
Wikle et al., Sci. Adv. 8, eabf9868 (2022)     26 January 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 15

C O R O N A V I R U S

SARS-CoV-2 epidemic after social and economic 
reopening in three U.S. states reveals shifts in age 
structure and clinical characteristics
Nathan B. Wikle1†, Thu Nguyen-Anh Tran2†, Bethany Gentilesco3, Scott M. Leighow4, 
Emmy Albert5, Emily R. Strong1, Karel Brinda6,7, Haider Inam4, Fuhan Yang2,  
Sajid Hossain8, Philip Chan3, William P. Hanage6, Maria Messick9, Justin R. Pritchard4,  
Ephraim M. Hanks1*, Maciej F. Boni2,10*

State-level reopenings in late spring 2020 facilitated the resurgence of severe acute respiratory syndrome corona-
virus 2 transmission. Here, we analyze age-structured case, hospitalization, and death time series from three 
states—Rhode Island, Massachusetts, and Pennsylvania—that had successful reopenings in May 2020 without 
summer waves of infection. Using 11 daily data streams, we show that from spring to summer, the epidemic shifted 
from an older to a younger age profile and that elderly individuals were less able to reduce contacts during the lock-
down period when compared to younger individuals. Clinical case management improved from spring to summer, 
resulting in fewer critical care admissions and lower infection fatality rate. Attack rate estimates through 31 August 
2020 are 6.2% [95% credible interval (CI), 5.7 to 6.8%] of the total population infected for Rhode Island, 6.7% (95% 
CI, 5.4 to 7.6%) in Massachusetts, and 2.7% (95% CI, 2.5 to 3.1%) in Pennsylvania.

INTRODUCTION
The coronavirus SARS-CoV-2 (severe acute respiratory syndrome 
coronavirus 2), the cause of coronavirus disease 2019 (COVID-19), 
has led to more than 750,000 deaths across the United States in just 
20 months of transmission. During the initial wave in spring 2020, 
a critical question in managing the U.S. COVID-19 epidemic was 
whether regional reopenings of social and economic activity 
would result in rebounds of cases and hospitalizations (1). Because 
population-level immunity to SARS-CoV-2 was still low at the time, 
the expectation was that increases in mobility and human contact 
would lead back to an upward trending epidemic curve during this 
time (2). However, as hand hygiene, physical distancing, epidemio-
logical awareness, and mask-wearing practices changed during spring 
2020, increases in daily economic and social activity were not guar-
anteed to recreate the ideal transmission conditions of March. In 
addition, no school session and the possible effects of drier/hotter 
weather (3) in summer were considered potential mitigators on 
viral transmission (4).

Despite these mitigating factors, epidemiological rebounds had 
begun in more than 40 states by 1 July. Daily case numbers in the 
United States, which had dropped from a peak of 30,000 per day in 
early April to 20,000 per day in late May, rebounded to 50,000 per 
day the first week of July (5, 6) driven by early reopening policies in 

several large states. With a symptomatic case fatality rate (sCFR) in 
the 1 to 4% range (7–11) depending on epidemiological context and 
testing availability, more than a thousand of these daily new case 
numbers would result in death several weeks later. The absence of 
careful, gradual, managed reopenings during the May/June period 
was the likely cause of summer resurgence in parts of the southern 
United States. It is of utmost public health importance that epidemic 
management and public health response continues to be approached 
with a strategic and adaptive plan that can use real-time epidemio-
logical analysis (e.g., attack rate estimates, changing age/mobility 
patterns, and clinical improvements) to contain and potentially re-
verse upward epidemic trends.

Here, we analyze the age-structured case, hospitalization, and 
death time series from three states—Rhode Island (RI), Massachusetts 
(MA), and Pennsylvania (PA)—that, during summer 2020, did not 
experience substantial epidemic rebounds when compared to March/
April levels. We evaluate 11 clinical data streams reported by the 
respective state health departments in a Bayesian inference frame-
work built on an ordinary differential equation (ODE) age-structured 
epidemic model that includes compartments (clinical states) for 
hospitalization, critical care, and mechanical ventilation. We infer 
parameters on surveillance, transmission, and clinical characteris-
tics of the first epidemic wave in RI, MA, and PA. We describe the 
patterns of persistently low transmission in these three states through-
out 31 August, compare these low-transmission scenarios to changes 
in human mobility metrics, and evaluate changes in age structure 
and clinical outcomes. We evaluate the impact of the spring epidemic 
on elderly populations in these three states, and we compare infec-
tion fatality rates (IFRs) to published estimates from other parts of 
the world. Preliminary analyses resulting from this work were regu-
larly posted at https://mol.ax/covid and shared with the respective 
state departments of health (DOHs). The statistical inference described 
here—on attack rates, underreporting, and changing age profiles—can 
guide more granular real-time decision-making and public health 
messaging than data streams alone.
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RESULTS
Epidemic characteristics during and after lockdown
In RI, MA, and PA, from early March to early April, we inferred a 
reduction in the composite transmission parameter t describing 
person-to-person contact (mixing) rates and the probability of vi-
rus transmission per unit contact. From the 5 to 15 March period to 
1 April, population mixing rates dropped by 65.2% [95% credible 
interval (CI), 51.4 to 78.2%] in RI, by 79.8% (95% CI, 61.5 to 87.0%) 
in MA, and by 95.4% (95% CI, 92.8 to 97.4%) in PA (Fig. 1). During 
this period, contact rates were dropping through stay-at-home 
orders, bans on large gatherings, and business/school closures at 
the same time as improved hygiene behaviors were being increas-
ingly adopted. As we do not model the timings and effects of these 
individual interventions, we do not attribute their separate contri-
butions [e.g., see Zimmerman and Anderson (12)] to lower estimates 
of t. We refer to reductions seen in t in March and early April as 
reductions in transmission-capable mixing that result both from 
fewer person-to-person contacts and lower infection risk per con-
tact. The estimated reductions in mixing may seem very large, but 
note that in a heterogeneously exposed population, mixing rates for 
large highly connected groups can drop by large amounts with only 
a modest drop in the population’s effective reproduction number Rt 
if a smaller subpopulation maintains a chain of infection due to an 
inability to completely zero-out contacts. For example, if 90,000 office 
employees can work from home and contact only their families but 
10,000 elderly care home residents still require contact with medi-
cal and care staff, then a full business shutdown may result in a 90% 
reduction in mixing patterns but a measured or apparent Rt ≈ 1 if a 
stable chain of infection is maintained in nursing homes and elderly 
care residences. Our estimated reductions in transmission-capable 
mixing are consistent with published estimates of changes in Rt and 
mobility (13–17).

