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Abstract: Wetlands play a significant role in flood mitigation. Remote sensing technologies as an
efficient and accurate approach have been widely applied to delineate wetlands. Supervised classifi-
cation is conventionally applied for remote sensing technologies to improve the wetland delineation
accuracy. However, performing supervised classification requires preparing the training data, which
is also considered time-consuming and prone to human mistakes. This paper presents a deterministic
topographic wetland index to delineate wetland inundation areas without performing supervised
classification. The classic methods such as Normalized Difference Vegetation Index, Normalized
Difference Water Index, and Topographic Wetness Index were chosen to compare with the proposed
deterministic topographic method on wetland delineation accuracy. The ground truth sample points
validated by Google satellite imageries from four different years were used for the assessment of
the delineation overall accuracy. The results show that the proposed deterministic topographic
wetland index has the highest overall accuracy (98.90%) and Kappa coefficient (0.641) among the
selected approaches in this study. The findings of this paper will provide an alternative approach for
delineating wetlands rapidly by using solely the LiDAR-derived Digital Elevation Model.

Keywords: wetland delineation; supervised classification; LiDAR-derived DEM; deterministic topo-
graphic approach; TWI; NDVI; NDWI

1. Introduction

It has been well-documented that wetlands are significantly effective in alleviating
floods [1,2]. They can perform as a water storage unit to detain part of peak runoff during
a rainfall event. For example, it is estimated that the 8500 acres of wetlands along the
Charles River in Massachusetts used for natural flood storage have a present value for
flood prevention of $33,370 per acre [3]. Another study indicated that only 13 million acres
of wetlands (3% of the upper Mississippi watershed) would have been required in the
upper Mississippi watershed to avoid a devastating flood in 1993 [4]. A study conducted
by Nivitzki [5] concluded that a watershed with as little as 5% lake and wetland area might
lead to a 40–60% lower flood peak. The research conducted by Leon et al. [6] and Tang
et al. [7,8] indicated that by dynamically releasing water from upland wetlands, 3.5% of
the hypothetical wetland areas in the Cypress Creek watershed located in the northwest of
Houston TX could significantly eliminate the flooded area by around 75%. Since wetlands
perform a vital function to detain runoff, it is necessary and critical to comprehensively
understand the spatial distribution, the inundation area, and the maximum storage capacity
of the wetlands in a watershed for the flood mitigation study.

From the perspective of identifying the location and delineating the inundation extent
for wetlands, the ground-based survey is considered the most accurate method. How-
ever, aside from the need for specific experts on-site, the traditional method can be time-
consuming and costly as it involves detailed on-site surveys such as extraction of soil
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cores, topographic measurements, and hydrological condition analyses. Moreover, the site
investigation is often impractical as the natural condition may not be accessible. Various
studies used different approaches for wetland delineation including topographic wetness
index [9], terrain indices [10], LiDAR [11], and cut and fill approach [12]. Fortunately, with
the evolution and advances in remote sensing technology, it has been recognized as the
best alternative for an accurate source of data for large-scale applications and studies such
as water body mapping and change detection [13,14]. Therefore, water area delineation
based on remotely sensed data has become the main approach.

Among the remotely sensed data, the most widely used datasets are optical imagery
and Light Detection and Range data (LiDAR) [15,16]. The optical imagery is usually
collected by passive optical sensors installed on satellite or airborne platforms such as
Landsat satellite imagery and National Agriculture Imagery Plan (NAIP) aerial imagery.
The optical imagery contains the different electromagnetic spectrum bands, namely visible
bands such as Red, Green, and Blue, and invisible bands such as near-infrared (NIR),
shortwave infrared, and the thermal infrared. Wetlands can be extracted by analyzing
the signature differences of the spectrum between different land cover types such as
waterbody, vegetation, urban, etc. Unlike passive optical sensors installed on satellite or
airborne platform, the LiDAR is an active laser scanning system. The LiDAR sensor can
emit laser pulses to the ground surface and record the reflection time to calculate the ranges
to the ground surface. Combined with other data recorded by the operational platform
such as longitude and latitude, the precise three-dimensional information of topography
can be produced in the form of LiDAR point clouds [16]. Sequentially, based on a certain
interpolation algorithm, high-resolution digital elevation models (DEMs) can be then
derived from LiDAR point clouds. More significantly, the LiDAR-based DEMs can be used
to compute various topographic metrics which can be helpful for mapping wetlands.

