMDPs to model the robot’s perception and actuation

skills [3], use Neural Motifs [4] to compute local scene graphs,

and use approximate inference methods to build Markov

networks computed from large datasets. We have extensively

evaluated SARP through comparisons with competitive base-

lines in simulation. Results show that SARP reduced the

overall action costs by 16% compared with a predefined action

policy. Also, SARP helps the robot maintain its policy quality

in the presence of an increased number of objects, and enables

the robot to focus on the areas that are most relevant to the

current task.

II. RELATED WORK

This work aims to enable a robot to represent and reason

with contextual information to guide robot planning under

uncertainty. Researchers have developed algorithms that rea-

son with contextual knowledge to guide sequential decision

making [11]. The contextual knowledge can be in a vari-

ety of forms, such as commonsense knowledge [12], action
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clutter where it should learn the synergies of acting and seeing

objects. In this work, the policy learned by a POMDP model

could determine when is a good time to look at and detect

objects and when it should move objects around in order to

reduce the clutter [38]. In another work, a robot searched for

multiple objects by specifiying their locations from the user

query (e.g., Find the mugs in the kitchen and books in the

library) [37]. In their framework, a robot can associate the

locations to each object class so as to improve its search. To

the best of our knowledge, none of these works leverage graph

reasoning for target search tasks.

III. PRELIMINARIES

In this section, we describe the three building blocks of

this research, namely scene graphs, and partially observable

Markov decision processes.

A. Scene Graphs

Scene graph G is a representation of the semantic con-

tent of an image, consisting of a set of bounding boxes

B = {b1, ..., bn}, a set of objects V = {o0, o1, · · · }, and a

set of binary predicates E = {r0, r1, · · · } [40], A triplet of

object-predicate-object is called a relationship. Given an image

I , the probability distribution of the scene graph pr(G|I) is

decomposed into three components:

pr(G|I) = pr(B|I)pr(V |B, I)pr(E|V,B, I) (1)

where the bounding box component pr(B|I) generates a set of

candidate regions from the input image, pr(V |B, I) predicts

the class label for each predicted region, and pr(E|V,B, I)
predicts the predicate among objects, which is conditioned on

the predicted labels.

B. Partially Observable MDPs

Markov decision processes (MDPs) can be used for sequen-

tial decision making under full observability [41]. Partially

observable MDPs (POMDPs) generalize MDPs by assuming

current state being partially observable [3]. A POMDP is

represented as a tuple (S,A, T,R, Z,O, γ) where S is the

state-space, A is the action set, T is the state-transition

function, R is the reward function, Z is the observation set,

O is the observation function, and γ is a discount factor that

determines the planning horizon.

A robot maintains a belief state distribution b based on

observations (z ∈ Z) using the Bayes update rule:

b′(s′) =
O(s′, a, z)

∑
s∈S T (s, a, s′)b(s)

pr(z|a, b)
(2)

where s is a state, a is an action, pr(z|a, b) is a normalizer, and

z is an observation. Solving a POMDP produces a policy that

maps the current belief state distribution to an action toward

maximizing long-term utilities.

In this research, scene graphs and POMDPs are used for rep-

resenting and reasoning about objects (and their relationships),

and planning actions toward achieving long-term goals. The

main contribution of this paper is the novel interplay between

scene graphs and POMDPs for context-aware robot planning

under partial observability.

C. Markov Networks

A Markov network is a graph that consists of variables

(nodes) X = {X1, · · · , Xn} and undirected edges connecting

pairs of nodes (Xi, Xj) [15]. Each edge is parameterized

using a potential function (factor) φ that captures the affinities

between the variables. The joint distribution of all variables

are:

P (X1, · · · , Xn) =
1

Z

m∏

i=1

φ(Di) (3)

where Di is the ith edge of the network. A potential function

of the edge connecting nodes Xi and Xj , consists of |Xi||Xj |
values.

In the next section, we describe the algorithmic contribution

of this work.

IV. ALGORITHM

a) Problem Formulation: In this work, we are interested

in the problem of target search. A mobile robot receives

the task of searching for object Q and can navigate in the

environment E in order to find the object. The robot is

provided with the environment map and is localized initially.

Once the robot navigates in the environment sufficiently, it

reports the location of the target object. In order for the

robot to better reason about Q, robot requires the scene graph

network that is pretrained on a scene graph dataset D.

b) POMDP model: In order to solve this target search

task, we first define the POMDP model M as the tuple

< S,A, T,R,O,Z, γ >. Its factored state space set S, is a

Cartesian product of two dimensions, and the terminal state.

SE includes a set of discrete partially observable locations of

Q (the target object) and SR includes the set of robot’s fully

observable locations. We define these equidistant, discrete

locations manually in the robot’s motion planning workspace.

SARP’s action set A consists of navigation and termination

actions. The robot can take navigation action goi ∈ A to

go to the location i. We model the action transition function

T (s′|s, a) so that the robot can only go to its closest neigh-

boring locations in the absence of obstacles. Each navigation

action has a cost (negative value, R(s, a) < 0), which is

proportional to the distance the robot needs to travel to reach

that location. The robot can take the termination action, and

receive bonus (penalty) if it correctly locates (not find) the

target object. Observation set Z is {Detected, NotDetected,

NotApplicable} where Detected happens when the perception

detects the query object, NotDetected happens when the query

object is not detected, and NotApplicable when the agent takes

the termination action. To maximize its planning horizon,

we set γ to 0.99. SARP assigns the observation function

O = pr(z|s, a) based on the target’s object detection accuracy

on a test set of D.

c) Algorithm Description: After defining the problem

and the POMDP model, we present our novel algorithm, called

scene analysis for robot planning (SARP), for context-aware

robot planning under partial observability. SARP computes

a policy that enables a robot to accomplish its task using

less action cost using the contextual knowledge. SARP is an

object-centric algorithm that bridges the representation gap
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between visual scene analysis and robot planning under partial

observability.

