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ABSTRACT

Understanding how individual pollution sources contribute to ambient sulfate pollution is critical for
assessing past and future air quality regulations. Since attribution to specific sources is typically not encoded
in spatial air pollution data, we develop a mechanistic model which we use to estimate, with uncertainty,
the contribution of ambient sulfate concentrations attributable specifically to sulfur dioxide (SO;) emissions
from individual coal-fired power plants in the central United States. We propose a multivariate Ornstein—
Uhlenbeck (OU) process approximation to the dynamics of the underlying space-time chemical transport
process, and its distributional properties are leveraged to specify novel probability models for spatial
data that are viewed as either a snapshot or time-averaged observation of the OU process. Using US EPA
SO, emissions data from 193 power plants and state-of-the-art estimates of ground-level annual mean
sulfate concentrations, we estimate that in 2011—a time of active power plant regulatory action—existing
flue-gas desulfurization (FGD) technologies at 66 power plants reduced population-weighted exposure to
ambient sulfate by 1.97 ..g/m3 (95% Cl: 1.80-2.15). Furthermore, we anticipate future regulatory benefits by
estimating that installing FGD technologies at the five largest SO,-emitting facilities would reduce human
exposure to ambient sulfate by an additional 0.45 ng/m3 (95% Cl: 0.33-0.54). Supplementary materials for
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1. Introduction

Sulfur dioxide (SO;) emissions from coal-fired power plants
are a major source of anthropogenic air pollution (Rowe 1980).
Upon release into the atmosphere, SO, compounds are simulta-
neously acted upon by chemical and physical processes, forming
particulate sulfates (SO3™) which are then transported across
space. Exposure to sulfate aerosols is associated with many
adverse human health outcomes, including decreased lung func-
tion (Ng et al. 2019), increased risk of cardiovascular disease
(Bai et al. 2019b), and lung cancer (Bai et al. 2019a). Sul-
fate also represents one component of fine particulate matter
(PM2.5), regulations for which comprise the most beneficial —
and costly—federal regulations in the United States (Dominici,
Greenstone, and Sunstein 2014). In addition, sulfur dioxide
emissions contribute to acidic deposition (U.S. EPA 2003), and
have been linked to negative radiative forcing, resulting in short-
lived cooling of the climate (Ward 2009; Kaufmann et al. 2011;
Aas et al. 2019). Consequently, assessing the regulatory impacts
of various SO, emissions scenarios on ambient SO?{ concen-
trations may lead to an improved understanding of regional
environmental and public health outcomes.

Importantly, the dependence of air pollution concentrations
on upwind emissions sources suggests that known atmospheric
pollution transport dynamics should be included in the analysis
of spatial air pollution data. The inclusion of process dynamics
is especially important when inferring the effect of power plant

emissions on observed public health outcomes across a large
spatial domain (Zigler, Forastiere, and Mealli 2020; Zigler and
Papadogeorgou 2021). Existing atmospheric pollution analyses
often fall into two camps: numerical models, such as chem-
ical transport models (Stein et al. 2015), plume models, and
their so-called reduced-form hybrids (Foley et al. 2014; Heo,
Adams, and Gao 2016), in which process dynamics are used
to simulate many individual-level trajectories of point-source
pollutants, and phenomenological statistical models which seek
to accurately interpolate regional air pollution concentrations
from a variety of monitoring systems (van Donkelaar et al. 2019;
Guan et al. 2020). Although these models have proved useful,
their utility is limited by the lack of data-driven inference in
the numerical models, and the lack of incorporation of known
mechanistic processes in the statistical models, respectively.

In this paper, we seek to develop a statistical model of yearly-
aggregated SO2™ concentrations attributed to coal-fired power
plant SO, emissions, in which the known physical processes
governing pollution transport directly inform the first and
second-order structure of our statistical model. The advantages
of this modeling approach include its ability to infer process
dynamics and stochastic fluctuations on a time-scale of interest
and to provide reasonable forecasts of future air pollution
levels from spatial data alone. In doing so, we construct a new
class of mechanistic spatial models which allows us to model
spatial SO; ~ measurements based on a dynamic physical model
appropriate for this system.
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In particular, we construct a general class of mechanistic
spatial models from the multivariate Ornstein-Uhlenbeck (OU)
process. These mechanistic models can accommodate spatial
data viewed as either a transient or stationary “snapshot” of a
spatio-temporal process, or as a time-averaged observation of
a space-time process over a finite time interval. Many common
spatial data can be seen as a special case of one of these scenarios.
The models we develop are flexible enough to handle many
linear dynamical systems, and space-time noise is explicitly
included in the OU process construction. Importantly, both the
process dynamics and temporal window of observation dictate
the mean and spatial covariance structure of the model; in
special cases, these resemble familiar specifications of spatial
autocorrelation. These methods are well-suited for our analysis
of the impact of coal-fired power plant sulfur dioxide emissions
on average atmospheric sulfate concentrations across the central
United States; the mechanistic spatial model allows for prob-
abilistic forecasts of average SO2~ concentrations under alter-
native emissions scenarios that are unavailable when using tra-
ditional phenomenological models. Such statistical forecasting
with complete uncertainty quantification promises to advance
current methodology for environmental risk assessment that
relies on deterministic physical-chemical models to predict
pollution under various counterfactual scenarios.

The remainder of the article is organized as follows. In Sec-
tion 2, we provide an overview of the particulate sulfate data
and its connection to coal-fired power plant emissions. We
then present a dynamic physical model of atmospheric sulfate
concentration as a motivating space-time process from which
spatial data are observed. In Section 3, we construct a general
framework for analyzing spatial data from a broad class of space-
time processes, emphasizing how process dynamics and the type
of spatial observation can be leveraged to specify mechanistic
models for spatial data. In Section 4, we analyze the 2011 average
sulfate pollution in the central United States attributed to sulfur
dioxide emissions from power plants. Finally, in Section 5 we
discuss possible extensions to our mechanistic approach for
modeling spatial air pollution data.

