EPJ manuscript No.
(will be inserted by the editor)

QCD, Strings and Emergent Space

Sumit R. Das!:#

Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506, USA.

Abstract. This is an account of how attempts to derive String The-
ory from QCD led to contemporary ideas about emergent space and
holography.

1 Introduction

Soon after Nambu passed away, his long-time colleague Peter Freund paid a beautiful
tribute: “He would pull one rabbit out of the hat, and another, and then suddenly
the rabbits would arrange themselves in a pattern and start dancing in a way youd
never seen before. Where he got the idea, you could never imagine [1]”. Nothing could
describe the unfathomable originality of Nambu’s work better. In this contribution I
will talk about one of those rabbits which is perhaps less known than the others, but
sparked a development which eventually led to a major revision of the way we think
of gravity and space-time - something he probably did not anticipate !.

2 QCD and Strings

The story begins with QCD and its relationship to String Theory - both of which
Nambu pioneered. String Theory arose as a model for hadrons [2]. Soon after the
discovery of asymptotic freedom, it was realized by several authors that these strings
were confined electric flux tubes in the QCD vacuum - an idea developed by Nambu,
‘t Hooft and Mandelstam. This, however, raised several questions.

The first question relates to the origin of a string coupling constant. Usually, when
we talk about particles, we always have a small number in the problem such that when
this number is taken to zero, the particles are weakly coupled. For example in QED
an electron is a rather complicated object with a cloud around it because of vacuum
polarization. However, in the limit of a vanishing fine structure constant, the cloud
disappears and one has a point particle. Strings in QCD are similarly fat objects with
a width of the order of Agcp. The problem, however, is that there is no dimensionless
parameter in massless QCD so that we can tune it to a small value get a thin string.
The Yang-Mills coupling which appears in the lagrangian is dimensionally transmuted
into a scale.
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1" A couple of disclaimers. First, this is not a historical account. Accordingly, the develop-
ments reviewed below are not presented in chronological order. Secondly, for the most part
I have cited review articles or books rather than the original papers.
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In a seminal paper,‘t Hooft provided a surprising answer to this question. Instead
of considering the usual SU(3) gauge group of strong interactions, he considered a
SU(N) gauge group [3,4]. He then showed that in the limit of N — oo and gy — 0
with the ‘t Hooft coupling A = g%, N held fixed, Feynman diagrams can be thought
of as discretizations of a two dimensional surface with an overall factor of NX, where
x is the Euler characteristic of the surface. However, this is precisely the topological
expansion of string amplitudes in terms of worldsheets. So the idea was that these
Feynman diagrams are discretizations of the worldsheet of strings and the coupling
of this string theory is 1/N. This sounds weird. How could a N = oo theory provide
a reasonable approximation to a N = 3 theory ? However as ‘t Hooft argued, many
phenomena in strong interactions can be understood in the context of an expansion
in powers of 1/N - phenomena which are otherwise very difficult to understand. An
important consequence of this is that the N — oo limit is a classical limit. In this
limit expectation values of products of gauge invariant operators factorize.

The second question is: what is the quantity in the Yang-Mills theory which be-
haves as a String Field 7 What is the equation which this object obeys 7 This question
was addressed by Nambu [5]. Nambu proposed that the string field is the Wilson loop
for a closed curve C'

U(C) = Pexp[i/ A, daxt] (1)
c
He showed that the equation for this object can be obtained by considering a small

deformation of the loop C', leading to
)

5U#t

U(C) =iU(C) Fu(2)U(C") (2)

Here z is the point on the loop where a deformation is made and the loop C' is split
up into C’ andC”. i denotes a normal direction at a point z while ¢ is the tangential
direction. o, is the infinitesimal area element in (ut) plane caused by the deformation
and F); is the gauge field strength. Equation (2) can be thought of an equation in
loop space, with the left hand side defining a loop space derivative. [5] showed that
when the gauge field obeys some conditions, this leads to Virasoro equations for a
string.

It turns out that a precise definition of the loop space derivative is rather subtle.
Soon after [5] appeared, several groups realized that this can be done if one works
on a lattice. In that case one can derive precise Dyson Schwinger equations relating
Wilson loops and its correlators in the ‘t Hooft large N limit. Factorization in this
limit implies that the expectation value of the Wilson loop operator itself obeys a
closed equation [6]. These papers led to a vigorous effort to derive the string theory
which comes from QCD. However, even today this program has not worked very well
- mostly hindered by ambiguties in renormalizing these equations properly.