Changes in the inferred population-mixing component t can be 
compared to mobility metrics (18, 19) on the basis of location-
enabled smartphone data trails, which allow calculation of time spent 
at home versus outside the home. Two independent mobility data 
sources, Facebook and SafeGraph (20, 21), provided daily estimates 
for the fraction of tracked users leaving home at least once in a 
24-hour period. Despite values varying slightly across states and 
markedly between user bases, all mobility data examined have a 
common shape and timing: an initial baseline in early March (84 to 
86% of users leaving home for Facebook and 75 to 77% for SafeGraph) 
and a subsequent marked decrease from 15 March to 31 March (64 to 
67% for Facebook and 52 to 55% for SafeGraph). This low fraction 
of users leaving home (at a minimum, once daily) is maintained 
until about 20 April, followed by a slow increase to a slightly more 
cautious “new normal” (77 to 81% for Facebook and 66 to 69% for 
SafeGraph) through July and August (Fig. 1). A resumption of popu-
lation mobility in early May suggests that improvements in hygiene, 
personal distancing, mask wearing, selective travel, and/or smaller 
event sizes were likely factors keeping Rt < 1 and new case numbers 
declining.

Not all symptomatic SARS-CoV-2 infections are reported to state-
level health systems. As it is difficult to make distinctions among 
asymptomatic, subclinical, mildly symptomatic, and symptomatic 
infections, here, we call an infection symptomatic if the symptoms 
are pronounced enough that a person with convenient zero-cost ac-
cess to health care would choose to visit a hospital or clinic. Patients 
who cannot afford the time or cost of a health care visit are 

categorized as unreported symptomatic cases. Using the delays be-
tween time series of cases, hospitalizations, and deaths, we can esti-
mate the fraction  of symptomatic cases that are reported to the 
health system (22, 23). We do this without making assumptions 
about the CFR or IFR. Complications present themselves as under-
reporting in the hospitalization datasets are common (see dis-
cussions in sections S1.3 and S1.4). One clear example of this 
difficulty is when only current hospitalizations are available (MA 
and PA), a good model fit requires that the duration of hospitaliza-
tion is known or identifiable; this is complicated by the fact that 
hospital stays come in several categories [admission to intensive care 
unit (ICU), requiring mechanical ventilation] and can be censored 
by death events. In MA and PA, there is not enough information in 
the remaining data streams to confidently identify the duration of hos-
pitalization (Fig. 2B), and thus, age-stratified probability of hospital 
admission in MA and PA is constrained to be close to estimated 
values obtained from RI data (Fig. 2E). Our estimate for the report-
ing rate  in MA is 62.5% (95% CI, 54.5 to 78.5%). RI has complete 
reporting of hospitalization incidence, made possible by the state’s 
small size and a reporting system covering several small hospital 
networks that include all hospitals in the state. We estimate that, 
after May 2020, 96.3% (95% CI, 87.1 to 99.8%) of symptomatic 
COVID-19 cases are reported to the Rhode Island Department of 
Health (RIDOH). RIDOH staff and affiliated physicians reported 
that patients were being turned away in early March because of lack 
of tests, and March reporting rates are estimated at less than 30% 
(15 March estimate is 18.1%; 95% CI, 9.9 to 33.1%) (see Fig. 2A). For 
PA, our estimate of the symptomatic case reporting parameter  is 
98.9% (95% CI, 94.5 to 99.9%), and this high rate may be the result 
of underreporting in multiple data streams (see Discussion). Result-
ing posterior model fits for RI (Fig. 3), MA (fig. S13), and PA (fig. 
S14) show good visual fits to the data.

Reporting rate estimates combined with age-specific estimates 
of asymptomatic infection (24) allow cumulative attack rates to be 
estimated (Fig. 4). The probability of asymptomatic infection is dif-
ficult to estimate for SARS-CoV-2 as this requires prospective 
follow-up in either a household or cohort design, with few studies 
including enough age groups for between-age comparisons (25–28). 
We use published estimates from Davies et al. (24), as the age-based 
asymptomatic fraction data from individual studies has too much 
variation to provide meaningful estimates (fig. S1). The 31 August 
population attack rates for SARS-CoV-2 are 6.2% in RI (95% CI, 5.7 
to 6.9%), 6.7% in MA (95% CI, 5.4 to 7.6%), and 2.7% in PA (95% 
CI, 2.5 to 3.1%) (see Fig. 4). These attack rate estimates use symp-
tomatic case data through 6 September, as an infection on 31 August 
would have its mean time of symptoms occurrence 6 days later.