2. Atmospheric Sulfate and Coal-Fired Power Plants

Given the known association between exposure to fine particu-
late matter (including sulfate) and a number of chronic diseases

2011 SO, Emissions

® 50k tons
@ 100k tons

SO, (ug/m’)

(a) SO, emissions sources

(Brook et al. 2010), the United States has implemented federal
regulations to limit emissions from sources of anthropogenic
air pollution (Dominici, Greenstone, and Sunstein 2014). Con-
sequently, estimating the effect of such regulation on regional
public health outcomes is a major effort in environmental epi-
demiology. Air pollution concentrations may be heavily depen-
dent on upwind emissions sources, and it is often critical that
the (nonstationary) dependence between pollution sources and
concentrations be accounted for in such an analysis. For exam-
ple, when estimating the causal effect of coal-fired power plant
emissions reductions on Medicare hospitalization rates across
the United States, Zigler, Forastiere, and Mealli (2020) use a
chemical transport model to define a spatial interference net-
work, mapping population centers to the upwind emissions
facilities of greatest impact. In other words, the emissions from
a single power plant propagate across space, impacting health
outcomes across a large spatial extent. Without accounting for
this complex dependence structure, statistical inference on the
environmental and public health impacts of power plant emis-
sions is limited.

With this spatial interference in mind, we analyzed average
2011 sulfate concentrations across the central United States
(Figure 1). Estimated annual average sulfate concentrations
(ug/m?) were obtained from the Dalhousie University Atmo-
spheric Composition Analysis Group, version V4.NA.02 (van
Donkelaar et al. 2019). These data were supplemented with
annual coal-fired power plant SO, emissions totals from the
U.S. EPAs Air Markets Program Database (AMPD) (U.S. EPA
2016; Henneman et al. 2019), as well as with meteorological
data (e.g., average wind velocity, precipitation, etc.) from the
NCEP/NCAR reanalysis database (Kalnay et al. 1996). In
our analysis, we assess the influence of annual sulfur dioxide
emissions totals (Figure 1(a)) and average wind velocity
(Figure 1(b)) on 2011 sulfate levels. We propose a mechanistic
modeling approach to account for the potentially large spatial
footprint of upwind emissions sources. In addition, we provide
probabilistic forecasts of SO~ concentrations under alternative
emissions scenarios, and identify the regulatory policy which
is expected to best reduce human exposure to atmospheric
SO; ™. In order to construct a mechanistic model for spatial air
pollution data, we first present a physical model of the space-
time emissions process.

S04 (ug/m*)

(b) Average yearly wind velocities (10 m)

Figure 1. Average 2011 sulfate concentrations (.g/m3) across the central United States, including (a) coal-fired power plant locations, with point size weighted by total
2011 SO, emissions (in tons), and (b) the 2011 average wind velocities (height = 10 m).



2.1. APhysical Model of Sulfate Concentration

The physical dynamics governing sulfate aerosols can be
approximated with a mechanistic representation of atmospheric
chemical transport. The development of realistic chemical
transport models is a broad and active area of research in
atmospheric chemistry (see, e.g., Seinfeld and Pandis (2016)
for details). However, for the purposes of this analysis, we
consider a relatively simple physical model of sulfate transport
that necessarily sacrifices complexity for increased spatial and
temporal scalability, paralleling recent trends in atmospheric
modeling using so-called reduced-complexity models (Tessum,
Hill, and Marshall 2017). The model characterizes changes
in aerosol concentration as a result of four key processes:
advection-diffusion, atmospheric deposition (dry and wet),
chemical reaction, and emission. These processes can be
specified with a differential equation augmented by a mean-zero
noise process; the addition of uncertainty results in a stochastic
partial differential equation (SPDE).

Let y;(t) = y(si,t) denote the atmospheric SOi_ concen-
tration at location s; € D and time t, where D C R? is
the continuous spatial domain of interest. We assume that the
physical process can be written as

dyi(t) = [(y A+ vi - V = 8) yi(t) + nzi(t) | dt + &(s, 1), (1)

where y A denotes homogeneous spatial diffusion with rate y

2 2
note, A = 24 22 ; advection due to wind is defined
9x?
1

3x3

by the advective derivative v; - V = vy, E)ixl + szaixz’ where
vi = (vx,,Vx,) is the velocity vector at location s;; deposition
occurs at rate §; and 7z;(t) indicates the addition of SOi_ due
to the reaction of the local concentration of SO,, which we
denote as z;(¢). Finally, £(s, ) denotes Gaussian noise, which
represents space-time varying sources and sinks of SOﬁ_ that
are otherwise unaccounted for in the model, such as fluctuations
caused by shifting weather patterns, landscape variability, sulfate
emissions from motor vehicles, etc.

The predominant source of atmospheric SO3~—and the
source of SO~ that we are most interested in analyzing—is
thought to be sulfur dioxide (SO;) emissions from coal-fired
power plants (Massetti et al. 2017). Therefore, we assume that
SO%™ isintroduced to the system through a reaction term which
depends on the local concentration of SO, attributed to coal-
fired power plant emissions. In addition, for computational
convenience we assume that the advection-diffusion process
for SO; is the same as for SOi_. Thus, letting z;(t) denote the
local SO; concentration, and SX; the rate of SO, emission from
a coal-fired power plant located at s;, with an annual emissions
total of Xj, the physical model of SO, concentration is

dzi(t) = [(yA +avi -V —n) zi(t) + X;] dt. (2)

Together, Equations (1) and (2) define a physical model
linking SO, emissions from coal-fired power plants to atmo-
spheric SO~ concentrations. The equations define a reaction-
diffusion system, with randomness introduced via the noise pro-
cess in Equation (1). Notably, the velocity vector v; is assumed
to be constant in time throughout the coupled system; it is the
average 2011 wind velocity vector at location s; (Figure 1(b)).
Although wind velocities exhibit some temporal variability (see
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Section 3 in the supplementary materials for a comparison
with 2011 monthly wind velocities), our analysis ultimately
focuses on annually-averaged sulfate concentrations attributed
to annual SO, emissions, and the assumption of constant wind
allows us to derive a computationally efficient statistical distri-
bution for the annual average sulfate concentration. We discuss
possible extensions to a model with time-varying velocity in
Section 5.

