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ABSTRACT: S)’nthetic biOlOgY seeks to dEVEIOP modular Differential Optogenetic Control of Multiple Cells Using a Single Light Source
biocircuits that combine to produce complex, controllable

X Real Time Observation
behaviors. These designs are often subject to noisy fluctuations | Temporal Modulation of a - of One or More Cells
o " . . Spatially Homogeneous
and uncertainties, and most modern synthetic biology design RS
processes have focused to create robust components to mitigate el

the noise of gene expression and reduce the heterogeneity of
single-cell responses. However, a deeper understanding of noise
can achieve control goals that would otherwise be impossible. We
explore how an “Optogenetic Maxwell Demon” could selectively
amplify noise to control multiple cells using single-input-multiple-
output (SIMO) feedback. Using data-constrained stochastic model
simulations and theory, we show how an appropriately selected
stochastic SIMO controller can drive multiple different cells to
different user-specified configurations irrespective of initial conditions. We explore how controllability depends on cells’ regulatory
structures, the amount of information available to the controller, and the accuracy of the model used. Our results suggest that gene
regulation noise, when combined with optogenetic feedback and non-linear biochemical auto-regulation, can achieve synergy to
enable precise control of complex stochastic processes.
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B INTRODUCTION modified protein turnover in therapeutics.'>'® Improvements

Synthetic biology seeks to develop and characterize biological to response reporters and the experimental techniques used to

circuits and modular components that can be reliably re- analyze cells, especially in the form of fluorescent protein

engineered, re-assembled, and controlled to produce complex reporters,”'* real-time single-gene MCP-MS2-based tran-
biological behaviors." The design and implementation of scription elongation assays,'” and nascent chain translation
modular components as simple functional units® capable of elongation assays,'*”*”*” have made it possible for cells to
being assembled to perform desired regulatory needs have transmit their internal states to human observers. These
yielded powerful capabilities of synthetic cells to perform technologies allow for more observation and control, not just
specific actions in response to specific stimuli.” Early advances at the protein level but at the gene and RNA levels as well.
led to the development of programmed cells that are capable of Advances in cellular signals have also introduced the potential
complex logic like switching, self-regulation, and fast acting for synthetic regulatory modules in separate cells to

control.* Genetically engineered switches were originally built
in bacteria® but have been extended to yeast,’ mammalian
cells,/ and even multicellular plants.® In turn, these simple
switches have led to more complex engineered biological

communicate with one another and control multicellular

population dynamics.”>">> For example, by considering a
simple model for the effect of cellular quorum sensing on cell

densities, simple circuits can be tuned to control cell

systems and biotechnologies capable of performing tasks like 6
controlling cells to behave as digital displays.”

Much of the design process for synthetic biology has focused

2
densities.

directly on building better biological components, such as Received: July 22, 2021
creating more sophisticated gene regulatory structures,'*”"” Published: November 18, 2021
introducing new response elements or reporters,13 or

introducing more orthogonal cellular signals.'* Development
work on gene regulatory structures has led to substantial
advances in phenotype control in plant biology and targeted or

© 2021 American Chemical Society https://doi.org/10.1021/acssynbio.1c00341

W ACS Publications 3396 ACS Synth. Biol. 2021, 10, 33963410


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+P.+May"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Brian+Munsky"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.1c00341&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00341?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00341?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00341?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00341?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00341?fig=abs1&ref=pdf
https://pubs.acs.org/toc/asbcd6/10/12?ref=pdf
https://pubs.acs.org/toc/asbcd6/10/12?ref=pdf
https://pubs.acs.org/toc/asbcd6/10/12?ref=pdf
https://pubs.acs.org/toc/asbcd6/10/12?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acssynbio.1c00341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf

ACS Synthetic Biology

pubs.acs.org/synthbio

Research Article

Although the above advances have been developed primarily
to control autonomous biological behaviors, these improve-
ments to regulatory structures, response reporters, and
signaling capabilities can also provide a framework to allow
observers or external electronic devices to monitor cellular
environments and dynamically reprogram the cellular logic.
When coupled to advances in microfluidics, these capabilities
introduce a new part-biology-part-machine (or cyber-organ-
ic’’) paradigm that adds new possibilities for distributed
external and internal biological control of synthetic biological
circuits.”® In particular, recent developments in optoge-
netics””*" have greatly increased the speed and sensitivity by
which external signals can be communicated from humans or
machines to cells. Using these advances in microfluidics and
light-activated gene regulatory elements rapidly improves the
potential to integrate carbon- and silicon-based circuits, which
in turn makes hybrid bioelectronic circuits far more powerful
than before.

A key challenge to integrating cell-based genetic circuits with
electronic control is that an uncountable number chemical
species and regulating bodies must diffuse and interact with
one another in space and time within each cell. Tractable
analysis requires immense simplifications of these infinitely
complex and chaotic dynamics, and such simplifications
naturally result in large uncertainties that can only be
accounted for through the introduction of approximate models
with stochastic analyses. One of the greatest challenges to
improving externally controlled cellular behaviors is that this
“noise” in gene regulation introduces large amounts of single-
cell heterogeneity which must accounted for.' 7> Under the
context of this noise, cellular responses are probabilistic, that is,
their distributions may shift gradually and even be statistically
predictable under environmental or genetic manipula-
tions,>* ™ but individual cells appear to behave at random
with very little information about their instantaneous external
environment.”” Unfortunately, this noise makes it difficult to
precisely predict how or when an individual cell will respond to
a new environmental stimulus. Although recent work has
shown that external feedback can control and reduce cellular
heterogeneity within a large population,® it may appear
unlikely that any feedback control strategy could reliably
guarantee that specific cells within a population will respond as
desired and independently of their initial conditions.

Most efforts on external feedback control in synthetic
biology have focused on the use of chemical or optical inputs
to manipulate cell population averages’ or to control
individual cells within a larger population.”® Such efforts can
be classified as single-input-single-output (SISO) or multiple-
input-single-output (MISO) control in that they seek only to
push cells to a single phenotype. For example, recent
experimental and computational studies**™** have used
periodic chemical input fluctuations to control one cell or a
population of multiple cells to be as close as possible to the
same unstable fixed point, a task that is similar to the inverted-
pendulum problem in classical control theory. Other recent
work has sought to control multiple individual cells, each with
their own tailored optogenetic inputs,29 which corresponds to
multi-input-multi-output control (MIMO). SISO control and
MISO control are limited to control only a single cellular
response at a time, while MIMO requires advanced hardware
such as digital micromirror devices that devote a separate input
to each individual cell.”>** However, the combination of
synthetic biological designs, precise external controls, and
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quantitative measurements and models of single-cell noise
could create new opportunities for single-input-multiple-
output (SIMO) control, where multiple individual cells could
be controlled to achieve different phenotypes, but requiring only
a single input signal. In this article, we explore the potential of
a noise-enabled SIMO control strategy that is similar to a
hypothetical Maxwell’s Demon (MD), who watches the
random process and identifies short instances in time when
specific cells have randomly increased sensitivities to small
perturbations.** In the context of synthetic biology, we explore
how advances in fast fluorescent reporters allow this MD to
watch biological responses; how noise breaks the symmetry
between identical cells in identical environments; and how
advances in optogenetics may enable the MD to drive specific
cells toward specific phenotypes, even when each cell always
experiences the exact same input signal as every other cell.