3 Solvable Matrix Models

Inspired by ‘t Hooft’s Large N limit, many authors explored solvable models of large N
matrices. Among them a paper by Brezin, Itzykson, Parisi and Zuber (BIPZ) played
a major role in future developments. The idea was to consider a carricature of Yang-
Mills theory by ignoring part or whole of the space-time dependence. When the entire
space-time dependence is ignored, one has a path integral over matrices. One of the
models which BIPZ considered is that of a single hermitian matrix M with an action
of the form

/ dM exp[—9] (3)
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where S is an action which is invariant under the unitary transformations of M and
dM stands for the invariant measure on Hermitian matrices. For example, one could
have 1
2
S = 292T‘r [M? +V(M)] (4)
This kind of random matrix model has a long history starting with the work of Wigner
and Dyson where such models were used to model energy levels of complex nuclei.
The ‘t Hooft large N limit would entail g — 0, N — oo with A = g2 N held fixed.
Thus the overall coefficient can be written as % In this large-N limit one can then
proceed by evaluating the integral by saddle point method. A key result was that for
the particular model (4) there is a critical coupling corresponding to a finte radius of
convergence of a perturbative expansion in g.
Another class of models which was solved in BIPZ concerns the quantum mechan-
ics of a single hermitian matrix with a hamiltonian of the form

g 0

This class of models will play a key role in the following.

These works brought Matrix Models as the center of the discussion with numer-
ous works exploring various large-N Matrix Models and their phase structure [7]. In
particular, models of unitary matrices were shown to display novel phase transitions
now known as Gross-Witten-Wadia transitions.

4 Manufacturing space-time

The quest for obtaining the correct loop equations led to a rather unexpected conse-
quence. In a remarkable paper, Eguchi and Kawai argued that in the leading order
of the large N limit the Dyson Schwinger equations obeyed by Wilson loops in some
d dimensional Euclidean lattice gauge theory are identical to those obtained from a
single plaquette model. The order in which the link matrices appear in the “Wilson
loop” in the single plaquette model somehow encodes space. Therefore a large-N gauge
theory in some d dimensional euclidean space can be expressed entirely in terms of
an integral over matrices. Working from the matrix model side this means that at
large N the dynamics can be faithfully interpreted as that of a quantum field theory.
The initial idea required modification - one final form of this proposal is the “Twisted
Eguchi-Kawai Model”, which is in fact quite general. Starting from a field theory of
e.g. a N X N hermitian scalar field one can arrive at this matrix model with no space
by the substitution

¢(x) — D(x)®D'(z) (6)

where @ is a single N x N hermitian matrix and e.g. in 4 euclidean dimensions, and
4
D(w) = [T )™ (7)
p=1

I', are N x N matrices obeying the ‘t Hooft algebra

211
r.r, = exp[wnw]])lju (8)

and n,, is a 4 x 4 antisymmetric matrix with integer entries. The substitution (6) in
the action yields the action of the “reduced model”. One can then use the reduced



4 Will be inserted by the editor

model to calculate correlators of @, and (6) reproduces the correlators of the field the-
ory in the large N limit. There are various versions of reduced models, which are e.g.
reviewed in [8]. The problem with all those, however, is that the 1/N corrections do
not correspond to the 1/N corrections of the corresponding field theory. Neverthless
this was an indication that space-time can be manufactured from internal degrees of
freedom.

5 Two dimensional Gravity and Dynamical Triangulations

String theory arose as a model of hadrons. However the mathematical formulation of
String theory seemed to require that the dimensionality of space-time should be 26
for bosonic strings and 10 for fermionic strings. This motivated a lot of effort to try
to find ways to find consistent string theories in lower dimensions. In 1980 Polyakov
published two papers which provided a new perspective. Polyakov showed that the
Feynman path integral representation of the propagator of a single string may be
written (for a bosonic string) as

1
4rre

/ DXM(E*)Dhap(£%) exp {_ / d€* Vhh®, X 0y X" 1y (9)

Here €%, a = 1,2 are two coordinates on the worldsheet of the string, X*(§),u=1---d
denotes the embedding of the worldsheet in d dimensional space-time, and h,;, denotes
the intrinsic metric on the worldsheet. At the classical level one can use the equations
of motion to express hgp, in terms of the X*# - the resulting action is the Nambu-Goto
action. The worldsheet of the string is therefore a theory of two dimensional gravity
coupled to “matter” fields X#. Gravity in two dimensions has only one physical
mode. In a conformal gauge hqy, = €?d4 and the field ¢ is the Liouville field. In this
formalism the role of critical dimensions of string theory became transparent.

In his original paper, ‘t Hooft had shown that the Feynman diagrams of Yang-Mills
theory form a discretization of a two dimensional surface, which can be thought of a
discretization of a string worldsheet. It was also clear that this applies to a field theory
of any set of matrix valued fields. Consider the dual of this lattice discretization. If
the field theory in question is e.g. a M3 field theory, the dual lattice is made of
triangles which may be taken to be equilateral. If six such triangles meet at a vertex
of this dual lattice, the surface has vanishing curvature at this point. By the same
token, more than six or less than six triangles meeting at a point leads to a defect
with an associated curvature. Thus the sum over Feynman diagrams becomes a sum
over all possible triangulations of the surface. In other words one has a dynamically
triangulated worldsheet. As ‘t Hooft had realized, the string coupling for this theory
should be 1/N.