To be specific, as most airborne topographic LiDAR systems operate within the near-
infrared (NIR) spectrum, the strength of the spectral reflection is extremely small on water
bodies and does not generate return signals, resulting in void regions within the LiDAR
point clouds [17]. The surface of water bodies (the void regions) is typically depicted as
flat. Its elevation is usually interpolated by the elevation obtained from the land edge of
the water bodies [18]. Thus, from LiDAR-derived bare-ground Digital Elevation Models
(DEMs), many of the topographic-related features of wetlands can be captured. With
the advent of airborne laser scanning technology, the availability of high-resolution bare-
ground DEMs is also increasing, which provides a great chance to be applied for identifying
the location of the wetlands and delineate their inundation area.

Based on the analysis of the spectral signature differences, the optical indices such
as the Normalized Difference Vegetation Index (NDVI) and the Normalized Difference
Water Index (NDWI) calculated by the multiple bands in the optical imagery have been
widely used to enhance the discrimination between open-water wetland areas and up-
land features. However, it should be noticed that the NDVI and the NDWI are not very
appropriate for delineating water bodies from high-resolution urban optical imagery as
the urban structures and shadows also have a high response for these two indices [19].
Since the topography is the primary driving force for water movement, some studies sug-
gested using LiDAR-derived DEMs as the ancillary data to increase accuracy on wetland
classification and stated that LiDAR-derived DEMs was the most important input for
wetland classification [12,20,21]. Therefore, based on the analysis of the water movement
on the topography, the Topographic Wetness Index (TWI), a topographic index calcu-
lated by the LiDAR-derived DEM, was found to be useful for wetland delineation [22].
The TWI shows the tendency of a cell in the DEM to receive water to the tendency of
the cell to evacuate water. The calculation of TWI eventually involves using a so-called
depressionless DEM (a filled DEM). Nevertheless, it should be noted that performing
the “filling” function for a DEM, especially a fine-resolution DEM, can alter topographic
heterogeneity, resulting in unintentionally obliterate small wetlands or poor delineation
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of wetlands [12,23,24]. Moreover, the definition of the TWI only reflects the tendency (or
possibility) of a wetland location.

Unsupervised and supervised classification are usually applied to classify cell values
into assigned classes, and the supervised classification normally generates better results
with higher classification accuracy than the unsupervised classification. In order to accu-
rately classify cell values into wetland areas and non-wetland areas, all three of the indices
mentioned above (i.e., NDVI, NDWI, TWI) need to prepare the ground truth training data
for supervised classification coupling with machine learning algorithms such as Support
Vector Machine (SVM) [25,26], Decision Tree [27,28], and Random Forest [29]. However,
the quality of the training dataset determines the accuracy of classification as the machine
learning algorithms have the characteristics called “garbage-in-and-garbage-out” [30]. Such
work is, nevertheless, always time-consuming and prone to human mistakes.

In order to utilize the wetlands within the watershed to mitigate floods, it is necessary
to propose an efficient and accurate approach to identify their spatial distribution and
delineate their inundation area. Since the wetland should be formed under certain topogra-
phy conditions, combining the topographic information could be helpful for developing a
deterministic approach to identify the location of wetlands within the watershed. In this
approach, the supervised classification can be avoided as well as unnecessary errors and
time spent for the classification. Based on the description above, the objectives of this study
are to (1), develop a new topographic index called Deterministic Topographic Wetland
Index (DTWI) as an alternative method for rapidly delineating the existing open-water
wetlands, and (2) evaluate and compare the effectiveness of the proposed new topographic
index with other approaches for wetland delineation. The DTWI delineates wetlands by
combining the topographic features of the topographic slope of standing water bodies and
the topographic sink to form wetland depression. Since it is a logic-based and determin-
istic approach, unlike other indices, the DTWI does not require performing supervised
classification. In order to demonstrate the accuracy of the DTWI on wetland delineation,
two optical indices (NDVI and NDWI) and another topographic index (TWI) were chosen
to compare with the DTWI. The proposed deterministic topographic wetland index in this
study is designed to supplement wetland delineation efforts and overcome some of the
challenges of wetland delineation associated with using fine-resolution remote sensing
datasets. The findings of this paper will provide an alternative approach for delineating
wetlands rapidly by using the LiDAR-derived Digital Elevation Model only.