Our RI attack rate can be validated with a 2.2% late-April attack-
rate estimate obtained from a household serosurvey (29) and 0.6% 
early-April estimate from blood donors (30) (population biased toward 
healthier individuals). Our PA-wide attack rate has a Philadelphia 
early-April estimate of 3.2% as a comparator (31), as well as a 6.4% 
estimate from July using serum from dialysis patients (not adjusted 
for race or socioeconomic indicators and thus biased upward) (32). 
This is higher than we estimate, although we note that only 1% of 
Pennsylvanians had reported as symptomatic and confirmed COVID-
positive through 6 September 2020; thus, the original data source 
may be an undercount. The unadjusted dialysis patient seropreva-
lence in MA was estimated to be 11.3% in July 2020 (32), about 
twice our estimate. Attack rate estimates continued to be reported 
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Fig. 1. Comparison of estimated transmission-capable population-level mixing with population mobility. Transmission-capable population-level mixing t (in gray 
and blue) and mobility changes (orange) from 1 March to 31 August. The average population mixing for 5 to 15 March is set to 1.0 as the pre-epidemic level of transmission-
capable mixing, and all other values are reported relative to this. Gray lines show 1000 sampled posterior -trajectories with the blue lines showing the median and 95% 
CIs. Note that there is substantial uncertainty in these estimates during the first weeks of March, as case numbers were low and reporting may not have been catching a large 
proportion of true cases at this time. Orange lines show the fraction of Facebook and SafeGraph users that left home at least once per day. The correlation between population 
movement (orange) and transmission-capable population movement (gray and blue) begins to disappear in early May in RI and PA (and with less certainty, in MA).
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Fig. 2. Posterior distributions of reporting rate and clinical parameters for RI, MA, and PA. (A) Reporting parameter , i.e., the fraction of symptomatic SARS-CoV-2 
cases that are reported to the health system, plotted as a function of time. In RI, it was known that in March, testing was not available and cases could not be confirmed; 
therefore, a spline function was fit for . This same function provided a better fit for PA data, but not for MA data. (B) Median length of medical-floor hospital stay was 8.3 days 
in RI (purple, left column), 8.9 days in MA (orange, middle column), and 14.9 days in PA (green, right column). (C) Probabilities of death outside the hospital for the 60 to 
69, 70 to 79, and 80+ age groups; 60 to 69 age group was included only for RI as data were insufficient in PA and MA. These are largely reflective of the epidemics passing 
through nursing home populations where individuals are not counted as hospitalized if they remain in care at their congregate care facility in a severe clinical state. These 
probabilities are important when accounting for hospital bed capacity in forecasts. (D) Age-adjusted ICU admission probability during the lockdown period in spring 
2020 (lighter color) and after the lockdown (darker color). (E) Probability of hospitalization (median and 95% CIs) for symptomatic SARS-CoV-2 infections, by age group; 
estimates only available for RI.
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to state-level DOHs through mid-March 2021 (see http://mol.ax/
covid), in general agreement with studies being released during 
this time (see Discussion).

Estimates of reporting rates allow for age-specific fatality rate 
estimation in all three states (Table 1). First, these results show that 
the age-adjusted IFR for all three states is higher than the typically 
quoted 0.5 to 1.0% range over the first 8 months of IFR estimation 
(33–37), but note that epidemics that infect the most vulnerable 
segments of a population first may be associated with higher-than-
average IFRs [see Discussion and (36, 38)]. Population-weighted 
IFR estimates are 2.5% (95% CI, 2.0 to 2.8%) for the RI epidemic 
during March to May, 2.1% (95% CI, 1.7 to 2.5%) for the MA 

epidemic during March and April, and 2.8% (2.7 to 3.1%) for the 
PA epidemic from March to June. These estimates are presented for 
the early stage of each state’s epidemic as our inference suggests that 
mortality rates dropped from spring 2020 to summer 2020 (section 
S2.2), consistent with observations in New York City showing a 
higher than normal IFR during the first 3 months of the epidemic in 
2020 (38). It is well known that the IFR depends strongly on age, 
gender, comorbidities, socioeconomic factors, and race (see Discussion) 
(39, 40). Our estimated age-stratified IFRs indicate that fatality rates 
are highest (>3%) in the 60+ age groups, still very high in the 40 to 
59 age group (estimates ranging from 0.3 to 1.2%), and lower in 
the <40 age group (<0.1%). The age-adjusted sCFR is estimated 

A B

C D

E F

G H

Fig. 3. Model fit to RI daily data, using the best fit model that accounts for different age-based contact rates after the lockdown and a different rate of ICU 
admissions starting in early June (Table 2). Gray lines show 250 sampled trajectories from the posterior, and blue lines are the median trajectories. Black circles are data 
points that show the daily (A) newly reported symptomatic cases, (B) new hospitalizations, (C) current number of patients hospitalized, (D) current number of patients in 
critical care, (E) current number of patients undergoing mechanical ventilation, (F) new deaths reported, (G) new hospital deaths reported, i.e., excluding deaths that 
occurred at home or at long-term care facilities, and (H) number of hospital discharges. Model fits for MA and PA are shown in figs. S13 and S14.
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to be 3.8% (RI), 3.2% (MA), and 4.4% (PA). The hospitalization 
fatality rate (HFR) shows the least variation by age, with fatality 
rates of >9% for the >40 age groups, a lower 3.3% to 4.8% HFR for 
20 to 39 age group, and no estimates possible for individuals 
under 20.

Changes in age-stratified contact patterns and clinical 
outcomes during the epidemic
We investigated changing age-specific contact rates during the three 
state epidemics, based on observed changes in age distribution and 
well-documented reporting of outbreaks in nursing homes. In 2020, 

Fig. 4. Posterior distribution of total attack rate through August 31 2020. Total infection attack rate includes all reported symptomatic cases, estimated unreported 
symptomatic infections, and estimated asymptomatic infections. Cumulative attack rate estimates and 95% CIs are shown for the end of every month.
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age-contact matrices began to be measured for the COVID-19 so-
cially distanced era (41–45), and we thus allow for two mixing patterns 
in our population—one mixing pattern during the spring 2020 lock-
down and a second pattern in late spring and summer after the lock-
downs were lifted. We infer eight relative mixing levels for each age 