Through simulation of multiple models that have been
parameterized from existing bulk-level optogenetic control
experiments, we demonstrate that realizing an optogenetic MD
for use in genetic regulation applications requires not only
careful consideration of the cellular regulatory systems to be
controlled, the fluorescent sensors to be observed, and the
optogenetic inputs to be delivered but also the necessity to
build predictive stochastic models and deterministic SIMO
control algorithms to serve as its brain. In this article, we use a
combination of simulations and theoretical analyses to explore
how existing biological parts could be combined with models
in the context of optogenetics to control the gene expression of
multiple cells at once, even when both cells receive the same
light signal at the same time and have the exact same genetics.
We then introduce a new probabilistic model predictive
control (pMPC) strategy that can in principle control multiple
cells to different phenotypes, even when only observing a
single cell. Finally, we show that controls that are designed and
optimized using one approximate model of the biological
system can be effective to control a much more complex
biological process whose mechanisms are not considered
during the controller design.

B RESULTS AND DISCUSSION

We start by defining a set of two models, each with a different
level of complexity, to describe the dynamics of optogenetically
activated T7 polymerase under temporally varying light
conditions. We then use experimental data from Baumschlager
et al.”® to independently constrain each of these models to the
same data. We then take the simpler of the two models and
extend it to include a typical auto-regulation module, and we
examine the performance of this extended model under
different fluctuating input signals at different frequencies using
deterministic and stochastic analyses. We then show how
intrinsic noise in the system dynamics can be utilized by a
teedback controller to break symmetry in the process and force
a system of two cells each to obtain specified phenotypes and
independent of initial conditions. We then propose a new
probabilistic model predictive controller scheme that is capable
of differentially controlling multiple cells, even when only one
is directly observed. Finally, we demonstrate in principle that
an optogenetic controller that is identified using a coarse-
grained simplified model is capable of controlling behavior of a
more complicated system with different and hidden dynamics.

Data-Constrained Model for Light-Induced T7 Poly-
merase Activation and Gene Expression. We begin by
developing an unregulated model (denoted as M) to describe

https://doi.org/10.1021/acssynbio.1c00341
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Figure 1. Diagrams of models for light-induced gene regulation with and without auto-regulation. (A) The full physical model (My;) describes the
full mechanistic processes of T7 polymerase dimerization and gene activation in addition to protein production and degradation. (B) A simplified
model (M'(;) lumps together all T7 dimerization and gene activation dynamics so that the protein is produced at a light-controlled rate. (C) The
simplified model is extended (M’,) to include auto-regulation through the addition of a secondary promoter. (D) The full mechanistic model is
also extended (M,) through inclusion of the same auto-regulation promoter.

the light-induced activation of an optogenetically controlled
T7 polymerase as studied in Baumschlager et al..** As depicted
in Figure 1A, this system contains two light-activated T7
domains (T7, and T7.) that are produced at constant rates k,
and k. and which degrade in a first-order decay process with
rate yy. These domains dimerize when subject to light
activation, leading them to form an active T7 polymerase at a
light-dependent rate of u(¢), and the complex dissociates at a
rate of k;; and decays at a rate y. The T7 polymerase dimer
can bind to or unbind from the gene at rates of k; and ky,
respectively. When bound, active protein production occurs at
a rate of kg, where transcription and translation are lumped
into a single event. Proteins are assumed to degrade according
a first-order rate process with rate yp. These interactions are
described by the following reactions:

¢ = T7,

n

¢ = T7

o

T7n + T7c P—} T7,
u(P)[T7,1[T7]
= [T7]
T7 + <—ki2g°"
Eoft kel T71lg, ;] Son’
kalg, )
8on —  Ptg,
7,[P]
P = 4, 1)

where the first two bidirectional reactions describe the
production and decay of T7, and T7,, respectively; the third
bidirectional reaction describes light-induced reversible dime-
rization, where the light induction level is denoted as ¢ and its
effect is modeled by the function u(¢); the fourth unidirec-
tional reaction describes the decay of the T7 dimer; the fifth
bidirectional reaction describes the T7 association and
dissociation to the gene; and the final two unidirectional
reactions describe the production and degradation for the
resulting protein product, where transcription and translation
have been lumped into a single reaction. The rate for each
reaction is given directly above or below its respective arrow.

The ordinary differential equation (ODE) for My, can be
written in the vector form as

o [Fu@ITZITT + kITT] 4 K, = [T7,]]
T2 [ TalT7]) + ky[T7] + K, = 2,(T7]
[T7.]
d 171 | = u(@)[T71[T7] — k,[T7] — ko[T7]
dt [ ] - (gtotal - [gon]) + kiz[gon] - yT[T7]
gOl’l
»[P] ku[T7](gtotal - [gon]) - kiz[gon]
kfl[g ] VP[P |
(2)
320watts/cm?, for 0 <t < 270 min,
¢(t) = { Owatts/cm?, for 270 < t < 570 min ,
20watts/cm?, for 570 < t min

where we have assumed a fixed number of gene copies [gio1]
= [gon] + [goge] to remove the variable [g,¢] from the equations.
Once written in this form, model M, can be integrated
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Figure 2. Parameter estimation of full and reduced unregulated models, My, and M’(;, respectively. (A) Fits of My, (red line) and M’ (blue line)
to experimental data from Baumschlager et al.*® (black dots). (B) Calibration curves representing the conversion of light [watts/cm?] to the
associated reaction rates for My, (red) and M'y; (blue). (C) Steady-state histograms predicted by models My, (red) and M’y at inputs that are
calibrated to the results in an average expression of 20 molecules per cell.

numerically for any given set of initial conditions and
parameters. The model parameters were then fit to the
experimental data from Baumschlager et al,* in which the
system was subjected to three different levels of UV radiation

The parameters of My and {u(¢,), u(¢,), u(gps)} are
simultaneously fit to the measured time series fluorescent
protein trajectory. This fit suggests u = [0.4060, 0.00, 0.0400]
molecules™ min™' when ¢ [320, 0, 20] watts/cm?,
respectively. To interpolate for intermediate values of light
intensity, the function u(¢) is then defined as the cubic spline
of the three data points and is shown with a red line in Figure
2B. The resulting fit of the model to the data is shown by the
red dashed lines in Figure 2A, and the remaining parameters of
the model fit are shown in Table 1.