2. Materials and Methods

2.1. Study Area

The current study was carried out in the Cypress Creek watershed located in northern
Houston, within the Harris County Flood Control District. The first and most significant
step for flood mitigation within the study watershed is to successfully identify the locations
of the wetlands. Figure 1 shows the geographic location and the land use condition of the
study watershed.

As shown in Figure 1, the whole watershed can be delineated into three sub-watersheds [8].
The upstream sub-watershed of the Cypress Creek watershed is mostly natural and agri-
cultural areas, and the midstream sub-watershed is mixing the agricultural area with the
residential area. The residential area with estimated 216,000 residents is located within the
downstream sub-watershed [31]. The Cypress Creek watershed experiences about two to
three flooding events per year on average. For example, it experienced devasting floods
during Hurricane Harvey in August 2017. During that event, 82 people died and estimated
economic losses were about $180 billion [32]. Therefore, the Cypress Creek watershed is
chosen as the study area to delineate the existing open-water wetlands that will be further
used for flood mitigation purpose.
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Figure 1. The geographic location of the study watershed.

2.2. Methods for Existing Wetland Delineation

In order to utilize wetlands for flood mitigation in the study area, it is necessary to un-
derstand the spatial distribution and inundation extent of wetlands since this information
can be used to estimate their storage capacity [33,34]. However, no single, indisputable,
and universally accepted definition of wetlands exists due to the diversity of wetlands in
the natural environment and the fact that their dynamic inundation extent changes along
the seasons [16]. In order to avoid the dispute on wetland delineation when applying
the following indices, we only focused on the wetlands with the open-water features
such as lakes, detention and retention ponds, etc. The open-water wetlands are usually
open and standing water bodies surrounded by uplands [35]. Various studies [36,37] used
remotely-operated siphon system to drain water from wetlands. These wetlands would be
ideal for flood mitigation since they may provide sufficient hydraulic head to release water,
in turn, increase the storage capacity before a rainfall event, compared with wetlands like
swamp or marsh.

2.2.1. Normalized Difference Vegetation Index (NDVI)

The NDVI is a well-established indicator for the presence and condition of vegetation
and is also widely used to enhance discrimination between wetland areas and upland
features. The use of remote sensing for wetland classification, land cover mapping, and
wetland vegetation mapping is shown in different studies [38–41]. The NDVI is constructed
based on the spectral signature differences between the red radiant energy absorbed by the
vegetation and the near-infrared energy reflected from the canopy of the vegetation. It is
expressed as the normalized ratio of the NIR band and Red band, as shown in Equation (1):

NDVI =
NIR − Red
NIR + Red

(1)

The value of the NDVI ranges from −1.0 to 1.0. For instance, healthy and abundant
vegetation reflects strongly in the near-infrared portion of the spectrum while strongly
absorbing the visible red light, thus, generating high positive NDVI values. Open-water
bodies yield negative values due to red reflectance larger than near-infrared reflectance.
Therefore, the NDVI can be applied to delineate open-water wetlands since the lower
NDVI values correspond to open water areas in this study.

2.2.2. Normalized Difference Water Index (NDWI)

McFeeters [42] introduced the NDWI to delineate open-water features by combining
the Green and NIR bands. It can be written as Equation (2):

NDWI =
Green − NIR
Green + NIR

(2)

where Green is the green band, and NIR is the near-infrared band. All the positive values of
the NDWI would be classified as water areas and the negative values as non-water areas.
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2.2.3. Topographic Wetness Index (TWI)

The TWI is a conceptually based model that describes the impact of the topography on
the water accumulated at a given point and the effect of gravitational force on water move-
ment. It considers the local slope and the upslope drainage area on the topography [22,43].
Since the topography and gravitational force are the driving forces of surface water move-
ment, the wetland location mainly depends on flow path convergence, slope, and the
hydraulic conductivity of the soils [44]. Therefore, the TWI also shows the availability of
wetland delineation. Developed by Beven et al. [22], the TWI is defined as Equation (3):

TWI = ln
(

α

tan(β)

)
(3)

where α is the local upslope area draining through a certain point per net contour length
(equal to the upslope contributing catchment area divided by the contour length along),
which is calculated by using a depressionless DEM (the DEM without sinks), and β is
the local slope (a steepest downslope direction in DEM). The depressionless DEM can
be generated in many GIS software by using the “Fill Sink” function. In this study, the
Whitebox Geospatial Analysis Tools [24], an open-sources GIS software package, was used
to generate the depressionless DEM, and perform other raster calculations. According to
its definition, the TWI reflects the tendency of an area to receive water to its tendency to
drain water. Therefore, the wetlands tend to locate at the higher value of TWI, where the
upslope contributing catchment area is more extensive for collecting an adequate amount
of water, and the local slope is smaller for detaining the water.