In the mid-1980’s it was realized by Kazakov and Migdal, and by Ambjorn, Druhus
and Frohlich that if there is a critical point of the theory of matrices where the average
number of tiles in a Feynman diagram diverges, one should be able to take a continuum
limit so that the surface generated by these diagrams becomes smooth. Furthermore,
the sum over triangulations becomes an integral over various metrics over the two
dimensional surface - the integral over Ay, in (9). If the matrix field theory involves a
matrix M (z#), each Feynman diagram involves an integral over the z* at the vertices
of the diagram. This is the integral over X* in (9). In particular, if one considers
the Feynman diagrams of a Matrix Model like (4), the only integral that remains is
the integral over this metric - pure two dimensional gravity. For a field theory in d
dimensions, one has d scalar fields coupled to two dimensional gravity. In other words
one has a field theory on a random surface.
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A major breakthrough in this line of development came from another seminal pa-
per by Knizhnik, Polyakov and Zamolodchikov (KPZ) in 1988, followed by two other
papers by David and by Distler and Kawai. In these papers, one understood clearly
how Liouville theory coupled to matter can be quantized in a consistent fashion, and
how to understand critical behavior on random surfaces. In particular KPZ derived a
formula which expresses the critical exponents of a conformal field theory coupled to
Liouville in terms of the critical exponents of the theory withut dynamical gravity and
the central charge. Soon after this paper, Kazakov showed that one can choose the
potential V(M) in Matrix Models of the type (4) to describe multicritical points with
exponents of conformal field theories with central charges ¢ < 1 coupled to dynamical
two dimensional gravity predicted by KPZ. These works led to a very fruitful period
of research in the theory of noncritical strings [9]. However, it turned out to be hard
to find any consistent bosonic string theory with d > 1: these theories always had a
tachyon.

6 Strings and Quantum Gravity

While this activity centered on understanding String Theory starting from QCD was
going on, a parallel and seemingly disconnected program was pursued by a handful of
physicists. This concerned developing String Theory, more particularly supersymmet-
ric string theory as a consistent theory of quantum gravity. The story began with two
independent papers in 1974 : one by Yoneya (then a graduate student at Hokkaido)
and the other by Scherk and Schwarz. The spectrum of String Theory always con-
tained a massless spin-2 mode: understanding this mode as a hadronic excitation has
always been a challenge. Yoneya and Scherk and Schwarz took the revolutionary step
of proposing that this spin-2 particle is in fact the graviton - the quantum of gravita-
tional field. Thus String Theory should be considered as a theory of quantum gravity.
Remarkably, this idea did not have too many followers for about a decade. Only a
handful of physicists seriously pursued this idea - most notably Green and Schwarz
[10].

In the mid 1980’s there was a resurgence of interest Kaluza Klein theories. How-
ever, very soon Witten realized that the usual Kaluza Klein theories cannot describe
chiral fermions after compactification. This was the time when some physicists turned
to Superstring Theory as a candidate for a unified theory of all fundamental forces
with gravity.

There was, however, one problem. If the theory is quantum mechanically con-
sistent, there should be no anomalies. In a landmark paper in the summer of 1984,
Green and Schwarz indeed proved that when the gauge groups of superstring theories
are chosen appropriately, all anomalies cancel. It then became clear that superstring
theory is a serious candidate for a theory which can incorporate quantum gravity. In
the next few years, a large number of physicists switched to research in String Theory.
The development of two dimensional conformal field theory by Belavin, Polyakov and
Zamolodchikov led to introduction of new powerful tools, leading to rapid progress
[11].

I was among the numerous converts to String Theory. I was a postdoc at Fermilab
and would drive down to Chicago often to discuss with Nambu. I recall asking Nambu
about his thoughts about these new developments. He certainly thought that these
developments were interesting and important, but did not display much enthusiasm.
I later realized that this was quite characteristic of Nambu. He was never really
attached emotionally to some of his own creations.
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7 Non-critical Strings and Emergent Space

If the large N expansion of field theory of matrices gives rise to some kind of String
Theory, and consistent string theories describe gravity it would be natural to guess
that there are matrix field theories which describe quantum gravity. However explicit
realizations of this idea took a while to materialize, and needed one key insight -
the emergence of space dimensions in this story. We already saw that Eguchi-Kawai
models provided a way of manufacturing space-time dimensions from large N matrix
models. The kind of emergence we will now discuss will be somewhat different, and
needed some insights from the theory of noncritical strings.

