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Abstract—This paper is eligible for the Jack Keil Wolf ISIT
Student Paper Award. This paper investigates covert commu-
nication in the presence of a cooperative jammer. Covert com-
munication refers to the inability of an adversary to distinguish
data transmission from a so-called innocent symbol at the input.
We consider three related problems: (1) a jammer without
direct communication or coordination with the transmitter, (2) a
jammer that cribs the output of the transmitter, and (3) a jammer
that is able to coordinate with the transmitter via a secret key
that is also shared with the legitimate receiver. For each model,
we derive inner and outer bounds on the capacity region that are
tight in some special cases. Unlike prior results in the literature,
the jammer in our model does not have access to unlimited
local randomness. In fact, uncovering the fundamental interplay
between the covert communication rate, local randomness, and
secret key rate, is one of the distinctions and contributions of
the present work. In the context of a few specific channels, we
calculate achievable covert rates to illuminate our results.

I. INTRODUCTION

Covert communication refers to reliable communication
over a channel while requiring that an adversary called
“warden,” who observes a different channel output, remains
unable to distinguish between data transmission and a so-
called innocent symbol at the input [1]–[5]. In a single-
transmitter Discrete Memoryless Channel (DMC), the number
of covert bits that can be reliably communicated over n
channel transmissions scales at most as O(

√
n) [4].The search

for positive covert rates has led to the study of channels whose
Channel State Information (CSI) is known at some legitimate
nodes but not the warden [6]–[8], or when the warden has
uncertainty about the power of noise or interference [9]–[15].
Positive covert rates were demonstrated [11] over Additive
White Gaussian Noise (AWGN) and standard block fading
channels, albeit with unlimited local randomness at the jammer
and without calculating the value of covert communication
rate. In [15] the jammer has the benefit of a channel observa-
tion, senses the channel, and transmits when it estimates that
the legitimate transmitter is silent. This work depends on the
warden being limited to a power detector.

A broader class of contributions is also relevant to the
present work. The problem of secret communication over
DMCs with random states has been studied in [16]–[19].
Arbitrarily varying wiretap channels under strong and semantic
secrecy criterion have been studied in [20]–[22] and covert
communication over adversarially jammed channels has been
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studied in [23]. Multiple-Access Channel (MAC) with cribbing
encoders was first studied by Willems and van der Meulen
[24], [25] and channel resolvability and strong secrecy for a
discrete memoryless MAC with cribbing has been studied in
[26]. Also, discrete memoryless and Gaussian multiple-access
wiretap channel are studied in [27].

We consider three related problems: (1) blind jammer where
the jammer has no direct communication or coordination with
the transmitter, (2) informed jammer where the jammer cribs
the output of the transmitter, and (3) coordinated jammer,
where the jammer is able to coordinate with the transmitter via
a secret key that is also shared with the legitimate receiver. The
second model is analyzed under the non-causal cribbing. For
each model, we derive inner and outer bounds on the capacity
region that are tight in some special cases. In each of the
three problems mentioned above, we provide tight inner and
outer bounds if unlimited local randomness is allowed. A key
contribution of this work, however, is when local randomness
is treated as a valuable resource; our work uncovers the
fundamental interplay between covert transmission rates and
the amount of local randomness that is needed to enable it. In
the context of a few specific channels, we calculate achievable
covert rates to illuminate our results.

Our work is distinct from the literature of covert communi-
cation with jamming in several ways. First, many works in the
literature depend, essentially, on the covert codebook being
unavailable to warden and/or an unlimited secret key being
shared between legitimate parties. In our work, codebooks
are public knowledge and all secret keys are quantified.
Second, the literature thus far has only considered jammers
that are unrestricted in their use of local randomness. Our work
considers randomness as a valuable resource and explores the
interplay of the amount of local randomness, the rate of the
shared key, and the covert rates enabled by jamming. Third,
some works in the literature restrict the warden to a power
detector [12]–[14] while our work permits the warden to use
a more capable statistical detector.