2.2.4. Deterministic Topographic Wetland Index (DTWI)

Esri [45] and Wu et al. [24] introduced a fast and straightforward solution to identify
the open-water area or the wetland depression by using the “filling-and-spilling” method.
The “filling-and-spilling” method is simply subtracting a raw DEM from a depressionless
DEM (the DEM without sinks). Sinks are defined as topographic locations that are at a
lower elevation than all neighboring cells. The difference between the depressionless DEM
and the raw DEM is called Depth in Sink (DIS) in the study of Antoni et al. [46]. This
approach can delineate open-water wetlands because the definition of sinks is wholly
consistent with the definition of wetland depressions [23]. Therefore, the open-water
wetlands are where the pixel value of DIS is bigger than 0. Some studies [47–49] also show
the application of the “filling-and-spilling” conception for the wetland delineation.

The research conducted by Uuemaa [49] pointed out that DIS bigger than 0 does not
always represent wetland areas. It could represent an artificial impoundment formed by
the intersections between roadways and streams in the DEM. Additionally, since sinks
could also be errors that do not exist on the real terrain, DIS bigger than 0 could be caused
by these errors. In order to avoid this mistaken identification of the depression areas, the
author’s opinion is that the physical characteristics of water bodies in the DEM should be
integrated into the “filling-and-spilling” method.

As depicted in Figure 2, the following three facts can be used to delineation open-
water wetlands:

• The water surface in open-water wetlands tends to be in a horizontal plane as water
velocity is extremely slow (standing water bodies).

• The local slope of the water surface (tan(a)) is 0 on the LiDAR-derived DEM. This is
because LiDAR point clouds show voids in the areas where water bodies occur, and
the missing elevation data can be interpolated from a single elevation value obtained
from the land edge of the water body.

• The topography should have depression areas that allow water to be detained in
the wetlands. Therefore, open-water wetlands should form where the DIS is greater
than 0.
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Figure 2. The conceptual figure for the presentation of the characteristics of the open-water wetland
on the DEM.

Combining these three facts can help to delineate open-water wetland inundation
areas rapidly. Therefore, the proposed new deterministic topographic method for wetland
delineation is expressed as Equation (4) below,

DTWI =
(

DIS
R

)tan (a)
(4)

where DIS is the depth in sink, R is the resolution of the DEM, and tan(a) is the local slope
(a in degrees).

To be specific, the wetland can only be located in the ground surface where water can
be detained. Therefore, DIS has to be greater than 0 for detaining the water. However,
wetlands do not always exist where the DIS is greater than 0 because this could be an
abovementioned artificial impoundment. Therefore, a cell in the DEM has to meet two
criteria to represent a wetland: a DIS greater than 0 and tan(a) equal to 0. Obviously, a cell
value equal to 1, calculated by the proposed index (DTWI), represents the location of an
open-water wetland. Subsequently, a binary imagery will be obtained from the DTWI raster
file by exporting cell values equal to 1 into a new raster file with zero background. In the
binary imagery, the value of 1 represents the inundation areas of the existing open-water
wetlands. In contrast, the value of 0 represents non-water areas. Since it is a logic-based
deterministic index, there is no need to perform supervised classification.

2.3. Input Datasets and Data Preprocessing

Table 1 shows the details and purposes of the four spatial datasets which were used
in this study. They are National Land Cover Dataset (NLCD), Google satellite imageries,
high-resolution bare-earth LiDAR DEM, and four-band color-infrared aerial imagery from
the National Agriculture Imagery Program (NAIP).

The high-resolution LiDAR-derived bare-earth DEM was used to calculate the TWI
and the DTWI. The cloud-free high-resolution four-band (Red, Green, Blue, and Near-
Infrared) aerial imagery from the NAIP was used to calculate the NDWI and the NDVI.
Considering that the different resolutions of the datasets could influence the calculation
results and the classification accuracy, the LiDAR-derived DEM and the NAIP aerial
imagery were resampled into the same resolution (2 m by 2 m) to be consistent with the
resolution. In addition, to minimize the topographical changes due to the time span, the
LiDAR-derived DEM and the aerial imagery from NAIP used in this study were limited
within 2018. In addition, the cloud-free Google satellite imageries from four different
years as the main ground truth images were used for the accuracy assessment of the
wetland classification.
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Table 1. The information of datasets and their usage for the study.