The first ingredient involves the physical understanding of the Polyakov path
integral (9). This is usually regarded as the propagator for a non-critical string in d
dimensions, since the worldsheet fields X* are naturally thought of as the coordinates
of a point on the string in d dimensions. However the path integral also involves an
integration over the worldsheet metric - what does that signify ? This became clear
soon after the work of Knizhnik, Polyakov and Zamolodchikov, David and of Distler
and Kawai - especially in the latter two papers. The metric has one degree of freedom,
the Liouville mode. Thus the path integral for a bosonic string is actually over (d+1)
scalar fields,

/ DéDX" exp[—% / P& Vi [h (0,000 + 0. X70,X,) + QRo +pe?]  (10)

where h denotes a fiducial metric, Q = 1/%_’1 and R is the Ricci scalar for h.

1 is a worldsheet cosmological constant. In 1988 Satchi Naik, Spenta Wadia and I
realized that this means that the Liouville mode ¢ should be regarded as an additional
dimension in space-time. For general d # 25 the target space theory does not have
translation invariance in the ¢ direction. In fact the term Q]f{gi) means that in the
target space there is a dilaton which is linear in this direction. For d = 25, the field ¢
is at par with the other X* - there is a (d 4 1) dimensional Poincare invariance. This
is the 26 dimensional critical string. For d < 25 it is natural to identify ¢ as a space
coordinate, and for d > 25 a time coordinate [12].

The second ingredient was the realization by several groups - Brezin and Kazakov,
Douglas and Shenker and Gross and Migdal - that the matrix models whose Feynman
diagrams are described by the Polyakov path integral with d = 0 can be in fact used
to provide a non-pertubative definition of these string theories. The matrix model
would be of the type (3), and one needs a double scling limit where the couplings
contained in the potential V(M) are tuned to specific critical values, while N — oo
with a combination of a power of N and the departure of the coupling from the critical
value held fixed. In this limit, the Feynman diagrams which form discretizations of
two dimensional surfaces of arbitrary genus contribute to the same order, which is
why this is non-perturbative in the string coupling [13].

This kind of double scaling limit was soon extended to Matrix Quantum Mechanics
described by (4) by Brezin and Kazakov, Ginsparg and Zinn-Justin and Gross and
Mikovich. The Feynman digrams of this theory would have vertices which are points
in time - these should then lead to a Polyakov path integral of the type (9) where
the index p runs over one value, time. However, we just saw that this should actually
describe a string theory not in one dimension, but in two dimensions. How does that
happen in matrix quantum mechanics ?

In a work with Antal Jevicki in 1990 I considered this problem using the collective
field formalism developed by Antal and Sakita in the 1980’s. We are interested in the
singlet sector of a hamiltonian of the form (5). In this sector the dynamical variables
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are the eigenvalues of the matrix \;(¢), and at large N this can be in turn rewritten
in terms of the density of eigenvalues

| X
pz,t) = N 25(33 = Ai(t)) (11)

called the collective field, and its canonically conjugate momentum. Now, p(x,t) looks
like a two dimensional field. z is like an additional dimension which comes from the
internal matrix degrees of freedom. However, there is no reason why the collective
hamiltonian H [p(x),7,(x)] would be local in this variable z. Nevertheless, it turns
out that in the double scaling limit the hamiltonian is indeed local in the leading or-
der of large-N expansion - it represents a self interacting massless scalar field in 141
dimensions with a coupling which depends on z. In fact, in their original paper Brezin
et.al. had shown that the eigenvalues become coordinates of fermions moving on a
line. Sengupta and Wadia and Gross and Klebanov showed that the collective field is
in fact the bosonization of the corresponding fermionic field. This is precisely what
one expects if this matrix quantum mechanics indeed describes two dimensional string
theory. This string theory is very simple: the only propagating degree of freedom is
a massless scalar field. In fact, the collective field can related directly to this scalar
field. In addition to this dynamical mode, there are infinite tower of modes which can
provide backgrounds - pretty much like the longitudinal mode in electrodynamics. At
low energies these modes consist of a metric and a dilaton. Dilaton-gravity system in
1 4+ 1 dimensions cannot have wavelike solutions, but can have nontrivial solutions.
This is a theory containing gravity, even though there are no gravitational waves. A
series of subsequent papers established in great detail that the matrix model repro-
duces the S Matrix of the string theory and it was manifest that scattering of the
massless scalar involve gravitational interactions [14].

This model is the earliest example of what we now call the holographic correspon-
dence. A quantum field theory in 0 + 1 dimensions - Matrix Quantum Mechanics - is
dual to a 141 dimensional theory which contains gravity (together with other fields).
The large-N theory has no notion of space. The internal degrees of freedom of matrix
quantum mehanics have metamorphosed into an emergent space dimension.

If one could do something like this for a theory of matrices which are themselves
fields in some number of dimensions one would be able to directly construct higher
dimensional string theories. Unfortunately such a direct approach does not work be-
yond the example we considered. Further progress came from a rather different area
of physics - the physics of black holes.

8 Black Holes in String Theory [15]

Ever since Hawking discovered that black holes radiate almost thermally due to quan-
tum effects, physicists have been trying to make sense of black hole thermodynamics
and of the apparent puzzles posed by Hawking radiation. Normally, thermodynamics
is a coarse-grained description of a system which has a microscopic structure. How-
ever, for black holes it has been traditionally difficult to come up with a microscopic
structure - this seemed to be at odds with No Hair Theorems.

