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Abstract Background We previously developed and validated a predictive model to help
clinicians identify hospitalized adults with coronavirus disease 2019 (COVID-19) who
may be ready for discharge given their low risk of adverse events. Whether this
algorithm can promptmore timely discharge for stable patients in practice is unknown.
Objectives The aim of the study is to estimate the effect of displaying risk scores on
length of stay (LOS).
Methods We integrated model output into the electronic health record (EHR) at four
hospitals in one health system by displaying a green/orange/red score indicating
low/moderate/high-risk in a patient list column and a larger COVID-19 summary report
visible for each patient. Display of the score was pseudo-randomized 1:1 into
intervention and control arms using a patient identifier passed to the model execution
code. Intervention effect was assessed by comparing LOS between intervention and
control groups. Adverse safety outcomes of death, hospice, and re-presentation were
tested separately and as a composite indicator. We tracked adoption and sustained use
through daily counts of score displays.
Results Enrolling 1,010patients fromMay15, 2020 toDecember 7, 2020, the trial found
no detectable difference in LOS. The intervention had no impact on safety indicators of
death, hospice or re-presentation after discharge. The scores were displayed consistently
throughout the study period but the study lacks a causally linked process measure of
provider actions based on the score. Secondary analysis revealed complex dynamics in LOS
temporally, by primary symptom, and hospital location.
Conclusion An AI-based COVID-19 risk score displayed passively to clinicians during
routine care of hospitalized adults with COVID-19 was safe but had no detectable
impact on LOS. Health technology challenges such as insufficient adoption, nonuni-
form use, and provider trust compounded with temporal factors of the COVID-19
pandemic may have contributed to the null result.
Trial registration ClinicalTrials.gov identifier: NCT04570488.
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Background and Significance

As coronavirus disease 2019 (COVID-19) spread across the
world, early work highlighted its differences to other respi-
ratory diseases and implicated various prognostic factors.1–4

Dozens and then hundreds of prognostic tools and risk scores
were developed using clinical data, but few were subse-
quently validated (externally or prospectively) and fewer
still found utility in clinical practice.5–12 The pandemic
spread unevenly across the globe with regions
experiencing secondary waves driven by variants. With
each passing week, care improved over time as anecdote
evolved into evidence. This rapid, nonlinear, and nonuniform
evolution of community pressure, variants, and care poses an
unprecedented challenge to adapt—for clinicians, health care
systems, policy, and most of all, artificial intelligence (AI).

A predictivemodel that uses recent vital signs, lab results,
and current oxygen support variables was previously vali-
dated prospectively at our institution13 and made available
for others. This system was implemented in our electronic
health record (EHR) and integrated into clinical care, follow-
ing guidelines for operationalizing AI systems.14,15 The sys-
tem can precisely identify COVID-19 patients who are very
likely to have no COVID-related adverse events in the subse-
quent 96hours and, thus, may be appropriate for de-escala-
tion of care or discharge. While previously determined to be
accurate (93% positive predictive value at 68% sensitivity and
94% specificity with green alert rate of 41%), the system’s
ability to augment clinical care was unknown.

Consistent with the clinical expectation for rigorous
evaluations of any intervention that may affect patient
safety, a randomized controlled trial was designed before
the system launched. In this study, we integrated scores into
the EHR (Epic Systems, Verona, Wisconsin, United States),
promoted the use of the score (by presenting to key stake-
holder groups, broadcasting emails, and sharing tip sheets),
and investigated the system’s impact to shorten length of
stay (LOS) for patients assessed as low risk. Two best prac-
tices of program evaluation were employed: (1) use of
random allocation of intervention and control groups to
mitigate temporal changes and unforeseen confounding,
and (2) tracking over time of a process measure of adoption
and sustained use (anonymized displaymetrics). While both
have limitations, evaluations with these approaches are rare
in the AI field despite broad recommendation from guide-
lines for clinical trials, implementation studies, and evalua-
tion of health technology.16–19

Our hypothesis was that clinical decision support (CDS)
based on the predictive score would give clinicians confi-
dence in safely discharging patients earlier, causing a de-
crease in LOS and enabling the health system to better
accommodate surges of patients presenting with COVID-19.