II. PRELIMINARIES

Throughout this paper, random variables are denoted by
capital letters and their realizations are denoted by lower case
letters. Calligraphic letters represent sets, and the cardinality
of a set is denoted by | · |. PX and PXY represent probability
distributions on discrete alphabets X and X ×Y , respectively.
For brevity, we sometimes omit the subscripts in probability
distributions if they are clear from the context, i.e., instead of

2022 IEEE International Symposium on Information Theory (ISIT)

978-1-6654-2159-1/22/$31.00 ©2022 IEEE 306

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n 
In

fo
rm

at
io

n 
Th

eo
ry

 (I
SI

T)
 | 

97
8-

1-
66

54
-2

15
9-

1/
22

/$
31

.0
0 

©
20

22
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IS

IT
50

56
6.

20
22

.9
83

46
82

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 06,2022 at 17:12:17 UTC from IEEE Xplore.  Restrictions apply. 



PX(x) we write P (x). The n-fold product distribution con-
structed from the same distribution P is denoted P⊗n. For two
distributions P and Q on the same alphabet, the KL-divergence
is defined as D(P ||Q) ≜

∑
x P (x) log P (x)

Q(x) and the total vari-
ation distance is defined by V(P,Q) ≜ 1

2

∑
x |P (x)−Q(x)|.

Throughout the paper, log denotes the base 2 logarithm. HP

and IP indicates that an entropy or a mutual information
term is calculated with respect to a Probability Mass Function
(PMF) P . For brevity, we sometimes omit the subscripts in the
entropy and mutual information terms if they are clear from
the context. Also, the convex hull of the set A is denoted by
conv(A). The set of ϵ−strongly jointly typical sequences of
length n, according to PX , is denoted by T (n)

ϵ (PX).

III. PROBLEM DEFINITION

Consider a discrete memoryless (X ,S,Y,Z,WY,Z|X,S),
which consists of channel input alphabet X at the transmitter,
channel input alphabet S at the jammer, channel output
alphabet Y at the receiver, and channel output alphabet Z
at the warden. All alphabets are finite.

Let x0 ∈ X be the innocent symbol which will be sent
over the channel by the transmitter when no communication
takes place. When the transmitter sends xn

0 ∈ Xn, unlike
other jamming problems, here the jammer transmits a non-
independent and identically distributed (i.i.d.) coded sequence
Sn. Therefore, the distribution induced at the output of the
channel when no communication takes place, denoted by ΥZn ,
is not necessarily i.i.d. The first reason that we use a coded
jammer instead of a jammer that transmits i.i.d. sequences is
that random numbers are a precious resource in practice, and
we want to use this resource as little as possible. The second
reason that we use a coded jammer is that it enables us to
design the jammer’s codebook in such a way that it helps the
transmitter to communicate both covertly and reliably.

Here we consider three different jamming models. In the
first model, the transmitter and the receiver are assumed to
have access to a rate limited and uniformly distributed shared
secret key K ∈ K, this helps the transmitter to communicate
with the receiver covertly even when the receiver’s channel is
noisier than the warden’s channel. Nevertheless, the existence
of this secret key is not crucial in our analysis, and one can
extend our results by removing the shared secret key between
the transmitter and the receiver. In this problem, we assume
that there is a secret key with negligible rate between the
transmitter and jammer, and therefore they can coordinate,
however we show that our result also recovers the results when
there is no secret key shared between the jammer and the
transmitter.

In the second jamming model, the jammer and the receiver
are assumed to have access to a rate limited and uniformly
distributed shared secret key K ∈ K, this helps the receiver
to cancel the interference caused by the randomness that the
jammer interpolates into the channel. Similar to the previous
models, the existence of this secret key is not crucial in our
analysis. Here, the transmitter’s channel input is assumed to
be available non-causally at the jammer so that the jammer

W⊗n
Y Z|XS

K

M

J

M̂

H0: ΥZn

H1: PZn

Zn

Det.

Y n

Dec.

Sn

Xn

Jam.
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Fig. 1. Covert communication with a blind jammer

can coordinate its channel input according to the transmitter’s
channel input. The transmitter does not have access to any
source of local randomness, but the jammer uses a rate limited
source of local randomness, which is shared with the receiver.