This situation changed soon after the “Second String Revolution” in 1995. Fol-
lowing Sen’s breakthrough work showing that N = 4 Yang-Mills theory is self-dual,
Witten showed that all the known string theories can be in fact dual to each other and
therefore describe a single theory, whose proper description is in terms of “M-theory”
- a yet unknown theory whose low energy limit is 11 dimensional supergravity.
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Duality symmetries have been explored by practitioners of supergravity for quite
a while, but were usually ignored by the string theory community. These symmetries
were known to lead to higher dimensional extended objects - membranes, 3 branes,
5 branes and so on. Soon Polchinski showed that a class of such higher dimensional
objects called D-branes have to be included in the spectrum of string theories.

The interesting thing about D-branes is that their excitations are described by
open strings whose ends are stuck to the brane, but otherwise free to oscillate in
space. And of course the low energy limit of open string theory is a gauge theory.
Witten soon showed that this low energy gauge theory of a stack of NV such coincident
D-branes is in fact SU(N) Yang-Mills theories. The Yang-Mills coupling is related to
the string coupling by gs = g%,

D-branes have a tension which is proportional to gis, so that the mass of a stack of

N D-branes will be proportional to gﬂ. Thus the gravitational field produced by such
a stack will be proportional to G;V—N where G is Newton’s gravitational constant.

However Gy is proportional to g2 so the field is proportional to gsN = g2.,,N. Now
consider the classical limit of string theory, i.e. g5 — 0. For a fixed N this would
mean that the gravitational field vanishes. However if we consider the limit N — 0
together with g; — 0 with gsN = g% ,,N held fixed, we have a classical limit where
the stack of D-branes produces a finite gravitational field. However this is precisely
the ‘t Hooft limit of the Yang-Mills theory ! Furthermore, when the ‘t Hooft coupling
A = g2 ,,N is large one should be able to describe this stack of D branes in terms of
its gravitational field.

In fact, such a large number of D branes would behave exactly like a black hole.
This is pretty much like what happens in electrodynamics. At the microscopic level
a charged object is made out of electrons and described by the theory of quantum
electrodynamics. However this is not a useful way to describe the object when there
are 102° electrons. A more useful way is to describe this in terms of the electric field
produced - the solution of Gauss’ Law. Similarly while the microscopic open string
theory, or Yang-Mills theory at low energies, is a useful description when there are
few D branes, it is not very useful when we have a huge number of D-branes. Rather
we should describe these in terms of its gravitational field - the black hole metric
which is a solution of Einstein’s equation.

We therefore arrive at examples of black holes whose microscopic structure is
known - and described by Yang Mills theory. The idea that sufficiently excited states
of strings describe black holes is in fact much older than the realization that D-
branes describe black holes. The interest in black holes among high energy theorists
exploded after the discovery that the two dimensional string theory we discussed in the
previous section have black hole solutions. Mandal, Sengupta and Wadia found black
hole solutions of the low energy equations of motion and at the same time Witten
showed that there is an exact formulation of strings moving in such a black hole
background. Very soon Callan, Giddings, Harvey and Strominger pioneered the use
of two dimensional black holes to understand Hawking radiation. A lot of subtle issues
were clarified in the next few years, but a sharp resolution of the black hole information
paradox was not in sight. In particular, there was no microscopic understanding of
black hole thermodynamics.

In 1993 Susskind suggested that one should really think of black holes as excited
states of strings - if one knew how to count the number of such states {2 at some
given energy one could use Boltzmann’s formula S = log {2 to have a microscopic
understanding of Bekenstein-Hawking entropy. This is a daunting task, since one has
to calculate this degeneracy at strong couplings. However, as suggested by Vafa, this
should be possible for extremal black holes in supergravity where non-renormalization
theorems would allow the extrapolation of a weak coupling formula to strong coupling.



Will be inserted by the editor 9

The first such calculation was performed by Sen for black hole like objects which are
described by strings wound around a compact direction with waves moving purely
in one direction. Such objects were studied earlier by Dabholkar and Harvey. The
extremal version of these did not have finite area horizons. However, they have a
generalized notion of a horizon, called a stretched horizon. Rather surprisingly Sen
showed that the degeneracy of states predicted by string theory is proportional to
the area of the stretched horizon. The proportionality constant cannot be determined
since the definition of a stretched horizon is not very precise. Nevertheless, this was
the first indication that a count of states can indeed account for Bekenstein-Hawking
entropy.

Extremal black holes do not radiate - they have zero temperature. To understand
Hawking radiation one needs to go away from extremality by exciting the extremal
black holes. I and Samir Mathur figured out how to describe these excitations for the
kind of systems which Sen analyzed. However a precise understanding of Bekenstein-
Hawking formula was not in sight.