class (relative to the 0 to 9 age group) and use a symmetric parametri-
zation where contact rates are described per age group pair (i.e., 
cab = ca × cb) where ca is the mixing rate for age group a; see equa-
tions (section S6). Use of the Belgian CoMix study’s contact rates 
was evaluated (43, 46), but these more highly parameterized 
matrices did not provide a better fit for our 6-month time series 
[DIC (deviance information criterion) > 70 for all three states]. 
Age characteristics of each state epidemic are shown in Fig. 5 (top 
rows), and the inferred contact parameters are shown in Fig.  5 
(bottom rows); inference of contact rates is influenced by the model 
assumption that the 0 to 19 age group is 60% as susceptible to in-
fection as the other age groups (24). In all three states, the lowest 
inferred contact rates during lockdown were for the 0 to 9 and 60 
to 79 age groups, reflecting closed schools and possibly the caution 
with which older individuals approached their risk of infection. 
However, the relative contact rates for individuals in the ≥80 age 
group were much higher: 2.6 (95% CI, 2.4 to 2.9) in RI, 6.1 (95% CI, 
4.9 to 7.0) in MA, and 4.8 (95% CI, 4.5 to 5.1) in PA. This sug-
gests that social distancing and lockdown were more difficult for 
individuals that needed additional care or lived in congregate care 
facilities. The shift from an older age profile to a younger age profile is 
apparent in all three states’ epidemics as the epidemics progressed 
from spring to summer (Fig. 5, top rows).

Improvements in clinical management of hospitalized COVID-19 
cases, due to the use of prone positioning (47, 48) or more frequent 
use of corticosteroids (49, 50), may have led to lower mortality 

Table 1. IFR, sCFR, and HFR for the March to June COVID-19 epidemics in RI, MA, and PA. Numbers of deaths observed in the <20 age groups were too low 
to generate meaningful estimates. 

Age range State IFR (95% CI) sCFR (95% CI) HFR (95% CI)

20–29 RI <5 deaths <5 deaths <5 deaths

MA 0.03% (0.03–0.04%) 0.12% (0.10–0.15%) 3.3% (2.7–4.1%)

PA 0.04% (0.04–0.04%) 0.16% (0.14–0.17%) 4.5% (4.2–4.9%)

30–39 RI 0.05% (0.04–0.07%) 0.16% (0.13–0.21%) 3.2% (2.5–3.8%)

MA 0.06% (0.05–0.08%) 0.19% (0.16–0.24%) 3.6% (2.9–4.4%)

PA 0.09% (0.08–0.10%) 0.26% (0.23–0.29%) 4.8% (4.4–5.2%)

40–49 RI 0.31% (0.22–0.38%) 0.78% (0.55–0.96%) 9.6% (7.2–12.2%)

MA 0.33% (0.26–0.44%) 0.83% (0.65–1.11%) 10.2% (7.8–12.8%)

PA 0.58% (0.52–0.65%) 1.44% (1.31–1.63%) 17.9% (16.0–20.2%)

50–59 RI 0.60% (0.44–0.73%) 1.24% (0.90–1.49%) 10.2% (7.6–12.8%)

MA 0.66% (0.49–0.85%) 1.34% (1.01–1.74%) 10.8% (8.2–13.5%)

PA 1.16% (1.06–1.30%) 2.37% (2.16–2.64%) 18.8% (16.9–21.3%)

60–69 RI 3.2% (2.5–4.1%) 5.1% (3.9–6.6%) 14.0% (10.5–17.7%)

MA 3.2% (2.4–3.9%) 5.0% (3.9– 6.2%) 14.8% (11.3–18.6%)

PA 4.6% (4.2–5.0%) 7.3% (6.6–7.9%) 26.0% (23.2–29.4%)

70–79 RI 12.1% (9.2–13.8%) 17.5% (13.3–20.0%) 25.4% (20.4–29.9%)

MA 10.9% (8.9–13.1%) 15.8% (12.9–19.0%) 28.2% (23.6–34.5%)

PA 12.6% (12.0–13.4%) 18.2% (17.5–19.4%) 37.0% (34.6–40.2%)

≥80 RI 19.9% (17.1–23.5%) 28.9% (24.8–34.0%) 29.7% (24.4–34.5%)

MA 19.2% (16.3–22.9%) 27.8% (23.7–33.2%) 32.8% (27.8–39.6%)

PA 21.7% (20.6–23.5%) 31.5% (29.8–34.1%) 42.4% (39.7–45.8%)

Table 2. DIC values for different models. Minimum DIC values shown in 
boldface. 

No change 
in age 

profile of 
contact 

rates after 
lockdown.

Different 
age 

profiles of 
population 

contact 
rates after 
lockdown 
(approx. 

May 2020)

No change 
in age 

profile of 
contact 

rates after 
lockdown.

Different 
age 

profiles of 
population 

contact 
rates after 
lockdown 
(approx. 

May 2020).

No change 
in ICU 

admission 
rate from 
March to 
August

No change 
in ICU 

admission 
rate from 
March to 
August

Allows for 
change in 

ICU 
admission 
rate from 
March to 
August

Allows for 
change in 

ICU 
admission 
rate from 
March to 
August

RI 12,064 11,059 11,960 11,004

MA 26,123 18,710 26,328 17,603

PA 18,858 10,626 18,851 10,599
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relative to epidemic size during the more recent (June to August) 
stages of the epidemic when compared to March to May mortality 
rates (51–53). To estimate the effects of some of these interven-
tions, we assess whether progression from hospitalization to criti-
cal care changed between the early stages and the later stages of the 
epidemic. Our model uses the relative age proportions described 
by Lewnard et al. (54) who estimated probabilities of progression 
from medical floor care to critical care to be between 30 and 50% 
[comparable to other estimates (55, 56)] for all nine age bands used 
in this study. These age-specific probabilities are scaled in our model 
(keeping the relative age probabilities the same), independently for 
each state, as patterns of hospital admission and clinical algorithms 
for ICU admission are likely to differ somewhat between health 
systems and hospitals; the scaling parameter is estimated. In RI, 
the age-adjusted probability (posterior median) of ICU admission 
for a hospitalized case dropped from 26.0% (95% CI, 20.4 to 31.0%) 
to 16.5% (95% CI, 11.6 to 21.0%) with an inferred breakpoint at 
26 May 2020 (95% CI, May 6 to June 2). In PA, the age-adjusted 
ICU admission probability dropped from 39.5% (95% CI, 36.7 to 
43.1%) to 28.0% (95% CI, 24.4 to 33.8%), with an inferred break-
point of June 19 (95% CI, June 13 to June 22). In MA, this 

probability dropped from 29.2% (95% CI, 23.9 to 36.3%) to 21.2% 
(95% CI, 17.5 to 29.0%), with the likely change occurring between 
late April and mid-June (Fig. 2D).