In the third jamming model, the transmitter, the receiver,
and the jammer are assumed to have access to a rate limited
and uniformly distributed shared secret key K ∈ K. This helps
the transmitter to coordinate its channel input according to the
jammer’s channel input, and it also helps the receiver to cancel
the interference caused by the jammer’s channel input. In this
problem, the transmitter and the jammer do not have access
to any source of local randomness.

The code is assumed known to all parties, and the objective
is to design a code that is both reliable and covert. Reliable
means that the average probability of error P

(n)
e = P(M̂ ̸=

M) vanishes when n → ∞. Covert means that the warden
cannot determine whether communication is happening (hy-
pothesis H1) or not (hypothesis H0). Specifically, the proba-
bilities of false alarm αn (warden deciding H1 when H0 is
true) and missed detection βn (warden deciding H0 when H1

is true) satisfy αn+βn = 1 for an uninformed warden making
random decisions. When the channel carries communication,
the warden’s channel output distribution is PZn and when the
channel does not carry communication, the warden’s channel
output distribution is ΥZn and the optimal hypothesis test
by the warden satisfies αn + βn ≥ 1 −

√
D(PZn ||ΥZn)

[28]. Therefore, we define a code as covert if D(PZn ||ΥZn)
vanishes when n → ∞. We assume that supp(ΥZ) = Z for
otherwise D(PZn ||ΥZn) diverges.

A rate R is achievable if there exists a sequence of reliable
and covert codes, and the covert capacity is the supremum of
all achievable covert rates.

IV. BLIND JAMMING

In this section, we study a scenario in which a transmitter
wishes to communicate a message M ∈ M covertly with a
receiver while there is a friendly jammer in the environment.
Here, the transmitter and the receiver are assumed to have
access to a rate limited and uniformly distributed shared secret
key K ∈ K, this helps the transmitter to communicate covertly
with the receiver when the warden has a better channel than
the receiver. But, one can simply extend our results to the case
that there is no shared secret key between the transmitter and
the receiver. In this problem, unlike the jamming problems
studied so far, the jammer has a limited source of local
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randomness. We study this problem when the jammer and
the transmitter share a secret key of negligible rate, and
therefore the transmitter and the jammer can coordinate and
as a result the jammer knows in which blocks communication
is happening. But our results can be reduced to a case that
there is no shared secret key of negligible rate between the
transmitter and the jammer.

Theorem 1. Let

A =



(R,RK) ≥ 0 : ∃
(
PS1XY Z ,ΥS2ZY

)
∈ D :

R < IP (X;Y )

RK > IP (X;Z)− IP (X;Y )

RJ > max
{
IP (S1;Z), IΥ(S2;Z)

}
RK +RJ > IP (X,S1;Z)− IP (X;Y )


,

(1a)

where,

D ≜


(
PS1XY Z ,ΥS2ZY

)
:

PS1XY Z = PS1
PXWY Z|XS

ΥS2Y Z = PS2
WY Z|S,X=x0

PZ = ΥZ

 . (1b)

The covert capacity of the DMC WY Z|XS with a blind jammer
is lower-bounded as

CBJ ⊇ conv(A). (2)

The proof for Theorem 1 is based on channel resolvability,
the details of the proof are available in [29, Appendix D].

Remark 1. According to Theorem 1, the transmitter and the
receiver can communicate covertly if the covert constraint
PZ = ΥZ holds, if the warden has a better channel the rate
of the secret key between the transmitter and the receiver is
big enough to compensate for that, and if the sum rate of the
message, the shared key, and the jammer’s local randomness
are big enough to induce i.i.d. distribution on the warden’s
output.

Remark 2. The region in Theorem 1 reduces to the case that
there is no shared secret key between the transmitter and the
jammer if we set S1 = S2. Also, if we set S1 = ∅, the region
in Theorem 1 reduces to the region with a strategy proposed in
[11], [15], which is similar to the stealth communication in-
troduced in [30] because instead of the jammer the transmitter
itself can transmit random signals for the no-communication
mode. In [29, Example 3] we show that this strategy can be
suboptimal in the context of an example. This is partly because,
for this strategy, the superposition property of the wireless
channels does not exist.