This is where D-branes made a huge difference. In General Relativity there are
extremal black holes which have large horizons - in fact the usual Reissner-Nordstrom
black holes of Einstein-Maxwell theory are of this type. They have zero temperature,
but non-zero entropy. In early 1996 Strominger and Vafa showed how to describe
such Reissner-Norsdtrom black holes as configurations of D-branes. They were able
to count the degeneracy of extremal states for given charges. As in Sen’s calculation,
this can be done at weak coupling and extrapolated to strong coupling. The result was
stunning - the answer was in exact agreement with the Bekenstein Hawking formula
- and in this case the horizon had a finite size and the Bekenstein Hawking formula
was reliable. Very soon this agreement was extended to slightly non-extremal black
holes by several authors.

What about Hawking radiation ? Callan and Maldacena charted out the mech-
anism which would lead to such a radiation. In the microscopic theory of D branes
these would be two open strings joining to form a closed string which could then
leave the brane and shoot off to infinity. In the late 1970’s Unruh and Page had
calculated the rate of Hawking radiation from a black hole by performing a classical
calculation of absorption of waves by a black hole and using equilibrium condition to
infer the radiation rate. For Schwarzchild black holes they found that at low energies
the absorption cross section is equal to the area. Dhar, Mandal and Wadia showed
that this continues to be the case for the black holes in String Theory considered by
Strominger and Vafa. And the results of Callan and Maldacena did indicate that a
microscopic calculation would also lead to a result proportional to the area. However,
it was not at all clear how a precise calculation can be done. In the summer of 1996 1
and Mathur realized that the closed string modes which account for most of the low
energy absorption or radiation have universal couplings to the open string modes on
the D-branes, so that a precise calculation is possible. The result was surprising: the
weak coupling microscopic calculation of Hawking radiation ezactly agreed with the
classical calculation ! These D-brane configurations were indeed black holes !

Soon afterward, Gubser, Klebanov and Tseytlin found that this agreement is not
restricted to black holes. They looked at stack of 3-branes whose geomtery is hori-
zonless and completely smooth. The microscopic theory of N such branes is a 3+ 1
dimensional maximally supersymmetric SU(N) gauge theory. They showed that a
calculation in this theory precisely reproduces the classical calculation of absorption
of waves in the three brane geometry.

In all these calculations it was clear that a theory on D-branes is able to describe
gravitational physics in higher dimensions. For p-branes in 10 dimensional superstring
theory, the microscopic theory is a p + 1 dimensional large N gauge theory. However
this seems to contain all the information about the gravitational theory which of
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course lives in the entire 10 dimeensional space. This looks very similar to Matrix
Quantum Mechanics - a 0 + 1 dimensional large N theory - describing a 1 + 1 di-
mensional string theory as we had found earlier. Unlike this latter example, there is
no analog of collective field theory which explicitly demonstrates this emergence of
additional dimensions.

It was also realized that this kind of connection is a manifestation of open string
closed string duality. From the early days of string theory it has been known that
processes involving open strings can be alternatively described in terms of closed
strings, though they were both thought to live in the same number of dimensions.
In such dualities, however, the low energy limit of the open string theory is usually
never equivalent to a low energy limit of the closed string theory - rather the open
string low energy limit involves all the higher string modes. However, in these D-brane
examples it appeared that the low energy theory on the D-branes - Yang Mills theory
- can reproduce results in General Relativity which is the low energy of the higher
dimensional closed string theory. How does this happen ?

9 The AdS/CFT correspondence [16]

In a landmark paper in 1997, Maldacena explained this puzzle: this insight led to
our current understanding of emergent space. He argued that the key point is a
large gravitational redshift in the horizon geometry. This means that if one takes
a low energy limit with the energy defined as usual in the asymptotic region, one
automatically retains all the higher closed string modes near the horizon. Thus in
this low energy limit, there is a “duality” between the Yang-Mills theory describing
the physics of D-branes and closed string theory in the near-horizon region. A stack
of 3-branes in fact provides the simplest set-up. The near horizon geometry is AdSs x
5% while the low energy theory of the branes is N = 4 super-Yang-Mills in 3 +
1 dimensions. In the ‘t Hooft large N limit of the Yang Mills theory there is an
alternative description in terms of closed string theory in ten dimensional AdS5 x
S5. This is the simplest example of the AdS/CFT correspondence. Four of these
dimensions were present as the space-time dimensions of the Yang-Mills theory. The
remaining six dimensions were emergent - they arose of the internal degrees of freedom
of the fields of the Yang Mills theory. This is pretty much like the earlier example of the
two dimensional string: the NV = 4 Yang Mills theory plays the role of matrix quantum
mechanics. However, unlike the 2d string/ matris quantum mechanics duality there
is as yet no explicit construction of the closed string theory from the Yang-Mills.