Dataset Band
Original

Resolution
Resample

Resolution
Acquisition Date Custodian Use in the Study

NLCD 30 m 30 m 2016
United States

Geological
Survey

To generate the training samples rapidly and
roughly. Before the training samples used for

supervised classification, their accuracy will be
modified by Google satellite images, if necessary.

NAIP

B: 435–496 nm

0.6 m 2 m 2018 December To calculate NDWI and NDVI for
wetland delineation.

G: 525–585 nm

R: 619–651 nm

NIR: 808–882 nm

LiDAR
derived

DEM
1.5 m 2 m 2018 October

Texas Natural
Resources

Information
System

To calculate TWI and DTWI.

Google
Satellite
Imagery

N.A. N.A.

2015 November

Google Earth
As primary ground truth data reference for visual

interpretation of the generated testing samples
and the comparison of the calculated results.

2017 February

2019 April

2021 January

Since the calculated results of the NDVI, the NDWI, and the TWI are a series of pixel
values, the supervised classification is required to classify pixel values into the water areas
and the non-water areas for the above-mentioned calculated results. In order to perform
supervised classification, the ground-truth training dataset needs to prepare. National Land
Cover Dataset (NLCD), containing different earth ground classes, was used to generate the
ground truth training sample points rapidly and roughly. Subsequentially, the accuracy of
these ground the training sample points were checked and modified if necessarily based
on the Google satellite images that were used in this study. Therefore, the resolution of the
NLCD (30 m by 30 m) will not influence the accuracy of the supervised classification in
this study.

To be specific, first, based on the research objective, the NLCD was only classified
into two classes: open-water and non-water areas. The pixel value in the open-water area
was set to 1, while the non-water area was set to 0. After that, as shown in Figure 3, the
random training sample points (almost 10,000) that would be used for the supervised
classification were generated within the open-water areas (4757 training sample points)
and the non-water areas (5000 training sample points), separately, by using QGIS. In order
to guarantee the accuracy of the ground truth training sample points, the locations of these
random training samples were modified manually, based on the high-resolution Google
satellite images by careful visual interpretation, if necessary. Subsequently, these training
data samples collected the ground-truth information, either the open-water areas (the pixel
value equal to 1) or the non-water area (the pixel value equal to 0), from the classified
binary NLCD imagery.

The machine-learning algorithm plays an important role in supervised classifica-
tion [50]. Support Vector Machine (SVM) is a popular machine-learning algorithm based
on the statistical learning theory and the structural risk minimization principle. Since it
has a high generalization performance and is suitable for imagery classification with a
small training sample set [26], the SVM is chosen for the supervised classification in this
study. Except for the DTWI, all the three indices mentioned above used the SVM algo-
rithm to perform supervised classification for wetland area delineation. The supervised
classification was performed by QGIS-3.16 Dzetsaka classification tool, a fast and powerful
classification plugin for QGIS which has been widely used in other research [51–53], and
Figure 4 describes the workflow of the data processing for the four indices.
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Figure 3. The ground truth sample points used for the supervised classification and the accuracy assessment within the
Cypress Creek watershed.
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Figure 4. The workflow of data processing of the indices mentioned above.

3. Results and Discussion

3.1. The Existing Wetland Delineation

The supervised classification for the chosen indices was successfully performed to
classify the pixel value into water and non-water areas by using the SVM algorithm of
Dzetsaka classification tool on QGIS. As shown in Table 2, among the SVM training samples,
70% of them were used for machine training, and 30% of them were kept for validation.
The TWI shows the minimum classified accuracy and Kappa Coefficient among the chosen
indices, which are higher than 90% and 0.8, respectively. The accuracy of the classified
results for these three indices is acceptable and the classified imagery of these three indices
can be used for further analysis.

Table 2. The index classification results by using the SVM algorithm of Dzetsaka classification tool.