3. Constructing Spatial Models from
Ornstein-Uhlenbeck Processes

3.1. Mechanistic Statistical Models for Spatial Data

The physical dynamics defined in Section 2.1 serve as a scaffold-
ing from which we build a statistical model for the annual sulfate
data. Importantly, the observed sulfate data are spatially refer-
enced, and we seek to define a joint probability distribution in
which the physical dynamics inform the first and second-order
structure of the model. The construction of such mechanistic
models for spatial data may be beneficial to the study of a variety
of scientific systems, as most spatial data can be similarly under-
stood as arising from a spatio-temporal generating process.

When spatial observations are made repeatedly in time,
science-based dynamic spatio-temporal models have been used
to great effect (Wikle and Hooten 2010; Cressie and Wikle
2011), often enabling more accurate probabilistic forecasts
and scientific insights than traditional descriptive models
(Hefley et al. 2017). In contrast, statistical models for explicitly
spatial data—that is, spatially referenced data without temporal
replication—are often chosen without consideration of the
underlying dynamic process. Instead, spatial statistical models
are mostly phenomenological, focused on modeling (a) the
correlation between the process mean and (local) covariates,
and (b) residual autocorrelation through the addition of a
spatial random effect (Banerjee, Carlin, and Gelfand 2004).
The random effect is often chosen to have a Gaussian process
(GP) prior distribution, where the GP covariance is dictated
by the spatial support of the data. Common choices include the
Matérn class of covariance functions for point-referenced spatial
data (cf. Cressie 1993), and conditional autoregressive (CAR) or
simultaneous autoregressive (SAR) covariance structures for
areal/lattice data (Besag 1974; Cressie 1993; Ver Hoef, Hanks,
and Hooten 2018). Although some classes of GP covariance
functions have links to differential equations (see, e.g., Whittle
1954, 1962 and Lindgren, Rue, and Lindstrém 2011), in practice
the predominant consideration when choosing the covariance
of the spatial random effect remains the (spatial) support of
the data. This practice is reasonable when the spatial data
are generated from a process with unknown or nonexistent
temporal dynamics. However, in many scientific systems it is
likely that both the mean structure and observed pattern of
spatial autocorrelation in the data are influenced by a known
space-time generating process.

Consequently, the analysis of spatial data from processes with
well-understood dynamics stands to benefit from more mecha-
nistic modeling approaches, in which knowledge of the process
dynamics implies a natural likelihood model for the data. Hanks
(2017) suggests one approach for constructing mechanistic spa-
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tial models: consider a science-based spatio-temporal process
and find its stationary distribution. In particular, Hanks (2017)
constructs a spatial model for genetic allele data by deriving the
stationary distribution of an asymmetric random walk model
for gene flow. The stationary distribution is a random field
with discrete spatial support and a SAR covariance structure
defined by the (parameterized) random walk model. The result-
ing mechanistic model was able to infer spatio-temporal move-
ment rates from spatial data alone, providing important scien-
tific insight that is unobtainable when using a standard semi-
parametric random effect model. While this approach opens the
door to building spatial models that directly result from spatio-
temporal processes, the processes considered were limited. In
particular, they were not allowed to have time varying noise;
the spatial process was assumed to have reached a stationary
distribution, at which it would continue constant in time.

We develop a set of mechanistic models for spatial data
in which the underlying physical dynamics can be written
as a linear SPDE with space-time varying Gaussian noise. In
particular, the linear SPDE is approximated with a multivariate
Ornstein-Uhlenbeck (OU) process defined over a discretized
spatial domain, S. This model is sufficiently flexible to accom-
modate space-time observations Yy = (Y1(),..., Y, ()
viewed as either a temporal snapshot of the transient or
stationary distribution of the generative process. Furthermore,
our model can be extended to spatial observations of the
process averaged over a time interval [0, T, defined as V1 =
(Vi(D),...,V,(T)), where Vi(T) = %fOT Y;(s)ds. The latter
includes observations of annual average sulfate concentrations,
such as the SO4 observations displayed in Figure 1(a).

In all cases, the underlying linear dynamics play a critical role
in the construction of the spatial model’s mean and covariance
structure. These models are applicable to spatial data from
a wide variety of applications, including many phenomena
which can be approximated with a linear reaction-diffusion
equation, such as point source pollution transport, invasive
species dispersal, and population migration. Due to this general
applicability, for the remainder of this section we present
our methodology for the general class of linear space-time
SPDEs defined by (3). When appropriate, we make explicit
reference to the sulfate pollution system motivating these
methods.

3.2. Approximating a Linear SPDE with an OU Process

In continuous space and time (s € D, t > 0), let ys(t) denote the
process of interest, and consider the class of stochastic processes
defined by

dys(t) = (—As(0)ys(t) + ms(8)) dt + E5(s, 1), 3)

where A4(f) denotes a linear differential operator (e.g.,
advection-diffusion), ms(#) is a reaction term, and &g(s,t)
is a space-time Gaussian noise process. The noise process is
assumed to be white in time and spatially colored, with spatial
covariance denoted by B, which ensures that the process has
a pointwise interpretation (Brown et al. 2000; Lindgren, Rue,
and Lindstrom 2011; Sigrist, Kiinsch, and Stahel 2015; Bakka
et al. 2020). Each component in (3) may be parameterized by

a vector of process parameters, §. For notational convenience,
the explicit parameterization denoted by @ is omitted in the
remainder of this section. In addition, we assume that As and
ms may vary in space, however, they are constant in time.
Equation (3) encompasses a wide class of linear dynamical
systems, including the mechanistic representation of sulfate
transport described in Section 2.1.

Although the continuous-space formulation of (3) is appro-
priate from a scientific perspective, its distributional properties
are challenging to understand. Consequently, it is convenient to
consider a discrete space approximation to (3). Such an approxi-
mation can be constructed by first discretizing the continuous
surface of interest, D, into a finite collection of points, S =
{s1,...,su}, and then approximating the linear operator A with
a matrix operator A, which is defined with respect to S. A
variety of numerical schemes have been developed to facilitate
these approximations, including finite difference (FDM), finite
volume (FVM), and finite element methods (FEM), and the
relative merits and implementation details of each method are
often problem-specific (Versteeg and Malalasekera 2007; John-
son 2009). As a result, we focus our discussion on the distri-
butional consequences of discretizing the space-time process
defined in (3); additional discretization details, including an
example discretization of an advection-diffusion process, can
be found in the supplementary materials and the references
therein.

