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A B S T R A C T

This paper examines different models for calculating the magnetic field of solenoids. Accuracy and computation
time are compared for a range of different simplified models: a current loop and a thin shell solenoid, and
solenoids with finite length and thickness. There is no definitive answer to ‘‘what model is the best’’, as it
depends on the specific use case, but there are certain models that excel in speed or accuracy, and there are
models that have very limited use. This paper serves as an overview and will help the reader make an informed
choice of a model.
1. Introduction

Simulating the behaviour of trapped particles often requires the
calculation of magnetic fields. Even if exact analytic expressions are
available for the given magnet configuration, they are often slow to
compute. Simulations often involve high numbers of particles, whose
behaviour have to be evaluated over many time steps, so one must
often make a compromise between computation time and accuracy.
This paper evaluates these parameters for a range of methods.

This study was done in the context of the ALPHA experiment at
CERN, which measures the properties of antihydrogen to test CPT
symmetry by comparison with hydrogen. The antihydrogen is pro-
duced by mixing positron and antiproton plasmas confined by Penning–
Malmberg traps, and the electrically neutral antihydrogen atoms are
confined via their magnetic moment in a magnetic (Ioffe–Pritchard)
trap. A description of the experiment and a selection of results can
be found in [1–10]. Besides the existing ALPHA-2 atom trap, a more
complicated atom trap called ALPHA-g is under construction. The
purpose of ALPHA-g is to measure how antihydrogen behaves in Earth’s
gravitational field to test the Weak Equivalence Principle, which re-
quires control of the magnetic field to the 1 to 10 ppm level. It has
previously been demonstrated that the field can be measured to such
precision [11].

Most of the magnets in ALPHA are relatively short solenoids, but
this paper will focus on solenoids without any assumptions about
their length to radius ratio. The model used to represent the physical
geometry of a magnet will be referred to as a magnet model, and the
model used to calculate the magnetic field will be referred to as a field
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E-mail address: peter.granum@cern.ch (P. Granum).

1 As the geometry of the solenoid in theory is azimuthally symmetric, the direction of the offset is irrelevant.

model. For each field model, we calculate the magnetic field along the
four paths illustrated in Fig. 1, and present its accuracy. The coordinate
system is centred at the geometrical centre of the solenoid, which has
radius 𝑅. The four paths are referred to as 𝜌 on (1), 𝜌 off (2), z on (3),
and z off (4). The z on path coincides with the symmetry axis of the
solenoid (the z-axis), and the z off path is perpendicular to the 𝑧-axis
but offset by 𝑅∕2 in the 𝑥-direction1. The 𝜌 on path lies in the centre
plane of the solenoid, and the 𝜌 off path is displaced by 𝑅∕2 in the
𝑧-direction.

To aid in the choice of a model, the accuracy and computation time
for the different models will be presented. The code used to calculate
the field of the different models is available on Github: https://github.
com/pgranum/BFieldModels_Public. A list of the different models ex-
amined in this paper can be seen in Table 1.

2. Field model accuracy

To evaluate the accuracy of field models for a magnet model, there
must be a reference model that is considered to give the true value of the
field, 𝐵𝑟𝑒𝑓 . For the simpler magnet models, exact analytic expressions
are available. For more complicated magnet models, a detailed Biot–
Savart model can be used. As the accuracy metric of the field 𝐵 of a
given model, we will use

𝛥𝐵∕𝐵0 ≡
𝐵(𝑥, 𝑦, 𝑧) − 𝐵ref(𝑥, 𝑦, 𝑧)

𝐵ref(0, 0, 0)
(1)

This metric emphasizes the field in the central region of the magnet.
In configurations with multiple magnets, like particle traps, the central
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Table 1
A list of the different models and their qualitative characteristics. *For several of the models the accuracy and computation time depend on a
variable parameter. The ratings given here are based on a crude estimate of the instances of the models studied in this paper.
Model type/name Abbreviation Reference model Qualitative Qualitative

[yes/no] accuracy* computation time*

Circular Current Loop
Simple Analytic Model SAM yes exact average
McDonald McD no good good
Biot–Savart no good bad
Jackson no poor –
Numerical Integration of Infinite Integrals no – very poor

Thin Shell Solenoid
Conway yes exact average
McDonald McD no good good
N-Wire no average poor
Gaussian Quadrature with Loops GQ no good average

Finite Solenoids
Biot–Savart yes exact very poor
Truncated Approximate Vector Potential TAVP no very poor good
McDonald McD no good average
N-Wire no good poor
Gaussian Quadrature with Loops GQ no average average
Gaussian Quadrature with Shells GQ no good average
m
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region is where the solenoid’s contribution to the total magnetic field
is the most significant. For example, if the solenoid is immersed in an
external magnetic field, the contribution of the solenoid’s field to the
total field will be small far from the solenoid’s centre.

We base our magnet models on one of the superconducting solenoids
in the ALPHA-2 experiment. The solenoid has inner and outer radius
𝑅1 = 41.25 mm and 𝑅2 = 46.37 mm, length 𝐿 = 34.68 mm, 4
ayers with 30 windings per layer, layer spacing 𝛥𝜌 = 1.707 mm, and
pacing between wires in a given layer 𝛥𝑧 = 1.196 mm. The current
unning though the magnet is 𝐼 = 600 A. In this paper, lengths will be
ormalised to the radius of the magnet, and magnetic fields to the field
t the centre of the magnet. Although the simulations in this paper will
e based on our magnet, the results are expected to be true for other
agnets.

. Computation time

The field models are implemented in C++ in a similar style, which
allows rough comparisons of the computation time. The models have
been written without architecture targeted optimisations, as extreme
optimisation is not in the scope of this paper. The computation time
of each method was measured using the class 𝚜𝚝𝚎𝚊𝚍𝚢_𝚌𝚕𝚘𝚌𝚔 from the
standard library 𝚜𝚝𝚍 ∶∶ 𝚌𝚑𝚛𝚘𝚗𝚘.