Methods

Study Design, Setting, and Subjects
The randomized controlled trial met the criteria of quality
improvement by the NYU Grossman School of Medicine IRB

and did not require IRB approval and participant consent was
not required. The trial was registered (ClinicalTrials.gov
identifier: NCT04570488) and the protocol is included in
►Supplementary Appendix A (available in the online ver-
sion). Presentation of this study followed the Consolidated
Standards of Reporting Trials extension for interventions
involving AI (CONSORT-AI) reporting guidelines.

Automatic screening considered adults aged 18 years or
older who were hospitalized between May 15 and Decem-
ber 7, 2020 at any of four inpatient locations of NYU Langone
Health. Eligible patients had to have COVID-19 listed as an
active infection and have sufficient data in their chart (vitals
and lab results) to produce at least one valid score by the AI
system during their admission. Patients who received ICU-
level care, who died during their hospitalization, or who
never had a low risk (green colored) score generated were
excluded from the primary analysis (but were includedwhen
analyzing safety outcomes).

Randomization to Treatment Group
The integrated AI system included a module to randomize
patients based on a patient identifier internal to our EHR and
not easily visible to clinicians. This internal identifier is
assigned to patients sequentially when they are first regis-
tered in the EHR. We randomly assigned patients in a 1:1
ratio to have scores displayed or marked “Hidden.” Clinicians
were therefore not blinded to treatment allocation, but were
blinded to the risk score of the control patients. Scores and
colors were generated for the control group in the back-
ground but never shown to any user.

The intervention consisted of passive CDS communicating
risk scores updated every 30minutes. Scores ranged from 0
to 100 where smaller scores indicated lower risk of adverse
events and scoreswerebinned into three color ranges: green,
orange, and red, consistent with the convention of other risk
scores, e.g., green for low-risk for a bad outcome. Score
cutoffs were determined by an interdisciplinary group of
clinicians and data scientists based on a positive predictive
value of no adverse events of 90% (green) and 80% (orange
andgreen)with expected cumulative incidence of no adverse
events within these color groups as: green¼90%, orange
¼67%, and red¼8%.13

Scores were presented to clinicians during routine deliv-
ery of care via two channels: (1) as a column that could be
added to a provider’s patient list, and (2) as one element of a
larger COVID-19 summary report specific to each patient.13

A user could manually add the column to a new or existing
patient list for their own use or to a list sharedwithin a team.
The patient list column consists of a narrow display of a
colored oval containing the numeric score that expands into
an explanatory bubble when the user hovers their cursor
over it. The expanded bubble contains the same information
about the patient’s risk score as the larger display used in the
summary report: the patient’s current color-coded score; a
trendline of the patient’s recent scores; and a table of
predictive factors, their current value and percent contribu-
tion to the overall risk. Only the nine largest explanatory
factors in magnitude were presented to communicate both
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risk factors and protective factors. Patients allocated to the
control group had a bubblewith a grey “NA” score and empty
components (no trend line, no table of predictive factors). A
detailed description of the CDS is presented in
►Supplementary Appendix B (available in the online
version).

Outreach efforts consisted of presentations at key stake-
holder meetings (e.g., hospitalist meetings and service line
meetings), broadcast emails, and tip sheets. The message
highlighted: (1) how the model was designed and tested to
support its clinical validity; (2) where the scores were visible
to clinicians; and (3) recommendations on how to interpret
and apply the risk scores into the clinical plan,with a focus on
green-scored patients at low risk of adverse events who may
be appropriate for de-escalation of care including discharge.

Outcomes and Follow-Up
Adult patients with active COVID-19 infection admitted
between May 15, 2020 and December 7, 2020 across four
hospitals of one academic health system were scored and
screened. The primary cohort included those discharged
alive with at least one green score. The primary
and secondary outcomes are reduction in LOS after first
green score (gLOS) and complete LOS.