A second approach to confirming trends on improved clinical 
case management would be to look directly at changes in mortality. 
However, the complexity in this analysis lies in the different possible 
clinical paths that lead to a fatal outcome. In most states, reported 
mortality trends combine deaths occurring in hospitals with deaths 
occurring outside hospital settings (i.e., in congregate care facilities); 
these data streams are separated in RI/PA but not MA. Our model 
allows for inference of mortality outside hospital settings, with the 
outside-hospital sCFR estimated at between 20 and 35% for the ≥80 
group and 5 and 20% for the 70 to 79 age group (Fig. 2C). This al-
lows us to separate mortality trends between in and out of hospital, 
but hospital mortality alone is a complex composite of probability of 
death on the medical floor level of care and probability of death in 
the ICU (with and without ventilation). For this reason, we chose 
ICU admission as the clinical progression marker where we could 
evaluate a simple trend of improved case management. Estimated 
outside-hospital mortality may be affected by the choice of using 
reported death counts or excess death counts (57) in an analysis, and 

Fig. 5. Changing age-structure of COVID-19 epidemics in RI, MA, and PA. Top rows show the age structure of reported cases (first row) and estimated infections 
(second row) from 1 March to 31 August. RI and PA report age data periodically; missing values have been linearly interpolated in RI. Third row shows the inferred age-specific 
contact rates (median and 95% CIs) for both the lockdown (red) and postlockdown period (black), where the reference group is the 0 to 9 age group. Fourth row shows 
these same inferred contact rates with the ≥80 age group as the reference.
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using excess deaths in our inference did result in slightly higher es-
timates of outside-hospital mortality for the >70 age groups (section 
S6). Model selection analyses showed that a model with changing 
age-mixing patterns and improved clinical management was a 
better fit than models without these features (DIC > 27 for all three 
states; Table 2).

DISCUSSION
This is among the first studies to evaluate multiple simultaneous 
clinical data streams with an epidemic transmission model. The 
analysis of concurrent data streams is necessary to describe certain 
important but unreported characteristics of regional SARS-CoV-2 
epidemics; these include underreporting of cases, changing age pat-
terns of infection, changing patterns of clinical progression, and an 
understanding of mortality rates outside hospital settings. The 
inclusion of multiple age-structured data streams on death and 
hospitalization allows for statistical estimation of symptomatic case 
underreporting—a quantity that is generally resistant to robust esti-
mation especially in public health reporting systems that (i) mix 
active and passive surveillance, (ii) mix multiple diagnostic tests 
and testing visits, and (iii) have not made estimates of their catch-
ment areas. With an estimate of symptomatic case underreporting 
(here, via ), we can estimate the population-level SARS-CoV-2 at-
tack rate in each state by summing the reported symptomatics, the 
unreported symptomatics, and an externally estimated number of 
asymptomatics. One month later, an attack rate estimate can be validated 
by comparing to results from a seroprevalence survey. Four sero-
prevalence estimates available for RI, MA, and PA show no major 
inconsistencies with our results. It is important to remember that SARS-
CoV-2 serosurveys can be subject to biases depending on approaches 
to recruitment (which can overestimate seropositivity if enriched for 
individuals who are more likely to have been infected, e.g., individuals 
who consent because of past symptoms), the time since the original in-
fection (antibody titers wane over time), and the specific test used (58).

Our results indicate that in autumn 2020, RI, MA, and PA were 
nearly fully susceptible to a winter epidemic wave of SARS-CoV-2. 
Continual attack-rate estimation is crucial for epidemics in naïve 
populations to assess remaining susceptibility. Specifically, real-time 
age-specific attack rate estimation is important for vaccination planning, 
as age groups experiencing the least infection may need to be prior-
itized during both initial and annual vaccination campaigns. In-
cluding regular preplanned population-representative serosurveys 
(59–62) as part of routine public health activity (63, 64) would pro-
vide substantial benefit in being able to assess the progress and tra-
jectory of an ongoing epidemic.

Similar to attack-rate estimation, mobility tracking can give us a 
partial window into the effect that distancing policies or lockdowns 
are likely to have on viral transmission. In May 2020, the positive 
correlation between stay-at-home metrics and viral transmission 
vanished in all three states [as in (65)], resulting in a summer with 
population mixing levels at nearly prepandemic levels (i.e., people 
not staying at home) but viral transmission close to its postlockdown 
low point. It is reasonable to suggest that some of this is explained 
by (i) weather increasing the proportion of contacts made outdoors, 
where transmission is known to be much less likely, and (ii) a shift 
from mixing outside the home to inside the home, i.e., less time 
spent at work and more time with family. It is not straightforward 
to relate measures of population movement to opportunities for 

transmission, for many reasons including the collinearity of mixing 
with many other factors that can influence it. Essentially, rather than 
absolute measures of mixing, the blue lines in Fig. 1 can be inter-
preted as levels of population mixing that are capable of producing 
transmission (“transmission-capable mixing”). By canceling large 
events, promoting stringent hygiene measures, requiring masking, 
closing schools, restricting gathering sizes, and creating new guide-
lines for business operations, the epidemics in RI, MA, and PA were 
contained during the summer months while allowing the states’ res-
idents to continue most essential activities including small/medium 
outdoor events. In summer 2020, aggregate measures of population 
movement were at or near normal levels, but mixing leading to 
transmission was substantially reduced.