Table 1. Parameters of the Full Model System

parameter name parameter value units
k, 2.00 x 107" molecules/min
k. 6.00 X 107! molecules/min
ki 2.00 X 10? min~!
™ 5.00 X 1072 min~!
vr 5.00 X 10—2 min~!
ki 5.00 x 107 min~!
ke, 5.00 X 107! molecules/min
ke 142 x 1072 min~’
7o 2.03 X 1072 min~!

Having determined a baseline ODE-based model that yields
a good fit to existing experimental data for the system’s
temporal response, in the next sections, we will specify a much
simpler, but less accurate, version of this model and use this
approximate model to perform stochastic analyses, suggest
design modifications, and specify a controller that can drive
differential gene expression among two or more cells using a
single external input signal.

Substantially Reduced and Approximate Model for
T7 Activation and Gene Expression. Although we were
able to find many good parameter sets so that model M;,
could match the data,”” identification of a single unique “best”
parameter set is infeasible due to the high number of
parameters, severe limitations on available experimental data,
and sloppiness*® in the model parameters. Finding a simpler
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but better constrained model not only would help to reduce
sensitivity to unknown parameters but also could dramatically
reduce computational costs when using this model for design
decisions or for the specification of feedback control strategies.
To simplify these model reactions and to obtain a more
identifiable parameter set, we next propose a simple
generalized birth—death model in which the protein
production rate is given by k, + u'(¢p), where k, is the
baseline production rate with no light input and u'(¢) is a
light-dependent control input function. We use the apostrophe
notation ()’ to denote use of the reduced model in which the
units of the control signal at a given light intensity have been
adjusted to molecules per minute. Under this simple rule and
assuming linear decay at rate yp, the approximate dynamics of
P(t) are written simply as

dp ’
i ko + u'(¢p) — 1P 3)
In this model, which we denote as M’(;, the parameters k,
and 7 and the specific values of u'(¢) at ¢ € {320, 0, 20}
watts/cm?® are again simultaneously fit to capture the time
dynamics of the experimental data.*> This fit suggests u’(¢) =
[0.4060, 0.00, 0.1044] molecules/min when ¢ = [320, 0, 20]
watts/cm?, respectively, and the cubic spline of these three
data points yields the calibration curve u'(¢)), as shown in
Figure 2B (blue line). The resulting fit of model M'(; is shown
in the solid blue line Figure 2A, and the remaining parameters
for the reduced model are shown in Table 2.

Table 2. Parameters of the Reduced Model System

parameter name parameter value units
v 2.03 x 1072 1/min
ko 1.00 X 107* molecules/min

We next extended both the original model and the simplified
model to include discrete stochastic events for protein
production and degradation as well as for T7 dynamics for
the full model. Using the exact same parameter values as for
the ODE analysis, we then simulated the model using the
Stochastic Simulation Algorithm (SSA*”). Figure 2C shows the
probability distribution of P sampled using 10° independent
SSA runs, each simulated to 3000 min, and only using the last

https://doi.org/10.1021/acssynbio.1c00341
ACS Synth. Biol. 2021, 10, 3396—3410


https://pubs.acs.org/doi/10.1021/acssynbio.1c00341?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00341?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00341?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.1c00341?fig=fig2&ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.1c00341?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Synthetic Biology

pubs.acs.org/synthbio

Research Article

data point of each simulation for either the full model (red) or
the simplified model (blue). Both models provide reasonably
good, but not identical, matches to the mean protein levels and
the overall time scales as shown in Figure 2A, and we observed
strong agreement in their stationary distributions. However, it
remains to be seen if the differences in architecture and time
scales need to be accounted for when we use the simplified
model (M';) to guide our modification of the gene regulatory
system and to design a feedback controller that remains
effective, even when applied to the more complex original
model (My).

Addition of an Autoregulation Motif Creates Light-
Dependent Bistability. Starting from the simplified model,
M, we next asked if a common auto-regulation motif could
be added to introduce light-dependent bistability for the
system so that we could explore how this added motif would
impact the controllability of the overall system. Figure 1C
shows a schematic of the new model denoted as M’,, which
has auto-regulation due to the addition of a secondary
promoter that is self-activated by protein P to produce more
of itself. To incorporate this auto-regulation behavior, a Hill
function production rate is assumed with high cooperativity,
and the new rate equation becomes

a
d—P = u/(¢) + kO + K‘%
dt P+ p (4)
where the first term u'(¢)) corresponds to the control input
as a function of light input, the second and third terms
correspond to the Hill function activity of the auto-regulation
promoter with leakiness kj, and the final term corresponds to
the first-order decay of the protein. The Hill parameters (53, a)
of M', are chosen in order to exhibit bimodal behavior in the
dynamics of P. All parameters of this auto-regulatory model are
shown in Table 3.

Table 3. Hill Function Parameters for the Auto-Regulation
Motif

parameter name parameter value units

K 4.06 x 107! molecules/min
y 2.03 X 1072 min~!

p 20 molecules

a 8 unitless

ko 1x107* molecules/min

Figure 3A shows bifurcation diagrams for the simplified
unregulated and auto-regulated models, M’; and M’,,
respectively. These diagrams show that as the light input
sweeps slowly from O to 0.5 watts/cm? bifurcation and
hysteresis become apparent in the auto-regulated model (M’
light/dark blue), but these effects are not observed in the
unregulated model (M'y;, orange/red). For either model, low
and high light inputs each result in a single stable point at low
or high expression, respectively. For intermediate light inputs,
however, two history-dependent stable points coexist for M,
and it is possible for two cells to maintain different stable
points (or phenotypes) provided that the light intensity
remains in the bistable region and that the cells begin in the
separate basins of attraction for the different stable points.

In the hysteresis plots of Figure 3A, it is assumed that the
light input sweeps very slowly so that the response reaches
equilibrium at each light level before subsequent changes.

