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a b s t r a c t

We propose a flexible model for a partially migrating species,
which we demonstrate using yearly paths for golden eagles
(Aquila chrysaetos). Our model relies on a smoothly time-varying
potential surface defined by a number of attractors. We compare
our proposed approach using varying coefficients to a latent-
state model, which we define differently for migrating, dispers-
ing, and local individuals. While latent-state models are more
common in the existing animal movement literature, varying
coefficient models have various benefits including the ability to
fit a wide range of movement strategies without the need for
major model adjustments. We compare simulations from the
models for three individuals to illustrate the ability of our model
to better describe movement behavior for specific movement
strategies. We also demonstrate the flexibility of our model
by fitting several individuals whose movement behavior is less
stereotypical.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Movement behavior within species is often highly variable across individuals and years. While
ome animal populations follow similar migratory trajectories or travel in groups, many display
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partial migration, meaning seasonal migration is observed only in a fraction of individuals in the
population (Chapman et al., 2011). Non-migratory strategies include residential (i.e., sedentary),
nomadic, and dispersal behaviors (Mueller and Fagan, 2008). Current inference frameworks for
partially migrating species require researchers to first define explicit movement strategies exhibited
by the species (e.g., Fullman et al., 2021; Poessel et al., 2016). Researchers then classify individual
paths as one of the defined strategies using methods based on spatially explicit measures or
model selection (Cagnacci et al., 2016). Classification is often followed by descriptive statistics
for each movement strategy or interpretation of statistical models formulated for each movement
strategy (Fullman et al., 2021).

Golden eagles (Aquila chrysaetos) display partial migration (Poessel et al., 2016). Understanding
he yearly movement strategies of golden eagles is important for conservation and management of
he species. Golden eagles’ high mobility, for example, carries individuals across political bound-
ries, forcing management efforts for the same individuals to be shared by multiple governing
odies (Brown et al., 2017).
Morales et al. (2010) argue for the importance of understanding the links between movement

nd population dynamics. Population-level inference using a hierarchical structure depends on
ndividual-level models (e.g., Hooten et al., 2016), so it is essential to develop individual-level
odels that describe behavior well. The task of developing realistic individual-level models becomes
ore difficult the more heterogeneous the population.
In Fig. 1, we display year-long paths for three individuals that used three movement strategies,

hich could be described as residence, migration, and dispersal. We define residence as attraction
o a single location throughout the year. We define migration as a path where the individual spends
portion or all of the summer season in a single location and a portion or all of winter in a more
outhern location. We define dispersal as a path where the individual is attracted to one location
or a period starting in the beginning of the year and switches to a new location for the remainder
f the year.
Partitioning groups of golden eagles based on movement strategy can be a challenging task due

o the presence of ‘less-stereotyped’ or ‘mixed’ cases (Cagnacci et al., 2016). Some authors have
uggested movement strategies in partially migrating populations would be better described as
xisting on a continuum, which would better accommodate those less-stereotyped cases (Ball et al.,
001; Cagnacci et al., 2016). Thus there is a need for flexible models that are capable of fitting
ultiple movement strategies, without predefining those strategies.
Varying coefficient models that allow behavior to transition smoothly in time have recently

eceived attention in the animal movement literature for being a more flexible and realistic
lternative to the latent-state model (Michelot et al., 2020; Russell et al., 2018, 2017). In this work,
e describe a single varying coefficient model which utilizes a stochastic differential equation (SDE)

ramework similar to that of Eisenhauer and Hanks (2020). We fit the varying coefficient model for a
ariety of movement paths including those displaying residential, migratory, and dispersal behavior.
he advantage of this varying coefficient framework is that the same model can easily be used to
rovide insight into movement behavior that fits one of these three categories, as well as behavior
hat does not clearly fit into only one of these categories. Our proposed model can produce realistic
imulated paths for a range of movement strategies.
We compare our approach to a latent-state model within the same SDE framework, and we

how that our varying coefficient model better describes movement behavior. Latent-state models
re commonly used in animal movement modeling (Pirotta et al., 2018; Patterson et al., 2017),
nd there exist popular R packages that can be used to easily fit these types of models for animal
elemetry data (Michelot et al., 2016; McClintock and Michelot, 2018). The latent-state models are
ot as flexible as our varying coefficient model and need to be specified differently depending on
he movement strategy. We defined different sets of states for residential, dispersal, and migratory
ovement strategies.
In Section 2, we describe the golden eagle data and motivate the selection of the subset we focus