After many twists and turns, ‘t Hooft’s idea found a concrete realization in this
setting. Furthermore there is one additional aspect which makes this correspondence
even more useful. The curvature of the AdSs x S° in units of the string length is
proportional to (g3 ,,N)~!/2, and unlike usual QCD the coupling gy s of the N = 4
theory is a free parameter. Therefore, when the Yang-Mills theory is strongly coupled,
the space-time on which the closed strings move is weakly curved. This means that
one can safely replace the complicated closed string theory by its simpler low energy
effective field theory - General Relativity with additional massless fields. Remarkably,
in this limit classical gravity is equivalent to the highly quantum strongly coupled
gauge theory ! Furthermore not one, but six additional dimensions of space-time are
manufactured from the internal degrees of freedom of the Yang-Mills theory.

There are in fact examples where all the spatial directions of the gravitational
theory are manufactured, though five of them are compact. One interesting example
concerns a collection of N DO branes. The theory of these branes is the quantum
mechanics of nine coordinates X*(¢) and their supersymmetric partners. The gravita-
tional theory now lives in 9+1 dimensions, with all the spatial directions non-compact.
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In fact, prior to Maldacena’s work Banks, Fischler, Shenker and Susskind had argued
that in a suitable light front frame this theory in fact describes 11 dimensional M
theory in a suitable light front frame. Around the same time, Ishibashi, Kawai, Ki-
tazawa and Tshuchiya conjectured that the euclidean theory of D-instantons, which
is a matrix model of 10 matrices and their supersymmetric partners give rise to Type
IIB string theory in ten euclidean dimensions by a mechanism similar to the Eguchi-
Kawai models.

Unlike its ¢ = 1 Matrix Model predecessor, there is no explicit understanding how
the internal degrees of freedom metamorphose into additional dimensions for most
string theory examples of the AdS/CFT correspondence. However the AdS/CFT cor-
respondence is more general than these string theory examples. There is one instance
which is particularly interesting. This concerns models of fields which transform as
fundamental representations of gauge groups like SU(N) or SO(N). These are vector
models and serve as very useful models in the study of critical phenomena. In 2002,
Klebanov and Polyakov argued that such models are dual not to string theories, but
to a class of higher spin theories which include gravity developed earlier by Vasiliev.
Soon after this paper, I and Jevicki [17] found the mechanism which leads to this.
The invariant operators in vector models with fields ¢?(x) are bi-local fields

1M .
o(xy) =+ Z¢’(X)¢’(y) (12)

where x,y are points in d dimensional space-time. In terms of the center of mass and
relative coordinates

1
u=sx+y)  v=(x-y) (13)
one can decompose the bi-local as follows
U(XaY) = Z Gl,ma(ua T)n,ma(ea) (14)
l,mg

where 12 = v2 and Y}, (0,) are spherical harmonics on S¢~1. The 0y, (u,7) then
appears as a spin-{ field in (d 4+ 1) dimensions. It turns out that when the vector
model is conformal, a field re-definition maps these oy, (u,r) into spin-l fields in
AdSg4+1. This is precisely the content of Vasiliev theory, with the spin-2 field being
the graviton. In addition at leading order in 1/N there are an infinite tower of higher
spin massless fields. It turns out, however, that these oy ,,, are not themselves the
fields of Vasiliev theory. Rather they are related to the latter by a field redefinition
which has been now derived.

10 The world as a hologram

Even before the discovery of Hawking radiation, Bekenstein had shown that a black
hole needs to be assigned an entropy propotional to the horizon area. Hawking’s work
established the proportionality constant to be 1/4Gx. In 1981 Bekesntein wrote an
intruiguing paper arguing for a universal upper bound of the entropy to energy ratio of
any system - and this argument can be used to show that in any theory of gravity, the
maximum possible entropy of any system is bounded by the area of a surface which
encloses it. This is the Bekenstein bound. In 1993 ‘t Hooft and Susskind turned this
argument around in an interesting way. The idea is the following. We know that
if there is no gravity, the entropy of a system is extensive, i.e. proportional to its
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volume. ‘t Hooft and Susskind argued that this Bekenstein bound would naturally
follow if one postulates that a theory containing gravity is equivalent to a theory
without gravity which lives on the boundary. Thus the boundary theory acts as a
hologram of everything which happens in the interior, which is why this proposal is
called the Holographic Principle.