3400

However, in the context of feedback control, we are more
interested in how cells respond to light fluctuations at faster,
transient time scales. Therefore, we next test the stability of
input-to-output behaviors under time-varying inputs. We start
simulations for two cells with identical parameters but at
different initial conditions (i.e., one at a high initial
concentration of 40 molecules per cell and another at a low
concentration of 0 molecules per cell), and we subject these
both to the same sinusoidally varying input signal whose range
encompasses both bifurcation points, as shown in Figure 3B.
Figure 3C shows the steady-state trajectories for two pairs of
such systems, where dashed lines correspond to trajectories
that start at low initial conditions and solid lines correspond to
trajectories starting at high initial conditions. In all cases, the
system is subject to at least four cycles or 3500 min so that
transient dynamics has had time to decay, and the time axis is
scaled to show the response over two oscillation periods.
Figure 3C (blue shades) shows that when the input frequency
is slow [y, = 0.001 rotations per minute (rpm)], the system
loses memory of its initial condition and the trajectories from
both initial conditions decay to a single trajectory. However,
when the frequency is fast (red and orange trajectories, @y, =
0.01 rpm), the system can maintain memory indefinitely.
Figure 3D shows that the cutoff frequency for this maintenance
of memory is sharp in that memory is possible at a frequency
of @, (blue shades) but is lost at a slightly slower frequency of
. — & where @_ = 0.0043525 (red/orange) rpm is the critical
frequency and & = 3 X 1077 rpm is a small perturbation to that
frequency.

Intrinsic Noise Can Drive Cells to Switch Phenotypes.
Using deterministic analyses of the bistable model, we have
seen that two cells with different initial conditions maintain
separate phenotypes as they respond to the same fluctuating
input signal. The flip side of this deterministic result is that two
fully converged solutions of the same ODE never diverge such
that two cells starting at the exact same initial condition will
never express unique phenotypes, even when bistability is
possible. However, low copy numbers of important regulatory
molecules (DNA, RNA, and proteins) often result in stochastic
fluctuations in cellular concentrations (also known as “intrinsic
noise”) that dramatically affect both these results. When added
to a bistable deterministic process, noise can drive two cells
starting at the same initial phenotype to diverge or even drive
two cells to exchange phenotypes by chance over time.*”°
With this possibility in mind, we next ask how noise would
affect the ability of cells to track a temporally varying input
signal. For this, we examined the production and degradation
reactions and converted model M, to an equivalent discrete
stochastic model with the exact same rate parameters, and we
explored how discrete intrinsic noise of stochastic models
could be used drive cells to separate phenotypes. To extend the
SSA to approximate time-varying inputs, we adopted an
approach similar to that in Voliotis et al,*® and added a fast
“null event” reaction that updates the clock and input signal
value on a time scale that is much faster (ie., average of 100
events per period of the input signal) than that of the input
signal fluctuations. We then compared the ODE and the SSA
analysis of M’ under a sinusoidal input with a moderate input
frequency of @ = 5.00 X 107 rpm > @, for which the ODE
trajectories maintain memory of their initial conditions.
Although the ODE solutions (smooth lines in Figure 3E)
will never converge, the stochastic trajectories (purple
fluctuating trajectories) switch occasionally between the two
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Figure 3. Input—output analysis for the simplified model with and without auto-regulation (models M'; and M',). (A) Bifurcation (hysteresis)
analyses of M'(; (red shades) and M’ (blue shades). Solid (dashed) lines depict the change in the steady-state solution as UV intensity is
increased (decreased). Bimodality (i.e., two possible steady states at the same control input) and hysteresis (i.e., different paths of solid and dashed
lines) only occur for M’,. (B) Sinusoidal input used for temporal excitation shown for two periods. (C) Steady-state temporal behavior of M’
under sinusoidal input shown for two periods. Dashed lines correspond to high initial conditions, and solid lines correspond to low initial
conditions. Different colors correspond to different input signal frequencies: fast (0.01 rpm, red/orange) and slow (0.001 rpm, blue shades). All
plots show steady-state temporal response after a transient time of at least two oscillation periods or 3500 min, whichever is longer. (D) Same as
(C) but with frequencies of 0.0043522 rpm (red/orange) and 0.0043525 rpm (blue shades). M’, maintains memory of the initial condition
provided that the input frequency is greater than a critical value (i.e., solid and dashed lines remain distinct). (E) Capability of model M’, to track
inputs assuming stochastic fluctuations as analyzed using an extended SSA*” with extra reactions.*®

fluctuating phenotypes. In other words, with the addition of J = lim E{IX(t) — T 2}
noise to the system, each cell can slowly “forget” its original t—00 2
configuration. Moreover, the probability of switching depends . N . .
& ver, the probability § oep lim X P(E() =i, £(1) =, )

on the transient stochastic state of the process and the Iy

freqlllency an.d amplitude of e.xte.rnal input ﬂuctuatlorlls. (G=TP+ G =1 +.)

Previous studies have observed similar effects for how noise

creates variation in a population of cells, and past feedback = lim z R-]-___(t)Cijm = CP,

control efforts have sought to counteract this variation to keep 2 ©)
all cells at a chosen (and in some cases unstable) ) ) )
phenotype.* ™2 In the next section, we do not try to reduce where C is a constant vector of squared Euclidean distances

of each state from the target and P, is the steady-state
probability mass vector (i.e., the stationary probability for each
unique value of X). As described in Methods, the master

variability among cells, but we rather seek to exploit the
condition- and time-dependent disruption of symmetry to

push one cell to a chosen phenotype while forcing another cell equation for a finite number of cells subject to a fluctuating

or group of cells toward a different chosen cell fate. state- or time-dependent input signal can be written as
Finite State Projection Analyses Uncover Effective

Strategies to Differentially Control Two Cells Using a %p = (A, + Bu'(t))P ©)

Single Input. We consider a system of N, cells, each with
identical regulatory mechanisms and parameters but whose NN ) B
fluctuating protein concentrations at time t are denoted by where P € R, is the non-nega;cllxe I;ro/bablhty mass vector
%,(t), ®,(t),, which we can arrange into the vector X(t) for all possible states; A, € R *" “ is an uncoupled
=[x1(t), %2(t),...]". Here, the notation () denotes that the