Adverse safety outcomes including in-hospital death or
hospice, 30-day post-discharge death or hospice, and 30-day
re-presentationweremonitored for the primary cohort and a
larger group of all screened and scored patients (including
ineligible patients who never reached a green score, who
received ICU-level care, or who died). If the intervention of
de-escalating care for green-scored patients led to unintend-
ed consequences such as a reduction in monitoring or
premature discharge, patients may have encountered these
outcomes at higher frequency.

Statistical Analysis
The primary intention-to-treat analysis estimated the medi-
an difference of gLOS using a Mann-Whitney U test (Wil-
coxon rank-sum). Secondary analyses included comparing
LOSwith a Mann-Whitney test and safety outcomes with χ 2

tests separately and combined into a composite. A planned
alternative analysis evaluated for differences in gLOS by
employing a Gamma regression analysis controlling for
sex, age (second order polynomial), location (one of four
hospitals), primary symptoms consistent with COVID-19,
and month of first green score (►Supplementary Appendix

C, available in the online version).
The planned sample size was 1,000 patients (500 in each

group) based on a statistical power of 90% to detect a 0.5-day
median improvement in gLOSwith a two-sided Mann-Whit-
ney test (α¼0.05). A distribution of gLOS from a retrospec-
tive cohort of patients with COVID-19 admitted between
March and April, 2020 (n¼330) was used for simulated
power calculations.

Patients in the primary cohort (i.e., scored green and
discharged alive without any ICU level care) definitionally
had nomissing values for gLOS, LOS, or in-hospital death. The
remaining 30-day safety outcomes are assumed to have not

occurred in cases where no known re-presentation or death
was noted given ample follow-up for all patients (minimum
follow-up between discharge and data retrieval was 88 days,
median [IQR] of 248 [179, 294]).

All estimates were based on two-sided tests. Statistical
significance was defined as p <0.05. All analyses were
performed using R. version 3.5.2.20

Measuring Adoption and Sustained Use
Adoption and sustained use of the tool was assessed by how
frequently scores were displayed via the two channels (pa-
tient list column and summary report). These data are
available as anonymized metrics by our EHR vendor (Epic
Systems) as daily counts of display—when the system pre-
pares the score to be available for display—not necessarily
seen by a user whomayopen a large list but not scroll to view
all patients. Metrics were extracted in their most granular
form of daily counts—where linking to the patient/provider
and stratification for hospital/department were impossible.
Deduplication was also not possible, one user opening a list
containing two patients six times in one day contributes
twelve to that day’s total.

Results

Screening and Enrollment
During the study period of 207 days, 1,415 patient admis-
sions were scored by the system (►Fig. 1) and randomized
into intervention (n¼712) and control (n¼703). After omit-
ting 405 ineligible patients, the primary cohort included a
total of 1,010 patients with 513 allocated to the intervention
and 497 to the control. All patients received the intervention
or control as allocated.

Among enrolled patients, 526 (52%) were female, 484
(48%) were male, and the mean (SD) age was 58.9 (20.1)
years (►Table 1). Other demographic and geographic char-
acteristics were similar between the allocated groups.

Primary Outcome
Both control and intervention groups were scored every
30minutes and had a similar LOS prior to each patient’s first
green score (median [IQR], control: 0.39 [0.09–1.1] vs. inter-
vention: 0.45 [0.10–1.2] days, p¼0.6). The gLOS of the
intervention group where scores were visible to clinicians
was similar to the control group with no visible scores
(►Table 2).

Secondary Outcomes
The secondary outcomes related to LOS and adverse safety
outcomes were also similar between groups (►Table 2).
Adverse safety outcomes were largely re-presentations to
the hospital or emergency department within 30 days, fol-
lowed by inpatient mortality or initiation of hospice with
very few cases of post-discharge 30-day mortality.

