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Abstract—This paper considers community detection in the
dynamic binary censored block model. Under this model, the
graph is observed at successive times (snapshots), and the node
label in the current snapshot is dependent on the same node
label in the previous 7 snapshots. In this paper, the maximum
likelihood estimator of the current node labels is obtained under
this model, subject to the observation of the graph in the
present and past snapshots, and the exact recovery conditions
are derived. Relaxing the maximum likelihood estimator, a
semidefinite programming algorithm is proposed for community
detection. In the asymptotic regime, a sufficient condition for
exact recovery is obtained using the semidefinite programming
estimator, which is shown to asymptotically match the sufficient
conditions for exact recovery.

Index Terms—Community detection, dynamic, censored block
model, semidefinite programming, Markov models

I. INTRODUCTION

Community detection is an unsupervised learning category
in network science and signal processing [1]-[3] whose ap-
plications include discovery of hidden relationships among
individuals in social networks [4], identification of protein
complexes in biology [5], and transportation networks [6].

The asymptotic performance of community detection algo-
rithms has been studied under models such as stochastic block
model (SBM), censored block model (CBM), and latent space
model. These models provide intuitions for the analysis of real-
world networks. Recently, heightened attention has been taken
towards the SBM and CBM [7]-[13] as generative models,
where the graph edges are drawn independently conditioned
on the nodes’ labels. Though the maximum likelihood es-
timator is the optimum estimator for community detection
under the SBM and CBM in the dense regime, it is NP-hard
and intractable practically [14]. To address this issue, some
alternative methods have been exploited in the literature in-
cluding spectral clustering [8], [15], semidefinite programming
(SDP) [7], [11], [12], [16], and belief propagation [10].

Most of the research works still have focused on static
community detection, while many real-world networks are
dynamic in nature, and the community membership of nodes
and edges of a graph evolve through time. Even though
some research [17]-[21] in dynamic SBM have conducted to
find certain regimes for community detection, extracting tight
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bounds for dynamic community detection has remained an
important trend of study, especially for the dynamic CBM.
This paper considers extracting certain regimes in which the
exact recovery of the dynamic binary CBM has a solution. To
this end, we first assume that there exists only a stochastic
model for node labels between 7 sequential snapshots while
edges are independent. Then, under the dynamic binary CBM,
the achievability bound of the exact recovery is calculated
using the semidefinite programming algorithm. In addition,
the converse is proven by finding regimes where the maximum
likelihood estimator fails. We will show that achievability and
converse bounds are tight asymptotically.'

In the remainder of this paper, Section II explains model and
settings, and Section III explores dynamic community detec-
tion when there is a first-order Markov dynamic dependency
between node labels. Section IV assumes the current label is
dependent on a fixed sequence of its previous labels, i.e. 7 > 2.
It is shown the solution is similar to 7 = 1, and we only need
to update some scalars and vectors with respect to the new
value of 7. Finally, Section VI concludes the paper.

II. MODEL AND SETTINGS

The standard CBM consists of an Erdés—Rényi graph G
with n nodes, node labels g; € {—1,+1} and edge labels
E;; € {+1,-1,0} are drawn according to the following
probability density

B { p(1—=&)041 +pE6—1+ (1 —p)do
" p(1 —=&)0_1 +pdy1 + (1 —p)do

where p = a2 for a fixed @ > 0, £ € [0,1/2] and § is

the Dirac deltan function centered at its subscript. The log-
likelihood in the CBM is known to be [11]

InP(Alg) = iln (?)QTAQ + Co, (2)

if g; = g;
if g; # g,

'A different variation in the graph model was analyzed by the notion of
side information [10], [11], [22]. Side information consists of a variable for
each node that, given the label of that node, is independent of the graph and
all other variables. Side information models extraneous information that is
useful to graph inference but does not possess a graph structure. This paper
proposes and analyzes a model with a different statistical structure that is
aimed at understanding and analyzing community detection under temporal
dynamics.
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where A is the adjacency matrix and g is the vector of node
labels, and Cy is a deterministic scalar. Our model involves
multiple temporal snapshots of the graph G(t) at times ¢,
with adjacency matrices A(t¢) and node label vectors g(t).
In the dynamic binary CBM, the log likelihood is expressed
as follows

lnIP’(

gW{g(w)}i=r) = MP(A®)g(t) +Q, ()

such that

Q £ W P(g(t) {g(w}i=Y)
= > P (g:(t){gi(w)}i),

where the last equality holds since node labels are independent
and identically distributed.

