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This paper examines different models for calculating the magnetic field of solenoids. Accuracy and computation
time are compared for a range of different simplified models: a current loop and a thin shell solenoid, and
solenoids with finite length and thickness. There is no definitive answer to “what model is the best”, as it
depends on the specific use case, but there are certain models that excel in speed or accuracy, and there are
models that have very limited use. This paper serves as an overview and will help the reader make an informed

1. Introduction

Simulating the behaviour of trapped particles often requires the
calculation of magnetic fields. Even if exact analytic expressions are
available for the given magnet configuration, they are often slow to
compute. Simulations often involve high numbers of particles, whose
behaviour have to be evaluated over many time steps, so one must
often make a compromise between computation time and accuracy.
This paper evaluates these parameters for a range of methods.

This study was done in the context of the ALPHA experiment at
CERN, which measures the properties of antihydrogen to test CPT
symmetry by comparison with hydrogen. The antihydrogen is pro-
duced by mixing positron and antiproton plasmas confined by Penning—
Malmberg traps, and the electrically neutral antihydrogen atoms are
confined via their magnetic moment in a magnetic (loffe-Pritchard)
trap. A description of the experiment and a selection of results can
be found in [1-10]. Besides the existing ALPHA-2 atom trap, a more
complicated atom trap called ALPHA-g is under construction. The
purpose of ALPHA-g is to measure how antihydrogen behaves in Earth’s
gravitational field to test the Weak Equivalence Principle, which re-
quires control of the magnetic field to the 1 to 10 ppm level. It has
previously been demonstrated that the field can be measured to such
precision [11].

Most of the magnets in ALPHA are relatively short solenoids, but
this paper will focus on solenoids without any assumptions about
their length to radius ratio. The model used to represent the physical
geometry of a magnet will be referred to as a magnet model, and the
model used to calculate the magnetic field will be referred to as a field
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model. For each field model, we calculate the magnetic field along the
four paths illustrated in Fig. 1, and present its accuracy. The coordinate
system is centred at the geometrical centre of the solenoid, which has
radius R. The four paths are referred to as p on (1), p off (2), z on (3),
and z off (4). The z on path coincides with the symmetry axis of the
solenoid (the z-axis), and the z off path is perpendicular to the z-axis
but offset by R/2 in the x-direction'. The p on path lies in the centre
plane of the solenoid, and the p off path is displaced by R/2 in the
z-direction.

To aid in the choice of a model, the accuracy and computation time
for the different models will be presented. The code used to calculate
the field of the different models is available on Github: https://github.
com/pgranum/BFieldModels_Public. A list of the different models ex-
amined in this paper can be seen in Table 1.

2. Field model accuracy

To evaluate the accuracy of field models for a magnet model, there
must be a reference model that is considered to give the true value of the
field, B,,,. For the simpler magnet models, exact analytic expressions
are available. For more complicated magnet models, a detailed Biot—
Savart model can be used. As the accuracy metric of the field B of a
given model, we will use

B(x,y,z) — Bref(X, ¥, 2)
B,¢(0,0,0)

AB/By = (€]

This metric emphasizes the field in the central region of the magnet.
In configurations with multiple magnets, like particle traps, the central

1 As the geometry of the solenoid in theory is azimuthally symmetric, the direction of the offset is irrelevant.
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A list of the different models and their qualitative characteristics. *For several of the models the accuracy and computation time depend on a
variable parameter. The ratings given here are based on a crude estimate of the instances of the models studied in this paper.

Model type/name Abbreviation

Reference model Qualitative Qualitative

[yes/no] accuracy™ computation time*
Circular Current Loop
Simple Analytic Model SAM yes exact average
McDonald McD no good good
Biot-Savart no good bad
Jackson no poor -
Numerical Integration of Infinite Integrals no - very poor
Thin Shell Solenoid
Conway yes exact average
McDonald McD no good good
N-Wire no average poor
Gaussian Quadrature with Loops GQ no good average
Finite Solenoids
Biot-Savart yes exact very poor
Truncated Approximate Vector Potential TAVP no very poor good
McDonald McD no good average
N-Wire no good poor
Gaussian Quadrature with Loops GQ no average average
Gaussian Quadrature with Shells GQ no good average
region is where the solenoid’s contribution to the total magnetic field T~
is the most significant. For example, if the solenoid is immersed in an e
external magnetic field, the contribution of the solenoid’s field to the >\'\\
total field will be small far from the solenoid’s centre. 3 4
We base our magnet models on one of the superconducting solenoids
in the ALPHA-2 experiment. The solenoid has inner and outer radius 1,
R, = 4125 mm and R, = 46.37 mm, length L = 34.68 mm, 4 e
layers with 30 windings per layer, layer spacing 4p = 1.707 mm, and 0.5 \\
spacing between wires in a given layer Az = 1.196 mm. The current 2
running though the magnet is I = 600 A. In this paper, lengths will be = 0 T~
normalised to the radius of the magnet, and magnetic fields to the field vy — 1
at the centre of the magnet. Although the simulations in this paper will T <
be based on our magnet, the results are expected to be true for other -0.5 e
magnets.
3. Computation time 15
1 s
The field models are implemented in C++ in a similar style, which -0-5 0
allows rough comparisons of the computation time. The models have 0.5 -1 y/R
been written without architecture targeted optimisations, as extreme z/R 1 ’

optimisation is not in the scope of this paper. The computation time
of each method was measured using the class steady_clock from the
standard library std :: chrono.