Measuring Adoption and Sustained Use
Clinicians rapidly adopted the score into their workflow as
seen by the jump in displaymetrics in theweek including and
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following launch (►Fig. 2 colored dots with vertical line
indicating launch). Over the study period, the number of
admitted patients with active COVID-19 dropped and rose
again in a U-shape (grey dots). Despite this, clinicians con-
sistently kept the risk score column in their patient list
(►Fig. 2A), though whether they were seen and acted
upon is unclear (a passive effort by the clinical team). Dis-
plays of the patient-specific report (an active effort by the
clinical team) closely follow the number of hospitalized

patients with COVID-19 (►Fig. 2B) while preserving a ratio
of approximately four displays per patient each week. To-
gether, these metrics indicate a relatively uniform, but low,
exposure likelihood—that users would have observed a
patient’s green score—throughout the study period. Both
metrics are unscaled andgive no indication of the proportion
of adopters among all clinicians.

Surveying users from all departments was infeasible but
adoption by one key user group was investigated in early

Table 1 Baseline characteristics of enrolled patients

No. (%)

All patients (n¼1,010) Control group (n¼497) Intervention group
(n¼513)

Age, years

Mean (SD) 58.9 (20.1) 58.4 (20.2) 59.4 (20.0)

Sex

Male 484 (47.9) 223 (44.9) 261 (50.9)

Female 526 (52.1) 274 (55.1) 252 (49.1)

Ethnicity

Hispanic 258 (25.5) 128 (25.8) 130 (25.3)

Race

White 511 (50.6) 245 (49.3) 266 (51.9)

African American (Black) 122 (12.1) 72 (14.5) 50 (9.7)

Asian 61 (6.0) 31 (6.2) 30 (5.8)

Native American 12 (1.2) 5 (1.0) 7 (1.4)

Pacific Islander 9 (0.9) 6 (1.2) 3 (0.6)

Other 295 (29.2) 138 (27.8) 157 (30.6)

Location

Tisch/Kimmel 270 (26.7) 140 (28.2) 130 (25.3)

Orthopedics 18 (1.8) 9 (1.8) 9 (1.8)

Brooklyn 416 (41.2) 210 (42.3) 206 (40.2)

Long Island 306 (30.3) 138 (27.8) 168 (32.7)

Fig. 1 CONSORT diagram. CONSORT, Consolidated Standards of Reporting Trials extension for interventions involving AI.
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2021. From the set of 31 General Medicine hospitalists at the
Tisch/Kimmel hospital, 22 regularly treated COVID-19
patients throughout the study period but only five included
the risk score in a patient list. More may have sought out the
score directly from the summary report but outreach and
communication efforts likely did not reach, or convince, all
users of the intervention’s potential benefit.

Discussion

The intervention of displaying a color-coded risk score
for patients with COVID-19 appears to be safe but
neither efficacious nor effective in reducing LOS. A
planned gamma regression also found no intervention
effect (►Supplementary Appendix C [available in the
online version]: age, one hospital location, and

the second half of the study period were influential of
gLOS).

There are numerous factors in model development, com-
munication, and provider interpretation of the model scores
where an insufficiency could have hindered the potential
effect of the intervention to reduce gLOS. These fall into three
major groups: first, discharge readiness: (1) The model was
developed for COVID-19 and it overlooks the effects of
additional acute or chronic conditions. (2) The system iden-
tifies COVID-19 patients at low-risk for adverse events which
may not align with provider perceptions of being stable or
ready for discharge. (3)Medical stability is not the sole driver
of discharge readiness and this intervention does not address
social needs.