We now provide an upper bound on the covert capacity
when a friendly jammer is present. Note that in the problem
described above, the jammer is using a limited source of local
randomness with rate RJ . To derive the upper bound, we
use the fact that the covert capacity when the jammer uses
an unlimited source of local randomness is not less than the

covert capacity when the jammer uses a limited source of local
randomness. Hence, we derive an upper bound on the covert
capacity when the jammer uses an unlimited source of local
randomness, by transmitting an i.i.d. sequence according to
some distribution PS1

when communication is not happening
and transmitting another i.i.d. sequence according to PS2

when communication is happening, and therefore this upper
bound is also an upper bound on the covert capacity when
the jammer uses a limited amount of local randomness. In
this case, the distribution induced on the warden’s observa-
tion when communication is not happening is Q⊗n

0 , where
Q0(·) =

∑
s∈S PS1(s1)WZ|X=x0,S(·|x0, s).

Theorem 2. Let

A =


(R,RK) ≥ 0 : ∃PS2XY Z ∈ D :

R ≤ I(X;Y )

RK ≥ I(X;Z)− I(X;Y )

 , (3a)

where,

D ≜


PS2XY Z :

PS2XY Z = PS2
PXWY Z|XS

PZ = Q0

 . (3b)

The covert capacity of the DMC WY Z|XS with a blind jammer
is upper-bounded as

CBJ ⊆ conv(A). (4)

The details of the proof are available in [29, Appendix B].

Remark 3. The achievability scheme in Theorem 1 meets
the upper bound in Theorem 2 when the jammer has an
unlimited source of local randomness and transmits an i.i.d.
sequence with some distribution PS1 when communication is
not happening and transmits an i.i.d. sequence with some
distribution PS2

when communication is happening.

Example (Noiseless Binary Additive Channel): Consider a
scenario in which the channel inputs and outputs are all binary,
the innocent symbol x0 = 0, and the channel rules are Y =
Z = X ⊕ S.

Proposition 1. The covert capacity for the example described
above is lower-bounded as,

CBJ ⊇ conv

{
(R,RK , RJ) : α ∈ [0 : 0.5]

R < Hb(α), RK > 0, RJ > Hb(α)

}
. (5)

Proof. We now show that the region provided in Theorem 1
reduces to the region in Proposition 1. Without loss of gener-
ality, let the channel input X be a Bernoulli random variable
with parameter α ∈ [0 : 0.5], the jammer’s channel input S1

be a Bernoulli random variable with parameter β ∈ [0 : 0.5],
and the jammer’s channel input S2 be a Bernoulli random
variable with parameter η ∈ [0 : 0.5]. The covertness constraint
PZ = ΥZ implies that,

PZ(z = 0) = P(x = 0, s1 = 0) + P(x = 1, s1 = 1)

= αβ + (1− α)(1− β), (6)
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ΥZ(z = 0) = P(s2 = 0) = η. (7)

By choosing β = 0, the covertness constraint PZ = ΥZ ,
reduces to η = α. We now have,

IP (X;Y )
(a)
= IP (X;Z) = HP (Y )−HP (Y |X)

= HP (X ⊕ S1)−HP (X ⊕ S1|X)

= HP (X) = Hb(α), (8)
IP (S1;Z) = 0, (9)
IΥ(S2;Z) = HΥ(Z)−HΥ(Z|S2)

= HΥ(x0 ⊕ S2)−HΥ(x0 ⊕ S2|S2)

= HΥ(S2) = Hb(α), (10)

IP (X,S1;Z)− IP (X;Y )
(b)
= IP (S1;Z|X) = 0, (11)

where (a) and (b) follow since in this example Y = Z.