By moving to discrete space, we can approximate the stochas-
tic process in (3) with a multivariate Itd stochastic differen-
tial equation (SDE). Importantly, the stochastic process is now
defined with respect to the discretization, S, and ys(t), As,
ms, and £g5(s, t) are replaced with their discrete counterparts.
The continuous spatial surface, ys(t), is restricted to an n x 1
response vector ¥, = (Y1r,...,¥nt), where yir = y5,(£), s; €
S. Similarly, the surface of sources/sinks, s, is replaced with
a vector, m = (ms,,...,ms,), and the linear operator Ay is
replaced with its aforementioned sparse matrix approximation,
A. Finally, the space-time varying noise process, £g5(s,t), is
restricted to the discretized space, S. Thus, we replace £5(s, t)
with an nx 1 vector of Gaussian noise, BdW; (i.e., dW is the dis-
tributional derivative of Wy, where W; = (W1(t),..., W, (1))’
is n-dimensional Brownian motion, with W;(t) corresponding
to location s; € S, and B is the Cholesky decomposition of
a spatial covariance matrix defined on §). Substituting these
discrete approximations into Equation (3) gives

dy, = (—Ay, + m) dt + BdW,. (4)

We have approximated the continuous-space process (3) with
a stochastic differential equation (SDE) (4) defined on a set of
discrete spatial locations, S; the process defined by this SDE is
a multivariate Ornstein-Uhlenbeck (OU) process (Uhlenbeck
and Ornstein 1930). The OU process has unique distributional
properties—it is simultaneously Gaussian, Markov, and sta-
tionary (Doob 1942), and the process-dependent drift term in
(4) results in a characteristic mean-reverting property. Conse-
quently, we show that (4) can be used to define probabilistic
models for spatial data observed from linear dynamical systems,
as specified by (3).



3.3. Spatial Models for Snapshot Data

Assume that the initial state, y,), of the OU process (y,) >0 in (4)
is known. Then, for a nonsingular matrix A, (y,)s>0 is a Gaussian
process with solution at time ¢ given by

t
yo=e Ay, + T —e A 'm + f e AIBAW,,  (5)
0

where ¢4’ denotes a matrix exponential and fot e AU BAW,
is a multivariate It6 integral (@ksendal 2003). Consequently, the
transient distribution of the process at time ¢ is

t
Ylyo ~ N <e7AtyO + I - efAt)Aflm,/ eiA(i*S)BB/efA/(tfs)ds) . (6)
0

This result follows directly from (5) (Gardiner 2004).

The transient distribution presented in (6) defines a spa-
tial model for the spatio-temporal process assumed in (3). In
particular, it assumes that the process was observed at some
known time ¢, and that information about the initial state y, is
either known or desired. For example, during the outbreak of an
invasive species (Hooten et al. 2007), the initial state represents
the introduction of the agent into the system, and there may be
known information about this introduction. By incorporating
this information into (6), inference on the process dynamics—
as defined by A, m, and B—may be obtained from spatial data
alone. In some cases inference about y,, such as the location
or time the introduction most likely occurred, may itself be
inferred from spatial data (Hefley et al. 2017).

However, in many systems little is known about the past,
and directly characterizing y,, is difficult or impossible. For such
scenarios, we instead consider the stationary (time-limiting) dis-
tribution of the OU process, which we denote as

Yoo = Mm f(y1yo), @)

where f(y,|y,) is the transient distribution in (6). Assuming
A has only eigenvalues with positive real part, the stationary
distribution of (4) exists (Gardiner 2004) and is given as

Yoo ~N(A7'm,X). (8)
Here X is the solution to the continuous Lyapunov equation,
AY + A’ = BB. )

Solving the Lyapunov equation can quickly become compu-
tationally expensive as the size of A, increases. For example,
the common Bartels—Stewart algorithm (Bartels and Stewart
1972) requires O(n®) floating point operations, although for
low-rank B faster methods are available (Simoncini 2007). In
the case that A = A’ (ie., A is symmetric) and B = o[ (i.e.,
we assume the noise process has negligible spatial dependence
on the discretized space, §), the solution to (9) is simply X =
02A71/2, and the resulting stationary distribution of (4) is
simply

2
Yoo ~ N (A—lm, %A”) . (10)

Thus, in special cases the stationary distribution reduces to a
spatial CAR model with precision G%A.
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Together, the transient and stationary distributions given in
(6) and (8) form a class of mechanistic models for spatial data
observed as a snapshot of a larger space-time process. In this
“snapshot” observation, the time-scale of the space-time process
should be much larger than the observational window in which
the data were collected. For example, both daily sea surface
temperatures and landscape genetics data might be considered
realistic snapshots of their respective generating processes. In
cases where additional information is known or desired about
the initial state of the system, the data should be modeled using
the transient distribution (6) of the OU process. When the initial
state is unknown, or the process can reasonably be assumed to
have reached stationarity, the data should be modeled using the
stationary distribution (8).

3.4. Spatial Models for Time-Averaged Data

Spatial data are often collected and aggregated over a region of
time. For example, the sulfate concentration depicted in Fig-
ure 1(a) is the concentration of SOAZf averaged over a year. The
properties of the OU process allow us to extend our mechanistic
spatial model to time-averaged spatial data. We show that the
length of time over which spatial observations are aggregated
has important implications on the second-order structure of the
model.

Once again, consider the OU process defined by (4), and
assume that y, is a draw from the stationary distribution. Then
(y¢) =0 is a Gaussian process with mean

n(t)=A"'m (11)
and covariance
T A=) s <t
k(s,t) = Cov(y,, y,) = { —AG-DY 4 (12)

where X is the solution to the Lyapunov equation (9). If we
then integrate this Gaussian process over a time window [0, T']
of length T, the resulting time-averaged process (vr) >0 is also
Gaussian, with

1 T
vy = —f y ds ~ N(A_lm, \II) (13)
0

T

The covariance matrix, W, takes the form

1 -1

¥ =_(A'(BB)'A
L (@sB)a)
1 /

- [2(1 — e AT+ AT — e_AT)Z] L (14)
This result is an extension of Doob’s (1942) derivation of the dis-
tribution of displacements for a univariate OU process. Mathe-
matical details are included in Appendix A.