We measure a models’ computation time as the time it takes for
a model to be executed at 100 equidistant points along each of the
four paths seen in Fig. 1. The computation time is independent of
the position within a factor of 3. Fig. 2 shows the computation time
as a function of position for the Conway model (see Section 5.1), a
model with a large variance in computation time. This variance is
likely an artefact of the CPU’s branch prediction, as the algorithm
of the Conway model contains the largest number of ‘‘if" statements.
At each position, the field is calculated 10000 times. A histogram of
the resulting one million calculations is seen in Fig. 3. The histogram
qualitatively represents of all the field models. In theory the calculation
is deterministic, so any difference in computation time for the same
position is due to a varying load on the CPU. The histogram shows that
there is a minimum computation time. Most computation times lie just
above the cutoff.

To determine the computation time for a given position, we use the
median of the 10000 different computation times. Since the median
is the same within a factor of 3 across all 100 positions, we use the
median of the 100 median computation times as the computation time
for a given path. Hence, a total of 10000 ⋅ 100 = 106 calculations go
into the determination of the computation time for a given path. The
computation time has proven to be roughly path independent, within
 𝑧

2

Fig. 1. A sketch of solenoid represented by a current loop (blue) with radius 𝑅 placed
in the x–y-plane and four paths (red) numbered 1 to 4 (𝜌 on, 𝜌 off, z on, and z off ). It
is along these paths that the magnetic field of the different models has been calculated
and compared.

a factor of 3, so we chose the z off path to be representative for every
odel. For the Conway model used in Figs. 2 and 3, the computation
ime is 2.0 𝜇𝑠. Even though the computation time is only precise to an
rder of magnitude, we give two significant digits to allow comparisons
f different models. Note that the computation time depends on the
articular computer system.
All quoted processing times are based on a Intel Core i5-8600K with

6 GB of Dual Channel Corsair Vengeance LPX DDR4 memory running
t 3000MHz. Warm up calculations were used to make sure the system
as thermally stable for all measurements.

. Circular current loop

A circular current loop is a time-independent current moving in a
ircle with a fixed radius. A sketch of a circular current loop with radius
placed in a cylindrical coordinate system (𝜌, 𝜙, 𝑧) centred around the
-axis is seen in Fig. 4. The on-axis field of a current loop with radius
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Fig. 2. The computation time as a function of position along the four different paths for the Conway model. Relative to the other models, the computation time for this model
luctuates significantly as a function of position.
Fig. 3. A histogram of the calculation time along path 4 (z off) of a Conway model. The model has been executed 1 million times. The computation times have been combined
into bins of width 0.5 μs and plotted on a logarithmic scale.
𝑅 and current 𝐼 (see Griffiths’ [12]) is given as

𝑧(0, 0, 𝑧) =
𝜇0𝐼
2

𝑅2

(𝑅2 + 𝑧2)3∕2
(2)

where 𝜇0 is the vacuum permeability. The radius of a current loop is
calculated as the average of the inner and outer radius of our magnet
(43.81 mm). The current in the single loop is the same as the current
in the magnet multiplied by the number of windings (72000 A).

4.1. Simple analytic model

The Simple Analytic Model (SAM), derived for example by James
Simpson et al. [13], provides an exact analytical expression for the
magnetic field of a circular current. Simpson et al. derived multiple
exact expressions for the magnetic field and vector potential of a
current loop in different coordinate systems. In cylindrical coordinates
(𝜌, 𝜙, 𝑧) the expression for the magnetic field is

𝐵𝜌 =
𝐶𝑧

2𝛼2𝛽𝜌
[

(𝑅2 + 𝜌2 + 𝑧2)𝐸(𝑘2) − 𝛼2𝐾(𝑘2)
]

, (3)

𝜙 = 0, (4)

𝐵𝑧 =
𝐶

2𝛼2𝛽
[

(𝑅2 − 𝜌2 + 𝑧2)𝐸(𝑘2) + 𝛼2𝐾(𝑘2)
]

, (5)

where

𝛼2 = 𝑅2 + 𝜌2 + 𝑧2 − 2𝑅𝜌, (6)
3

Fig. 4. A sketch of a circular current loop with radius 𝑅 in a cylindrical coordinate
system centred around the 𝑧-axis. The current distribution creates a magnetic field on
the axis pointing in the 𝑧-direction.

𝛽2 = 𝑅2 + 𝜌2 + 𝑧2 + 2𝑅𝜌, (7)

𝑘2 = 1 − 𝛼2

𝛽2
, (8)

𝐶 =
𝜇0𝐼 . (9)

𝜋
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Fig. 5. The magnitude and 𝜌 and 𝑧 components of the magnetic field generated by a current loop with radius 𝑅 = 43.81 mm and current 𝐼 = 72000 A as calculated by the SAM
model along the four paths shown in Fig. 1. The azimuthal component, 𝐵𝜙, is always zero.
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𝐾(𝑥) and 𝐸(𝑥) are the complete elliptic integrals of the first and second
kind available in the <cmath> package in C++ using the functions
omp_ellint_1 and comp_ellint_2. Notice that the functions in
cmath> take 𝑘 rather than 𝑘2 as an argument. Both conventions are
ommon in the literature. The resulting magnetic field along the four
aths is seen in Fig. 5. This field model will be used throughout this
hapter as a reference model 𝐵𝑟𝑒𝑓 (𝑥, 𝑦, 𝑧).