NN’
infinitesimal generator; u'(t) € RL, is a (potentially time
corresponding quantity (e.g, protein copy number) is the N

varying) vector of non-negative control inputs with one entry

result of a stochastically fluctuating process. Our overall goal is for every distinct state in the system’s state space; and B is a
to design a feedback control law to f:?fce X(t) as close as fixed tensor that operates on u’ to adjust the master equation
possible toward an arbitrary target state T. For an example with to account for the optogenetic input. Explicit examples for the
two cells, T = [T1 ,’_i"z]T = [30,10]" would correspond to construction of quantities A and Bu' for different control laws
having the first cell in the high expression phenotype and the are provided in Methods. At first, we consider the special case

where the control signal depends only on the current state at
each instant in time. In this case, the vector u’ is constant with
respect to time and depends only on the enumeration of the
possible states. As such, the infinitesimal generator in eq 6

second cell in the low expression phenotype. In general, this
fluctuating control signal could depend on measurements of
X(t) and/or the current time according to some as yet to be

determined control function i = u(X(t),t). We define a cost reduces to a time-homogeneous master equation for a standard
function as the expected squared Euclidean distance between discrete state Markov process. We note that the control signal
X(t) and T at steady state, which can be written as it () may still fluctuate due to changes in X and can be written
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using the notation #'(t) = uX'(t) to denote that the index of
the vector u’ is specified by the instantaneous state X(¢). By
changing the specification of u’, we can further simplify this
class to consider several different types of state-based control
rules. Here, we consider three different possibilities: an
unaware controller (UAC) that has no information about
any cells to make its control decision

UAC

U UAC
ux(t) u

constant, where u™is the same for every X(t))
(7)
a fully aware controller (FAC) which has complete
knowledge of all cells X,, %,, .. and therefore uses the full
state vector to make its control decisions

FAC __

FAC/~ FAC
ux(t) =u (‘xl) xz; ), Where u has a

unique element for every X(t)

(8)

and a partially aware controller (PAC) which uses only
information of a single cell, for example, x,, to make its control
decisions

ugzztc) = u"°(%,), where u™¢ changes only with &,(t)

)

For our specific case of model AM’,, the finite state
projection (FSP) truncation size is n = SO and the number of
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species is N’ = 1; thus, for two cells (N, = 2), the matrix
A, € R¥VU With the formal definition of the cost
function ] from eq S and the CME from eq 6, we can then
compute the gradient of the cost function with respect to the
control law as (see derivation in Supporting Information)

V.(J) = C(A, + Bu') 'BP (10)

Having specified the cost function gradient with respect to
the controller, we run an optimization algorithm (see
Methods) to search along the gradient to find local minima
for the cost function. We note again that for each of these
optogenetic MD control strategies, every cell experiences equal
inputs at every instant in time, although the magnitude of that
single input changes in time as the cells fluctuate to different
states. Starting with the UAC and FAC controllers, we used the
FSP approach and local optimization (see Supporting
Information for details on the optimization procedure) to
find a locally optimal control strategy in the form of the
constant 4" or the two-dimensional scalar field 4™ (x,, «,)
and with and without the addition of auto-regulation to the
model. The resulting optimal controllers are presented in the
top row of Figure 4, where the color at each point represents
the control input magnitude u*(x,, x,) as a function of the
species quantities x, for the first cell and «, for the second cell.
In the figure, a vector field of white arrows depicts the net
direction of probability flow due to the combined action of the
internal auto-regulatory effects and the feedback control input
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Figure S. Control laws and performance for strategies to control many cells at once using partial knowledge only of a single observed cell. Each row
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marginal distributions for the observed cell P(x,) (blue) and remaining cells P(x,) (red). The middle column shows the results for the partially

aware controller (PAC in text), where the control depends only on the single observed cell (u'y = u

PAC(%,)). The rightmost row shows the results

for the probabilistic model predictive controller (pMPC), which also applies to an arbitrary number of cells. For the pMPC, the process is non-
Markovian in that the controller (u'y = uPMPC(icL,P(xi#l)) depends not only upon the state of observed %, but also on the predicted probability
vector for the unobserved cells, P(x;4;). To enable comparison to previous two-cell cases, the leftmost column shows the results for the FAC with

only two cells. Color bars are shown to the right of each row.

u**C(x, x,) on the system. For practical implementation, the
control input u'(¢h) = u**“(x,, x,) would be converted to light
intensity through inversion of the calibration curve in Figure
2B (blue line). The middle row of Figure 4 shows the resulting
steady-state joint distribution of each condition, and the
bottom row of Figure 4 shows the corresponding marginal
distributions, with cell one in solid blue lines and cell two in
dashed red lines. Figure 4 shows that symmetry is broken only
in the case where the cells’ genetic design includes auto-
regulation and the feedback controller contains knowledge of
the cells (i.e., the far right row of Figure 4). In this best-case
scenario, the two cells are very effectively driven each to their
own unique and pre-chosen phenotype, irrespective of their
initial conditions. If feedback is included without auto-
regulation, the cells’ distributions are made tighter at some
intermediate value between the target values for cell one and
cell two; this results in a slightly better numerical cost value,
but it becomes even less likely that both cells will reach their
target phenotypes at the same time as compared to the
uncontrolled situation (compare the first and second rows in
Figure 4). Conversely, if auto-regulation is included without
feedback (i.e., the light level is fixed at some optimal value), the
cells exhibit a bimodal distribution with some cells near each
target value, but there is no means to control which cell
expresses which phenotype, and the cost function is again
worse than the case with no auto-regulation (compare the first
and third rows of Figure 4). These data taken together suggest
that auto-regulation and feedback control, in addition to

3403

intrinsic single-cell noise, are all critical to the break symmetry
and enable differential control of multiple cells using a single
input. Specifically, noise breaks the symmetry of cell behavior
and allows cells to switch independently between phenotypes,
feedback helps to reinforce this noise and steer cells toward
desired phenotypes, and auto-regulation helps stabilize cell
behaviors once they have attained their desired phenotypes.
Effective Differential Control of Many Cells Using a
Single Input Is Possible, Even When Observations are
Limited to a Single Cell of Interest. We next examined a
more general problem to control an arbitrary number of cells
simultaneously. In this case, we consider a situation where the
controller acts on many cells simultaneously with the goal of
steering a single observed cell (x;) to one state and all
remaining unobserved cells to another state. To handle this
problem, we first utilize a partially aware controller (PAC) that
observes only %,(f) and ignores the states of all other cells.
Figure 5 compares the results of this simplified controller
(middle column) to those of the two-cell controller from the
previous section (left column). The resulting control law,
uPA€(x,), is optimized to find the best control signal input for
each possible value x; of the observed cell, and the top row of
Figure S shows that this optimal PAC controller depends only
on the observed cell (x; axis) but is constant with respect to all
unobserved cells (x, axis). Despite the simplicity of this control
strategy and the fact that it requires only knowledge of the
instantaneous expression of the single observed cell, the second
and third rows of Figure S5 show that the PAC controller
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Figure 6. Control signal and response versus time for pMPC control. (A) Control signal generated by the pMPC controller. (B) Probability that
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regions correspond to effective control times. (D) Time-averaged performance of the control law in terms of marginal distributions for the observed
call (blue) and unobserved cells (red). (E) Average of the pMPC performance, when considering only effective control periods.