We measure a models’ computation time as the time it takes for
a model to be executed at 100 equidistant points along each of the
four paths seen in Fig. 1. The computation time is independent of
the position within a factor of 3. Fig. 2 shows the computation time
as a function of position for the Conway model (see Section 5.1), a
model with a large variance in computation time. This variance is
likely an artefact of the CPU’s branch prediction, as the algorithm
of the Conway model contains the largest number of “if' statements.
At each position, the field is calculated 10000 times. A histogram of
the resulting one million calculations is seen in Fig. 3. The histogram
qualitatively represents of all the field models. In theory the calculation
is deterministic, so any difference in computation time for the same
position is due to a varying load on the CPU. The histogram shows that
there is a minimum computation time. Most computation times lie just
above the cutoff.

To determine the computation time for a given position, we use the
median of the 10000 different computation times. Since the median
is the same within a factor of 3 across all 100 positions, we use the
median of the 100 median computation times as the computation time
for a given path. Hence, a total of 10000 - 100 = 10° calculations go
into the determination of the computation time for a given path. The
computation time has proven to be roughly path independent, within

Fig. 1. A sketch of solenoid represented by a current loop (blue) with radius R placed
in the x—y-plane and four paths (red) numbered 1 to 4 (p on, p off, z on, and z off). It
is along these paths that the magnetic field of the different models has been calculated
and compared.

a factor of 3, so we chose the z off path to be representative for every
model. For the Conway model used in Figs. 2 and 3, the computation
time is 2.0 us. Even though the computation time is only precise to an
order of magnitude, we give two significant digits to allow comparisons
of different models. Note that the computation time depends on the
particular computer system.

All quoted processing times are based on a Intel Core i5-8600K with
16 GB of Dual Channel Corsair Vengeance LPX DDR4 memory running
at 3000MHz. Warm up calculations were used to make sure the system
was thermally stable for all measurements.

4. Circular current loop

A circular current loop is a time-independent current moving in a
circle with a fixed radius. A sketch of a circular current loop with radius
R placed in a cylindrical coordinate system (p, ¢, z) centred around the
z-axis is seen in Fig. 4. The on-axis field of a current loop with radius
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Fig. 2. The computation time as a function of position along the four different paths for the Conway model. Relative to the other models, the computation time for this model

fluctuates significantly as a function of position.
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Fig. 3. A histogram of the calculation time along path 4 (z off) of a Conway model. The model has been executed 1 million times. The computation times have been combined

into bins of width 0.5 ps and plotted on a logarithmic scale.

R and current I (see Griffiths’ [12]) is given as

MLI R—2 (2)
2 ( R2 + Z2)3/2

where y is the vacuum permeability. The radius of a current loop is

calculated as the average of the inner and outer radius of our magnet

(43.81 mm). The current in the single loop is the same as the current

in the magnet multiplied by the number of windings (72000 A).

B,(0,0,2) =

4.1. Simple analytic model

The Simple Analytic Model (SAM), derived for example by James
Simpson et al. [13], provides an exact analytical expression for the
magnetic field of a circular current. Simpson et al. derived multiple
exact expressions for the magnetic field and vector potential of a
current loop in different coordinate systems. In cylindrical coordinates
(p, ¢, z) the expression for the magnetic field is

_ _Cz R B Nt N P
p_m[m +07+ 2)E(R") - P K (k)] , (3)
By =0, ©)]
= C R 2 VE() 4 a2 K (K2
B, = 2275 (R = p* + 2 E(K?) + * K (k)] , (5)
where
o> = R? + p* + 22 = 2Rp, (6)

Fig. 4. A sketch of a circular current loop with radius R in a cylindrical coordinate
system centred around the z-axis. The current distribution creates a magnetic field on
the axis pointing in the z-direction.

ﬂ2=R2+p2+z2+2Rp, @)
2
2%
k=1 i (8)
1
c=H ©
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Fig. 5. The magnitude and p and z components of the magnetic field generated by a current loop with radius R = 43.81 mm and current I = 72000 A as calculated by the SAM

model along the four paths shown in Fig. 1. The azimuthal component, B, is always zero.