III. ANALYSIS OF FIRST-ORDER MARKOV DEPENDENCY
FOR LABELS

We begin by showing the main results of the paper for first-
order Markov labels. Subsequently, we generalize the results
to any finite-memory temporal dependency for labels.

Calculating and substituting the term @ in (3) using first-
order Markov relations for label probabilities, we obtain

InP(A(t),g(t)|g(t — 1)) = C1g" (t)A(t)g(t)
+Cag" (gt —1)+Cs, (4

where C7; = 0.25 ln(lg;&), Cy; =05 ln&, and 7 is the usual
Markov parameter indicating the probability of persistence in
a binary state. In (4), C5 is a constant which will be omitted
due to its insignificance in the next analyses. Note that, C5 is
either a constant or a function of graph size n, while n € [0, 1].

Let Z(t) = g(t)g”(t) and Z*(t) = g*(t)g*T(t) where
g*(t) shows the true label vector at ¢. The maximum likelihood
estimator of (4) is formulated as

(1)) + C2(g(t),g(t — 1))

subject to  rank(Z(t)) =1

§(t) =argmax C(Z(t),A
g(t)

4)
where (X,Y) = trace (YTX). Define
f(g(t)) = C1(Z(t), A(t)) + C2(g(t),g(t — 1)).

Use the Schur’s Lemma to relax the rank one constraint in (5)
with Z(t) — g(t)g” (t) = 0 results in

fg(®)

g(t) = arg max
g(t)

. ! T(t)
subject to R = { g(t) gZ(t) } =0, (6)

Define a £ lim,,_,o QICﬁ, and 8 & /a2 +4a2C3E(1 - €),
and
(1-8&(a+ 5))

u(a,a)—a—cl—i-chln( €06 —a)

The achievability and converse for exact recovery of the dy-
namic binary CBM are represented in the following theorems:

Theorem 1. The semidefinite programming estimator of (6)
is asymptotically optimal, if

ula,a) > 1
a>1

Proof. See Section V-A. O

when 0 <a<aCy(1—2¢)
when a > a C1(1 — 2¢) '

Theorem 2. Under the dynamic binary CBM, for any se-
quence of estimators Z,(t), P(Z,(t) = Z*(t)) — 0 as

n — oo, if

wla,a) <1 when 0 < a<aCi(l—2¢)

a<l1 when a > a Cq(1 — 2€) '
Proof. See Section V-B. O

IV. GENERALIZATION TO ARBITRARY TEMPORAL
DEPENDENCY FOR LABELS

In this section, we generalize the temporal dependency such
that the current label of a node is dependent on a sequence of
its previous labels, i.e. 7 > 2. This means

He ’ )

where 0 < 6; <1, 7€{0,1,...,t— 1}. Since we consider 7
previous snapshots and our clusters are binary, the sequence of
the previous labels has 27 different forms. In (7), m;'» is the j-
th sequence among 2" candidates. For example, mj indicates
that the previous 7 labels are similar to the current label of
node 7; ml2 shows that the previous 7 — 1 labels are similar to
the current label, and ¢;(t — 7) = —g;(t); and by continuing
this procedure for all the possible sequence of labels, mb.
implies that the previous 7 labels of node 7 are different from
its current label. In other words,

P(gi(t){gi(u

mh = 1(gi(t) # gi(t — ) [] La:t) = gi(t — k),
k=1
mQT—ngl #gzt_ ))

where 1(+) is the indicator function. Hence, @ in (3) can be
rewritten as

n 27
Q= Z [Zln(ﬂj)m

i=1 j=1
—Zln Zm (8)
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Since we work on binary mode g;(t) € {—1,+1},

1(gi(t) = gi(u)) = Qo) Vi, u,t
[g:(u)]* =1 Vi, u,r
[ (u)]* " = gi(u) Vi, u, 7.
Therefore,
Q = Ty(0)H ({g(v)};=7,0) + T1(6)g" () F ({g(u)}{=7,0),

€))

where @ = [01,02,...,05-]7, H is a real-valued function,
and F is a vector-valued function of {g(u)}!"! and . In (9),
To and T are real-valued functions of 8. Let wy = C; =

In(5%), wy = T1(0), Z(t) £ g(t)g” (¢), and

P 2w (Z(t), At)) + ws (g(t), F({g(w)}Zh )