The covariance W of the time-averaged process can naturally
be broken into two component parts,

1 _
@= (A'(BB) '), (15)
and the remainder, E = W — ®. Notice that, from a compu-
tational perspective, E requires both the evaluation of a matrix
exponential as well as the solution to the Lyapunov equation,

two expensive tasks each of order O(n?) flops. In contrast, the
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operator matrix A is often sparse—a common property of most
numerical approximation methods. If we again assume B = o1,
then ® now has the computationally convenient form

o 2 7 —1
® = (A'a)—.
Thus, it is prudent to ask under what scenarios ® accurately
approximates ¥ in (14).

For example, consider a homogeneous diffusion process with
constant rate of decay, §—a relatively simple model for the
dispersal of air pollution about a source, or of species movement
across a landscape. This process can be approximated by the
linear operator A = (yD + 4I), where D is a second-order
central difference matrix and y a constant rate of diffusion. For
spatial data averaged over a given interval of time, [0, T], how
well does ® approximate the covariance matrix ¥ in (13)? In
this case, we show (Appendix B) that

(16)

|IE|l, = ||¥ — ®||, < (1—e°T). (17)

1
T25%
For large § T, the remainder E goes to zero in the L, norm, and
we have ¥ =~ &. Thus, ® is an appropriate substitute for ¥
when either the observation length T or the rate of decay &
are large. More generally, [|E[[; — 0as T — o0, and ¥ is
well-approximated by @ for any aggregated space-time process
in which T is sufficiently large to allow for repeated turnover
of the system dynamics. In such scenarios, the approximated
covariance @ (16) is in the form of a SAR model with precision
matrix proportional to A’A.

3.5. Summary of OU Spatial Models

The proposed class of mechanistic spatial models are applicable
to spatial data observed from a variety of dynamical systems.
These models are especially useful for data observed from sys-
tems that are well-approximated by (locally) linear systems of
equations, such as the reaction-advection-diffusion equation
(potential applications include invasive species growth, popu-
lation migration, pollution transport, cellular morphogenesis,
etc.). After approximating these systems with a multivariate OU
process, we obtain a familiar Gaussian process framework for
modeling spatial data.

This approach has two main advantages over existing phe-
nomenological spatial models. First, the underlying physical
processes determine the spatial model’s mean and covariance
structure, implying that inference may be obtained on impor-
tant components of the space-time dynamics from spatial data
alone. This is especially useful for such systems where it is
infeasible to observe spatial observations repeatedly in time.
Second, the model is flexible enough to be used with three
types of spatial data: observations made over a short temporal
time frame (i.e., “snapshot” data) from either the process’s tran-
sient or stationary distribution, and time-averaged spatial data
assumed to be observed after the process has reached station-
arity. As demonstrated, the temporal support of the spatial data
has important consequences on the covariance structure of the
model. In special cases, snapshot observations can be modeled
with a Gaussian process with a CAR covariance structure with
precision matrix proportional to the (sparse) matrix operator A,

while the covariance structure for time-averaged observations
reduces to a SAR specification with precision proportional to
A'A.

4. Analysis of Atmospheric Sulfate

We now apply this novel class of mechanistic spatial models
to the 2011 annual sulfate data introduced in Section 2. To
begin, we approximate the coupled, mechanistic representation
of SOi_—SOZ in (1, 2) with an OU process (4) discretized
on a 70 x 116 regular grid (cell area ~ 250 km?). Letting y,
and z; denote the vectorized SO4%~ and SO, concentrations
resulting from coal-fired power plant emissions, the discrete-
space process is defined by

y; = [-(yD+ aC+ 8Dy, + nz| dt + cdW,,
2zt = [—(yD+ aC+ nl)z; + BX] dt.

(18)
(19)

Here, —(y D + «C) is the finite volume method approximation
of an advection-diffusion process caused by wind, where D is
a second-order central difference matrix and C is a first-order
upwind discretization, with edge flux assigned the interpolated
2011 average wind velocity (height = 10 m). See the supple-
mentary materials for more discretization details, including a
sensitivity analysis of the FVM grid size.

From a meteorological perspective, y D represents transport
due to sub-annual wind variability, while & C denotes advection
due to annual wind velocity. As before, § is the rate of SO~
deposition, while 7 is the rate at which SO, attributed to coal-
fired power plants (z;) reacts into SO?{. Thus, (18) corresponds
to the SDE in (4), with A = (yD + «C + 8I), m(t) = nz;,
and B = o1. The coupled (deterministic) differential equation
(19) explicitly links coal-fired power plant emissions of SO,
(BX) to the sulfate concentration, y,, through a similarly defined
advection-diffusion process. Notably, the two processes (18, 19)
are linked through the reaction of SO, emissions into SO~
at rate 1. An alternative model, driven by spatially correlated
Brownian motion BdW;, where B is the Cholesky decompo-
sition of a Matérn covariance matrix defined on S, was also
considered. However, when assessed both qualitatively and with
DIC, the model with negligible spatial dependence (i.e., B = oI)
was found to have a superior fit to the data

The 2011 observations used in our analysis are of annual
average sulfate concentrations. Given the speed at which pollu-
tion transport occurs (Seinfeld and Pandis 2016), it is ill-advised
to consider such data as a temporal snapshot. Instead, the time-
averaged spatial model presented in Section 3.4 is an appropriate

model for these data. Let Vr = % fOT y,dt denote the averaged
process over time T (in years). Similarly, let

Zyx = lim z; = (yD+aC+nD ' (BX)  (20)

t—00

denote the steady-state solution of the deterministic SO, process
defined in (19), as determined by process parameters, 6, and
the known SO, power plant emission levels, X. Then, V1 may
be appropriately modeled via the time-averaged mechanistic
model (13),

VT ~ N(”’(a;X)a 20) > (21)



where

n®,X) = A, (n Zgx) (22)

and

o2
Ty = = (4g'49) 7", (23)
This model is over-parameterized, as both y and § (com-
ponents of Ag) control the spatial smoothness of the process.
However, the rate of atmospheric deposition of SO is quite
fast (i.e., less than a week (Seinfeld and Pandis 2016)), and so
we fix § at 50. With a time scale of T = 1 year, this implies a
rate of turnover consistent with the known process (Seinfeld and
Pandis 2016). Thus, our mechanistic model for a complex space-
time process—annual average SOi_ concentrations attributed
to coal-fired power plant emissions of SO,—has been reduced
to a conveniently simple model, a familiar Gaussian process with
mean p(@,X) and SAR precision matrix E;l defined via the
sparse matrix operator Ag and the vector of SO, power plant
emissions, X.