K(x) and E(x) are the complete elliptic integrals of the first and second
kind available in the <cmath> package in C++ using the functions
comp_ellint_1 and comp_ellint_2. Notice that the functions in
<cmath> take k rather than k? as an argument. Both conventions are
common in the literature. The resulting magnetic field along the four
paths is seen in Fig. 5. This field model will be used throughout this
chapter as a reference model B,, (%, 9, 2).

4.2. McDonald model

Kirk T. McDonald [14] has derived a series expansion for the off-axis
field of an azimuthally symmetric magnetic field based on its axial field
B_(0,0, z). We will refer to this as the McDonald model. The expression
for the McDonald model is exact on the axis but only approximate
off-axis. The components of the magnetic field are given by

(2n)

a . % (2) P2
B9 = T (%) 10)
a(2"+]>(z) 2n+1
B(pz)= Y (-1yH L~ (2 11
,(0.2) Z;f ) (n+1)(n!)2(2) an
where
ag')=% and ay(z) = B.(0,0,2) (12)

Together with the axial-field of a current loop given by Eq. (2), the
field can be approximated at any point in space. The expansion has
been tested up to 7th order, and the accuracy of the different orders
along the paths z off? and p on/off can be seen in Figs. 6 and 7. To see
the accuracy of the higher order, all plots have a zoomed-in version
below them. Unsurprisingly the accuracy of the model increases with
the order.

2 The “z on" path has been left out, as the McDonald model is exact on the
axis.

0.02 z off axis
0
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Q x107°
< 1 i T

Z/R1

Fig. 6. The accuracy of the McDonald model along path z off. The upper plot displays
the orders 1-4 while the lower plot is zoomed in on the AB/B, axis displays the orders
4-7.

4.3. Biot-Savart model

Another way of calculating the magnetic field of a current loop is
to approximate the loop as consisting of N straight line segments with
equal lengths and adding their individual field contributions together
to get the total magnetic field. Consider a small line segment of a closed
current loop of length dl pointing in the direction of the current flow.
A current I flows through the loop. The Biot-Savart law states that the
line segment’s contribution to the total magnetic field at an observation
point P is

_ M dlxr

dB = 13
4z |r)3 (13)
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Fig. 7. The accuracy of the McDonald model along path p on and p off. The lower plots display the same data as the upper plots, but zoomed in on the AB/B, axis.
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Fig. 8. The accuracy of the Biot-Savart model along the four paths, where the loop has been approximated with 10, 100 and 1000 line segments respectively.

where r is the coordinate vector from the line segment to the point P.
The Biot-Savart model can be used to model any magnet configuration.
Within machine precision, the accuracy can be made arbitrarily small
by increasing the number of line segments to better approximate the
shape of the loop, but this comes at the expense of a linear increase in
the computation time.

The accuracy of the Biot-Savart model along all four paths for 10,
100 and 1000 segments can be seen in Fig. 8. As the plot is logarithmic,
the absolute value of Eq. (1) is plotted as a function of position. The
sharp “dips" in the figures appear where the accuracy changes sign. As
the number of line segments is increased tenfold, the accuracy of the
model increases about a hundredfold. The accuracy of the 7th order

McDonald model is somewhere between the result for 100 and 1000
segments.

4.4. Jackson model

Assume that the magnetic field is evaluated at a point near the axis
of symmetry or far away from the coil so R>r, R< r,or § < 1 in
spherical coordinates (r, ¢, 0). The field can then be approximated as
described in Jackson [15, Eq. 5.40]

oI R? cos 6 15R?r? sin(6)

4(R2 + 22

B, =

r

3 a4
2(R? +r?)2
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Table 2

The computation time for calculating the magnetic
field of a current loop for the field models exam-
ined. The computation time has been determined as
described in chapter 3.

Model Time [ps]
SAM 0.34
McD loop n=1 0.043
McD loop n=2 0.054
McD loop n=3 0.053
McD loop n=4 0.061
McD loop n=5 0.075
McD loop n=6 0.075
McD loop n=7 0.085
Biot N =10 0.23
Biot N =100 1.9
Biot N = 1000 19

2 gi 2.2 o 2 2

B, = _M IR2 24 15R*r* sin(0)(4R 3r7) n as)

5 2 22
4(R2 +r2)3 8(R? +r?)

Unsurprisingly the accuracy of the model is bad when the assumptions
are not met. No further work went into examining the Jackson model,
and the model is only mentioned here for completeness.