By inserting (9) and (2) in (3) and considering (10), the
community detection problem will be equal to the maximum
likelihood estimator as follows

(10)

G(t) = argmax P
g(t) gmay

subject to  rank(Z(t)) = 1 (11)

Ziut)=1, i€ [7’1]

Equation (11) shows solving the dynamic community detection
problem in a general case is similar to the first-order Markov
case in Section III. Indeed, F({g(u)};_+) = g(t — 1) and
wy = (4 for the first-order Markov dependency. Therefore,
one just needs to calculate F({g(u)};”}) and wy for an
arbitrary fixed 7, and then (11) can be formulated and be
solved by following the instructions applied on (5) to address
the dynamic community detection in binary CBMs. In the
following example, the problem is solved for the dynamic

binary CBM, where 7 = 2.

A. Example: semidefinite programming for dynamic binary
CBM where T = 2

For the sake of brevity, here

4 n
Q=) m(6;)[ Y mi]. (12)
=1 im1
where

mi = 1(gi(t) = gi(t — 1))1(gi(t) = gs(t — 2)),
mh = 1(gi(t) = gi(t — 1))1(gs(t) # gt — 2)),
my = 1(g;(t) # gi(t — 1))1(g:(t) = gi(t — 2)),
my = 1(g;(t) # gi(t — 1))1(g:(t) # g:(t — 2)),

Now, by expanding () in (12) and using the properties of
binary community detection,

0 0
F({g(w)}is) =g(t=1) = w7~ — IHZé]g(t - 2),
1L 0,0

Applying (13) in (11), the achievability and converse for exact

recovery of the dynamic binary CBM where 7 = 2 will

obtained in the following theorems.
Let Z*(t) = g*(t)g*"(t) where g*7(t) shows the
A

true label vector at t. Define w £ lim, o0 712, ¢ =
Vw? + 4a2wiE(1 — €), and
¢

w(a,w)éa—w—l—ﬁ—%wlln(

(1-9w+ ¢))

(¢ —w)
Theorem 3. The semidefinite programming estimator of (11)
is asymptotically optimal, if

Y(a,w) >1 when 0 <w < awp(l—2¢)
w>1 when ifw > awy (1 —2¢)
Proof. Similar to the proof of Theorem 1. O

Thtiorem 4. For any sequence of estimators Zn(t)
]P)(Zn(t) = Z*(t)) —0asn— oo, if

P(a,w) <1 when 0 <w<aw(l—2¢)
w<1 when ifw > aw(1 —2¢)
Proof. Similar to the proof of Theorem 2. O

It should be noted that Theorems 3 and 4 provide the strict
bounds for general case of dynamic community detection in

CBMs when 7 = 2.
V. PROOFS
A. Proof of Theorem 1

Lemma 1. Consider the diagonal matrix D* and symmetric
S* ¥ 0 such that the second smallest eigenvalue \y(S*) > 0,
with the following submatrices

o _[ 81 s
Sy S5 |
where
ST =05Cg"(t—1)g*(t)
S; =—-0.5 CQ g(t - 1)
S5 = D* — C1A(t)
S*T1,g*T(1)]T = 0.
Then, (D*,S™) is the dual optimal solution of (6), whose
unique primal solution is Z(t) = g*(t)g*™ (¢).
Proof. The Lagrangian of (6) is given by
L(Z(t),g(t),S, D) =f(Z(t),9(t))
+(S,R) — (D, Z(t) - 1),

where S = 0 and D = diag(d;) are Lagrange multipliers. It
can be proven for any Z(t) satisfying optimization in (6) that

F(Z(t),9(t)) < L(Z(t),g(t), 8, D*) = f(Z7(t),g" (1)),

where it holds since (S*, R) > 0, Z;;(t) =1 for all i € [n],
St = —S3Tg*(t), and 83 = —S%g*(t). Hence, Z*(t) =
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g*(t)g*T () is a primal optimal solution. Assuming Z(t) is
another optimal solution, thus
(8", R) =
(a) *
N +2<S2,

C1A(t), Z(t))
Ci1(A(t), Z*(t))

ST +2(S5,9(t)) + (D" —
(1) + (D", 2" (1)) —

where (a) holds because (A(t),Z*(t)) = (A(t),Z(t)),
Zh(t) = Ziy(t) = 1 for all i € [n], and <SQ, > =
(S5,9%(t)). Since R = 0 and S* = 0 while \y(S”) is
positive, R must be a multiple of R". Also, since Zj;(t) =
Zii(t) =1 for all i € [n], we have R = R". O