n in this paper. In Section 3, we describe the SDE model framework which is common to all models
e consider in this paper. In Section 4, we present our varying coefficient model. In Sections 5–7,
e fit the varying coefficient and alternative models to three paths we selected to illustrate three
2
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Fig. 1. Year-long movement paths for 3 golden eagles in the western United States, where path color differentiates
between individuals. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

stereotypic movement strategies: residence, dispersal, and migration. We then illustrate how the
varying coefficient model can be used to fit a wider range of movement behaviors in Section 8.
Lastly, we summarize the results and suggest areas for future work in Section 9.

2. Golden eagle telemetry data

We obtained satellite telemetry data for 68 individuals, each of which was tracked for at least
year in the western United States. Tagging of eagles and collection of data was funded by

he National Raptor Program of the U.S. Fish and Wildlife Service (USFWS), and we accessed the
ata through collaboration with the USFWS and one of its contractors, Eagle Environmental, Inc.
ovement paths for all individuals, based on hourly GPS locations accurate to within 19 m, are
hown in Fig. 2. Most of the eagles in this dataset were fledgelings when tagged. The eagles utilized
wide range of habitats in the western United States from desert, semi-arid plains, shrub-steppe,
nd mountains to arctic tundra. We subdivided individual movement paths by year (Jan 1–Dec 31)
nd removed paths with a span of observations shorter than 290 days. We were left with 194 yearly
aths for a total of 67 unique individuals. An exploratory analysis of each yearly path using the
igrateR R package (Spitz et al., 2017) identified 18 dispersers or nomads, 161 migrants or mixed
igrants, and 15 residents using net squared displacement. The meaning of these terms is shown
raphically in Fig. 3 (Spitz et al., 2017). Model selection using AIC favors the more complex model,
nd inspection revealed that many of the paths classified as migration or mixed migration appeared
loser to the dispersal, residential, or nomadic strategies. Our varying coefficient modeling approach
emoves the need to classify each path into only one category (e.g., migrant, resident, disperser) and
llows for a more nuanced and realistic representation of bird behavior.
3
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Fig. 2. Paths for all eagles in the dataset. Color indicates individual bird. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

These data display a wide range of movement behaviors, most of which do not clearly belong
o a single movement strategy. This may be due the young age of many of the birds and much
f the data collection taking place in a desert ecosystem. Thus, we selected datasets from three
ndividuals which were visually identified as clearly displaying one of each of the three movement
trategies: migration, residence, and dispersal. We focused this analysis on comparing models fit
or these three records.

The latent-state models require regular time intervals, but the data are irregular in time. To
esolve this issue, we thinned the data to only one observation per day and linearly interpolated
issing intervals that were all shorter than 30 days. We chose to use daily observations because
e are interested in movement behaviors that happen over the course of five days at the least. See
ppendix A for details.

. A stochastic differential equation model framework for animal movement

We considered a flexible SDE model framework following Russell et al. (2018) and Hanks et al.
2017). We adopt the notation of Eisenhauer and Hanks (2020). The continuous time model for an
nimal’s position rt at time t is

dr = v dt (1)
t t

4
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Fig. 3. Plot replicated with permission from Spitz et al. (2017).

dvt = −β(vt − µ(rt ))dt + σ Idwt (2)

where vt is the velocity of the animal at time t , β is the coefficient of friction (Nelson, 1967) which
controls autocorrelation in movement, µ(rt ) is the mean drift in the direction of movement, σ is
scalar that controls the variance in the stochastic term, I is a 2 × 2 identity matrix, and wt is

ndependent Brownian motion in R2.
We adopt the additional simplification of a constant motility surface and regular time intervals

f 1 day. Thus an Euler–Maruyama scheme (Kloeden and Platen, 1992) approximates (1)–(2) by

rt+1 = rt + vt (3)

vt+1 = vt − β(vt − µ(rt )) + σ Idwt (4)

nd substituting (3) into (4) results in

rt+2 − 2rt+1 + rt = β (−▽p(rt ) − rt+1 + rt) + σϵt (5)

here we have modeled the mean drift µ(rt ) as the negative gradient of a potential function
(rt ) (Brillinger et al., 2012; Preisler et al., 2013; Eisenhauer and Hanks, 2020; Russell et al., 2018).
e define this potential function p(rt ) as a weighted sum of distances to m fixed attractors with