4.5. Numerical integration of infinite integrals

Another model mentioned in Jackson [15] is the expression derived
in exercise 5.10,

IR [®
B,(p.2) = MO;: / dk ksin(k2) 1, (kp ) K, (kp) 16)
0
IR [ Iy(kp)K,(kR) T R
B.(p.z) = Ho / dk k cos(kz) o(kp)K (kR) for p < an
T Jo I, (kR)Ky(kp) for p> R

where K; and I; are the modified Bessel functions of the first and second
kind, and p, (p.) is the larger (smaller) of p and R. Even though the
expression is in principle exact, numerical integration is required to
evaluate it, which makes it non-exact. To change the integral limit from
infinite to finite a change of variable can be done,

® ! ! dr
l fqu—A f(a+1—:)(l__t)2 (18)

but the integral does not converge. As the computation time quickly
exceeds the computation time of the exact SAM model, the numerical
integration model is not explored any further.

4.6. Discussion of loop models

The computation times for the models examined are listed in Table 2
and are determined as described in chapter 3. For the circular current
loop, the McDonald approximation is seen to be faster than the SAM for
the orders tested. The accuracy of the McDonald model is below 10~5
for some of the higher order models and p/R < 0.5. The computation
time of the Biot-Savart model is seen to exceed the computation time
of the McDonald model even for a very low number of straight line
segments, for which the model is not very accurate. Hence, it is a poor
choice for calculating the field of a circular current loop, but it can be
used for more complex current distributions. The values suggest that
the computation time of the Biot-Savart model scales linearly with the
number of segments.

5. Thin shell solenoid

A thin shell solenoid is a uniform current distribution on an in-
finitely thin cylindrical shell, where the current runs in the azimuthal
direction. A cross sectional view of a thin shell solenoid with length L,
radius R, and endpoints at z; and z, is seen in Fig. 9. We assume that
the shell is centred around the origin, so z; = —z, and L = 2z,. The

Nuclear Inst. and Methods in Physics Research, A 1034 (2022) 166706

P

®
Y

Fig. 9. A sketch showing a cross section of a thin shell solenoid of length L and
radius R in a cylindrical coordinate system. The coordinate of the back- and front-end
is denoted by z, and z, respectively. The current running in the azimuthal direction
produces a magnetic field pointing in the z-direction on the axis.

on-axis field of the shell can be derived by integrating the equivalent
expression (Eq. (2)) for a current loop over the length of the shell.
Assuming that the shell consists of N current loops with a current I, the
total current is I N, and the expression for the on-axis field becomes

IN -
B,(0,0,2) = X2 < S

. Sk (19)
VR +(z-z))? VR +(z-z,)?
Just like in chapter 4, the value used for the radius will be 43.81 mm.

The current will be 600 A, the length 34.68 mm, and the number of
loops, N, (equal to the total number of windings) will be 120.

2L

5.1. Conway model

Even though the thin shell solenoid is a relatively simple current
distribution, calculating the field at an arbitrary point in space is
significantly harder than on the axis. An exact analytic expression for
the field is derived in a paper by T. Conway [16]. This model will be
referred to as the Conway model.

Let the field of a cylindrical shell be evaluated at a point in cylindri-
cal coordinates (p, ¢, z). The following parameters can then be defined

4pR

k= GiRETZ (20)

K =vV1-k? 21)
p=sin [ —2 22)

Together with the complete and incomplete elliptic integral functions,

Heuman’s Lambda function can now be defined

Ag(p. k) = % (EGOF B, k') + K(OEB, k') = K(k)F(B, K)) (23)

The solutions for integrals of the type

I uu(Rop.|2)) = / s (SR, (sp)e™7Nd s 24
0

which Conway refers to as Bessel-Laplace integrals, can be expressed by
the defined parameters and Heuman’s Lambda function. The solutions
from Conway’s paper to the relevant integrals are listed here:

kK(k) A8,k
Iy 10(R, p, |2]) = % (1 - |;| (R) - O(lfl )> for p< R (25)
7\/p

Iono(Rop 12 = & (""""“") + AU("’"’”) for p> R 26)

27r\/p_R 2

(2 = K)K (k) — 2E(k)) 27

1
7k+/pR

Ipy (R, p, |2]) =
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Fig. 10. The p and z components and the magnitude of the magnetic field generated by a thin shell solenoid with radius R =43.81 mm, length L =34.68 mm, current I =600 A,
and 120 windings as calculated by the Conway model along the four paths shown in Fig. 1. The azimuthal component B, is always zero and therefore omitted.

0.01

Fig. 11. The accuracy of the McDonald model along path z off. The upper plot displays
the orders 1-4 while the lower plot, which is zoomed in on the AB/B, axis, displays
the orders 4-7.