.2. McDonald model

Kirk T. McDonald [14] has derived a series expansion for the off-axis
ield of an azimuthally symmetric magnetic field based on its axial field
𝑧(0, 0, 𝑧). We will refer to this as the McDonald model. The expression
or the McDonald model is exact on the axis but only approximate
ff-axis. The components of the magnetic field are given by

𝐵𝑧(𝜌, 𝑧) =
∑

𝑛=0
(−1)𝑛

𝑎(2𝑛)0 (𝑧)

(𝑛!)2
(𝜌
2

)2𝑛
(10)

𝜌(𝜌, 𝑧) =
∑

𝑛=0
(−1)𝑛+1

𝑎(2𝑛+1)0 (𝑧)

(𝑛 + 1)(𝑛!)2
(𝜌
2

)2𝑛+1
(11)

where

𝑎(𝑛)0 =
𝑑𝑛𝑎0
𝑑𝑧𝑛

and 𝑎0(𝑧) = 𝐵𝑧(0, 0, 𝑧) (12)

Together with the axial-field of a current loop given by Eq. (2), the
ield can be approximated at any point in space. The expansion has
een tested up to 7th order, and the accuracy of the different orders
long the paths z off 2 and 𝜌 on/off can be seen in Figs. 6 and 7. To see
he accuracy of the higher order, all plots have a zoomed-in version
elow them. Unsurprisingly the accuracy of the model increases with
he order.

2 The ‘‘z on" path has been left out, as the McDonald model is exact on the
xis.
4

Fig. 6. The accuracy of the McDonald model along path z off. The upper plot displays
the orders 1-4 while the lower plot is zoomed in on the 𝛥𝐵∕𝐵0 axis displays the orders
4-7.

4.3. Biot–Savart model

Another way of calculating the magnetic field of a current loop is
to approximate the loop as consisting of 𝑁 straight line segments with
equal lengths and adding their individual field contributions together
to get the total magnetic field. Consider a small line segment of a closed
current loop of length 𝑑𝐥 pointing in the direction of the current flow.
current 𝐼 flows through the loop. The Biot–Savart law states that the
ine segment’s contribution to the total magnetic field at an observation
oint 𝑃 is

𝐁 =
𝜇0𝐼 𝑑𝐥 × 𝐫 (13)

4𝜋

|𝐫|3
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Fig. 7. The accuracy of the McDonald model along path 𝜌 on and 𝜌 off. The lower plots display the same data as the upper plots, but zoomed in on the 𝛥𝐵∕𝐵0 axis.
Fig. 8. The accuracy of the Biot–Savart model along the four paths, where the loop has been approximated with 10, 100 and 1000 line segments respectively.
M
s

4

o

here 𝐫 is the coordinate vector from the line segment to the point 𝑃 .
he Biot–Savart model can be used to model any magnet configuration.
ithin machine precision, the accuracy can be made arbitrarily small
y increasing the number of line segments to better approximate the
hape of the loop, but this comes at the expense of a linear increase in
he computation time.
The accuracy of the Biot–Savart model along all four paths for 10,

00 and 1000 segments can be seen in Fig. 8. As the plot is logarithmic,
he absolute value of Eq. (1) is plotted as a function of position. The
harp ‘‘dips" in the figures appear where the accuracy changes sign. As
he number of line segments is increased tenfold, the accuracy of the
odel increases about a hundredfold. The accuracy of the 7th order
5

cDonald model is somewhere between the result for 100 and 1000
egments.

.4. Jackson model

Assume that the magnetic field is evaluated at a point near the axis
f symmetry or far away from the coil so 𝑅 ≫ 𝑟, 𝑅 ≪ 𝑟, or 𝜃 ≪ 1 in
spherical coordinates (𝑟, 𝜙, 𝜃). The field can then be approximated as
described in Jackson [15, Eq. 5.40]

𝐵𝑟 =
𝜇0𝐼𝑅2 cos 𝜃

3

[

1 +
15𝑅2𝑟2 sin(𝜃)
4(𝑅2 + 𝑟2)2

+⋯
]

(14)

2(𝑅2 + 𝑟2) 2
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Table 2
The computation time for calculating the magnetic
field of a current loop for the field models exam-
ined. The computation time has been determined as
described in chapter 3.
Model Time [μs]

SAM 0.34
McD loop 𝑛 = 1 0.043
McD loop 𝑛 = 2 0.054
McD loop 𝑛 = 3 0.053
McD loop 𝑛 = 4 0.061
McD loop 𝑛 = 5 0.075
McD loop 𝑛 = 6 0.075
McD loop 𝑛 = 7 0.085
Biot 𝑁 = 10 0.23
Biot 𝑁 = 100 1.9
Biot 𝑁 = 1000 19

𝐵𝜃 = −
𝜇0𝐼𝑅2 sin 𝜃

4(𝑅2 + 𝑟2)
5
2

[

2𝑅2 − 𝑟2 +
15𝑅2𝑟2 sin(𝜃)(4𝑅2 − 3𝑟2)

8(𝑅2 + 𝑟2)2
+⋯

]

(15)

nsurprisingly the accuracy of the model is bad when the assumptions
re not met. No further work went into examining the Jackson model,
nd the model is only mentioned here for completeness.

.5. Numerical integration of infinite integrals

Another model mentioned in Jackson [15] is the expression derived
n exercise 5.10,

𝜌(𝜌, 𝑧) =
𝜇0𝐼𝑅
𝜋 ∫

∞

0
d𝑘 𝑘 sin(𝑘𝑧)𝐼1(𝑘𝜌<)𝐾1(𝑘𝜌>) (16)

𝐵𝑧(𝜌, 𝑧) =
𝜇0𝐼𝑅
𝜋 ∫

∞

0
d𝑘 𝑘 cos(𝑘𝑧)

{

𝐼0(𝑘𝜌)𝐾1(𝑘𝑅) for 𝜌 < 𝑅
𝐼1(𝑘𝑅)𝐾0(𝑘𝜌) for 𝜌 > 𝑅

(17)

where 𝐾𝑖 and 𝐼𝑖 are the modified Bessel functions of the first and second
kind, and 𝜌> (𝜌<) is the larger (smaller) of 𝜌 and 𝑅. Even though the
expression is in principle exact, numerical integration is required to
evaluate it, which makes it non-exact. To change the integral limit from
infinite to finite a change of variable can be done,

∫

∞

𝑎
𝑓 (𝑥)𝑑𝑥 = ∫

1

0
𝑓
(

𝑎 + 𝑡
1 − 𝑡

) d𝑡
(1 − 𝑡)2

(18)

but the integral does not converge. As the computation time quickly
exceeds the computation time of the exact SAM model, the numerical
integration model is not explored any further.