4.1. Inference

We constructed a Markov chain Monte Carlo (MCMC)
algorithm to sample from the posterior distribution of model
parameters, given the observed 2011 SO~ concentrations
and coal-fired power plant emissions data. Updates for all
model parameters except § were obtained using a random walk
Metropolis step, with likelihood as defined in (21) and priors
given in Table 1. For §, a full conditional Gibbs update was used.
Five chains were run with randomly selected starting values,
and each chain was run for 150,000 iterations, with the first
25,000 samples discarded as burn-in. Convergence was assessed
qualitatively across the five chains.

Posterior mean estimates and 95% equal-tailed credible
intervals are included in Table 1. Because (1) is a simple
approximation to a complex process, not all parameter estimates
have a clear scientific interpretation (e.g., 8). However, some
general trends can be inferred. The estimated rate of sub-
annual wind transport, y = 1535, is much larger than the
rate of advection due to annual average wind velocity, & = 0.44,
implying that sub-annual variability in the wind field dominates
observed SO~ transport averaged over a year. Furthermore,

Table 1. Parameter estimates for atmospheric SOﬁ_ analysis.

Parameter  Interpretation 0~ E@]Y) 95% Credible Prior
interval

y Rate of sub-annual 1535 (1340, 1765) Half-normal
wind transport

o Rate of annual 0.44 (0.01,1.63) Half-normal
wind transport

n SO; — 504217 0.46 (0.32,0.62) Exponential

B Proportional rate of 418 (3.99,4.48) Half-normal
SO, emission

o? B.M. process 25000 (19000, 32500)  Exponential
variance

) Deposition of NA NA Fixed at 50
503~

NOTE: Unit of time T = 1 year.
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the estimate 7 = 0.46 implies that the SO, process acts as a
smoothed source of SOff , centered about power plant locations.
Finally, given the estimates of  and &, 6% = 25,000 implies that
the marginal variances of the averaged SO~ process (i.e., the

marginal variances of > 4 from (21)) range from approximately
0.02 to 0.1.

A qualitative comparison of the observed 2011 data with the
estimated mean annual SO2™ concentrations attributed to SO,
emissions (Figure 2), calculated as

V= Aé_l (H Z,

0 = E@0|V), (24)

,X)’
provides additional insight regarding the inferred pollution
dynamics. Recall that our dynamical system represents the
annual average concentration of SOﬁ_ (Vr) due to SO,
emissions from coal-fired power plants (X). All other sources of
SOy are assumed to be captured in the random noise process in
(18). Thus, a comparison of the observed 2011 average sulfate
concentrations against the estimated mean surface of sulfate
pollution due to power plant emissions, V, can be used to both
highlight geographic areas where observed SO3 is likely due to
power plant emissions, while at the same time identify areas in
which observed SO;~ can most likely be attributed to alternative
emissions sources.

For example, we see that the estimated mean SO3™ attributed
to SO, power plant emissions (Figure 2(a)) is highest in the
Ohio river valley, with a similar pocket of increased SOi_ in
the Southeast. These estimated regions of high SO~ exposure
correspond to the locations of the largest SO, emitting power
plants in the country (Figure 2(c)). Our model also identifies
areas where the observed 2011 SO?{ concentrations are most
likely due to sources other than power plant SO, emissions,
particularly along the Mississippi River and the Gulf Coast. We
hypothesize that the unexplained SO~ in these areas is largely
due to sulfur dioxide emissions from shipping traffic and heavy
industrial activity (Mostert, Caris, and Limbourg 2017). Addi-
tional differences between the estimated and observed SO;{
concentrations can be attributed to random variation in SO;~
sources and sinks, which are included in the estimated covari-
ance structure of our model.

For illustrative purposes, we compared the fitted model with
three alternatives (see the supplementary materials for more
details): (a) a time-averaged spatial model (13) with sulfur diox-
ide power plant emissions now included as a direct source of
SOi_ (i.e., no coupling with SO,; BX replaces nZ in (22));
(b) a stationary “snapshot” model (8) with the same coupled
SO,-S04 process as (18); and (c) a phenomenological spatial
model, where the mean annual sulfate is modeled as the sum of
weighted bivariate Gaussian functions centered at power plant
locations, with the weight of each Gaussian function propor-
tional to the facility’s annual emissions total, and the covariance
is modeled as a simultaneous autoregressive (SAR) process.

Model fit was assessed based on the deviance information
criterion (DIC, Spiegelhalter et al. 2002), along with a qualita-
tive assessment of posterior predictive draws from the process.
The simplified process model (Alternative 1, DIC = —47,380),
the snapshot model (Alternative 2, DIC = —43,140), and the
phenomenological model (Alternative 3, DIC = —32,910) were
found to be inferior to the time-averaged model with coupled
$0,-S0;™ (DIC = —47,790).
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SO, (ug/m’)

2011 50; Emissions|

S0, (ug/m’)

SO, (ug/m’)

0.05 River'Valjey

(a) Estimated mean SO,.

(b) Standard deviation.

(c) Observed 2011 average SOq4.

Figure 2. A comparison of (a) the estimated mean 5012( from power plant emissions and (b) the standard deviation of the estimated mean 504217 with (c) the observed

average 2011 sulfate concentrations.

(a) Original model.

(c) Alternative 2.

7504 (ug/m?)

(b) Alternative 1.

SO, (ug/m’)

(d) Alternative 3.