Analytic expressions for the magnetic field from a thin cylindrical shell
of finite length are then given as

u,INR
B, = “2—L (Toa0(Rops121 = 2D) = Iy 1 o(R, py 12, — 2]))  forz<z; (28)
U INR
B, = oL I o(R, p,0)
= To10(R, p, |2y = 2|) = Iy o(R, p, |25 = 2])) forz, <z<z,
(29)
uINR
B, = OZ—L (Ip,0(R.p. |2y — z) = Iy 1 o(R.p. |z, — 2]))  forzy <z (30)
uINR
Bp = 02—L (10,1_1(R’ P |Zl -z|) - 10,1,0(Ra P> |Zz - 7|)) (31)

As Conway writes, these expressions are not new, but they do not seem
to be included in the popular textbooks. The resulting magnetic field
along all four paths are seen Fig. 10. The Conway field model will be
used as a reference model for a thin cylindrical shell. Conway’s paper
also presents an expression for the field of a cylindrical shell with a
finite thickness, but the expression for the axial component of the field
is given as an integral that would have to be evaluated numerically. The
expression is therefore no longer exact, and the numerical integration
would be slow. Hence, the field model for a shell with finite thickness
will not be considered later.

5.2. McDonald model

The field of a shell solenoid is naturally azimuthally symmetric.
Consequently the McDonald model introduced in Section 4.2 can be
applied to approximate the field of a shell solenoid at any point in
space by expanding equation (19). Figs. 11 and 12 show the accuracy of
different orders of the McDonald model compared to the exact Conway
model from Section 5.1. There is no deviation from the exact model on
axis, so the plot for the z on path has been omitted. Unsurprisingly the
model is less accurate further away from the axis and more accurate at
higher order.

5.3. N-wire model of a thin shell solenoid

A thin shell solenoid can be represented by a number of equidistant
discrete circular current loops placed over the length of the shell. The
number of loops, N, is chosen to match the number of windings per
layer, which is 30 in the magnet used as a model. This field model
will be referred to as the N-Wire model. To make the total current the
same as in the Conway model used for reference, the current in each
individual loop is multiplied by the number of layers to give a total
of 2400 A per loop. The spacing between the circular current loops is
given by Az = %, meaning that the centre of the wire represented by
the leftmost loop is positioned at z; + %. Hence, the wire extends to
the edge of the shell. This is illustrated in Fig. 13. It would be incorrect
to make the centre of the leftmost wire coincide with the left edge
of the shell, as the loops would then represent the same amount of
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Fig. 12. The accuracy of the McDonald model along path p on and p off. The lower plots display the same data as the upper plots, but there has been zoomed in on the 4B/B,
axis.

Fig. 13. A cross-sectional view of one side of the shell solenoid in the pz-plane. The figure indicates the length L, the radius R and the current loop separation Az. The individual
current loops are illustrated by the green circles. Notice that the perimeter of the current loops coincides with the left and right edge of the shell.

-5 z on axis -5 z off axis
12 x10 | | . . . 19 x10 ‘ .
8t ]
4+ |
0
4 ‘ ‘ . . .
s -3 -2 -1 0 1 2 3
% Z/R1 Z/Rl
< L6 «10~4 p on plane 4 %1073 p off plane
1.2¢ 1 2 1
0.8} 0t 1
0.4} 2 ]
0 - - ‘ 4 - - ‘
0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
x/Ry z/Ry

Fig. 14. The accuracy of the N-Wire model for a shell consisting of 30 circular current loops compared to the Conway model along the four paths.



P. Granum, M.L. Madsen, J.T.K. McKenna et al.

) Z on axis
10~ , : :

Nuclear Inst. and Methods in Physics Research, A 1034 (2022) 166706

z off axis

g
E Z/Rl
4 Lo-1 p on plane p off plane
1073 ]
1079 ¢ 1
10774 1
109 - ‘ ‘ - ‘ ‘
0 0.25 0.5 0.75 10 0.25 0.5 0.75 1
x/Ry z/Ry

Fig. 15. The accuracy of the field calculated using the Gaussian quadrature method for 3, 4, and 5 loops. The Conway model has been used as a reference.

p

Fig. 16. A sketch showing a cross section of the finite solenoid in a cylindrical
coordinate system. The inner and outer radius of the finite solenoid are denoted by R,
and R, respectively. The z position of the left and right ends are denoted by z, and
z,, and the total length of the solenoid by L. The current produces an on-axis field
pointing in the z-direction.

current distributed over a greater length than the length of the shell.
The SAM model is used to calculate the field of the individual loops.
The accuracy of the N-wire model compared to the Conway model
along the four paths can be seen in Fig. 14. It is on the 1075 to 10~*
level for p/R < 0.75, which is comparable to the 4th and 5th order
McDonald model.

5.4. Gaussian quadrature with loops for a shell

One could imagine that the computation time of the N-Wire model
described in Section 5.3 could be reduced significantly without a big
impact on the accuracy, if the shell was represented by a fewer loops
chosen in a clever way. The total field would then be given as a
weighted sum of the fields of the individual loops. Which loops give the

biggest contribution to the field at a certain position will depend on the
point of evaluation, but a there exists algorithms to determine the over-
all best positions and weights of the loops. Gaussian quadrature as de-
scribed in Abramowitz and Stegun [17] is such an algorithm. Represent-
ing a shell with a number of current loops, is equivalent to distributing
point along a line. Using Legendre polynomials as the orthogonal basis,
the positions and weights become the ones listed in [17, p. 921]. The
resulting fields for a single shell represented by 3, 4, and 5 loop respec-
tively can be seen in Fig. 15. The accuracy of the models is comparable
to the some of the higher order McDonald models presented.