-coordinates ax1, ax2, . . . , axm and y-coordinates ay1, ay2, . . . , aym, i.e.,

p(rt ) =

m∑
i=1

kit
√
(xt − axi)2 + (yt − ayi)2 (6)

here xt and yt are the x- and y-coordinates of rt and kit is the coefficient of attraction to the ith
ttractor. The models considered in this paper all follow this framework but have varying number
f attractors m and coefficients of attraction k that may or may not change over time t .
it

5
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4. Flexible model for partially migratory species

The varying coefficient model we considered fixes the number of attractors m = 8 and allows
kit for i = 1, 2, . . . ,m to change smoothly over time. We chose to use m = 8 as an overestimate
f the number of attractors, and we used shrinkage methods to effectively select a subset of
he attractors (Marra and Wood, 2011). It is clear that at least two attractors are needed for a
igrant or disperser model, and the additional attractors might capture stopover sites or other

rregular behavior. We chose the eight attractors with k means clustering of the daily locations with
ight clusters, but they could be chosen with any method of the researcher’s choice or considered
atent variables to be estimated jointly with other parameters. Each coefficient of attraction kit is a
eighted sum of cyclic cubic regression spline basis functions. Thus, the potential function becomes

p(rt ) =

m∑
i=1

J∑
j=1

αijBj(t)
√
(xt − axi)2 + (yt − ayi)2 (7)

where αij is the coefficient of each cyclic cubic basis function Bj(t) for attractor i, and the number
f basis functions J is bounded above by 30. We fit the model expressed by plugging the gradient
f (7) into (5) using the gam function in the mgcv R package. We also penalized the null space of
he basis functions to implement selection of the attractor coefficients via regularization (Marra and
ood, 2011).

. Resident example

We define a resident as an individual attracted to the same location throughout the year. In this
ection, we compare our varying coefficient model from Section 4 to a single-state model formulated
pecifically for the residential movement strategy. For this comparison, we chose a path consisting
f a single year of data for one individual. We visually determined that this path, shown in Fig. 4A,
isplayed a residential movement strategy.

.1. Single-state residence model for comparison

We formulate a model in the SDE framework which is specific to residential behavior. Since we
ssume only one type of attraction, e.g., a nest, occurs throughout the year for a resident individual,
= 1 and we estimated the single attractor as the median of all data points. The potential function

ecomes

p(rt ) = k
√
(xt − ax1)2 + (yt − ay1)2 (8)

where ax1 and ay1 are the x- and y-coordinates of the single attractor and k is the single coefficient of
attraction. We restricted k to be positive so that the attractor is forced to have a positive attraction
as opposed to a negative attraction or repulsion. The unknown parameters of this simple model are
β , k, and σ .

We fit this model in a Bayesian framework with the no-U-turn sampler (NUTS) implemented
in Stan for consistency with the latent-state models for the migrant and dispersal, but it was not
necessary to fit this model in a Bayesian framework. We also fit the same model using the lm
function in the stats R package and observed similar results. Two Markov chains of length 10,000
were assessed visually to assess convergence. The first 5000 samples were discarded as burn-in,
and the last 5000 iterations from the first chain were used for inference.

5.2. Resident results

The attractors for the single-state residence model from Section 5.1 and our varying coefficient
model from Section 4 are labeled on top of daily locations in blue in Fig. 4D and Fig. 4E, respectively.

For the single-state residence model, the posterior mean of the coefficient of attraction, k, is 6773.0.

6
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Fig. 4. (A) Movement path for the resident in 2015. (B) Potential surface for the varying coefficient model. Attractors
re numbered. (C) Potential surface for the single-state residence model. The label ‘‘1’’ is located at the single attractor.
ounds are the same as in B. The original path is plotted in blue with the simulation in red from (D) the single-state
odel and (E) the varying coefficient model. (F) Density plots of average distance from the simulations to the true path

or varying coefficient and single-state models. Vertical lines indicate the means for each model. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

e used this estimate to construct the potential surface for the single-state model (8) in Fig. 4B.
ore information about the posterior samples can be found in Appendix B.
For our varying coefficient model described in Section 4, model diagnostics tests – e.g., mgcv::

am.check() in R – did not reveal evidence of a substantive departure from the model assumptions.
his includes verification that the imposed maximum of 30 basis functions had been sufficient
i.e., not restrictively low). We estimated βkit = β

∑J
j=1 αijBj(t) for i ∈ {1, 2, . . . , 8} in the potential

function (7). The smooth estimates of βkit over time t are shown in Appendix E with standard
errors. Values of βkit above 0 indicate attractor i has a positive attraction at time t , and values of
βkit below 0 indicate attractor i has a negative attraction or a repulsion at time t . We used these
estimates to construct a potential surface which changes smoothly over time. A series of snapshots
of this potential surface throughout the year is shown in Fig. 4C. The degree of attraction to different
attractors is relatively constant throughout the year for most attractors, with the possible exceptions
of attractors 2, 4, and 5.