Figure 3. Simulated realizations from the (a) time-averaged model with coupled SDE (the original model), (b) time-averaged model with uncoupled SDE (Alternative
1), (c) snapshot model with coupled SDE (Alternative 2), and (d) phenomenological model with SAR covariance (Alternative 3). Compared with the observed sulfate

concentrations, the time-averaged SOZ—SOﬁ_ model (a) performed best.

Similarly, a visual comparison of spatial fields sampled
from the posterior distribution of each model (Figure 3)
reveals the superiority of the time-averaged, coupled system.
When compared with the observed 2011 sulfate concentrations
(Figure 2(c)), the snapshot and phenomenological models
(Alternatives 2 and 3) have misspecified error structures
(Figures 3(b and d)), while the uncoupled process model
(Alternative 1) has a problem with scale (Figure 3(b)). In
contrast, the time-averaged model with joint SO,-SO;~
matches the observed sulfate surface in both scale and spatial
smoothness pattern (Figure 3(a)). These results indicate that (a)
the temporal support of the data (in this case, annual sulfate
concentrations) should be carefully considered when choosing
an appropriate spatial model, and that (b) careful effort should
be spent verifying that the key dynamics of the underlying
scientific process are included in the OU process construction.

4.2, Estimating Human Exposure to soﬁ—

An important advantage of mechanistic models for spatial data
are their ability to provide probabilistic forecasts under alterna-
tive process scenarios. This is especially useful when assessing
the regulatory impacts of power plant emissions on observed
air pollution, which is a task traditionally left to determinis-
tic physical-chemical models with limited ability to character-
ize uncertainty. For example, flue-gas desulfurization (FGD)
technologies are used to remove (i.e., “scrub”) SO, from coal-
fired power plant emissions. Given the known impacts of SO~
on human health (see Section 2), we estimate the population-
weighted reduction in exposure to ambient sulfate attributable
to FGD systems, and we consider which power plant facilities
should be targeted with FGD systems in order to best reduce
the overall human exposure to SO ™.



Five Largest Emissions Sources

2011 SO, Emissions

® 50k tons
@ 100k tons

§

S0, (ug/m?)

(a) Top five SO, sources (tons/year).

Kyger Creek, OH (143k tons)
Muskingum River, OH (104k tons)
Walter C. Beckjord, OH (91k tons)

E.C. Gaston, AL (92k tons)

Clifty Creek, IN (74k tons)

-0.2 0.0
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E.C. Gaston Electric Generating Plant

|- —0.04

— —0.05

)

— —0.06 ™,
— —0.07

— —0.08

SO, (ug/m

— —0.09

— —0.10

— -0.11

(b) Expected decrease in SO4 after srubber.

0.2 04

Forecasted Reduction in Exposure

(c) Probabilistic forecasts of the average reduction in human exposure to SO4 among
five intervention scenarios; ( - ) denotes 2011 emissions totals (before FGD reduction).

Figure 4. Aregulatory assessment of FGD scrubber intervention on annual SO‘Zf exposure among the top five SO, emitting facilities of 2011.

As an example, consider the five largest power plant facilities
from our 2011 analysis (Figure 4(a)), based on the total amount
of SO, emitted per facility. The inferred process dynamics from
the fitted model (see (20) and (21)) can be used to create
probabilistic estimates of the expected decrease in 2011 SO3~
concentration if an FGD scrubber had been in place at each
facility. Let X} denote the decrease in SO; emitted from facility i
if an FGD scrubber had been in place in 2011. Using parameter
samples from the posterior, 0% ~ 7(8]Y), we can simulate
sample surfaces of the reduction in 2011 SO3 ™ after FGD scrub-
ber implementation at facility 7,

VX~ N (u(o<k),x;?‘), ):g(k)) , (25)
where u (0 (k),X;‘) and X, are as defined in (21). For example,
assuming a (conservative) 80% reduction in SO, emissions
occurs after FGD scrubber implementation, Figure 4(b) shows
the forecasted mean decrease in SO3™ attributed to the E.C. Gas-
ton electric generating facility, calculated from 2000 simulated
SO; ™ surfacesas V; = 5o ) f/fk).

The utility of these forecasts is especially useful when assess-
ing regulatory interventions. Given possible resource limita-
tions and the cost of installing FGD technologies, it is impor-
tant to identify: (a) the reduction in human sulfate exposure

attributable to existing FGD systems, and (b) the order in which
untreated facilities should be targeted for FGD implementation.
In 2011, FGD technologies were in place at 66 out of 193 power
plants. Using draws from (25) and gridded 2010 U.S. popula-
tion density data, we estimate that existing FGD technologies
reduced 2011 population-weighted exposure to ambient sul-
fate by 1.97 ug/m> (95% credible interval (CI): 1.80-2.15). In
addition, we estimate that installing FGD technologies at the
five largest SO2-emitting facilities (Figure 4(c)) would reduce
human exposure to ambient sulfate by an additional 0.45 j.g/m?
(95% CI: 0.33-0.54). Figure 4(c) suggests that adding scrubbers
to the Kyger Creek facility should be a regulatory priority, as
it results in the largest reduction in human exposure to SO3~
within the considered spatial domain, followed by the next four
largest SO, facilities. However, despite emitting approximately
twice as much SO; as Clifty Creek, its mean forecasted reduction
in exposure due to FGD installation is about 1.5 times larger than
at Clifty Creek. Thus, intervention at Clifty Creek may have a
larger epidemiological footprint than its emissions total would
initially indicate. We are happy to report that, of the facilities
still in operation in 2020 (Clifty Creek, E.C. Gaston, and Kyger
Creek), all three have FGD technologies in place to reduce SO,
emissions (U.S. EPA 2016).
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5. Discussion

Models for spatial data are most often phenomenological, with
a regression-based mean structure, and spatial autocorrelation
modeled with a semiparametric random effect. This work pro-
poses a new class of mechanistic models for spatial data that
are constructed from OU processes. By first approximating the
process with a discrete-space SDE, appropriate probability mod-
els can be constructed for spatial data viewed as (a) a temporal
snapshot of the process, or (b) a time-averaged observation
from the process. These models are versatile, and imply that
inference on process parameters and probabilistic forecasts from
transient and stationary space-time processes can be obtained
from spatial data alone. As demonstrated in our analysis of 2011
SOi_ pollution and its relationship to sulfur dioxide emissions,
these spatial models are especially useful for applications in
which regulatory policy must be assessed.