The second group of factors relate to user perceptions and
learning: (4) Adoption and sustained use may have been

Table 2 Differences in primary and secondary outcomes at discharge and 30-day follow-up

Control group Intervention group p-Value

Primary outcome (n = 497) (n = 513)

gLOS, days, median [IQR] 3.23 [1.75–6.00] 3.18 [1.76–5.95] 0.8

Secondary outcome (n = 497) (n = 513)

LOS, days, median [IQR] 4.50 [2.34–7.65] 4.20 [2.33–7.51] 0.8

Adverse safety outcomes in scored patients discharged alive. (n = 640) (n = 661)

30-d re-presentation, no (%) 115 (18.0%) 138 (20.9%) 0.2

30-d mortality, no (%) 3 (0.47%) 8 (1.2%) 0.2

Adverse safety outcomes in all scored patients. (n = 702) (n = 713)

Inpatient mortality/hospice, no (%) 63 (9.0%) 50 (7.0%) 0.2

Any adverse outcome, no (%) 178 (25.3%) 191 (26.8%) 0.6

Abbreviations: gLOS, length of stay after first green score; LOS, length of stay; IQR, interquartile range.

Fig. 2 Adoption and sustained use of two communication channels available to clinicians. Colored dots represent the weekly total number of
times the score was displayed to any user via each display channel, either a personal or shared patient list (A) or the patient-specific report of
COVID-19 information (B). The weekly census of hospitalized COVID-19 patients is shown with grey dots for reference (calculated as the number
of unique encounters scored by the system in that week).
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dampened due to issues of distrust or algorithm aversion.21

(5) A clinician’s experiences caring for patients with COVID-
19 involves continued learning where observing risk scores
may have expedited development of a mental model of
discharge readiness that would diminish the model’s utility.

The third group relates to pragmatic choices of outreach
and CDS integration: (6) Uptake of the interventionmayhave
been limited by insufficient outreach in the setting of
significant competing COVID-19 communications. (7) The
tool was communicated too broadly and lacked specificity of
who would be responsible for reviewing green patients and
advocating discharge. (8) The CDSwas implemented insuffi-
ciently relying on regular checking which caused delays in
awareness of newly green patients.

Modeling Medical Stability for Discharge Readiness
For amyriad of reasons, (correctly) estimating a patient’s low
risk may not decrease gLOS/LOS as there are other rate-
limiting factors involved in discharge planning that were not
addressed by this intervention. Being low-risk for COVID-19
adverse events is of drastically less importance in evaluating
discharge readiness when a patient was primarily admitted
for an unrelated reason. The system estimates risk for any
hospitalized patient who tests positive for COVID-19—in-
cluding asymptomatic patients. Among enrolled patients,
only half (n¼525) had a primary diagnosis code consistent
with COVID-19 (►Supplementary Appendix Table C5, avail-
able in the online version) which has a dilutive effect on
statistical power where a trend of reduced gLOS is not
detectable (►Supplementary Appendix Table C6, available
in the online version).

The model was derived from data collected during a
COVID-19 surge when the pressure to treat and discharge
patients quickly was high. While the model may identify
patients very likely to not deterioratewithin 4 days, theymay
remain febrile and oxygen dependent. With surge pressure,
these medically stable patients could be discharged earlier
but as the surge waned and resources became more readily
available, providers would prefer to keep these patients for
observation, negating the effect of this intervention.

Medical stability is only one aspect of readiness for
discharge alongside social readiness which was especially
complex during COVID-19 surgeswhenplacement and home
services were strained. With increasing cases and reduced
bed capacity, hospitals would need to discharge otherwise
stable patients on oxygen (as long as it did not exceed what
could be administered by a home health provider). As the
surge diminished, the clinical practice transitioned to dis-
charge patients only once they could be weaned off oxygen.
Similarly, some skilled nursing homes required patients to
test negative before transfer causing patients to be held for
days longer than medically required. These policies delay
discharge and remove any potential for our intervention to
have an effect.

Clinician Perceptions and Learning
Clinicians who received communication about the score may
have chosen to not use it due to distrust or being uncon-

vinced of any benefit over their clinical experience. Others
may have been skeptical but tried it out only to have a poor
initial experience, noting inaccuracies (perceived or accu-
rate) as a reason to stop using it. Humans tend to be less
forgiving of mistakes by algorithms than by other humans—
referred to as algorithm aversion.21 This skepticism may not
be evident in the EHR metrics as users do not bother to
remove the score from their patient lists and continue to use
the summary report for other information.