In addition, S* must satisfy conditions in Lemma 1 with
probability 1 — o(1). Let

n

di = Cy Y Ay(t) g; () g7 (t) + 0.5 Cagi(t — 1)g; (£). (14)
j=1
Then,
D*g*(t) =

C’lA(t)g* (t) + 0.5 ng(t — 1),

and S* satisfies the condition S*”[1, g*7 (#)]T = 0. It remains
to show that S* > 0 and A\2(S™) > 0 with probability 1—o(1).
This means

p( inf VTSV > 0) >1-0(1), (15)
V1i[Lg*T()]T,[|V]=1

T
where V' is of dimension n + 1. Let V £ [v, UT} , Where

. A
v is a scalar and U £ [uy,us, - - - ,u,|?. Therefore,

visv

=28} — CU” g(t —

> (1 =) mind; —Cy(|A()
ISk

1)+ U (D" - C1A())U
—~E[A(1)]]| - p(1 - 2€)) ]
n(l —v?)

]

+v2[@

29"t - 1)g" () -2

where the inequality holds since

U'D*U > (1 -7 Ig[mld
UT(A(t) ~E[AM)))U < (1 — o) A(t) — E[A@®)]]]

wUTg(t — 1) < |v]/n(1 — 0v2).

Using the Chernoff bound, it can be proven that with proba-
bility 1 — o(1),

(t)gi(t —1) > v/ninn.

Zgz

Thus, as n — oo,

02 {C; <\/ﬁlnn — 2n(|1v—v2)> — Cip(l — 25)} >0

) — Cip(1 — 25)}7

Applying [7, Theorem 9], for any c there exists some ¢ >0
such that for any n > 1,

|A —E[A]]| < ¢ VInn

with probability at least 1 — n™¢, and hence
VISV > (1-1?) [m[m]d — Oy (¢ Vinn - p(1 — 25))]
1€e|n
(16)
It follows from (14) that
; = s §—05C
P < 8) =B ( 3 Au(ar (g0 < =22

j=1
- e §+0.5C
P(Z Aij(t)g; (t)gj (t) < C’12> .
j=1

where 7) is the probability of node label persistence in the
Markov model. It can be shown that Z 1 Aij(8)gi (t)g; (t)
has a distribution similar to Zf 11 S; such that
{51,852,...,8,—1} is a sequence of i.i.d random variables
with distribution p1d41 + p2d_1 + (1 — p1 — p2)dy, where
p1 = plln—" and P2 = p2=" Inn for positive p; and po.

Recall a £ lim, o Qﬁn, B £ /a2 +4a2CFE(1 - §),
and

,u(a,a)—a—ﬁ—i——l (

(1 =&+ 6)>
Chy 20 '

§(8 — o)
First, we bound min;c,) di under the condition 0 < a <
aC1(1 —2¢). Using the un10n bound and [11, Lemma 9]

]P’(mln d: Inn > >1— pl—pla,e)+o(1)
i€[n] Inlnn
When p(a,a) > 1, it follows mine,df > 22 with

probability 1 — o(1). Thus, as long as u(a,a) > 1, we can
substitute min d; in (16) with ; h‘ - and obtain

— (¢ Vinn - p(1 — 25))}

Inn

Inlnn

VI§'V > (1 - uQ){
>0,

which holds with probability 1 — o(1) as n — oo and results
in the first part of Theorem 1. For the second part, one should
bound min;¢[,,) di under the condition that a > aCy (1 — 2€).
It follows from [11, Lemma 9] that

P(d* < §) < nh@e)to(l) 4 p—acto(l),

where 7 = 1 — n~®+°(1) Using the union bound,

]P( min d > 5)

1€[n]

(nlf/yb(a,oc)+o(1) + nlfaJro(l)) )

Lemma 2. If « > 1, then u(a,a) > 1.