Comparison of attack rate estimates
It is useful to compare our results on attack rate and contact patterns 
with those obtained through different methodological approaches. 
Our U.S. state-level inference was performed on a data stream of 
cases, hospitalizations, and deaths, with an externally estimated as-
ymptomatic fraction; we estimated mixing/mobility levels, underre-
porting for symptomatics, and the IFR. The state-level analyses 
presented by Unwin et al. (66) and Monod et al. (67) performed in-
ference on a data stream of cases, mobility, and deaths, with an ex-
ternally estimated IFR; they estimated age-pair contact rates and 
underreporting for infections. Certainly, both approaches’ results are 
sensitive to the external estimates used. The combined effect of under-
reporting and asymptomatic infection (Unwin’s infection ascertain-
ment ratio defined as the number of reported cases divided by the 
total number of infections) has similar estimates whether using our 
approach or Unwin’s—0.58 (here) and 0.51 (Unwin) in RI, 0.43 and 
0.38  in MA, and 0.59 and 0.51  in PA. However, the 1 June 2020 
attack rates estimated with these two approaches differ by factors of 
two or three—4.1% (here) and 7.5% (Unwin) in RI, 5.0 and 11.2% in 
MA, and 1.5 and 4.4% in PA—suggesting that the external estimates 
of IFR and the asymptomatic fraction play a large role in attack rate 
estimation. Comparing our attack-rate estimates to those of Monod 
(through late Oct 2020), we see estimates of 10.9% [our method 
(68)] and 11.0% [Monod et al. (67)] in RI, 8.2 and 13.0% in MA, and 
6.8 and 6.6% in PA. For MA and RI, these late-October estimates are 
not consistent with U.S. Centers for Disease Control and Prevention 
(CDC)’s commercial laboratory seroprevalence survey (63) (about 
5% in RI, 4% in MA, and 7% in PA), or the CDC blood donor survey 
(64) seroprevalence estimates (4% in RI, 5% in eastern MA, and 5% 
in central/southwestern PA). The CDC results need to be evaluated 
in the context of rising and waning seroprevalence, which may result 
from a high assay threshold and/or not accounting for antibody 
waning in seroprevalence estimates (69, 70).

Our data and inference support a changing contact pattern in 
May/June 2020, with much higher mixing levels for the 10 to 29 age 
group in summer than in spring. This contact pattern was not ex-
plicitly tested by Monod et al. (67), although they did find that the 
20 to 49 age group was the primary driver, at a national scale, of 
transmission in summer and fall 2020; the influence of the 20 to 49 
age group on transmission appears to be small in RI, MA, and PA as 
these states did not have rebound epidemics in summer 2020. De-
spite differing approaches as to which quantities are treated as data 
and which ones are estimated, our study and Monod’s share a point 
of consistency in the importance of the 20 to 29 age group to main-
taining transmission in summer 2020.
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Comparison of fatality rate estimates
In our analysis, IFRs are estimated to be higher than in recently 
summarized analyses (33–37), and the differences are particularly no-
table in the 50 to 79 age group where we infer IFRs that are 1.5 to 2.5 
times higher than previous estimates. Our IFR estimates for the 20 to 
49 age groups are most similar to those presented by Brazeau (37), and 
the all-ages IFRs in MA and RI are as high as some of the highest esti-
mates (9) of the study of Levin et al. (34). These high estimates may 
correspond to a high degree of exposure heterogeneity in the studied 
epidemics. As it is known that RI and MA had substantial outbreaks in 
elderly care facilities in the spring, it is likely that this focused epidem-
ic passed through a more susceptible subpopulation (individuals who 
cannot fully quarantine or distance because of needing routine care) 
that is also more likely to progress to severe clinical outcomes including 
death. This was observed in New York City, where an infection-weighted 
IFR of 1.39% was estimated for the first several months of the epidem-
ic in 2020 (38). When weighting our estimates by the number of infec-
tions in each age class (this is a particular epidemic’s IFR as opposed to 
the IFR for a randomly selected person in the population), we obtain 
IFRs of 2.24% for RI and 1.53% for MA for spring 2020.

A second possible explanation for the high estimates of IFR and 
sCFR presented here is that RI, MA, and PA reported COVID-19 
death counts similar to excess death counts for the same period. This 
implies that in locations where deaths were undercounted, the ex-
cess death counts are closer to the true COVID-19 death counts. A 
third possibility (for PA only) that would influence both IFR and 
attack-rate estimates is that both case and hospitalization data were 
underreported. A 1% symptomatic attack rate in PA over the first 
6 months of the pandemic is lower than expected, but the underre-
porting fraction estimate ( = 98.9%) in our analysis is likely wrong 
if hospitalization numbers were also underreported. The reporting 
rate  determines the attack-rate estimates; if  is overestimated, 
then the IFRs presented here would also be overestimated. This may 
be the reason that our estimated fatality rates for PA appear to be 
unreasonably high and that the PA attack-rate estimate through 
31 August 2020 is so low.

The sCFRs inferred for RI, PA, and MA (estimates range from 3.2 
and 4.4%) are in the higher ranges of previously reported estimates 
(7–11, 71, 72), suggesting that the individuals infected during the 
spring wave and summer lull were more likely to progress to symp-
toms than the average person in the population. Again, this is consis-
tent with the observation that children were the least exposed in the 
spring and summer months, and thus, the exposed population was 
both more likely to progress to reportable symptoms and more likely 
to progress to severe clinical outcomes.

In late 2020, a counterproductive diversion in policy discussion 
was the consideration of an epidemic management approach that 
would encourage younger/healthier populations to become infected 
(73). Our state-level analyses indicate that older individuals are not 
able to fully isolate during lockdown periods. This makes a “protecting 
the vulnerable” strategy unworkable, as vulnerable individuals will 
still require essential care and contact with other humans. Any policy 
aiming to protect vulnerable individuals while allowing the remain-
der of the population to mix and move freely would almost certainly 
fail at preventing viral introduction from the general population 
into vulnerable populations (74). In our analysis, during the March/
April lockdown period, the ≥80 contact rate was the highest or 
among the highest when comparing across age groups (Fig. 5). As 
individuals in the oldest age groups are relatively unaffected by 

lockdown, the best way to protect these (and other) vulnerable pop-
ulations is to limit the spread in the general population.