One way to assess how well a model fits a movement path is to simulate from the model and
measure how close the simulation is to the original path. To compare the single-state and varying
coefficient model, we simulated from both models fit with the same path 100 times. We simulated
365 days of data, the same length as the original path. One representative simulation from each
7



SPASTA: 100637

E. Eisenhauer, E. Hanks, M. Beckman et al. Spatial Statistics xxx (xxxx) xxx

c
t

6

a
f
y
f

6

e
u
W
t
a
f
a

a

p
t

i
c
t

6

s
s
c
M

a
p
t

i

model is shown in Fig. 4D–E. For each model, we calculated the distance between each simulated
location and the original path on the same day of the year. Mean distances for each simulation
from both models are shown in Fig. 4F. On average, the varying coefficient model simulations more
closely resemble the original path, indicating that our varying coefficient model better describes the
movement behavior (Fig. 4F).

All computing was performed on a laptop computer (2.9 GHz Dual-Core Intel Core i5). The
omputing time for the varying coefficient model is less than 1 s while the computing time for
he single-state model is 27 s to run 2 chains for 10,000 iterations.

. Dispersal example

We define dispersal as an individual that switches from being attracted to one location to being
ttracted to a second location at some point in the year and remains attracted to the second location
or the rest of the year. The path we analyzed as a path displaying dispersal was collected in the
ear 2018. We compare our varying coefficient model described in Section 4 to a latent-state model
ormulated specifically for dispersal.

.1. Latent-state dispersal model for comparison

We formulated a model in the SDE framework which is specific to dispersal. In this model, we
stimated two attractors using k means. To capture the shift from attractor 1 to attractor 2, we
sed a framework similar to a Hidden Markov Model (HMM) framework consisting of 2 states.
e chose to use the term latent-state model instead of HMM following Zucchini et al. (2008) due

o the dependence between observations after accounting for the latent states. Thus, the Markov
ssumption is violated. However, the distinction is relatively unimportant since the methods are
unctionally almost identical to those used for a HMM, including the forward algorithm and Viterbi
lgorithm (Zucchini et al., 2017).
In state 1, the individual is attracted to attractor 1, and in state 2, the individual is attracted to

ttractor 2. Thus we estimated β and σ as in Section 5.1 but now we also estimated 2 different
values for k, called k1 and k2, corresponding to the strength of attraction to attractor 1 while in
state 1 and the strength of attraction to attractor 2 while in state 2, respectively. We also estimated
the probability of transitioning from state 1 to state 2 on any particular day. We characterized
this probability of transitioning with a vector of length 2 called g where the first element is the
robability of staying in state 1 and the second is the probability of transitioning. Once in state 2,
he probability of transitioning back to state 1 was set equal to 0 to ensure only one transition.

As for the single-state resident model, we fit this model in a Bayesian framework with NUTS
mplemented in Stan. Two Markov chains of length 10,000 were assessed visually to assess
onvergence. The first 5000 samples were discarded as burn-in, and the last 5000 iterations from
he first chain were used for inference.

.2. Dispersal results

Attractors chosen with k means for each of the latent-state and varying coefficient model are
hown in Fig. 5D–E along with the true path in blue. The posterior mean estimates from the latent-
tate dispersal model for k1 and k2 are 9228.7 and 7067.3, respectively. We used these values to
onstruct the potential surfaces for the two states in the latent-state model as shown in Fig. 5B.
ore information about the posterior samples can be found in Appendix C.
We estimated the posterior probability of being in each state on each day using the Viterbi

lgorithm (see Zucchini et al. (2017) for a description of the algorithm). In Appendix C the most
robable state sequence is depicted using different colors for each state. The state switches when
he individual begins dispersal.