Randomizing by patient exposes clinicians to both treat-
ment and control arms which could also explain our results.
As providers interact with intervention scores theywill form
a mental model of patients who have better predicted out-
comes (lower scores). As a provider applies their mental
model, it could spill over into the control arm, potentially
diluting the intervention effect.22 Contamination can be
mitigated with double blinding—impractical with a CDS
intervention—or alternative randomization strategies. Al-
though randomizing by provider or clustered by department
would mitigate potential for contamination, it is logistically
complex in the inpatient setting. The pandemic environment
introduced further challenges: for example, the group of
providers assigned to each department or likely to treat
COVID patients was dynamic (adjusting to the case burden)
and unknown to prespecify a cluster or stepped-wedge
randomization. Targeting a broad set of user roles in the
inpatient setting also complicates randomization as some
members of a patient’s treatment team may be allocated
treatment and others control. As the outcome measures
were patient-based, the cleanest randomization strategy
was patient-based which remains common in pragmatic
trials.23

Outreach and CDS Integration
The new systemwas broadly communicated to departments
across each hospital focusing onwhat the new risk scorewas,
where to find it, and how to use it. However, these outreach
efforts were limited to the very early period of the study
when there was a barrage of COVID-19-specific communi-
cations that may have impaired user adoption given the
amount of outreach typically employed for new EHR func-
tionalities. The pandemic also complicated outreach chan-
nels as many newly recruited clinicians or those who did not
specialize in hospital medicine were rapidly transitioned to
COVID-19 departments. Use of the twoCDS channels appears
consistent over the study period (►Fig. 2) but preliminary
evidence (four summary report displays per patient perweek
and one quarter of General Medicine hospitalists adding the
patient list column) suggests these outreach efforts were
insufficient to convince all individuals of the intervention’s
potential benefit. Repeated outreach may have created a
larger effect.

The broad approach to outreach lacked specificity to
empower a specific role of users to regularly check patient’s
scores and relay those to the larger care team. For example,
care coordinators could review a large number of patients
multiple times a day, identify green transitions, and prompt
discharge. Early identification of medical or social barriers to
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discharge could expedite resolution and discharge. By cast-
ing a wide net during outreach, the effect of the intervention
may have been diluted.

The communicated use of the score as a tool to check
periodically may be insufficiently timed to expedite dis-
charge and reduce LOS. As the CDS is passive, displays of
the score are inefficiently used on themajority who have not
changed colors instead of highlighting patients who have
newly transitioned to green. If an attending reviews their
patient’s scores each morning, they could miss up to
23.5 hours of green time—much larger than the target of
0.5 day reduction. The summary report metrics (►Fig. 2B)
average four displays per patient per week suggesting the
mean time between displays exceeds 24 hours. Greater
adoption, more frequent use, or more targeted CDS could
improve user awareness of recently green patients.

Lessons Learned for Future Work
Wewill build on this study with our future work in a variety
of ways. We plan to appropriately randomize all future AI
systems to ensure safety and assess efficacy in a robust
manner and, if required, initiate a sundown protocol to
remove unsafe or ineffective systems (as will be the case
for this model). While we incorporated aspects of user-
centered design with representation from attending physi-
cians and clinical informaticians, we may have omitted vital
perspectives from other groups, e.g., nursing, social work,
and care management, and plan to engage a wider audience
in scoping and design phases. We will be working on a set of
protocols with our IT colleagues for how to design and
distribute training materials for future systems. Finally, we
plan to supplement RCT results with qualitative results to
assess user engagement and perceptions after experience
with the tool being live. Implementing and robustly evaluat-
ing AI systems is resource intensive; we plan to be stricter
with future projects to require a clear audit trail of user
engagement and action. If linkable process measures do not
exist, we should build them to help promote adoption and
evaluate intervention effects.