4.6. Discussion of loop models

The computation times for the models examined are listed in Table 2
and are determined as described in chapter 3. For the circular current
loop, the McDonald approximation is seen to be faster than the SAM for
the orders tested. The accuracy of the McDonald model is below 10−5
for some of the higher order models and 𝜌∕𝑅 < 0.5. The computation
time of the Biot–Savart model is seen to exceed the computation time
of the McDonald model even for a very low number of straight line
segments, for which the model is not very accurate. Hence, it is a poor
choice for calculating the field of a circular current loop, but it can be
used for more complex current distributions. The values suggest that
the computation time of the Biot–Savart model scales linearly with the
number of segments.

5. Thin shell solenoid

A thin shell solenoid is a uniform current distribution on an in-
finitely thin cylindrical shell, where the current runs in the azimuthal
direction. A cross sectional view of a thin shell solenoid with length 𝐿,
radius 𝑅, and endpoints at 𝑧1 and 𝑧2 is seen in Fig. 9. We assume that

the shell is centred around the origin, so 𝑧1 = −𝑧2 and 𝐿 = 2𝑧1. The

6

Fig. 9. A sketch showing a cross section of a thin shell solenoid of length 𝐿 and
radius 𝑅 in a cylindrical coordinate system. The coordinate of the back- and front-end
is denoted by 𝑧1 and 𝑧2 respectively. The current running in the azimuthal direction
produces a magnetic field pointing in the 𝑧-direction on the axis.

on-axis field of the shell can be derived by integrating the equivalent
expression (Eq. (2)) for a current loop over the length of the shell.
Assuming that the shell consists of 𝑁 current loops with a current I, the
otal current is 𝐼𝑁 , and the expression for the on-axis field becomes

𝐵𝑧(0, 0, 𝑧) =
𝜇0𝐼𝑁
2𝐿

(

𝑧 − 𝑧1
√

𝑅2 + (𝑧 − 𝑧1)2
−

𝑧 − 𝑧2
√

𝑅2 + (𝑧 − 𝑧2)2

)

(19)

Just like in chapter 4, the value used for the radius will be 43.81 mm.
The current will be 600 A, the length 34.68 mm, and the number of
loops, 𝑁 , (equal to the total number of windings) will be 120.

5.1. Conway model

Even though the thin shell solenoid is a relatively simple current
distribution, calculating the field at an arbitrary point in space is
significantly harder than on the axis. An exact analytic expression for
the field is derived in a paper by T. Conway [16]. This model will be
referred to as the Conway model.

Let the field of a cylindrical shell be evaluated at a point in cylindri-
cal coordinates (𝜌, 𝜙, 𝑧). The following parameters can then be defined

𝑘 =

√

4𝜌𝑅
(𝜌 + 𝑅)2 + 𝑧2

(20)

′ =
√

1 − 𝑘2 (21)

𝛽 = sin−1
(

𝑧
√

(𝜌 − 𝑅)2 + 𝑧2

)

(22)

Together with the complete and incomplete elliptic integral functions,
Heuman’s Lambda function can now be defined

𝛬0(𝛽, 𝑘) =
2
𝜋
(

𝐸(𝑘)𝐹 (𝛽, 𝑘′) +𝐾(𝑘)𝐸(𝛽, 𝑘′) −𝐾(𝑘)𝐹 (𝛽, 𝑘′)
)

(23)

The solutions for integrals of the type

𝐼𝜆,𝜇,𝜈 (𝑅, 𝜌, |𝑧|) = ∫

∞

0
𝑠𝜆𝐽𝜇(𝑠𝑅)𝐽𝜈 (𝑠𝜌)𝑒−𝑠|𝑧|𝑑𝑠 (24)

hich Conway refers to as Bessel–Laplace integrals, can be expressed by
he defined parameters and Heuman’s Lambda function. The solutions
rom Conway’s paper to the relevant integrals are listed here:

0,1,0(𝑅, 𝜌, |𝑧|) =
1
𝑅

(

1 −
|𝑧|𝑘𝐾(𝑘)

2𝜋
√

𝜌𝑅
−

𝛬0(|𝛽|, 𝑘)
2

)

for 𝜌 < 𝑅 (25)

𝐼0,1,0(𝑅, 𝜌, |𝑧|) =
1
𝑅

(

|𝑧|𝑘𝐾(𝑘)

2𝜋
√

𝜌𝑅
+

𝛬0(|𝛽|, 𝑘)
2

)

for 𝜌 > 𝑅 (26)

𝐼0,1,1(𝑅, 𝜌, |𝑧|) =
1
√

((2 − 𝑘2)𝐾(𝑘) − 2𝐸(𝑘)) (27)

𝜋𝑘 𝜌𝑅
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Fig. 10. The 𝜌 and 𝑧 components and the magnitude of the magnetic field generated by a thin shell solenoid with radius 𝑅 = 43.81 mm, length 𝐿 = 34.68 mm, current 𝐼 = 600 A,
nd 120 windings as calculated by the Conway model along the four paths shown in Fig. 1. The azimuthal component 𝐵𝜙 is always zero and therefore omitted.
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Fig. 11. The accuracy of the McDonald model along path z off. The upper plot displays
the orders 1-4 while the lower plot, which is zoomed in on the 𝛥𝐵∕𝐵0 axis, displays
he orders 4-7.

nalytic expressions for the magnetic field from a thin cylindrical shell
f finite length are then given as

𝐵𝑧 =
𝜇0𝐼𝑁𝑅

2𝐿
(

𝐼0,1,0(𝑅, 𝜌, |𝑧1 − 𝑧|) − 𝐼0,1,0(𝑅, 𝜌, |𝑧2 − 𝑧|)
)

for 𝑧 < 𝑧1 (28)

𝐵𝑧 =
𝜇0𝐼𝑁𝑅

2𝐿
(2𝐼0,1,0(𝑅, 𝜌, 0)