The AdS/CFT correspondence provided a concrete realization of this principle.
This was realized by Gubser, Klebanov and Polyakov and by Witten (GKPW) [16].
The metric of (d + 1) dimensional AdS space-time can be written as

2
ds? = %[—dﬂ +d2 4 dx?) (15)
where 0 < z < co and x denote (d — 1) spacelike directions in R4~1. We will call this
space-time “bulk”. This space-time has a physical boundary at z = 0. Consider some
set of bulk fields ¢;(t, z,x). In the semiclassical regime this fields satisfy the classical
equations of motion. For example if ¢ is a scalar field with mas m, it satisfies the
Klein Gordon equation. An analysis of this equation then shows that as we approach

the boundary z = 0 the solution behaves as follows
(2,1, %) = 221 (£, %)[1 + O(z)] + 27 2o (£, x)[1 + O(2%)] (16)

> where A is

A= %[d + &+ dm?] (17)

Then, GKPW argued that the AdS/CFT correspondence implies that such a solution
corresponds to a state of a field theory defined on the boundary which has an action

S = Scrr + /dda: do(t,x) Oa(t,x) (18)

where Sopr is the action of a conformal field theory and O (¢, x) is an operator with
conformal dimension A. In this state

<OA(t7x)> = ¢1 (ta X) (19)

Therefore, in this limit where the gravity theory is classical, the AdS/CFT correspon-
dence provides a precise relationship between a field theory on the boundary of AdS
with the gravitational theory in the bulk. The field theory is on a space-time (¢, x)
whereas the bulk has one additional dimension z. In the CFT there is a conformal
symmetry SO(d — 1,2) - this is indeed the group of isometries of AdSg41. z is the
emergent space dimension which arose out of the internal degrees of freedom in the
CFT. This therefore provides a concrete realization of the holographic principle.

11 Back to QCD strings

It would be a pity if this kind of holographic correspondence is valid only for field
theories which are strictly conformal. Fortunately there are examples when the field
theories have mass gaps - the higher dimensional space-times are then not purely AdS.
These examples of the holographic correspondence can be in fact used to understand
the nature of the QCD string.

In the AdS/CFT correspondence it turns out that the emergent dimension is
in fact the renormalization group scale of the field theory. As we proceed from the
boundary z = 0 to large values of z, the field theory flows from the UV to the IR
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along a RG flow. The information about a point at a location z is then encoded in a
region of the boundary which has roughly a size also given by z - further the point
from the boundary, larger the size of the region in the hologram.

QCD is asymptotically free, i.e. the theory flows out of a conformal fixed point.
Thus the geometry of the dual theory must be asymptotically AdS near the boundary.
However since QCD has a dynamically generated mass gap, the geometry must differ
significantly from AdS far from the boundary. In fact, there are many examples of
the holographic correspondence where the dual geometry is like this - these represent
quantum field theories with a dynamically generated mass gap.

These examples illuminate one of the main reasons why the earlier attempts to
construct string theory of QCD failed. Consider a heavy quark-antiquark pair in the
Yang-Mills theory on the boundary. The string or flux tube which joins them should
have the minimal length. However, the minimal length string is no longer restricted
to the boundary but will go into the interior of the AdS or the deformed AdS. If the
Yang Mills theory is conformal the bulk is pure AdS and it turns out that this string
goes all way to the IR. The relationship between the z coordinate and the scale in
the field theory means that from the point of view of the field theory, this string is
an infinitely fat string. The lines of force are spread out, leading to a Coulomb law.
This is exactly what one would expect in a conformal theory. In a theory like QCD,
the bulk is capped off at some value of z = 2y ~ 1/my where mg is the mass gap.
Therefore the string has to turn back at this value of z. In the boundary field theory
this would mean that the string has a width which is roughly 1/mg. Indeed this is
what one expects in QCD. And of course the fact that the string must be thick was
realized long time ago. Coming up with a mathematical description of a thick string
is of course much more difficult, though there has been a lot of recent progress.

In the new light of holography, we have learnt that one should try to construct
an elementary string in one higher dimension. In the correct geometry this would
automatically lead to a thick string. This is the main new insight. We now know that
the QCD string is in fact the same string as the string which provides a theory of
gravity - only the background is different.

While the qualitative aspects of the above discussion are clear and convincing, it
is not yet possible to use this framework to perform a reliable quantitative calculation
in large-N QCD. Over the years, there are many examples of AdS/CFT where the
field theory has many of the essential features of QCD - though these theories are
not exactly QCD. It turns out that for the non-supersymmetric cases, in the contin-
uum limit (i.e. where all the physical masses are much smaller than the UV cutoff
) the curvature of the dual geometry becomes large. This implies that a supergrav-
ity approximation is no longer valid. AdS/CFT has been spectacularly useful in the
situations where the bulk theory may be approximated by supergravity, and unfortu-
nately this is not the case for QCD like theories. Recall that at large N, we only need
a classical string theory which is dual to QCD. Therefore one needs to construct a
consistent classical string theory of elementary strings in these backgrounds. So far
this has not been possible, though there has been a lot of progress towards this goal.

It is quite likely that such a string theory can be constructed in the forseeable
future. Then we will be closer to the holy grail: one would have a back of the envelope
calculation of key quantities in QCD, albeit at large N.

12 A note

I had the great fortune of being a student of Nambu. He taught me to think of physics
as a unified field, free of boundaries. And he shaped my taste in physics. I have been
lucky to be able to be in touch with him and meet him regularly till his last days,
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and every time I came back with excitement, still wondering how can someone think
like that.
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