V. INFORMED JAMMER

In this section, we study a problem in which to transmit
the covert message, denoted by M ∈ M, the jammer and the
receiver are assumed to share a rate limited and uniformly
distributed shared secret key K ∈ K, this helps the receiver
to cancel the interference caused by the randomness that the
jammer interpolates into the channel. Here, the transmitter’s
channel input is assumed to be available non-causally at the
jammer thereby the jammer can coordinate its channel input
according to the transmitter’s channel input. The transmitter
does not use any source of local randomness, but the jammer
uses a limited amount of local randomness, which is shared
with the receiver as a shared secret key. This problem setup
is illustrated in Fig. 2. The problems that the transmitter’s
output is available strictly-causally, or causally at the jammer
is available in [29].

Theorem 3. Let

A =


(R,RK) ≥ 0 : ∃

(
PS1XY Z ,ΥS2Y Z

)
∈ D :

R < min
{
IP (X,S1;Y ),HP (X)

}
RK > max {IP (X,S1;Z)

−min
{
IP (X,S1;Y ),HP (X)

}
, IΥ(S2;Z)

}
 ,

(12a)

where

D =



(
PS1XY Z ,ΥS2Y Z

)
:

PS1XY Z = PXPS1|XWY Z|XS

ΥS2Y Z = PS2
WY Z|X=x0,S

min
{
IP (X,S1;Y ),HP (X)

}
> IP (X;Z)

PZ = ΥZ


.

(12b)

The covert capacity of the DMC WY Z|XS when the transmit-
ter’s channel input is available non-causally at the jammer is
lower bounded by

CIJ-NC ⊇ conv(A). (13)

Theorem 3 is proved in [29, Appendix O].

W⊗n
Y Z|XS•

K

M

M̂

H0: ΥZn

H1: PZnZi
Det.

Yi Dec.

Xi

Si

Enc.

Jam.
Xn

Fig. 2. Covert communication with an informed jamming

Similar to the upper bound provided in the previous section,
we provide an upper bound on the covert capacity when the
jammer has an unlimited source of local randomness and trans-
mits an i.i.d. sequence, according to some distribution PS2

,
when the transmitter is not communicating with the receiver
and transmits a sequence from its codebook otherwise. In this
case, the distribution induced on the warden’s observation is
Q⊗n

0 where Q0(·) =
∑

s2∈S2
PS2(s2)WZ|X=x0,S(·|x0, s2).

Theorem 4. Let

A =


(R,RK) ≥ 0 : ∃PXSY Z ∈ D :

R ≤ min{I(X,S;Y ),H(X)}
RK ≥ I(X,S;Z)−min{I(X,S;Y ),H(X)}

 ,

(14a)

where

D =


PXSY Z :

PXSY Z = PXPS|XWY Z|XS

min{I(X,S;Y ),H(X)} ≥ I(X;Z)

PZ = Q0

 . (14b)

The covert capacity of the DMC WY Z|XS when the transmit-
ter’s channel input is available non-causally at the jammer is
upper bounded by

CIJ-NC ⊆ conv(A). (15)

Theorem 3 is proved in [29, Appendix P].

Remark 4. Similar to Remark 3, the achievability scheme in
Theorem 3 meets the upper bound in Theorem 4 if the jammer
has unlimited source of local randomness. In this case, the
jammer transmits an i.i.d. sequence when the transmitter is
not communicating with the receiver and transmits a sequence
from its codebook when communication is happening.

Example (Binary Multiplicative-Additive Channel): Con-
sider a channel in which X,Y, Z, and S are all binary and
the innocent symbol is x0 = 0, the transmitter’s output is
available non-causally or causally at the jammer, and the law
of the channel is as follows,

Y = X ⊗ S, Z = X ⊕ S. (16)

Proposition 2. The covert capacity of the DMC described
above is

CIJ-NC = CIJ-C =
{
(R,RK) : R ≤ 1, RK ≥ 0

}
. (17)
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W⊗n
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Fig. 3. Covert communication with a shared secret key

Intuitively speaking, to satisfy the condition PZ = ΥZ the
jammer can choose S1 = X therefore Y = X and Z = 0 and
the transmitter can communicate with rate maxPX

H(X) = 1
with the receiver. The proof for Proposition 2 is similar to that
of Proposition 1, the details of the proof are available in [29,
Section VIII].