− 𝐼0,1,0(𝑅, 𝜌, |𝑧1 − 𝑧|) − 𝐼0,1,0(𝑅, 𝜌, |𝑧2 − 𝑧|)) for 𝑧1 < 𝑧 < 𝑧2
(29)

𝐵𝑧 =
𝜇0𝐼𝑁𝑅

2𝐿
(

𝐼0,1,0(𝑅, 𝜌, |𝑧2 − 𝑧|) − 𝐼0,1,0(𝑅, 𝜌, |𝑧1 − 𝑧|)
)

for 𝑧2 < 𝑧 (30)

𝐵𝜌 =
𝜇0𝐼𝑁𝑅

2𝐿
(

𝐼0,1,1(𝑅, 𝜌, |𝑧1 − 𝑧|) − 𝐼0,1,0(𝑅, 𝜌, |𝑧2 − 𝑧|)
)

(31)
7

As Conway writes, these expressions are not new, but they do not seem
to be included in the popular textbooks. The resulting magnetic field
along all four paths are seen Fig. 10. The Conway field model will be
used as a reference model for a thin cylindrical shell. Conway’s paper
also presents an expression for the field of a cylindrical shell with a
finite thickness, but the expression for the axial component of the field
is given as an integral that would have to be evaluated numerically. The
expression is therefore no longer exact, and the numerical integration
would be slow. Hence, the field model for a shell with finite thickness
will not be considered later.

5.2. McDonald model

The field of a shell solenoid is naturally azimuthally symmetric.
Consequently the McDonald model introduced in Section 4.2 can be
pplied to approximate the field of a shell solenoid at any point in
pace by expanding equation (19). Figs. 11 and 12 show the accuracy of
ifferent orders of the McDonald model compared to the exact Conway
odel from Section 5.1. There is no deviation from the exact model on
xis, so the plot for the z on path has been omitted. Unsurprisingly the
model is less accurate further away from the axis and more accurate at
higher order.

5.3. N-wire model of a thin shell solenoid

A thin shell solenoid can be represented by a number of equidistant
discrete circular current loops placed over the length of the shell. The
number of loops, 𝑁 , is chosen to match the number of windings per
layer, which is 30 in the magnet used as a model. This field model
will be referred to as the N-Wire model. To make the total current the
same as in the Conway model used for reference, the current in each
individual loop is multiplied by the number of layers to give a total
of 2400 A per loop. The spacing between the circular current loops is
given by 𝛥𝑧 = 𝐿

30 , meaning that the centre of the wire represented by
the leftmost loop is positioned at 𝑧1 +

𝛥𝑧
2 . Hence, the wire extends to

the edge of the shell. This is illustrated in Fig. 13. It would be incorrect
to make the centre of the leftmost wire coincide with the left edge
of the shell, as the loops would then represent the same amount of
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Fig. 12. The accuracy of the McDonald model along path 𝜌 on and 𝜌 off. The lower plots display the same data as the upper plots, but there has been zoomed in on the 𝛥𝐵∕𝐵0
axis.

Fig. 13. A cross-sectional view of one side of the shell solenoid in the 𝜌𝑧-plane. The figure indicates the length 𝐿, the radius 𝑅 and the current loop separation 𝛥𝑧. The individual
current loops are illustrated by the green circles. Notice that the perimeter of the current loops coincides with the left and right edge of the shell.

Fig. 14. The accuracy of the 𝑁-Wire model for a shell consisting of 30 circular current loops compared to the Conway model along the four paths.

8
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Fig. 15. The accuracy of the field calculated using the Gaussian quadrature method for 3, 4, and 5 loops. The Conway model has been used as a reference.
Fig. 16. A sketch showing a cross section of the finite solenoid in a cylindrical
coordinate system. The inner and outer radius of the finite solenoid are denoted by 𝑅1
and 𝑅2 respectively. The z position of the left and right ends are denoted by 𝑧1 and
𝑧2, and the total length of the solenoid by L. The current produces an on-axis field
pointing in the 𝑧-direction.

current distributed over a greater length than the length of the shell.
The SAM model is used to calculate the field of the individual loops.
The accuracy of the 𝑁-wire model compared to the Conway model
along the four paths can be seen in Fig. 14. It is on the 10−5 to 10−4
level for 𝜌∕𝑅 < 0.75, which is comparable to the 4th and 5th order
McDonald model.

5.4. Gaussian quadrature with loops for a shell

One could imagine that the computation time of the N-Wire model
described in Section 5.3 could be reduced significantly without a big
impact on the accuracy, if the shell was represented by a fewer loops
chosen in a clever way. The total field would then be given as a
weighted sum of the fields of the individual loops. Which loops give the
9

biggest contribution to the field at a certain position will depend on the
point of evaluation, but a there exists algorithms to determine the over-
all best positions and weights of the loops. Gaussian quadrature as de-
scribed in Abramowitz and Stegun [17] is such an algorithm. Represent-
ing a shell with a number of current loops, is equivalent to distributing
point along a line. Using Legendre polynomials as the orthogonal basis,
the positions and weights become the ones listed in [17, p. 921]. The
resulting fields for a single shell represented by 3, 4, and 5 loop respec-
tively can be seen in Fig. 15. The accuracy of the models is comparable
to the some of the higher order McDonald models presented.

5.5. Discussion of shell models

The computation times for the models examined are listed in Ta-
ble 3, and are determined as described in chapter 3. For the thin
shell solenoid the McDonald approximation is seen to be 1-2 orders of
magnitude faster than the analytic Conway model. The accuracy of the
McDonald model is below 10−5 for some of the higher order models
and 𝜌∕𝑅 < 0.5. The Gaussian quadrature method is also seen to be
faster than the Conway model, but it is about an order of magnitude
slower than the McDonald model, even though they have comparable
accuracy. The computation time of the N-Wire model is 7.8 μs, which
corresponds to roughly 30 times that of the SAM model as expected.
Hence, the N-Wire model is slower than all the other models. Of the
different approximations the McDonald model seems to be the best
choice in terms of both accuracy and speed.