effectively breaks symmetry to force the observed cell to a high
expression phenotype, while most unobserved cells are
correctly directed to the low expression phenotypes. Although
the PAC under-performs compared to the FAC for the case of
exactly two cells (compare middle and left columns of Figure
5), the advantage of the PAC is that it works equally well and
without any modification for any arbitrarily large number of
unobserved cells (Supporting Information Figure S1). In
contrast, to use the FAC for more than two cells requires
modification, such as training of a higher rank tensor
representation of the control algorithm or defining a control
law based on the mean, median, or some other statistical
quantity for the groups of cells to be assigned to each
phenotype. Unfortunately, the former high-order tensor
approach is computationally intractable using existing
methods, and the latter approach rapidly loses performance
as the number of cells is increased. For example, when the
controller is based on the observation of X, and the mean of
the remaining cells {X,%;,...} (FACM, see Supporting
Information), we observe that for any more than a single cell
in the second group, the PAC outperforms the FACM
(Supporting Information Figure S1, compare FACM and
PAC controllers).

Probabilistic Model Predictive Controller (pMPC) Can
Improve the Control of Many Cells Using a Single
Observer and a Single Input Signal. In the previous
section, the PAC control was based on only the observation of
a single observed cell and had no information about the other
cells that it was also seeking to control. However, knowing the
history of the input signal (i.e., the light intensity over time in
the past), the FSP approach allows for the possibility that the
controller can estimate the probability distribution of all non-
observed cells. With this possibility in mind, we next explored a
new class of controllers that could use direct knowledge of the
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protein expression in the observed cell, the known control
input signal at the current time, and a probabilistic model to
predict the distribution of expression in the unmeasured cells.
Specifically, we use the FSP approach to integrate our
prediction of the probability distribution for the unobserved
cells as

d

_IN)uo = (AO + Bﬁ/(t))f’uo

dt (11)

where B, € RY; is the estimate of the probability mass
vector for the protein expression in the unobserved cells,
A, € R"™" is the infinitesimal generator for a single cell in the
absence of any control input, and the scalar variable @' (t) > 0 is
the instantaneous input signal that is produced by the
controller. We note that the probability mass vector estimate
P, is the result of a stochastic process that depends upon the
full history of the input signal @' (¢).

Using this prediction for the unobserved cells, the pMPC
controller law can now be defined as

MPC/ =
WP (xR, ) = ¢+ zfll’uo(t) (12)
or written in the vector form for all possible values of %, as
aPMPO(t) = ¢ + ZP (1) (13)
where ¢=[cg,cyyc,_;]T is a constant vector in R" and

Z € R™" is a matrix of linear weights which adjusts the
input based off the estimated unobserved probability
distribution P,,. In our practical implementation, we assume
that the controller in eq 13 is piecewise constant with respect
to P,, over a time step of 0.5 min, but it changes
instantaneously with each even that affects the observed cell
%;. The weights of ¢ and Z are then jointly optimized to
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Figure 7. Calibration and use of controllers for use with a new, more complex model. (A) Calibration curve identified to match steady-state ODE
of the simple and complex auto-regulation model (M’, and M, from Figure 1C,D). (B) Steady-state analyses show that the calibrated inputs
result in similar hysteresis behavior for both M’, and M,. (C) Input—output response analysis shows that M, with calibrated inputs closely
matches behavior of M’ at ultraslow frequencies (0.0001 rpm), but (D) the more complex model begins to lag at slow frequencies (0.001 rpm).
(E) At fast frequencies of 0.01 rpm, the complex auto-regulation model M, is able to retain memory of its initial conditions and again exhibits

similar phenomena compared to the simplified model.

minimize the cost function, J. The simple formulation of the
control law in eq 13 admits the possibility for non-achievable
negative values of light in order to construct a computationally
tractable optimization procedure. However, in testing the
controller, this non-physical situation is corrected by saturating
negative control signals to zero in the true test of the system
(see Supporting Information). We note that this approxima-
tion to allow for negative control signals in the control law
specification and the subsequent correction to saturate these to
zero in the control law test suggest that the pMPC controller
identified here is sub-optimal. However, despite this non-
optimal design, Figure 5 shows that the resulting non-optimized
pMPC (J = 130) controller outperforms the fully optimized
PAC (J = 138), demonstrating that probabilistic model
predictions can be used to improve control performance,
even in the absence of observations for many of the cells under
its control. Having succeeded in our main goal to determine if
probabilistic predictions could improve control results in
principle, we leave the fine tuning of the specific pMPC control
strategy to future investigations and more sophisticated control
design strategies.

For a closer look at how the pMPC approach works to
control observed and unobserved cells alike, Figure 6A shows
an example control input over time, and Figure 6C shows the
resulting trajectories over time for the observed cell (blue), the
predicted probability distribution for unobserved cells (gray
shading), and a representative unobserved cell (red). We
reiterate that the controller has no direct knowledge of the red
line. From the figure, it is clear that the observed cell is well
maintained near to its target value with low variability.
Moreover, Figure 6C shows that knowledge of the fluctuating
input signal is sufficient to yield good predictions of the
unobserved cell response (compare the red line with dark gray
shading), although as expected, there are periods of poor
predictions when the specific unobserved cell samples the
higher or lower tail of the predicted distribution (e.g., at about
1900 min for the red curve in Figure 6C). In addition to
outperforming the PAC approach in terms of the overall cost
function, the pMPC provides additional predictions when the
controller is effective or when unobserved cells are more likely
to escape from their intended phenotype. To illustrate this,
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Figure 6B shows the probability of observing 15 or less protein
molecules in the unobserved celll When this probability
exceeds a 90% threshold, the control is expected to be effective,
and the region is labeled as orange in Figure 6B,C. Figure 6D
shows the marginal distributions averaged over all times, and
Figure 6E shows the marginal distribution only for the periods
of time when the probabilistic model predicts its own effective
control of the unobserved cells (orange regions). By focusing
only on these times identified as successful by the controller,
the cost function of the controller substantially decreases from
J =130 to J = 58. These results suggest that not only predicted
dynamic information about the unobserved cells can be used to
improve the quality of the controller but also the pMPC can be
used to self-assess when control is working well and when it is
not.