VI. COORDINATED JAMMER

Now we study a problem in which there is a rate limited and
uniformly distributed shared secret key K ∈ K between the
legitimate terminals (i.e., the transmitter, the receiver, and the
jammer), this helps the transmitter to coordinate its channel
input according to the jammer’s channel input, and it also helps
the receiver to cancel the interference caused by the jammer’s
channel input. In this problem, the transmitter and the jammer
do not have access to any source of local randomness.

Theorem 5. Let

A =


(R,RK) ≥ 0 :

(
PS1XY Z ,ΥS2ZY

)
∈ D :

R < IP (X;Y |S1)

RK > max {IP (X,S1;Z)

−IP (X;Y |S1), IP (S1;Z), IΥ(S2;Z)}

 ,

(18a)

where

D =


(
PS1XY Z ,ΥS2ZY

)
:

PS1XY Z = PS1PX|S1
WY Z|XS1

ΥS2ZY = PS2WY Z|X=x0,S2

PZ = ΥZ

 . (18b)

The covert capacity of the DMC WY Z|XS when there is
a shared key between all the legitimate terminals is lower
bounded as

CFK ⊇ conv(A). (19)

The proof for Theorem 5 is based on superposition coding
and channel resolvability, the details of the proof are available
in [29, Appendix E].

We now provide an upper bound on the covert capacity
when there is a shared secret key between the legitimate
terminals. Note that in the problem described above the
jammer is using a limited amount of randomness with rate
RK , which is shared between all the legitimate terminals,
and therefore the legitimate terminals can coordinate that

is the jammer and the receiver know in which blocks the
transmitter is communicating with the receiver. Similar to
the Theorem 2, we derive an upper bound for the case that
the jammer uses an unlimited amount of randomness when
the transmitter is not communicating with the receiver. In
this case, the distribution induced on the warden’s observa-
tion when communication is not happening is Q⊗n

0 , where
Q0(·) =

∑
s∈S PS(s)WZ|X=x0,S(·|x0, s).

Theorem 6. Let

A =


(R,RK) ≥ 0 : ∃PSXY Z ∈ D :

R ≤ I(X;Y |S)
RK ≥ max{I(X,S;Z)− I(X;Y |S), I(S;Z)}

 ,

(20a)

where

D =


PSXY Z :

PSXY Z = PSPX|SWY Z|XS

PZ = Q0

 . (20b)

The covert capacity of the DMC WY Z|XS when there is
a shared key between all the legitimate terminals is upper
bounded by

CFK ⊆ conv(A). (21)

Theorem 3 is proved in [29, Appendix F].

Remark 5. One can show that when the jammer has unlimited
source of local randomness and transmits an i.i.d. sequence
when the transmitter is not communicating with the receiver
and transmits a sequence from its codebook when communi-
cation is happening, the achievability scheme in Theorem 5
meets the upper bound in Theorem 6.

Example (Noiseless Binary Additive Channel): Consider a
scenario in which the channel inputs and outputs are all binary,
the innocent channel input symbol x0 = 0, and the channel
rules are as follows,

Y = Z = X ⊕ S. (22)

Proposition 3. The covert capacity for the example described
above is lower bounded as,

CFK ⊇ conv


(R,RK) : α, β, η ∈ (0 : 0.5)

R < (α+ β)Hb

(
α

α+β

)
+(1− α− β)Hb

(
η

1−α−β

)
RK > Hb(α+ η)

 . (23)

The proof for Proposition 3 is similar to that of Proposi-
tion 1, the details of the proof are available in [29, Section IV].

Remark 6. Intuitively speaking, in this channel, since the
transmitter has access to the jammer’s channel input through
the shared key it chooses the channel input Xn such that after
it adds up with the jammer’s channel input the results look
like it has been generated according to PS . The receiver can
recover Xn since it has access to Sn through the shared secret
key, but the warden cannot distinguish its output from Sn.
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[20] J. Nötzel, M. Wiese, and H. Boche, “The arbitrarily varying wiretap
channel—randomness, stability, and super-activation,” IEEE Trans. Inf.
Theory, vol. 62, no. 6, pp. 3504–3531, Jun. 2016.
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