Limitations and recommendations
One key limitation in using data streams rooted in symptomatic 
case reporting is the inability to infer asymptomatic infection rates. 
These rates must be estimated independently from cohort follow-up 
or contact tracing. They are susceptible to bias in the younger age 
groups if children test negative because of low viral loads and are 
classified as negative rather than asymptomatic. Studies are also 
susceptible to design errors when the protocol or data collection does 
not allow for differentiation between presymptomatic and asymp-
tomatic individuals (section S1.7). Although most studies have 
converged on an age-adjusted “60% symptomatic” number, age-
specific estimates come with less certainty and differences in diag-
nostic tests and testing protocols have resulted in substantial 
variation in these estimates (fig. S1).

The data streams we present here do not allow us to evaluate the 
degree to which the epidemic runs through specific subpopulations 
(e.g., congregate care settings and college students) that are more 
vulnerable, susceptible, or transmit more easily. To measure vari-
ability in transmission and susceptibility from state-level data, we 
suggest including these common data types into the same databases/
datasheets currently maintained by all state DOHs as part of routine 
COVID reporting: (i) contact counts and positivity rates from con-
tact tracing efforts, (ii) positive/negative case counts and inclusion 
criteria from asymptomatic random screening programs (75), and 
(iii) a datasheet keyed on a categorical variable of “infection source 
event” with confirmed patient counts, ages, and dates of reporting 
listed (76, 77). Among these data types, the asymptomatic screening 
efforts are likely the easiest to turn into a standardized daily data stream 
as samples taken from screening programs pass through the same 
sample/data processing pipelines as samples from symptomatic patients. 
These data would also allow for real-time tracking of prevalence (78).

We cannot exclude the possibility that our reporting rate esti-
mate () is incorrectly estimated because of model misspecification 
or data integrity problems. In addition, symptomatic reporting is likely 
to vary by age (38) and by availability of testing, making a single  
estimate a coarse descriptor of individuals’ reporting tendencies. 
This is the reason that validation with seroprevalence estimates is 
crucial for estimating underreporting in public health surveillance 
systems. The entire inferential framework for  assumes that hospi-
talization data are complete, that death data are complete, and that 
various measures of hospitalization duration have been independently 
estimated or are identifiable from our data. The biggest leap in these 
assumptions comes in the completeness of hospitalization data, as 
both MA and PA have relied on hospitalization data streams that 
are partially complete. This is a reminder, during the pursuit of rapid 
results with prepackaged epidemiological tools and dashboards, to 
carry out the somewhat slower due diligence of understanding the 
sampling frames of all data streams included in an analysis. If 
hospitalization numbers are underreported in other states as well, 
then national-level analyses of hospitalization numbers would need 
to acknowledge and account for this.

Last, we were not able to use any published contact matrices for 
the lockdown period, as these data did not exist for our populations 
at the time our work was being done (41–45). Thus, we used nine 
independent mixing rates for the nine age classes in our model (and 
assumed that contact between two age groups is proportional to 

D
ow

nloaded from
 https://w

w
w

.science.org on A
ugust 06, 2022



Wikle et al., Sci. Adv. 8, eabf9868 (2022)     26 January 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 15

their two mixing rates); the data are unlikely to have enough resolu-
tion to infer 81 independent mixing parameters.

Through 2019, infectious disease epidemiology was neglected in 
the United States for more than half a century because of our status 
as a developed country with a secure food supply, a sanitary water 
system, few persistent disease vectors, high public hygiene stan-
dards, and ample supply of therapeutics and vaccines. We were not 
prepared in 1981 when the HIV epidemic was uncovered, and with 
no leadership from the federal government in 2020, we were under-
prepared at the state level for the SARS-CoV-2 epidemic, as few in-
dividuals remained with knowledge from the early struggle against 
HIV. Specifically, the right data systems were not in place at state-
level DOHs to provide consistent and interpretable data streams 
allowing epidemiologists to make real-time assessments on epidemic 
progression and success of control efforts. State-level systems in the 
United States require more funding from the federal government or 
centrally designed (and funded) reporting tools from the Centers 
from Disease Control and Prevention that would allow all states to 
consistently report the same high-quality data types. The rationale 
for this systems upgrade would be to advance our surveillance systems 
to those of countries such as New Zealand, Hong Kong, Singapore, 
Vietnam, Taiwan, and South Korea that successfully controlled 
epidemic waves and introductions of SARS-CoV-2.

METHODS
Case data
Eleven data streams were assembled from three state DOH websites 
and data dashboards: (I) cumulative confirmed cases, (II) cumula-
tive confirmed cases by age, (III) cumulative hospitalized cases, (IV) 
cumulative hospitalized cases by age, (V) number of patients cur-
rently hospitalized, (VI) number of patients in ICU currently, (VII) 
number of patients on mechanical ventilation currently, (VIII) cu-
mulative deaths, (IX) cumulative deaths by age, (X) cumulative hos-
pital deaths, and (XI) cumulative hospital discharges. Data streams 
VI and XI were missing in PA, and X and XI were missing in 
MA. Cumulative hospitalizations (data streams III and IV) in MA 
and PA were reported as a subset of symptomatic cases (via follow-up 
case investigations) and were excluded from the analysis. Reporting 
started on 27 February (RI), 1 March (MA), and 6 March (PA) and 
datasets used in this analysis comprise about 180 days of data 
through 6 September. Age-specific counts often summed up to be 
less than the corresponding total daily counts of new symptomatic 
cases, new hospitalizations, or new deaths. This was common be-
cause of lack of age reporting in some proportion of cases. We 
assumed missing age-structured data to be missing completely at 
random when their sum was less than the total count.

Mobility data
The first set of mobility data is provided by the COVID-19 Mobility 
Network (21) and is derived from users of the Facebook mobile app 
with the location history option enabled, representing approximately 
0.8% of MA, 1.1% of PA, and 1.1% of RI. Each user’s location is 
binned into tiles, approximately 470 m  by 610  m at PA’s latitude. 
These are aggregated by home county and date and reported as the 
fraction of users who remain in one tile for the whole day. Here, we 
report state-level data by weighting these proportions by each coun-
ty’s population, per the U.S. Census’ 2019 estimates. These estimates 
are not adjusted for the demographics of Facebook’s user base.