5.5. Discussion of shell models

The computation times for the models examined are listed in Ta-
ble 3, and are determined as described in chapter 3. For the thin
shell solenoid the McDonald approximation is seen to be 1-2 orders of
magnitude faster than the analytic Conway model. The accuracy of the
McDonald model is below 10~> for some of the higher order models
and p/R < 0.5. The Gaussian quadrature method is also seen to be
faster than the Conway model, but it is about an order of magnitude
slower than the McDonald model, even though they have comparable
accuracy. The computation time of the N-Wire model is 7.8 ps, which
corresponds to roughly 30 times that of the SAM model as expected.
Hence, the N-Wire model is slower than all the other models. Of the
different approximations the McDonald model seems to be the best
choice in terms of both accuracy and speed.

6. Finite solenoids

A finite solenoid is defined as a current distribution consisting of
a uniform current density running azimuthally around in a hollow
cylinder. A sketch of the cross section of a finite solenoid can be seen
in Fig. 16. This is similar to the shell described in chapter 5 but with
a finite thickness. The on-axis field of the finite solenoid can be found
by integrating equation (19) over a range of thin shell solenoids with
varying radius. The resulting on-axis field of a finite solenoid is given
by
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Fig. 17. A cross-sectional view of one side of half of the magnet model at the azimuthal angle ¢ =0 in the pz-plane. The figure indicates the length L, the inner radius R,, the
outer radius R, and the winding separation in the p and z direction denoted Ap and Az respectively. The individual wires in the model are represented by the blue circles. The

arrows between the wires indicate how the coil is wound.

y/ =L -1

Fig. 18. A three-dimensional plot of the wire configuration of the Biot-Savart model.

Table 3
The computation times determined as described in chapter 3 for calculating the
magnetic field of a thin shell solenoid for the different models.

Model Time [ps]
Conway 2.0
McD shell n=1 0.049
McD shell n=2 0.062
McD shell n=3 0.074
McD shell n =4 0.086
McD shell n=5 0.093
McD shell n=6 0.097
McD shell n=7 0.12
N-Wire 1 x 30 7.8
GQ loops n=3 0.82
GQ loops n=4 1.1
GQ loops n=5 1.3
Hol N VR +(E-z)P+ R,
B:= 3Lk, —gy |G-
(Ry = Rp) VR + G-z + R
VR +(zZ-2)+ R, ]
—(z=2)In (32)
VR +(Gz-2)+R,

where R, is the inner radius and R, is the outer radius of the solenoid,
L is the length, I is the current in the wire, and N is the number of wire
turns. As in the previous chapters, this allows for an off-axis expansion
of the magnetic field. Using an exact analytic expression to calculate
the field at any point in space for a finite solenoid involves numeric

10

integration, which only makes the result as “exact" as the integration
method. The previous chapters have focused on comparing models
of ideal current distributions, but what matters from an experimental
point of view is how well the models describe the field of a physical
coil. For the finite solenoid, we have therefore chosen to compare the
models to a Biot-Savart model with multiple layers of helical wires.
This model is intended to reflect how the windings are positioned in
the actual magnet.

6.1. Biot-Savart model of a solenoid

The Biot-Savart model is based on the actual wire configurations of
the magnet described in chapter 1. The magnet is made up of four layers
of wires, each consisting of 30 windings. A sketch of how the wires are
wound can be seen in Fig. 17. Notice how the axial direction of the
winding alternates between each consecutive layer to cancel out the
azimuthal and radial components of the field. The wires in Fig. 17 have
been illustrated as having some finite radius, but the model assumes
the wires have no thickness®. The figure illustrates where the wires are
placed in relation to the continuous current distribution presented in
Fig. 16. The first layer is positioned at p = R, + %, so the edge of
the wires in the inner and outer most layer coincides with the edge
of the continuous current distribution. However, in the axial direction
the centre of the first wire of each layer coincides with the edge of the
continuous current distribution. In this way the mean axial position of
a single winding is placed 4 from the edge of the continuous current
distribution, similar to the radial direction.

The Biot-Savart model is made up of small straight wire segments,
where the endpoint of the nth line-segment is increased in the ¢- and
the z-coordinate relative to the (n — 1)th segment. The length of the
solenoid is L and the inner radius and outer radius are given by R, and
R, respectively. The radial coordinate p stays the same for all segments
in a given layer. In our model we have used Ngg = 1000 segments per
winding. As described in chapter 1, the number of wires per layer is
Ny = 30 and the number of layers N; = 4. Hence, the total number of
straight wire segments is given by Npg X Ny X Ny = 120000. A three-
dimensional plot of the wire model used for the Biot-Savart model can
be seen in Fig. 18.