Index
Training

Algorithm
Training Validation Kappa

Classified
Accuracy

NDVI

SVM 70% 30%

0.955 97.74%

NDWI 0.943 97.17%

TWI 0.811 90.57%

At the same locations presented in Figure 3, Figure 5 below shows the inundation area
of the existing open-water wetlands delineated by the four indices mentioned above (NDVI,
NDWI, TWI, and DTWI) in the upstream, midstream, and downstream sub-watersheds
of the Cypress Creek watershed. According to the results, visually, all four indices can
successfully delineate most wetland areas in the natural and residential areas and show
similar patterns of waterbody delineation. However, it should be noted that although the
NDVI and the NDWI can successfully delineate the wetland areas, they also give a higher
response to city infrastructures and shadows, especially the roofs of buildings.
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Figure 5. The wetland delineation of four indices in upstream (natural/agricultural), midstream
(mixed agriculture-residential), and downstream (residential) sub-watersheds.

Figure 6 below aims to show the mistakenly classified pixels for the four indices at
the same locations presented in Figure 3. Specifically, as shown in Figure 6, the NDVI
and the NDWI misclassified the shadows of the trees in the natural/agriculture areas,
and the rooftop as well as the shadow of the buildings and partial city infrastructures in
residen-tial areas. This is due to the drawback and limitation of the NDVI and the NDWI
when using high-resolution optical imagery. Moreover, the TWI also delineates the artificial
streams in the natural/agriculture areas, and the roadways in the residential areas. The
definition of TWI can explain this phenomenon. The TWI determines possible surface water
accumulation zones by quantifying the tendency of a DEM pixel to receive and ac-cumulate
water based on the local slope and the upslope contributing area. The upslope contributing
area is conventionally calculated by Flow Accumulation function in the GIS platform and
a pixel with high Flow Accumulation values also means the pixel has bigger upslope
contributing area. Since the artificial streams in agriculture areas and the road-ways in the
residential areas also have higher flow path convergence (flow accumulation values), which
results in higher TWI values, the TWI eventually misclassifies these artifi-cial streams and
the roadways as water features. The above-mentioned misclassified pix-els from the NDVI,
the NDWI, and the TWI can create significant and tedious work for wetland inundation
area calculation and storage estimation as they must be removed manually by complex
data processes on the GIS platform. However, the above problems can be completely
avoided by applying the proposed DTWI.
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Figure 6. The mistakenly classified pixels of the four indices in the upstream (natural/agricultural
area), the midstream (mixed agriculture-residential area), and the downstream (residential
area) watersheds.

However, there are some differences in the results between the topographic in-
dices (TWI and DTWI) and the optical-imagery indices (NDVI and NDWI). As shown in
Figure 7A,B, the wetland inundation areas for these two locations delineated by the DTWI
are similar to the TWI. The wetland areas delineated by the NDVI are closed to the NDWI.
Nevertheless, the inundation area of the wetland presented in Figure 7A delineated by
the two topographic indices is significantly larger than that of the two optical-imagery
indices, while the one presented in Figure 7B shows the inundation area delineated by the
two topographic indices is obviously smaller than that of the two optical-imagery indices.
Since only one optical imagery and one LiDAR-derived bare-ground DEM were applied
in this study, the results cannot show the inundation area of a wetland change with time,
which is also not the objective of this study. It is well-known that the size and shape of the
inundation area of the wetlands vary with time, as water levels fluctuate seasonally.

Figure 8 shows the inundation area of the same wetland presented in Figure 7A
significantly changes with time. To be specific, the wetland inundation area in the dry
season could be significantly smaller than the area in the wet season. One optical image
or one DEM can only statically reflect the wetland inundation area at the time of dataset
collection. Since the time span exists in the data acquisition between the optical imagery
and the LiDAR dataset, as the results show in Figure 7, the inundation area of the existing
wetlands delineated by topographic indices can differ from the optical indices in this study.
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Figure 7. The comparison for the two typical cases of delineation area of the four indices (A) the area
delineated by the optical imagery approach is bigger than the topographic approach (B) the area
delineated by the optical imagery approach is smaller than the topographic approach.

Figure 8. Time variation of wetland inundation area.

Furthermore, the inundation area of a wetland is also dependent on the antecedent
hydrological condition, the morphological characteristics of the depression wetlands (i.e.,
the water level-storage-area curve), and the utilization purpose of the wetlands (i.e., irriga-
tion). These factors could cause the inundation area of a wetland to change significantly
or even disappear between the time span of the data acquisition. For example, it is worth
noting that, in Figure 6, the NDVI and the NDWI delineated the wetland area located at
the upstream sub-watershed. In contrast, the TWI and the DTWI did not delineate it as the
wetland could have disappeared at the time of the LiDAR data collection.