Controllers Designed Using Simplified Models Can
Be Effective to Control More Complicated Processes
with Hidden Mechanisms and Dynamics. We next ask
how well could controllers designed using simplified stochastic
models work when they are applied to control more complex
systems that contain additional hidden states and which have
unknown dynamics or time delays. To perform this analysis,
we first account for the difference in meaning and units for the
input signal u’(¢) used in the reduced auto-regulation models
(M, in Figure 1C) and its analog u(¢) used in the full auto-
regulation model (M, in Figure 1D). By using steady-state
ODE analyses of M', and M,, we quantified the calibration
curve to map inputs between the two models as shown in
Figure 7A. After calibration of the input signals, we verified
that the full and reduced auto-regulation models result in
similar bifurcation diagrams as shown in Figure 7B. However,
although calibration allows us to match both the quasi-steady
(i.e., very slow) and fast fluctuating input responses of the two
models (Figure 7C,E, respectively), the temporal responses to
slow input frequencies are qualitative and quantitatively
different, as can be observed by the different input-to output
time lags and amplitudes in Figure 7D.

Having calibrated the controller for the full model to match
the response of the simpler model, we then take the UAC,
FAC, and PAC controllers from above and apply them directly
(i.e, without any further tuning or optimization) to the full
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Figure 8. Full models are paired with the calibrated controllers (top row) to solve for the joint probability distributions (middle row) and marginal
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these is missing (rightmost three columns). The FAC (fourth column) successfully works to control two cells with the complex dynamics, and the
PAC (rightmost column) successfully can control a single observed cell to one phenotype and an arbitrary number of unobserved cells to another

different phenotype.

mechanistic model with auto-regulation. Despite the differ-
ences in temporal behaviors between the two models, the
previously identified UAC and FAC controllers still work to
break symmetry and drive both cells toward the correct
differentiated phenotypes as shown in Figure 8. We note that
with further modifications, the control laws derived using the
simplified model could certainly be improved for use in the
more complex system. However, our primary goal was to
explore how well designs made in one context should perform
when used in another different context, and subsequent fine
tuning for the complex model is left for future investigations.

B CONCLUSIONS

The treatment of noise in synthetic biology has largely been
centered around the management of noise as a nuisance
property that needs to be mitigated or eliminated. Despite
improvements to minimizing noise in biocircuits, noise largely
remains a fundamental physical limit due to the combination
of very small cell sizes, where single molecular events have
increased importance, and increasing complexity of synthetic
circuits, where most dynamical influences are unknown or
unmeasured. The results here show how a few increasingly
common synthetic biology motifs, such as optogenetic
transcription factors, activatable polymerases, and auto-
regulation promoters, can in principle be combined to form
regulatory modules and integrated with new external feedback
controllers not only to mitigate intrinsic noise but also to
exploit this noise to achieve new multicellular behaviors.
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Our work compliments that of previous efforts to develop
SISO and MISO control for synthetic biology applications***!
that have primarily sought to control one cell at a time or to
control an entire population of cells to all reach the same
phenotype. Specifically, we have demonstrated new types of
optimizable SIMO stochastic controllers that rely on the
integration of noise, non-linear auto-regulation, and feedback
to simultaneously control multiple cells using a single chemical
or optogenetic input. The first of these, the FAC, assumes full
knowledge of each individual cell’s behavior and achieves the
best control performance. The disadvantage of the FAC is that
it requires knowledge of each individual cell (ie., optical
tracking and image processing analyses) and computationally
intensive operations both to solve multidimensional chemical
master equations (CMEs) and to search very high-dimensional
spaces for optimal controllers. However, a second PAC
requires only the knowledge of a single cell of interest, yet
the PAC can control this cell to one phenotype and drive all
others to an alternate phenotype with an accuracy almost equal
to the FAC. The advantage of the PAC is that it is very easy to
implement and optimize as the dimension of the control law
must only consider the single observed cell. The third
controller introduces a pMPC strategy that computationally
predicts the probability distribution of all non-observed cells
based on integration of the CME under the known history of
the applied input signal. Although we envision that similar
control strategies may have applications in other fields, such as
for autonomous vehicle or smart grid applications, to our
knowledge, the proposed pMPC approach is the first example
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of a hybrid control strategy that predicts and exploits noise and
feedback to simultaneously and differentially control multiple
identical agents using a single control signal.

In addition to noise, one of the most important challenges in
model-driven synthetic biology is that many important
regulatory mechanisms are currently unknown, even for simple
biological systems. Similarly, very few parameters are known at
any level of certainty, and most of these parameters vary from
cell to cell or situation to situation. Moreover, it is already
extremely computationally expensive to combine all known
mechanisms into a single computational model, and although
such models can be useful to reproduce a variety of biological
behaviors,”"*% such whole cell models are far too inefficient to
enable the vast numbers of different simulations needed to
optimize a design or control strategy. To circumvent these
concerns, we demonstrated how a highly simplified phenom-
enological model could be used to design a controller that
could be easily recalibrated using steady-state dose—response
measurements and then applied directly to control a more
complex system with hidden dynamics and with qualitatively
and quantitatively different dynamic response features.
Although it is a common practice to use simple deterministic
models to guide engineering design of modern complex
devices, this demonstration in the context of stochastic single-
cell processes suggests that there is also hope for similar
applications of simple models in synthetic biology.

Although the potential of our computational results remains
to be verified through independent experimental investigation,
we believe that this numerical demonstration of the potential
for a new control paradigm not only opens new possibilities for
inte§8r_aat(e):4d5 “cyber organic” approaches in synthetic biol-
ogy ™ but also could offer insight into natural cellular
differentiation processes where cellular states are sensed, and
control signals are transmitted, by neighboring cells. For
example, it has been suggested that stochastic fluctuations in
expression lead embryonic stem cells to achieve substantial and
functionally relevant heterogeneity in Nanog expression, where
transiently low Nanog expression cells are prone toward
differentiation, whereas high Nanog expression cells are less
likely to differentiate.’®> As such, it might be interesting to
explore the possibility that temporally controlled fluctuations
in Nanog transcription factors’”> could selectively direct
specific neighboring cells to differentiate while maintaining
others in the stem state. Overall, we envision that advancing
synthetic biology motifs, especially an increasing diversity of
orthogonal transcription factors and promoters,'”* improved
live cell reporters,'”>” and faster and more specific optogeneti-
cally controlled transcription factors inputs,”® will integrate
synergistically with new pMPC analyses to improve future
efforts to understand how noise, non-linearity, and feedback
combine to drive cell fate decisions in applications ranging
from synthetic biofuels and biomaterial production to
developmental dynamics or regenerative medicine.