Compared to a physical magnet, some simplifications have been
made in the magnet model. Firstly, the current leads carrying the
current to and from the magnet have been excluded. Experimentally,
these often introduce complications as they can generate a significant
contribution to the magnetic field. Secondly, the different layers are
not connected at the end turns. Instead, each layer consists of its own
wire. The size of the magnetic field of the Biot-Savart model as well

3 Note that the thickness of the wires is a parameter that could be examined,
but that is outside the scope of this paper.
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Fig. 19. The magnitude of magnetic field and its components as calculated by the Biot-Savart model along all four paths.
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Fig. 20. The accuracy of the exact analytic expressions for a loop and a shell compared to a finite solenoid. The Biot-Savart model of a solenoid has been used as a reference

model.

as the components along the four paths can be seen in Fig. 19. To
give an idea the significance of a detailed solenoid model compared
to a simple current loop or a shell, Fig. 20 shows a crude comparison
between the three. For this plot, is has been assumed that the radius
that is normalised to for the loop and shell models, is the same as the
radius normalised to for the finite solenoid — that is R = R,.
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6.2. Truncated approximate vector potential model

The Truncated Approximate Vector Potential (TAVP) model, in-
spired by the Jackson model (see Section 4.4), has been used in
simulations related to the ALPHA experiment [18, Appendix A.1]. The
vector potential for a solenoid with radius R in spherical coordinates
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Fig. 21. The accuracy of the TAVP model along all four paths for different values of 4. The Biot-Savart model of a solenoid has been used as a reference model.

(r, ¢, 0) is given as

_C 2,2 -1/2 2,2 —1/2
A¢_m((R +12 =2Rap)"V2 — (R* + 2 + 2RAp)"/?), (33)
2
where € = %% i5 a constant, and 4 is a parameter to be fitted to the

exact field. For 4 = 0.866 the first and the second terms of Egs. (14)
and (15) are reproduced, and 4 = 0.902 corresponds to the best fit of
the magnetic field of the mirrors [18]. The magnet modelled in [18] is
the same as the magnet modelled in this paper. The radius inserted in
the TAVP model is chosen so 4B(0,0,0)/B, = 0, which is fulfilled by
R ~ 1.015R,. The accuracy of the resulting field is plotted in Fig. 21.
The TAVP model is seen to be orders of magnitude worse than the
models previously examined.

6.3. McDonald model

Eq. (32) for the on-axis field can be used to make an off-axis
expansion similar to what was done in Section 4.2. For the finite
solenoid the model has been tested with up to 6 terms (n = 5). The
accuracy of the McDonald model is seen in Figs. 22 and 23. Below each
plot is a zoomed-in version.

6.3.1. Expanding the McDonald model

In this study, the McDonald model was initially calculated by hand
to fifth order, but one could achieve any desired accuracy (within
machine precision) by continuing expansion. Deriving the required
derivatives could be very time consuming, but this paper presents an
algorithm that allows easy expansion to any order. Looking at the
expression for the McDonald model (Egs. (10)-(12)) it is seen that
calculating the sign, the denominator, and the power of p/2 is trivial,
so the only challenge is to calculate the nth derivative of the axial field
(Eq. (32)). By adopting the following notation

z". =z-z (34)
lﬂij=,/Rl2.+z;2 (35)
Q=R +z2+R; (36)
HoI N
C=—r>——
2L(R, = Ry) @7

12

0.01

Fig. 22. The accuracy of the McDonald model along path 2z off. The upper plot displays
the orders 1-4 while the lower plot is zoomed in on the 4B/B,, axis displays the orders
2-5. The Biot-Savart model of a solenoid has been used as a reference model.

where i, j = 1,2 from Eq. (19), the on-axis field is given as

B,(0,0,2) = C (2 In(Q},) — 2} In(Q)) — 25 In(Qpy) + 2, In(Qy,)) (38)
=C Z(-1)f=f'zg In(Q;)) (39)

i

This somewhat simpler expression is used to calculate ag'):

a) = B,(0.0.2) (40)
o 2

a))=C Y (-1~ (m(Q,.j) + PZ—> (41)

Y i Qi

@ .y 7 Z/3 Z/3

a”=C) (- f<3 - - (42)

LR, ey R,
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Fig. 23. The accuracy of the McDonald model along path p on and p off. The upper plot displays the same data as the lower plot, but the lower plot is zoomed in on the AB/B

axis. The Biot-Savart model of a solenoid has been used as a reference model.