For our varying coefficient model described in Section 4, model assumptions were satisfied
ncluding the maximum of 30 basis functions not being restrictively low. We estimated βkit =

β
∑J

α B (t) for i ∈ {1, 2, . . . , 8} in the potential function (7). The smooth estimates of βk over
j=1 ij j it

8
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Fig. 5. (A) Movement path for the individual showing dispersal in 2018. (B) Potential surfaces for the two states in the
latent-state model for dispersal. The attractors are identified with the numbers 1 and 2. (C) Potential surface for the
varying coefficient model with same bounds as B. Attractors are numbered. The original path is plotted in blue with
the simulation in red from (D) the latent-state model and (E) the varying coefficient model. (F) Density plots of average
distance from the simulations to the true path for varying coefficient and latent-state models. Vertical lines indicate the
means for each model. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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time t are shown in Appendix E with standard errors. The smooth estimates were used to construct
potential surface which changes smoothly over time (see Fig. 5C). Around the end of April, a shift
an be seen which corresponds to the time of the dispersal from one location to another.
We compared 100 365-day-long simulations from the varying coefficient and the latent-state

ispersal model. One representative simulation from each model is shown in Fig. 5D–E. For both
odels, we calculated the distance between each simulated location and the original path on the
ame day of the year. Mean distances for each simulation from both models are shown in Fig. 5F.
s was the case for the resident strategy, the varying coefficient model simulations more closely
esemble the original path on average (Fig. 5F).

All computing was performed on a laptop computer (2.9 GHz Dual-Core Intel Core i5). The
omputing time for the varying coefficient model is less than 1 s while the computing time for
he latent-state dispersal model is 110 s to run 2 chains for 10,000 iterations each. Convergence of
he chains was assessed visually (see Appendix C).

. Migrant example

We defined a migrant as an individual who switches seasonally from being attracted to a
outhern location to a northern location and back to the original southern location throughout
he year. The path we analyzed was collected from an eagle in the year 2012. We compare our
arying coefficient model described in Section 4 to a latent-state model formulated specifically for
igration.

.1. Latent-state migrant model for comparison

We formulated a model in the SDE framework which is specific to migration. To fit this model,
e began by estimating two attractors using k means. We used a latent-state model framework,
his time with five states which are analogous to northern migration, northern residence, southern
igration, and two states for southern residence. States 1 (northern migration) and 2 (northern

esidence) both have an attraction to attractor 2, which is the northern-most attractor, but the
oefficient of attraction k in (8) for state 1, which we call k1, was restricted to be larger than the
k for state 2, which we call k2. This means the attraction is stronger in state 1 than in state 2. We
defined states 3 (southern migration) and 4 (southern residence) similarly with the same southern
attractor and restricting k3 > k4. State 5 is identical to state 4 in all ways except for the transition
robabilities. Thus, the coefficient of attraction for state 5 is k5 = k4.
Since the year starts in January, we assumed the path to begin in a state of attraction to the

outhern residence, which we call state 4. We then allowed a positive transition out of state 4
o the individual may transition into northern migration. We also assumed the individual ends the
ear, in December, attracted to the southern residence again. We restricted the probabilities to only
llow one cycle through the states according to a prescribed sequence. This restriction prevents the
se of these states to characterize brief excursions by quickly cycling through the states repeatedly.
n order to specify this rule, we created the fifth state, state 5, which is identical to state 4 but
hich cannot be transitioned out of. Thus the required order of transitions is 4 to 1 to 2 to 3
o 5 (i.e., southern residence starting on Jan 1, migration, northern residence, migration, southern
esidence ending on Dec 31).

Instead of directly estimating the transition probabilities, we allowed the transition probabilities
o change over time by letting them be functions of a covariate, daily change in daylight length. To
llustrate why we chose to use this covariate, we have plotted the latitude of the daily observations
nd the covariate, which both change in time, in Appendix D. It appears that the covariate should
e high during transitions from states 4 to 1 and from states 1 to 2. Similarly, the covariate is
ow during transitions from states 2 to 3 and from states 3 to 5. Thus, we intended to model this
elationship.
10
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Fig. 6. (A) Movement path for the migrant in 2012. (B) Potential surfaces for the five states in the latent-state model
or the migratory strategy. The attractors are identified with the numbers. (C) Potential surface for the varying coefficient
odel with same bounds as B. The original path is plotted in blue with the simulation in red from (D) the latent-state
odel and (E) the varying coefficient model. (F) Density plots of average distance from the simulations to the true path

or varying coefficient and latent-state models. Vertical lines indicate the means for each model. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