Proof. Define k(a,a) £ p(a, o) — a. It can be proven that
k(a, @) is a convex function in «. Then
/B*
a,a) —a>a— —
p(a,a) o

a7
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At the optimal o*, 5* = a* 4 2£aC and

*

pla,a) —a > a—28a — —, (18)
Gy
and p* = ﬁ—% This implies that a* = (1 — 2¢)aCh.
Substituting in (18) leads to p(a, @) — a > 0, which implies
that p(a, o) > 1 when o > 1. O
Inn

When o > 1, Lemma 2 results in min;ep, di > 5%

with probability 1 — o(1). Substituting in (16), if o > 1, with
probability 1 — o(1) one obtains

G (¢ Vinn - p(1 - %))

Inn

T o* > (1 — 2
VISV 2 ( U)[lnlnn
> 0,

which proves the second part of Theorem 1.

B. Proof of Theorem 2

We must show that the maximum likelihood estimator fails.
To do so, first let T £ {min;e[,) m} < —C1}, where

mi = O Au(t) 95 (8) 97 () + 0.5 Cagi(t — 1)g (1):

j=1

Then, P(maximum likelihood Fails) > P(T').

Let K denotes the set of first [ -z | nodes, e(i, K') denotes
the number of edges between node ¢ and nodes in the set
K C [n], and

hi= > Aij(t)g; (t)g (1)
jeKe

It can be shown that

min m; < minm;

i€[n] €K
<mip (Culf 405 Cagf (ot~ 1)) + e el ).
Define
Ey 2 {max e(i,K) <6 —C,},

ieK
2 i * . * St — < 5\,
FEs {EIEIIII(I (Cth +05CQQZ (t)gl(t ].)) < 5}
Since T D E; N Es, it suffices to show P(E;) — 1 and
P(E3) — 1 to prove that the maximum likelihood estimator

fails.
Since e(i, K') ~ Binom(| K|, a2), from [11, Lemma 9],

P(e(i7K) >0 — Cl)

In%n Cynn\ 9~ i
< - e n < p 2t
aelnlnn

ae -

Using the union bound, P(F;) > 1 —n~ o) Let
E= {Clhf +0.5Cg; (t)gi(t —1) < —5}7

—5—0.502}
E A2 — 72
+ { — Cl

—0+0.50,
E_ &2ipn<—— 221
{Z G }

Then
P(E) =1-[[L-PE)]L1-1
ieK
I _ | K|
=1-[1—= (1 =mP(E-) —nP(E]T, (19
where (a) holds because {C1h} + 0.5 Cogl(t)g:(t — 1) }ick
are mutually independent.
First, we bound P(FE5) under the condition 0 < a <
aCi(1 —2¢£). Applying [11, Lemma 9],
P(Ey) > n—#(flyoé)-ﬁ-o(l)7
P(E_) > n—a,a)+ato(l)

- PE)X

It follows from (19) that

P(E3)>1 — exp ( - nl_”(a’a)+o(1)), (20)

where the inequality holds because n = 1 — n~*t°(1) and
1+ & < e®. Therefore, if pu(a, @) < 1, then P(E;) — 1 and
the first part of Theorem 2 follows.

We now find the bounds of P(Es3) under a > aCy(1 — 2€).
Reorganizing (19),

P(Ey) = 1 — [nP(ES) + (1 - n)P(E2)]'™, @)

where
-6 —0.5Cs
Ch ’
—6+05C
P(E®) = P(h: > ‘L"’)
Ch
Also, h} is equal in distribution to Z‘f:: =1 S; according to
[11, Lemma 9], where p; = p(1 — ¢) and py £ p€. Then,
P(ES) <1 and
P(E®) < n—a,a)+ato(l)

P(ES) = P(h: >

It follows from (21) that
|K|
P(E,) > 1 — [77 (1 n)n—u(a7a)+a+o(1)]
(2 1-— {1 —pato) 4 n—u(a,a)+o(1)} K]

D 1 _ eap (_nkMo(l) (1 _ nw(a,awwo(l)))

where (a) holds because = 1 —n~*+°(1) and (b) is due to
14 2 < exp(x). Therefore, since o < p(a, ), if a < 1, then
P(E5) — 1 and the second part of Theorem 2 follows.

VI. CONCLUSIONS

This paper addresses community detection in the dynamic
binary CBM, considering exact recovery metric. Under this
model, it is assumed that the node labels of the current snap-
shot are dependent on the previous 7 sequential snapshots. The
maximum likelihood estimator is extracted for this problem.
Relaxing the maximum likelihood estimator, a semidefinite
programming algorithm is formulated to exactly recover the
current node labels. A sharp asymptotic threshold is proven for
the exact recovery under certain regimes for the investigated
dynamic binary CBM.
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