Table 4
The number of (unique) terms N, (N;) as a function of the order of the expansion n.
n Ny(n) Ny.(n)
0 4 4
1 8 8
2 12 12
3 36 24
4 108 36
5 324 56
6 972 72
7 2916 100
Thus af)z) exclusively consists of terms of the form
1A
z
k—P T (43)
ij Qij
where A, u,v € N and k € Z. The derivative is
d 2% Z/G=1) Z/G+1) Z/G+1)
dz <k PO ) = kh oy ~ R G e T 44
Z v
i i i Qi PO LR

The resulting three terms are also of the type given by Eq. (43). Hence,
for n > 2 all aé") will be given as a sum over such terms. The number
of terms in ag') is Ny(n) = 4 - 3", but several of the terms can be
combined, as they have the same values of 4, y, v, so the total number of
terms is N7.. In the code, we combine these programmatically to reduce
computation time. Table 4 shows the number of terms as a function of

n.

6.4. N-wire model of a finite solenoid

Similar to how a thin shell solenoid was modelled using a number of
equidistant circular current loops along a line in the N-wire model in
Section 5.3, a finite solenoid can be modelled as a number of current
loops placed in a 2D grid as seen in Fig. 24. In accordance with the
magnet described in chapter 1, four layers of wires each consisting
with of 30 current loops are used. Notice that the perimeter of the
current loops coincides with the edges of the box. The field of each
loop is calculated with the SAM model (Section 4.1). The accuracy of
the N-Wire model for a finite solenoid is seen in Fig. 25.
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6.5. Gaussian quadrature with loops for a solenoid

In the same way as a shell could be represented by a few current
loops distributed along a line according to the Gaussian quadrature
model described in Section 5.4, a finite solenoid can be represented by a
low number of loops in a rectangular grid. When assigning the positions
and the weights of the wires, the axial and radial dimensions are treated
separately. As L ~ 10(R,—R,) for the magnet used as a model, it makes
sense to have the number of loops in the axial dimension, N,, bigger
than the number of loops in the radial dimension, N,. The accuracy of
the most promising of the tested models are presented in Fig. 26. The
models are denoted N, X N..

6.6. Gaussian quadrature with shells for a solenoid

Rather than representing a finite solenoid with current loops placed
in a 2D grid, the finite solenoid can be represented with a number
of thin shell solenoids of the type described in chapter 5. Using the
Gaussian quadrature method (as described in Section 5.4) to calculate
the positions and weights of the shells, we show the resulting field in
Fig. 27. The accuracy does not increase much for more than two shells.
As the magnet used as a model (see chapter 1) is about 10 times longer
than it is thick and only consists of 4 layers, this is not surprising.

6.7. Discussion of solenoid models

The computation times for the models examined are listed in Ta-
ble 5, and are determined as described in chapter 3. A detailed Biot—
Savart model was used as a reference model, and unsurprisingly this
was extremely slow compared to the approximations. The Truncated
Approximate Vector Potential model and the lowest order McDonald
models are the fastest. The speed comes at the price of accuracy, which
for the TAVP model is only on the percent level. In comparison, the
McDonald model can be made about two orders of magnitude more
accurate for x/R < 0.4, while being 3-5 times slower. For a similar accu-
racy both the Gaussian quadrature models based on loops and solenoids
are seen to be about an order of magnitude slower than the McDonald
model. The N-wire model is accurate to about the same level as the
Gaussian quadrature models, but it is an order of magnitude slower.
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Fig. 24. A cross-sectional view of one side of the N-Wire model in the pz-plane. The figure indicates the length L, the inner radius R, the outer radius R, and the current loop
separation in p and z respectively denoted by 4p and Az. The individual current loops are illustrated by the blue circles.
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Fig. 25. The accuracy of the field calculated using the N-Wire model. The Biot-Savart model has been used as a reference.

Table 5
The computation times determined as described in chapter 3 for calculating the
magnetic field of a finite solenoid for the different models.

Model Time [ps]
Biot-Savart 2300
TAVP 0.34
McD sol. n=1 0.23
McD sol. n=2 0.51
McD sol. n=3 0.82
McD sol. n =4 1.5
N-Wire 4 x 30 31
GQ loops 1 x 3 0.83
GQ loops 1 x 4 1.1
GQ loops 1 x 5 1.3
GQ loops 2 x 3 1.6
GQ shells n=1 2.1
GQ shells n=2 3.7
GQ shells n=3 5.5
GQ shells n=4 7.3

7. Conclusion

None of the examined models can unambiguously be said to be the
best choice — it depends on the required accuracy and computation
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time. However, the McDonald model excels in both speed and accuracy
at low and high order respectively, and it is easy to adjust the order to
one’s needs. If time is not a concern a detailed Biot-Savart model will
give the most accurate results, if analytic models are not an option.

The computation times of the thin shell models and the finite
solenoid models are greater than the loop models by about a factor 2
and 10 respectively. At the same time, the importance for the accuracy
of the more detailed magnet models has been illustrated by Fig. 20.
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