.2. Migrant results

We compared the latent-state migrant model to our varying coefficient model described in
ection 4. Attractors chosen with k means for each of models are shown in Fig. 6D–E on top of
rue paths in blue. For the latent-state migrant model, the posterior means of k , k , . . . , k are as
1 2 5

11
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Fig. 7. In (A), (C), and (E), the original paths are plotted in blue with the simulations from the varying coefficient model
plotted in red. The attractors are labeled. In (B), (D), and (F), the varying coefficients corresponding to the attractors in
(A), (C), and (E), respectively, are shown over time. For example, k1 in (B) is the varying coefficient corresponding to
attractor 1 in (A). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

follows: k̂1 = 33826.8, k̂2 = 10022.8, k̂3 = 39865.8, and k̂4 = k̂5 = 12950.6. We used these values
to construct the potential surfaces for the five states in the latent-state model as shown in Fig. 6B.
More information about the posterior samples can be found in Appendix D.
12
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Fig. 8. Potential surfaces for the varying coefficient model for the resident with (A) daily observations and (B) observations
very 2 days. Black dots indicate attractors.

We estimated the posterior probability of being in each state on each day using the Viterbi
lgorithm. In Appendix D the most likely state sequence is depicted using different colors for each
tate. The latent-state migrant model is reasonably subdividing the path (see Fig. 19 in Appendix D).
For our varying coefficient model described in Section 4, model assumptions were satisfied

ncluding the maximum of 30 basis functions not being restrictively low. We estimated βkit =

β
∑J

j=1 αijBj(t) for i ∈ {1, 2, 3, 4} in the potential function (7). The smooth estimates of βkit over
ime t are shown in Appendix E with standard errors. The smooth estimates were used to construct
potential surface which changes smoothly over time (see Fig. 6C). The snapshots of the potential
urface throughout the year indicate that southern migration occurred around April and May, and
orthern Migration occurred in August and September.
We compared 100 337-day-long simulations from the varying coefficient and the latent-state

igrant model. One representative simulation from each model is shown in Fig. 6D–E. For both
13
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Fig. 9. Potential surfaces for the varying coefficient model for the migratory path with (A) daily observations and (B)
observations every 2 days. Black dots indicate attractors.
14
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Fig. 10. Potential surfaces for the varying coefficient model for the path displaying dispersal with (A) daily observations
and (B) observations every 2 days. Black dots indicate attractors.

models, we calculated the distance between each simulated location and the original path on the
same day of the year. Mean distances for simulations from both models are shown in Fig. 6F. As was
the case for the resident and dispersal strategies, the varying coefficient model simulations more
closely resemble the original path on average (Fig. 6F).
15
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Fig. 11. Histograms of MCMC samples from the marginal posterior distributions.

Fig. 12. Traceplots of MCMC samples from the marginal posterior distributions.

Fig. 13. Histograms of MCMC samples from the marginal posterior distributions for the latent-state model for dispersal.
16
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Fig. 14. Traceplots of MCMC samples from the marginal posterior distributions for the latent-state model for dispersal.

Fig. 15. States for the dispersal model. In the top plot, the line width is proportional to the posterior probabilities of
being in each state across time. In the bottom plot, the y axis is the y-coordinate of location (in meters). The observations
re colored by most likely state. (For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

All computing was performed on a laptop computer (2.9 GHz Dual-Core Intel Core i5). The
omputing time for the varying coefficient model was less than 1 s, while the computing time for
he latent-state migrant model was >10 h to run 2 chains for 5000 iterations each. Convergence of
he chains was assessed visually (see Appendix D).
17
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Fig. 16. Histograms of MCMC samples from the marginal posterior distributions for the latent-state model for the
migratory strategy.

Fig. 17. Traceplots of MCMC samples from the marginal posterior distributions for the latent-state model for the migratory
trategy.

. Fitting boundary individuals

An important benefit of the flexible movement model described in Section 4 is its ability to fit a
ide range of movement behaviors, including those that do not clearly fit the migrant, resident, or
ispersal stereotypes. There are many such individuals in the golden eagle dataset since they are
partially migrating species. Three examples of less-stereotyped paths are shown in Fig. 7 along
ith simulations from the varying coefficient model fit to each path and the varying coefficients.
imulations from the varying coefficient model are reasonable even for more irregular movement
ehavior such as these examples.