B METHODS

Definition of Models in Terms of Stoichiometries and
Propensities. To introduce our numerical approaches,
consider a generic cell regulatory process that contains N’
distinct chemical species that interact with each other through
M’ different reactions. At any point in time, the current state of
the process in a single cell can be described by an N’-element
vector & = [x,,..%5]" € y, where y denotes the set of all
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possible states (e.g, the non-negative spaces SRQO for a

. N )
continuous process or 3., for a discrete process). The

definition of the full state X for multiple cells is easily
concatenated to consider a set of N, individual cells

cell 1 cell N
X

cell N4T
el N el N

cell 1
X=[x 7, .,x N

with an appropriate change to the total numbers of species
(N = N.N’) and reactions (M = NM').

Under the assumption of a well-mixed spatial environment
within each cell, one can define the dynamics of such a process
by specifying the reaction stoichiometry vector and reaction

rate for each uth reaction.”® The stoichiometryvector, s, € 7y,

is the net integer change in molecules after exactly one event of
the uth chemical reaction (i.e., Sy =X(after uth reaction) —
X(before puth reaction)). For continuous processes, the reaction
rate, f,(X, A, u), is a scalar that defines the speed at which the
uth reaction would be expected to occur given the current state
X(t), fixed physical parameters A, and time- or state-varying
control parameter u(X, t). For discrete stochastic chemical
reactions, the reaction rate is replaced with a propensity
function w,(X, A, u)dt, which describes the probability that a
single pth reaction would occur in the next infinitesimal time
step of length df given X(t), A, and u(X; t). For reduced order
models M'y; and M',, we replace u with u’ to denote the
change in units needed for consistency with the model
reduction.

ODE Representation of Models. Using these simple
definitions, one can easily write an ODE to define a
deterministic description of the process dynamics as

dX M

— = sf (X, A, u)

dt uz=:1 Z (14)
=Sf(X, A, u(X, t)) (1)

where S = [sy, .., 8] € 7NVM s the stoichiometry matrix
and f(X, A, u(X, t)) = [fys fM]T 1S 9{12\40 is the vector of
non-negative reaction rates. For any given stoichiometry matrix
S and reaction rate function vector, f(X, A, u), the rate of
change of X described by eq 14 can be integrated numerically
to describe the system dynamics over time.

Discrete Stochastic Representation of Models. For
discrete stochastic systems, the specification of the reaction
stoichiometry and propensity functions is sufficient to generate
individual trajectories of the process using Gillespie’s
Stochastic Simulation Algorithm (SSA*”). Alternatively, one
can also use these two properties to uniquely define the
chemical master equation® as

%p(x) = = 2 w(X(1), A, u(X, ))P(X)

pn=1
M

+ D w(X—s, A uX—s )PX-s,)
pn=1

(16)

For this discrete state description, one can always enumerate

all possible states as {X;,X,...} = y and define a probability

mass vector as the similarly ordered probabilities, P

[P(X,),P(X,),...]". Because the CME in eq 16 is linear in
every term P(X)), it is often written in the matrix format
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d
—P = AP
dt (17)

where the square matrix A is known as the infinitesimal
generator and is defined directly from eq 16 as

M
—Z w,(X;, A, u(X;, t)), fori=j,
p=1

i
wﬂ(Xj, A, u(Xj, t)), forX; = X +s,

0, otherwise

(18)

We note that the summation of # = 1 to M = N.M' accounts
for the increase in the number of possible reactions due to the
existence of multiple cells. Because each term X; refers to a
specific enumerated state vector that is fixed in time, in the
special case where u = u(X;) (i.e., where u depends only on the
current state and does not depend explicitly on time), the
matrix A is constant with respect to time. For convenience, we
can define the control parameter in the vector form u = [u(X,),
u(X,), ...]. The final CME model with control can be written in
a simple form by separating the infinitesimal generator into its
basal and control induced components as

iP = (A, + Bu)P
dt (19)

In this formulation, although the dynamics of each identical
cell was independent and uncoupled in the basal infinitesimal
generator A, the added infinitesimal generator from the
control input, Bu, can introduce coupling between cells. As an
example, consider the FAC for two cells. The ith state is
written as X;=[x;,x,]", and the control infinitesimal generator
can be written as

—ZMFAC(xﬂ, xp), fori=j,

”FAC(xiv xiz);

”FAC(xiv xiz):

for X; = Xj + [1, O]T,

[Bul;"¢ =

for X, = X; + [0, 1T,

0, otherwise
(20)

Similarly, for the PAC for two cells, the control infinitesimal
generator can be written as

—ZuPAC(xil), fori = j,

PAC _ T
BulPAC — u (%), forX; =X, + [1, 0T,
[(Bul;™ = PAC T
w (), forX; =X, + [0, 1],

0, otherwise

(21)

As discussed in the main text, in either case, the coupling
introduced by the control infinitesimal generator [Bu]*¢ or
[Bu]™€ is sufficient to break symmetry and encourage cells
toward desired differential expression phenotypes.

Solution Scheme for CME. To solve the CME in eq 19,
we use the FSP® approach, which truncates the allowable state
space for every species and results in a finite dimensional ODE.
However, it should be noted that the state space of a single
arbitrary chemical species is given by the ordered set [0, 1, .., n
— 1] up to some truncation limit n. The state space of multiple
species is enumerated by forming a tuple of all possible species
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available, each up to a similar maximum number. For a system
of N, cells with N’ chemically reacting species, where each
species can range up to a maximum of n — 1 copies per cell, the
number of distinct states is nN'Ns, which quickly becomes
intractable when n, N, or N’ is large. For this reason, model
reductions, simplifications, or approximations are essential,
especially when these models are to be used with millions of
different parameter sets when searching for optimal control
strategies. Further, it is important to test and verify if control
strategies designed and optimized using such simplified models
will continue to be effective when applied to more general and
more complex systems.

Fitting of Models to Data. Fits of the reduced model to
experimental data were performed numerically by optimizing
both the set of model parameters and the calibration variables
in unison. Since the parameter fits of M’y did not reveal a
single set of unique parameters which fit data, the decay rate
was calculated by hand by fitting the middle region of Figure
2A and then fitting the parameters after fixing the protein
decay rate. Fitting the My to experimental data using
calibration was performed by hand since mathematical tools
to fit data often yielded poor results by becoming stuck in local
minima. These hand fits were also constrained such that the
decay rate of the protein is the same decay rate in M'(.

B DATA AVAILABILITY

All data and computational codes needed to reproduce the
figures in this manuscript are freely available through the
GitHub page https://github.com/MunskyGroup/Michael
May et al 2021.
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