Limitations
Inpatient LOS is associated with quality but can be a chal-
lenging metric to evaluate due to the influence of non-
clinical factors.24,25 COVID-19 also has a highly variable
disease course,26,27 where many comorbidities are associat-
ed with worse outcomes.28,29 This heterogeneity is evident
by the wide range and skew of observed gLOS and LOS
(►Table 2 and ►Supplementary Appendix Fig. C1 [available
in the online version]). Power calculations aimed for a 0.5 day
improvement in gLOS and estimated 500 patients per arm
but as the surge pressure waned and care improved over
time, median gLOS decreased (►Supplementary Appendix

Table C1, available in the online version). The study was
underpowered for smaller effect sizes expected with shorter
median gLOS. A clinically meaningful effect may have been
easier to detect in alternative patient outcomes.

Disentangling whether intervention adoption impacted
the outcome is challenging due to limitations in measuring

usage of the intervention. To limit clinician burden during
this period, the CDS was designed to be passive and not
require any documentation or acknowledgement. Intro-
duced variability in how many users observed an individual
participant’s score could not be controlled for as the EHR
metrics were anonymous (of both patient and provider). It
was impossible to separate individuals, user types, or depart-
ments. Some high-utilizing users who frequently refresh
small lists, for example, could have created positive trends
among their patients but with no data source, we were
unable to detect this. These metrics provide an unscaled
measure of displays over time but otherwise fail as a process
measure. We urge EHR vendors to develop more detailed,
individualized measures of CDS use that can capture specific
interactions such as clicks, scrolls, and hovers. For this work,
usage data per-user, per-patient would have greatly helped
to assess adoption, target outreach, and connect utilizers
with their patients and outcomes. These metrics should not
require additional clicks by users to log their review of a
patient’s score.

Conclusion

An AI-based CDS intervention displaying color-coded risk
scores of COVID-19 related deteriorationwas safe, but did not
reduce LOS compared to patients with their scores withheld.
While AI predictions themselves are accurate, interventions
must be tested rigorously in real-world clinical scenarios to
ensure they improve outcomes. However, pragmatic chal-
lenges of adoption, poor process measures of agreement/
acknowledgement, and provider learning complicate evalu-
ations. Such complications are magnified in the setting of a
health care crisiswhere clinical care processes are constantly
evolving and clinicians are inundated with communication
related to these changes. Better processes to enable studies of
health technology and AI interventions are required to
nurture and evaluate benefits.

Clinical Relevance Statement

The rapid emergence of a new disease, COVID-19, motivated
the use of machine learning to help augment clinical care in
a data-driven way when empirical evidence was lacking.
Passive display of a patient’s risk score was found to be safe
but had no effect in reducing LOS. How providers use the
score in their clinical practice remains unclear from this
work as does how best to promote and measure use for
future studies.

Multiple Choice Questions

1. By displaying color-coded risk scores to clinicians, which
patient outcome was expected to improve?
a. Oxygen requirements.
b. Length of stay.
c. Mortality.
d. Time to intubation.

Applied Clinical Informatics Vol. 13 No. 3/2022 © 2022. The Author(s).

Effect of a COVID-19 Predictive Model to Facilitate Discharge Major et al.638



Correct Answer: The correct answer is option b. The
hypothesis behind this study was that green-scored
patients at low-risk of adverse events related to COVID-19
could be discharged sooner, reducing length of stay. Pro-
vider awareness of color-coded risk score would not affect
the patient’s physiology and oxygen requirements. Some
providers may be more attentive to the patient’s condition
as a result of watching their scores which could feasibly
reduce time to intubation or mortality for higher risk
patients (colored orange or red) but this was not the
expected use of the system.

2. Where were the risk scores displayed to clinicians?
a. Chart review and nursing notes.
b. Patient list and summary report.
c. Progress notes and flowsheets.
d. EHR banner and infection status.

Correct Answer: The correct answer is option b. In this
study, the risk scores were displayed as a patient list
column and via a COVID-19 summary report. The same
information is presented in both channels as they draw
from the standard epic functionality. Additional custom
build would be required for display or documentation of
scores during chart review and nursing notes, progress
notes and flowsheets, or EHR banner and infection status.
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