. Discussion and future work

We have described a flexible model using varying coefficients for fitting individual movement
aths for a partially migrating species. We compared our varying coefficient model described in
ection 4 to latent-state models within the same SDE model framework for three individual golden
agles. For these three individuals displaying migration, residence, and dispersal, simulations from
ur varying coefficient model more closely resembled the true paths. We also illustrated the ability
f our varying coefficient model to fit boundary individuals which do not clearly exhibit migration,
esidence, or dispersal. The latent-state model is also restricted by needing discrete time steps. In
ur examples, we fit the varying coefficient model to paths with observations at discrete daily time
18
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Fig. 18. On the top, we see the latitude of the individual changing over time, and on the bottom, we see the covariate,
daily change in day length, changing over time. All data is for NM Tredwell’s location in 2012.

Fig. 19. States for the migrant model. In the top plot, the line width is proportional to the posterior probabilities of being
n each state across time. In the bottom plot, the y axis is the y-coordinate of location. The observations are colored by
ost likely state. (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)
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Fig. 20. The smooth estimates of βkit where kit is the coefficient of attraction to attractor i at time t are plotted as solid
lack lines. Dotted lines are drawn two standard errors above and below the estimate of the smooth. The x-axis is the
ay of the year.

teps for the sake of model comparison, but our varying coefficient model could be fit to irregular
ime steps as well.

Ecologists could use our flexible modeling framework described in this paper to better under-
tand movement behavior in less-stereotyped individuals. Ultimately, however, it is important to
ake inference at the population level to inform conservation efforts. We have taken the first step

oward population level inference by defining a model that is flexible enough to fit all individuals
n the population including individuals that do not easily conform to pre-specified movement
trategies. The next step is a structured population level model, which would require a model for
he locations of attractors and could incorporate covariates. One could also build a model using
ndividual random effects with population level means to make population level inferences.

Attractive points were fixed in our model, but the attractors could be modeled at the population
evel by implementing clustering approaches or spatial point process models. Clustering approaches
uch as k means clustering of all attractors across all individuals could identify popular attractive
egions. Incorporating covariates in the model is important to ecologists who want to understand
20
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Fig. 21. As in Fig. 20, smooth estimates are plotted with dotted lines two standard errors above and below.

hy movement decisions are made by individuals. Covariates could be included in a model for the
ttractors by utilizing a spatial point process model for the attractors (Warton and Shepherd, 2010).
o model speed as a function of spatial covariates, a motility function could be included as in Russell
t al. (2018) but allowing the motility function to depend on covariates.
While latent-state models are more popular in the animal movement literature, our work shows

hat our varying coefficient model could help researchers better understand the nuances inherent in
nimal telemetry data. While the latent-state models must be tailored to each movement strategy,
ur varying coefficient model does not need such adjustments. The implementation of a general SDE
ramework using potential functions with varying coefficients controlling the degree of attraction
r repulsion to given attractors allows for a reasonable model fit for many movement strategies.

ppendix A. Justification for daily observations

We chose to use daily observations in our analysis since the patterns we were interested in

odeling (e.g., migration, dispersal) took place over several days at the least. We did not use a

21
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Fig. 22. As in Fig. 20, smooth estimates are plotted with dotted lines two standard errors above and below.

iner resolution because of the inconsistent resolution of the original data and since we were not
nterested in more fine scale behaviors. The choice of sampling resolution is an important one and
an be explored by fitting the same model to the data at different resolutions.
We fit the varying coefficient model for the three paths described in Sections 5–7 at two different

esolutions: daily and every 2 days. Resulting potential surfaces are shown in Figs. 8–10. In each
ase, attractors chosen with k means were located in very similar locations at both resolutions.
he potential surfaces are centered at zero to facilitate a fairer comparison. For the resident and
igrant, potential surfaces are very similar when we use daily observations or observations every
days (Figs. 8–9). For dispersal, the move from one attractor to the other occurs over about 5 days,
o we would lose that event by using one observation every 2 days (Fig. 10).

ppendix B. Additional plots for single-state resident model

See Figs. 11 and 12.
22
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Appendix C. Additional plots for latent-state dispersal model

See Figs. 13–15.

ppendix D. Additional plots for latent-state migrant model

See Figs. 16–19.

ppendix E. Varying coefficients

See Figs. 20–22.
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