In conclusion, in order to avoid the impact of the time variation of the wetland
inundation area on the accuracy assessment, multiple historical Google satellite images
should be applied to comprehensively assess the effectiveness of each index.

Figure 9 shows the delineated area for the DTWI and the “filling-and-spilling” method.
Comparing the difference between these two methods, it can be found that the “filling-



Water 2021, 13, 2487 13 of 18

and-spilling” method mistakenly delineates the artificial impoundment caused by the
intersections between roadways and streams and the DTWI method does not. There-
fore, simply using the “fill-and-spilling” method will cause the inundation area to be
overestimated in the watershed.

Figure 9. Delineated area for the DTWI and the “filling-and-spilling” method.

3.2. The Accuracy Assessment

The accuracy assessment of the wetland delineation was quantitatively evaluated by
the overall accuracy and the Kappa coefficient calculated from the confusion matrices. The
Kappa coefficient equal to 1 represents the perfect agreement with the reference data, while
the Kappa coefficient equal to 0 represents complete randomness.

In order to obtain the statistical samples for the confusion matrices and consider-
ing that the existence of the time span in the dataset acquisition could impact the ac-
curacy assessment, four independent testing sample datasets, each of them containing
10,000 testing sample points, were generated and validated with the four-year historical
Google satellite imageries, individually. The function of “Random Point in Polygon” in
the QGIS was used to generate 10,000 testing sample points located randomly within the
Cypress Creek watershed. As the study area cannot be visited, these 10,000 random testing
sample points were assigned a ground truth value (1 represents the water areas and 0
represents the non-water areas) based on their locations on the Google satellite imagery by
visually interpreted carefully. In such a way, the 10,000 ground truth values were stored
in the first column of the attribute table of the random testing data sample points. These
ground truth values were used as the actual class for the confusion matrices. Subsequently,
these testing sample points extracted the pixel values from the classified raster files of the
NDVI, the NDWI, and the TWI, and the calculated raster file of the DTWI sequentially.
These pixel values were stored in the second, third, fourth, and fifth columns of the attribute
table, respectively. They were used as the predicted class for the confusion matrices.

The confusion matrices were calculated to summarize the testing points of wetland
agreement (T.P.), non-wetland agreement (T.N.), false-negative predictions (F.N.) (cases
where true wetland testing points were predicted to be non-wetland), and false-positive pre-
dictions (F.P.) (case where true non-wetland testing points were predicated to be wetland).

Overall Accuracy =
TP + TN

total testing (actual) points
(5)

Kappa =
2 × (TP × TN − FN × FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
(6)

The overall accuracy and the Kappa coefficient are calculated by Equations (5) and (6),
and the confusion matrices for four indices from selected four-year Google satellite images
is shown in Table 3.
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Table 3. The confusion matrices and the accuracy assessment.

Predict Class Positive Negative Accuracy Assessment

Actual Class Positive Negative Positive Negative Kappa
Coefficient

Overall
Accuracy

Output Case T.P. F.P. F.N. T.N.

Normalized Difference Vegetation Index

November 2015 120 170 30 9680 0.536 98.00%

February 2017 106 187 51 9656 0.460 97.62%

April 2019 106 155 45 9694 0.505 98.00%

January 2021 133 172 72 9623 0.510 97.56%

Normalized Difference Water Index

November 2015 121 268 29 9582 0.437 97.03%

February 2017 106 286 51 9557 0.372 96.63%

April 2019 108 239 43 9610 0.432 97.18%

January 2021 130 258 75 9537 0.423 96.69%

Topographic Wetness Index

November 2015 115 542 35 9308 0.267 94.23%

February 2017 109 591 48 9252 0.235 93.61%

April 2019 95 595 56 9254 0.206 93.49%

January 2021 129 542 76 9253 0.272 93.82%

Deterministic Topographic Wetland Index

November 2015 105 39 45 9811 0.710 99.16%

February 2017 99 49 58 9794 0.644 98.93%

April 2019 85 54 66 9795 0.580 98.80%

January 2021 114 38 91 9757 0.632 98.71%

Overall Accuracy Assessment for 4-year ground truth samples

NDVI 465 684 198 38,653 0.503 97.80%

NDWI 465 1051 198 38,286 0.413 96.88%

TWI 448 2270 215 37,067 0.245 93.79%

DTWI 403 180 260 39,157 0.641 98.90%

As shown in Table 3, although the different historical Google satellite imagery has an
impact on the accuracy assessment, such impact can be neglected since the difference of
the overall accuracy for each index is less than 1% within four different historical Google
satellite images. Therefore, the existence of the time span in the dataset acquisition will not
substantially influence the accuracy assessment in this study.