It is important to compare the relative merits of our SOi_
pollution model against alternatives, including those more
commonly found in atmospheric science. Our methodology
is inspired by the rich history of mechanistic models for air
pollution, including chemical transport models (Stein et al.
2015), plume models, and their so-called reduced-form hybrids
(Foley et al. 2014; Heo, Adams, and Gao 2016). These models
include detailed components for chemical transport, deposition,
and reaction across three-dimensional space and across time,
and are typically used to assess point-source pollution via the
simulation of many individual-level trajectories (Henneman
et al. 2019). This level of detail and model complexity is espe-
cially powerful when simulating air pollution concentrations
and evaluating pollution sources on a small geographic or
temporal extent. However, the large computational burden and
lack of data-driven inference limits the utility of such models
when assessing aggregate data over large spatial and temporal
regions (Henneman et al. 2019). In contrast, our statistical
model is directly tailored to SOF~ pollution aggregated over
space and time, and we view its ability to infer (simplified)
process dynamics and stochastic fluctuations on the time-scale
of interest as its key advantage.

As shown in Section 4.2, one advantage of our mechanistic
model over existing statistical models for spatial data is its
ability to provide probabilistic forecasts and uncertainty quan-
tification for systems with varying initial conditions. This is
especially useful when modeling systems directly impacted by
human intervention, such as air pollution resulting from coal-
fired power plant emissions. Because of the known relationship
between sulfate pollution and human health, one interesting
application of this methodology is as a model of spatial treat-
ment interference (see Zigler and Papadogeorgou 2021 and
Karwa and Airoldi 2018). For example, a causal analysis of the
effect of FGD scrubber implementation on county-level human
health outcomes requires a mapping of the treatment at power
plant facility i to all downwind population locations. Existing
methodologies often seek to define such “exposure mappings”
via static networks relating treatments to outcomes (Aronow
and Samii 2017; Karwa and Airoldi 2018; Zigler, Forastiere, and
Mealli 2020). However, given our knowledge of the physical
system relating SO, emissions to SOi_ concentrations and our

model’s ability to infer these dynamics, our mechanistic model
may be a preferred specification of treatment exposure. We plan
to explore the utility of this model as an exposure mapping,
assessing how uncertainty and the presence of environmental
confounders may be incorporated into existing causal inference
methodology in the presence of interference.

Finally, the connections between the continuous space SPDE
and discrete space SDE introduced in Section 3.2 presents a path
for future development of mechanistic spatial models. Broader
classes of SDEs, including alternative mean-reverting processes
and models driven by Lévy processes besides Brownian motion,
may result in probability models for spatial data from a much
broader class of space-time systems. In particular, a stationary
process that allows for periodic fluctuations in the mean would
allow for a larger class of mechanisms to be modeled, including
the addition of seasonal wind patterns in our model of atmo-
spheric sulfate. Although we view discretization as an essential
computational procedure for these mechanistic spatial mod-
els, additional connections between the implied spatial models
constructed from the OU process and continuous space-time
processes such as those presented by Brown et al. (2000), Brix
and Diggle (2001), Sigrist, Kiinsch, and Stahel (2015) and Bakka
et al. (2020) may prove fruitful in improving our understanding
of the appropriateness of certain families of covariance functions
for spatial data.

Appendix A: Derivation of the Time-Averaged OU
Process

The result follows from the well-known property (Doob 1942) that the
integral of a Gaussian process (Y¢)¢>0 with mean p(¢) and covariance

k(s, t) is itself a Gaussian process, where V1 = fOT Ysds has mean

T
E(Vr) = /0 u(s)ds (A.1)

and variance
T pT
var(Vp) = / / k(s, t)dsdt. (A.2)
0 0

Thus, for the space-time OU process defined by (4), with u(t) and
k(s,t) given in (11) and (12), we have

T T
/ w(s)ds = / A" mds = TA 'm, (A3)
0 0
and
T pT
/ / k(s, t)dsdt
0 0
T t , T
=/ (/ T4 <t75)ds+f eA(St)):ds) dt (A.4)
0 0 t

T /
_ / (2(1 — e AT AT a - e*A(T*‘))):) dt (A5)
0

T (E(A’)—l +A_1):> — I - e ATy 2

—A2(1 - ANy, (A.6)
Finally, from the Lyapunov equation (9) we see that
-1
(z @A)l 4a! ):) - (A’(BB’)*1A> (A7)

and the result follows.



Appendix B: An Error Bound for the Time-Averaged
Covariance

Let A = (yD + 8I) be an FDM or FVM approximation to a homoge-
neous diffusion process (rate of diffusion y) with rate of decay 8. Then
A is symmetric, and
—1 —AT) 43
Under either periodic or zero flux boundary conditions, the diffusion
operator matrix, Dyxy, is (a) symmetric with real elements, and (b)
weakly diagonally dominant. Thus, by the Gershgorin circle theorem,
the eigenvalues 1; are all real and nonnegative, with A(,) = min; ; =
0. Let A be a diagonal matrix with A; = A;. Factorizing D into its
canonical form gives D = UAU’, where U is the square n X n matrix
whose ith column is the eigenvector u; of D. Thus, A can be factorized
as
A=yD+8I=UVU, (B.2)

where V is a diagonal matrix with v; = Vj; = yA; + 8. Note that
V(n) = ]/)»(n) + 8 = 6. Then,

1Bl = Il @ = ATy A (B3)
= Iz U - VYU, (B.4)
<INV Rl @ = VIVl B9)
=g @ =DV (B.6)
= %(1 — 0T, (B.7)

The final equality uses the fact that %(I — ¢ VT)v=3 is a diagonal
matrix with ith diagonal, (1 — e~ viTy / (T? v?). This function is decreas-
ing in v;. Thus, ||%(1 —e Vhyy3), = ﬁ(l — 9Ty,

Supplementary Materials

The supplementary materials include a sensitivity analysis of the discretiza-
tion grid size, details on the numerical approximation of the differential
operator, and a description of the three alternative models discussed in
Section 4.1, as well as R code which replicates the results of this analysis.
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