6. Finite solenoids

A finite solenoid is defined as a current distribution consisting of
a uniform current density running azimuthally around in a hollow
cylinder. A sketch of the cross section of a finite solenoid can be seen
in Fig. 16. This is similar to the shell described in chapter 5 but with
a finite thickness. The on-axis field of the finite solenoid can be found
by integrating equation (19) over a range of thin shell solenoids with
varying radius. The resulting on-axis field of a finite solenoid is given
by
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Fig. 17. A cross-sectional view of one side of half of the magnet model at the azimuthal angle 𝜙 = 0 in the 𝜌𝑧-plane. The figure indicates the length 𝐿, the inner radius 𝑅1, the
uter radius 𝑅2 and the winding separation in the 𝜌 and 𝑧 direction denoted 𝛥𝜌 and 𝛥𝑧 respectively. The individual wires in the model are represented by the blue circles. The
rrows between the wires indicate how the coil is wound.
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Fig. 18. A three-dimensional plot of the wire configuration of the Biot–Savart model.

Table 3
The computation times determined as described in chapter 3 for calculating the
agnetic field of a thin shell solenoid for the different models.
Model Time [μs]

Conway 2.0
McD shell 𝑛 = 1 0.049
McD shell 𝑛 = 2 0.062
McD shell 𝑛 = 3 0.074
McD shell 𝑛 = 4 0.086
McD shell 𝑛 = 5 0.093
McD shell 𝑛 = 6 0.097
McD shell 𝑛 = 7 0.12
N-Wire 1 × 30 7.8
GQ loops 𝑛 = 3 0.82
GQ loops 𝑛 = 4 1.1
GQ loops 𝑛 = 5 1.3

𝐵𝑧 =
𝜇0𝐼𝑁

2𝐿(𝑅2 − 𝑅1)

[

(𝑧 − 𝑧1) ln

⎛

⎜

⎜

⎜

⎝

√

𝑅2
2 + (𝑧 − 𝑧1)2 + 𝑅2

√

𝑅2
1 + (𝑧 − 𝑧1)2 + 𝑅1

⎞

⎟

⎟

⎟

⎠

−(𝑧 − 𝑧2) ln

⎛

⎜

⎜

⎜

⎝

√

𝑅2
2 + (𝑧 − 𝑧2)2 + 𝑅2

√

𝑅2
1 + (𝑧 − 𝑧2)2 + 𝑅1

⎞

⎟

⎟

⎟

⎠

]

(32)

here 𝑅1 is the inner radius and 𝑅2 is the outer radius of the solenoid,
is the length, I is the current in the wire, and 𝑁 is the number of wire
urns. As in the previous chapters, this allows for an off-axis expansion
f the magnetic field. Using an exact analytic expression to calculate
he field at any point in space for a finite solenoid involves numeric
 b

10
ntegration, which only makes the result as ‘‘exact" as the integration
ethod. The previous chapters have focused on comparing models
f ideal current distributions, but what matters from an experimental
oint of view is how well the models describe the field of a physical
oil. For the finite solenoid, we have therefore chosen to compare the
odels to a Biot–Savart model with multiple layers of helical wires.
his model is intended to reflect how the windings are positioned in
he actual magnet.

.1. Biot–Savart model of a solenoid

The Biot–Savart model is based on the actual wire configurations of
he magnet described in chapter 1. The magnet is made up of four layers
f wires, each consisting of 30 windings. A sketch of how the wires are
ound can be seen in Fig. 17. Notice how the axial direction of the
inding alternates between each consecutive layer to cancel out the
zimuthal and radial components of the field. The wires in Fig. 17 have
been illustrated as having some finite radius, but the model assumes
the wires have no thickness3. The figure illustrates where the wires are
placed in relation to the continuous current distribution presented in
Fig. 16. The first layer is positioned at 𝜌 = 𝑅1 + 𝛥𝜌

2 , so the edge of
the wires in the inner and outer most layer coincides with the edge
of the continuous current distribution. However, in the axial direction
the centre of the first wire of each layer coincides with the edge of the
continuous current distribution. In this way the mean axial position of
a single winding is placed 𝛥𝑧

2 from the edge of the continuous current
distribution, similar to the radial direction.

The Biot–Savart model is made up of small straight wire segments,
where the endpoint of the 𝑛th line-segment is increased in the 𝜙- and
he 𝑧-coordinate relative to the (𝑛 − 1)th segment. The length of the
olenoid is 𝐿 and the inner radius and outer radius are given by 𝑅1 and
2 respectively. The radial coordinate 𝜌 stays the same for all segments
n a given layer. In our model we have used 𝑁BS = 1000 segments per
inding. As described in chapter 1, the number of wires per layer is
W = 30 and the number of layers 𝑁L = 4. Hence, the total number of
traight wire segments is given by 𝑁BS × 𝑁W × 𝑁L = 120000. A three-
imensional plot of the wire model used for the Biot–Savart model can
e seen in Fig. 18.
Compared to a physical magnet, some simplifications have been
ade in the magnet model. Firstly, the current leads carrying the
urrent to and from the magnet have been excluded. Experimentally,
hese often introduce complications as they can generate a significant
ontribution to the magnetic field. Secondly, the different layers are
ot connected at the end turns. Instead, each layer consists of its own
ire. The size of the magnetic field of the Biot–Savart model as well

3 Note that the thickness of the wires is a parameter that could be examined,
ut that is outside the scope of this paper.