By summarizing the four independent testing sample datasets, the DTWI provides the
best overall accuracy among the four indices in cross-validation (98.90%), and the Kappa
coefficient of the DTWI shows substantial agreement [54]. The lowest value of overall
accuracy and the Kappa coefficient is the TWI, which is only 93.79% and 0.245, respectively.
Such a lower Kappa coefficient of the TWI raised the research team’s concerns about
whether the mistakes existed during the research calculation. After double-checking the
calculation procedures, the whole team confirmed that there were no calculation mistakes,
and the TWI should provide a lower Kappa coefficient. As shown in Figure 6, the TWI
mistakenly classifies the artificial streams and roadways into the water features within
the whole watershed, resulting in the cases where true non-wetland testing points were
predicated to be wetland (F.P.) being significantly higher. According to the result shown
in Table 3, the TWI shows the highest case of F.P. among these four indices, which is 2270.
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Such the highest value of the F.P. case decreases the Kappa coefficient and the overall
accuracy of the TWI. The difference in the overall accuracy between the NDVI and NDWI
is less than 1%, and the Kappa coefficient of both shows moderate agreement.

Although in comparing the DTWI and the NDVI for the 4-year overall accuracy
assessment there is only a 1% improvement of the overall accuracy, which is not significant,
the DTWI is a simple and rapid solution which does not require supervised classification.
It is worth mentioning that the similarity of the overall accuracy between the DTWI and
the NDVI further indicates that the DTWI can replace the NDVI, the NDWI, and the TWI
for the open-water wetland delineation in the study area.

4. Conclusions

Identification and delineation of wetlands provide critical information for various
purposes, including flood mitigation. The increasing availability of fine-resolution DEMs
data and the high-resolution optical images makes it possible to obtain detailed information
about topographic surface features, including wetlands. However, conventional methods
for wetland delineation need to perform supervised classification to guarantee a desirable
classification accuracy. This paper presents an efficient and accurate method for delineating
open-water wetlands without performing supervised classification. The proposed DTWI
delineates the wetlands by considering the physical characteristics of a wetland on the
ground surface.

Considering the time variation of the inundation area of the wetlands could influence
the accuracy assessment of the four indices in this study, four-year historical cloud-free
Google satellite images were chosen as the ground truth reference datasets. The results
show that although the different historical Google satellite imagery has an impact on the
accuracy assessment, such impact can be ignored considering the results change within 1%
for the four indices.

Two optical imagery approaches (the NDVI and the NDWI) show an acceptable and
satisfying accuracy (97.80% and 96.88%, respectively) on the wetland delineation. However,
the city infrastructure, such as roof shadows, are widely mistakenly delineated as water
features within the study area. Moreover, TWI misclassifies the artificial stream and the
roadways into the water features, resulting in the lowest accuracy assessment. Without
removing these mistakenly delineated areas manually by complex data processing on the
GIS platform, the inundation area of the watershed will be overestimated, resulting in an
inaccurate estimation of the water storage capacity.

Although the DTWI shows the highest accuracy assessment, comparing the NDVI
with the DTWI, the improvement of the accuracy assessment, which is only 1.1%, is not
significant. However, such insignificant improvement indicates the DTWI can replace the
classic method to delineate wetland inundation areas. Moreover, unlike the optical imagery
approach, it does not generate any other irrelevant results, resulting in the highest accuracy
of applying the DTWI to delineate wetlands.

Overall, compared to the other methods investigated, the DTWI method was found
to minimize mistaken wetlands with infrastructure, shadows, streams, and artificial im-
poundment and showed the highest accuracy assessment.

The results for the study area show that the proposed deterministic topographic
method can delineate wetland areas more accurately and efficiently than the classic methods
compared in this study, namely the NDVI, the NDWI, and the TWI. It has great potential
for being applied to the large-scale watershed flood mitigation analysis. The finding of this
study provides an alternative to delineate wetlands by using LiDAR-derived DEM only.
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