Algorithm 1 presents SARP, whose input is an object of

interest that a mobile robot needs to locate (Q). SARP requires

a POMDP solver for policy generation, a pre-trained scene

graph generation network, a domain map for navigation, and

a dataset D that consists of scene graphs. In Line 1, SARP

constructs a POMDP according to the object of interest (Q),

and computes policy π using the provided POMDP solver.

After that, there are a few steps for initializing beliefs (over

object locations), and a scene graph (Lines 2-4). It should be

noted that we maintain two beliefs b and b′ over the location

of the target object, where b is updated using POMDP obser-

vations, and b′ is updated using the current b and available

contextual information. This design allows the robot to use

different beliefs for decision making and action selection, and

avoids possible issues caused by error propagation. Also, this

mechanism enables a SARP agent to avoid reusing contextual

information in belief updates. This mechanism enables a SARP

agent to avoid reusing contextual information in belief updates.

Lines 5-20 form the main control loop of SARP, and it

terminates when the current state is a terminal state. In each

iteration, the robot uses a captured image to generate GL, a

local scene graph (Line 6), and uses this local scene graph to

update GG, the global scene graph (Line 8).

After that, SARP computes a potential function φ (Line 9)

values for each edge, using the function CALCφ (Algo-

rithm 2). This function calculates four values for each relation

(v, ǫ, v′) in GL that serve as the potential function. CALCφ

queries the dataset D, to find out the ratio of the times that each

object (v, v′ or both) in a relation has appeared (not appeared)

in D, resulting in four values to form the potential function.

We use φ to form a Markov network together with global

scene graph G in Line 10 where SARP queries the number of

times that each pair of nodes of an edge in GG has appeared

(not appeared) in D scene graphs.

In our implementation, N is incrementally updated in

each iteration, if the robot detects new scene graphs (that

were not previously detected), it will add the new nodes

and relationships to the existing global scene graph GG. We

use the robot’s localization and the camera depth sensor to

approximately localize the detected objects on the map, in

order to distinguish different instances of the same objects.

Lines 11-19 correspond to the belief update, and action

selection processes of POMDPs. Contextual knowledge in the

form of a Markov network (N ) is used for biasing belief b

only if the object of interest is visually detected in the current

image. This is because of avoiding the bias drift that could

result from too many biasing at every timestep. We use a

belief propagation1 method [42] to compute the probability

of Q being collocated with objects V (Line 15).

pr(Q|V ) = BeliefPropagation(N , Q, V ) (4)

where the computations of pr(Q|V ) and b are independent.

In Line 16, SARP uses pr(Q|G) to compute b′, the posterior

belief distribution.

1Any approximate inference method can be used.

Algorithm 1 SARP

Input: Query object Q

Require: a POMDP solver, a scene graph generation network, a
domain occupancy grid map, robot localization software, scene
graph dataset D.

1: Construct a POMDP based on Q, and compute policy π
2: Uniformly initialize beliefs b and b′ over SE

3: Initialize vertices V = {Q,Q′} and edges E = {ǫQ−Q′}, where
Q′ is a duplicate of Q

4: Initialize a scene graph: G← (V, E)
5: while current state is not terminal do
6: Take an image, and generate local scene graph GL = (V ′, E ′),

where V ′ are detected evidence objects
7: V ← V ∪ V ′; E ← E ∪ E ′

8: GG ← (V, E)
9: Compute potential function φ = CALC φ(GL,D)

10: Form a Markov network: N ← (GG, φ)
11: Select action a← π(b′), and execute a
12: Make observation z on Q
13: Update b based on a and z
14: if z is Detected then
15: pr(Q|V )← BeliefPropagation(N , Q, V )
16: b′ ← η · pr(Q|V ) · b
17: else if z is NotDetected then
18: b′ ← b
19: end if
20: end while

Algorithm 2 CALCφ

Input: Scene graph dataset D, local scene graph
GL

1: Initialize the potential function set φ as empty
2: for (v, ǫ, v′)i in GL do

3: m← number of images in D containing v or v′.
4: φi

v1,v′1
← (number of images in D containing v, v′, and ǫ)/m

5: φi
v0,v′0

← (number of images in D containing v, v′, but not ǫ)/m

6: φi
v0,v′1

← (number of images in D containing v′ without v)/m

7: φi
v1,v′0

← (number of images in D containing v without v′)/m

8: φ← φ ∪ φi

9: end for

10: return φ

d) CALC function: CALC function that takes as input

the scene graph dataset D and the local scene graph GL. For

each pair of nodes v and v′ that are connected in the ith edge

ǫ, the algorithm calculates four values by querying the number

of times each node and their corresponding edge have (not)

appeared in the dataset D. We denote v1 as the node exists

in D and v0 when it does not exist. It returns the computed

potential function φ.

SARP enables the agent to leverage contextual information

towards task completion through building and reasoning with

global scene graphs to guide a probabilistic planner. Next, we

discuss our experiments for evaluating SARP.

V. EXPERIMENTS

We conducted two sets of experiments in simulation where

the robot is tasked with finding a target object accurately and

as quickly as possible. In all the trials, the robot is provided

with a domain map, a dataset of scene graphs, and a pretrained

network for generating scene graphs. It receives 360-degree

images of the environment as the input, where we leveraged
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task execution).
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