P. Granum, M.L. Madsen, J.T.K. McKenna et al. Nuclear Inst. and Methods in Physics Research, A 1034 (2022) 166706
Fig. 19. The magnitude of magnetic field and its components as calculated by the Biot–Savart model along all four paths.
Fig. 20. The accuracy of the exact analytic expressions for a loop and a shell compared to a finite solenoid. The Biot–Savart model of a solenoid has been used as a reference
model.
as the components along the four paths can be seen in Fig. 19. To
give an idea the significance of a detailed solenoid model compared
to a simple current loop or a shell, Fig. 20 shows a crude comparison
between the three. For this plot, is has been assumed that the radius
that is normalised to for the loop and shell models, is the same as the
radius normalised to for the finite solenoid — that is 𝑅 ≈ 𝑅1.
11
6.2. Truncated approximate vector potential model

The Truncated Approximate Vector Potential (TAVP) model, in-
spired by the Jackson model (see Section 4.4), has been used in
simulations related to the ALPHA experiment [18, Appendix A.1]. The
vector potential for a solenoid with radius 𝑅 in spherical coordinates



P. Granum, M.L. Madsen, J.T.K. McKenna et al. Nuclear Inst. and Methods in Physics Research, A 1034 (2022) 166706

𝐴

a
t
t
t
𝑅
T
m

6

e
s
a

Fig. 21. The accuracy of the TAVP model along all four paths for different values of 𝜆. The Biot–Savart model of a solenoid has been used as a reference model.
(𝑟, 𝜙, 𝜃) is given as

𝜙 = 𝐶
2𝑅𝜆

(

(𝑅2 + 𝑟2 − 2𝑅𝜆𝜌)−1∕2 − (𝑅2 + 𝑟2 + 2𝑅𝜆𝜌)−1∕2
)

, (33)

where 𝐶 = 𝜇0𝐼𝑅2

4 is a constant, and 𝜆 is a parameter to be fitted to the
exact field. For 𝜆 = 0.866 the first and the second terms of Eqs. (14)
nd (15) are reproduced, and 𝜆 = 0.902 corresponds to the best fit of
he magnetic field of the mirrors [18]. The magnet modelled in [18] is
he same as the magnet modelled in this paper. The radius inserted in
he TAVP model is chosen so 𝛥𝐵(0, 0, 0)∕𝐵0 = 0, which is fulfilled by
≈ 1.015𝑅2. The accuracy of the resulting field is plotted in Fig. 21.
he TAVP model is seen to be orders of magnitude worse than the
odels previously examined.

.3. McDonald model

Eq. (32) for the on-axis field can be used to make an off-axis
xpansion similar to what was done in Section 4.2. For the finite
olenoid the model has been tested with up to 6 terms (𝑛 = 5). The
ccuracy of the McDonald model is seen in Figs. 22 and 23. Below each
plot is a zoomed-in version.

6.3.1. Expanding the McDonald model
In this study, the McDonald model was initially calculated by hand

to fifth order, but one could achieve any desired accuracy (within
machine precision) by continuing expansion. Deriving the required
derivatives could be very time consuming, but this paper presents an
algorithm that allows easy expansion to any order. Looking at the
expression for the McDonald model (Eqs. (10)–(12)) it is seen that
calculating the sign, the denominator, and the power of 𝜌∕2 is trivial,
so the only challenge is to calculate the 𝑛th derivative of the axial field
(Eq. (32)). By adopting the following notation

𝑧′𝑖 = 𝑧 − 𝑧𝑖 (34)

𝑃𝑖𝑗 =
√

𝑅2
𝑗 + 𝑧′𝑖2 (35)

𝑄𝑖𝑗 =
√

𝑅2
𝑗 + 𝑧′𝑖2 + 𝑅𝑗 (36)

𝐶 =
𝜇0𝐼𝑁 (37)
2𝐿(𝑅2 − 𝑅1)

12
Fig. 22. The accuracy of the McDonald model along path z off. The upper plot displays
the orders 1-4 while the lower plot is zoomed in on the 𝛥𝐵∕𝐵0 axis displays the orders
2-5. The Biot–Savart model of a solenoid has been used as a reference model.

where 𝑖, 𝑗 = 1, 2 from Eq. (19), the on-axis field is given as

𝐵𝑧(0, 0, 𝑧) = 𝐶
(

𝑧′1 ln(𝑄12) − 𝑧′1 ln(𝑄11) − 𝑧′2 ln(𝑄22) + 𝑧′2 ln(𝑄21)
)

(38)

= 𝐶
∑

𝑖,𝑗
(−1)𝑖=𝑗𝑧′𝑖 ln(𝑄𝑖𝑗 ) (39)

This somewhat simpler expression is used to calculate 𝑎(𝑛)0 :

𝑎(0)0 = 𝐵𝑧(0, 0, 𝑧) (40)

𝑎(1)0 = 𝐶
∑

𝑖,𝑗
(−1)𝑖=𝑗

(

ln(𝑄𝑖𝑗 ) +
𝑧′2

𝑃𝑖𝑗𝑄𝑖𝑗

)

(41)

𝑎(2)0 = 𝐶
∑

(−1)𝑖=𝑗
(

3 𝑧′

𝑃 𝑄
− 𝑧′3

2 2
− 𝑧′3

3

)

(42)

𝑖,𝑗 𝑖𝑗 𝑖𝑗 𝑃𝑖𝑗𝑄𝑖𝑗 𝑃𝑖𝑗𝑄𝑖𝑗
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Fig. 23. The accuracy of the McDonald model along path 𝜌 on and 𝜌 off. The upper plot displays the same data as the lower plot, but the lower plot is zoomed in on the 𝛥𝐵∕𝐵0
xis. The Biot–Savart model of a solenoid has been used as a reference model.
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Table 4
The number of (unique) terms 𝑁𝑇 (𝑁 ′

𝑇 ) as a function of the order of the expansion 𝑛

𝑛 𝑁𝑇 (𝑛) 𝑁 ′
𝑇 (𝑛)

0 4 4
1 8 8
2 12 12
3 36 24
4 108 36
5 324 56
6 972 72
7 2916 100

Thus 𝑎(2)0 exclusively consists of terms of the form

𝑘 𝑧′𝜆

𝑃 𝜇
𝑖𝑗𝑄

𝜈
𝑖𝑗

(43)

where 𝜆, 𝜇, 𝜈 ∈ N and 𝑘 ∈ Z. The derivative is

𝑑
𝑑𝑧

(

𝑘 𝑧′𝜆

𝑃 𝜇
𝑖𝑗𝑄

𝜈
𝑖𝑗

)