The second set of mobility data is provided by social distancing 
metrics recorded by SafeGraph (79). The data were derived from 
Global Positioning System (GPS) pings of anonymous mobile de-
vices. A common nighttime location for each device over a 6-week 
period was defined to be the device’s “home,” and daily GPS pings 
were analyzed to determine whether the device exhibited certain 
behaviors including completely staying at home, working part time, 
working full time, etc. The counts were aggregated at the Census 
Block Group (CBG) level, which is the second-smallest geographical 
unit for which the U.S. Census Bureau publishes data. A state-level 
percentage at home fraction can be calculated by dividing the “com-
pletely at home” devices in a state by the total devices in that state; 
however, one step was taken before this calculation as outlined in 
the data analysis methodology for the Stay-At-Home Index provided 
by SafeGraph (80). The step included was a correction for sampling 
bias at the CBG level by resampling with a stratified reweighting method 
described in section S1.5.2 (81).

Mathematical model
A standard age-structured ODE model was used to describe the 
dynamics of SARS-CoV-2 spread in a single well-mixed population. 
The model includes 30 compartments for different clinical states in-
cluding susceptible, exposed, asymptomatic, infected, hospitalized, 
in ICU, and on mechanical ventilation. Multiple consecutive com-
partments are used for most clinical states to reduce the variance on 
length-of-stay in various stages in disease progression. Model dia-
gram is shown as fig. S2, and equations are shown in section S2.

Model parameters fall into several categories including parame-
ters on contact rates, lengths of stay in various clinical states, and 
probabilities of progression from one state to another. Daily 
community-level transmission-capable mixing rates t were inferred 
from the data, while age-specific contact rates for hospitalized indi-
viduals had to be fixed as too little data exist on these parameters. 
Asymptomatic individuals are assumed to be half as infectious as symp-
tomatic individuals [similar to other models’ assumptions (82, 83)].

Lengths of stay and age-specific probabilities of clinical progres-
sion were available from numerous datasets documenting COVID-19 
hospitalized populations (details in section S2, table S1 and https://
github.com/bonilab/public-covid19model). When clinical parameters 
were inferred, their median estimates were typically close to observed 
values in hospital or surveillance datasets. No data were available in 
RI, MA, or PA to infer the asymptomatic fraction for each age group, 
and these were obtained from cohort analyses available at the time 
(see section S1.7) and the inferred age-specific asymptomatic frac-
tions in Davies et al. (24); the Davies fractions were used for the 
final model runs.

Statistical inference
Given the various, and at times incomplete, data sources available 
for each state, we chose a flexible Poisson-Gamma process–based 
likelihood framework to facilitate inference of ODE model parameters 
while accounting for model uncertainty. In particular, the cumulative 
cases, hospitalizations, deaths, and hospital discharge data were as-
sumed to be realizations of conditionally independent, inhomoge-
neous negative binomial processes, with time-varying process rates 
defined by the expected deterministic ODE output. The likelihood 
function for each age-structured data stream is then a product of inde-
pendent, negative binomial increments, with means determined by the 
corresponding age-structured component of the ODE system over 
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each increment. Means for observed new symptomatic cases were 
equal to ODE system predictions multiplied by a symptomatic report-
ing rate constant, and means for observed new hospitalized individuals 
were equal to ODE system predictions. The time from symptoms to 
presentation was fixed at 2.0 days (see section S5.2). Dependence 
across data streams is assumed to be captured by the ODE system. Total 
data streams, summed over all age classes, were viewed as the sum of 
independent negative binomial random variables and are as such 
negative binomial random variables themselves, with mean given by 
the sum of the age-specific means. When both age-structured and total 
data are available, we assume that any missing age-structured data are 
missing completely at random and approximate the joint likelihood of 
the total and age-structured counts by ignoring overdispersion and 
assuming that, conditioned on the total data, the age-structured counts 
are multinomially distributed with probabilities proportional to the 
age-structured ODE means. Data on current hospitalizations, as well 
as current numbers in ICUs, and current intubated individuals were 
modeled using reported weekly totals. The total number of intubated 
individuals, individuals in ICUs (but not intubated), and hospitalized 
individuals (not in ICUs) was each modeled as independent Gaussian 
random variables with means equal to the corresponding totals pre-
dicted by the ODE system and with unknown variances. Additional 
details on the likelihood framework can be found in section S3.

We chose a Bayesian approach to inference, allowing for appro-
priate penalization of time-varying parameters and a combination 
of strongly and weakly informative priors for parameters relating to 
clinical progression of disease. The composite rate parameter, t, 
describing person-to-person contact mixing, is constructed via a cubic 
B-spline, with a random walk prior (penalized regression spline with 
first order differences) on the B-spline coefficients to penalize over-
fitting. In RI and PA, the symptomatic reporting rate  is constructed 
as an I-spline with a similar prior; in MA, it is assumed to be constant 
across time. Additional parameters found within the ODE system, 
including length of hospital stay and proportion of cases needing 
hospitalization within each age class, are given uniform priors with 
bounds determined by expert judgement, while negative binomial 
dispersion parameters are given weakly informative exponential priors 
and Gaussian variance parameters are given conjugate inverse-gamma 
priors. Given these priors and the previously defined likelihood, we 
constructed a Markov chain Monte Carlo algorithm to sample from 
the posterior distribution of model parameters. Block updates for 
parameters were obtained using a random walk Metropolis-Hastings 
algorithm with an adaptive proposal distribution (84). For each state, 
five independent chains were run for 300,000 iterations, with the first 
100,000 samples discarded as burn-in. Convergence was assessed 
qualitatively across the five chains. R and C++ code are posted at 
https://github.com/bonilab/public-covid19model.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abf9868

View/request a protocol for this paper from Bio-protocol.
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