= 𝑘𝜆 𝑧
′(𝜆−1)

𝑃 𝜇
𝑖𝑗𝑄

𝜈
𝑖𝑗

− 𝑘𝜈 𝑧′(𝜆+1)

𝑃 (𝜇+1)
𝑖𝑗 𝑄(𝜈+1)

𝑖𝑗

− 𝑘𝜇 𝑧′(𝜆+1)

𝑃 (𝜇+2)
𝑖𝑗 𝑄𝜈

𝑖𝑗

(44)

he resulting three terms are also of the type given by Eq. (43). Hence,
or 𝑛 ≥ 2 all 𝑎(𝑛)0 will be given as a sum over such terms. The number
f terms in 𝑎(𝑛)0 is 𝑁𝑇 (𝑛) = 4 ⋅ 3𝑛−1, but several of the terms can be
ombined, as they have the same values of 𝜆, 𝜇, 𝜈, so the total number of
erms is 𝑁 ′

𝑇 . In the code, we combine these programmatically to reduce
omputation time. Table 4 shows the number of terms as a function of
.

.4. N-wire model of a finite solenoid

Similar to how a thin shell solenoid was modelled using a number of
quidistant circular current loops along a line in the 𝑁-wire model in
ection 5.3, a finite solenoid can be modelled as a number of current
oops placed in a 2D grid as seen in Fig. 24. In accordance with the
agnet described in chapter 1, four layers of wires each consisting
ith of 30 current loops are used. Notice that the perimeter of the
urrent loops coincides with the edges of the box. The field of each
oop is calculated with the SAM model (Section 4.1). The accuracy of
he N-Wire model for a finite solenoid is seen in Fig. 25.
 G

13
.5. Gaussian quadrature with loops for a solenoid

In the same way as a shell could be represented by a few current
oops distributed along a line according to the Gaussian quadrature
odel described in Section 5.4, a finite solenoid can be represented by a
ow number of loops in a rectangular grid. When assigning the positions
nd the weights of the wires, the axial and radial dimensions are treated
eparately. As 𝐿 ≈ 10(𝑅2−𝑅1) for the magnet used as a model, it makes
ense to have the number of loops in the axial dimension, 𝑁𝑧, bigger
han the number of loops in the radial dimension, 𝑁𝜌. The accuracy of
he most promising of the tested models are presented in Fig. 26. The
odels are denoted 𝑁𝜌 ×𝑁𝑧.

.6. Gaussian quadrature with shells for a solenoid

Rather than representing a finite solenoid with current loops placed
n a 2D grid, the finite solenoid can be represented with a number
f thin shell solenoids of the type described in chapter 5. Using the
aussian quadrature method (as described in Section 5.4) to calculate
he positions and weights of the shells, we show the resulting field in
ig. 27. The accuracy does not increase much for more than two shells.
s the magnet used as a model (see chapter 1) is about 10 times longer
han it is thick and only consists of 4 layers, this is not surprising.

.7. Discussion of solenoid models

The computation times for the models examined are listed in Ta-
le 5, and are determined as described in chapter 3. A detailed Biot–
avart model was used as a reference model, and unsurprisingly this
as extremely slow compared to the approximations. The Truncated
pproximate Vector Potential model and the lowest order McDonald
odels are the fastest. The speed comes at the price of accuracy, which
or the TAVP model is only on the percent level. In comparison, the
cDonald model can be made about two orders of magnitude more
ccurate for 𝑥∕𝑅 < 0.4, while being 3-5 times slower. For a similar accu-
acy both the Gaussian quadrature models based on loops and solenoids
re seen to be about an order of magnitude slower than the McDonald
odel. The N-wire model is accurate to about the same level as the
aussian quadrature models, but it is an order of magnitude slower.
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Fig. 24. A cross-sectional view of one side of the 𝑁-Wire model in the 𝜌𝑧-plane. The figure indicates the length 𝐿, the inner radius 𝑅1, the outer radius 𝑅2 and the current loop
eparation in 𝜌 and 𝑧 respectively denoted by 𝛥𝜌 and 𝛥𝑧. The individual current loops are illustrated by the blue circles.
Fig. 25. The accuracy of the field calculated using the 𝑁-Wire model. The Biot–Savart model has been used as a reference.
Table 5
The computation times determined as described in chapter 3 for calculating the
agnetic field of a finite solenoid for the different models.
Model Time [μs]

Biot–Savart 2300
TAVP 0.34
McD sol. 𝑛 = 1 0.23
McD sol. 𝑛 = 2 0.51
McD sol. 𝑛 = 3 0.82
McD sol. 𝑛 = 4 1.5
N-Wire 4 × 30 31
GQ loops 1 × 3 0.83
GQ loops 1 × 4 1.1
GQ loops 1 × 5 1.3
GQ loops 2 × 3 1.6
GQ shells 𝑛 = 1 2.1
GQ shells 𝑛 = 2 3.7
GQ shells 𝑛 = 3 5.5
GQ shells 𝑛 = 4 7.3

7. Conclusion

None of the examined models can unambiguously be said to be the
best choice — it depends on the required accuracy and computation
14
time. However, the McDonald model excels in both speed and accuracy
at low and high order respectively, and it is easy to adjust the order to
one’s needs. If time is not a concern a detailed Biot–Savart model will
give the most accurate results, if analytic models are not an option.

The computation times of the thin shell models and the finite
solenoid models are greater than the loop models by about a factor 2
and 10 respectively. At the same time, the importance for the accuracy
of the more detailed magnet models has been illustrated by Fig. 20.
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Fig. 26. The accuracy of the field calculated using the Gaussian quadrature method using multiple current loops in different configurations. The wire configuration used for each
plot is denoted 𝑁𝜌 ×𝑁𝑧, where the first and second index denotes the number of loops in the radial and the axial direction respectively.
Fig. 27. The accuracy of the magnetic field calculated using the Gaussian quadrature method based on different numbers of shell solenoids. 1, 2, 3 and 4 shells have been used.
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