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1 Introduction

It is well known that a large number of free non-relativistic fermions in an external potential
can be described in the semiclassical limit in terms of a fluid in phase space. In this limit,
the phase space density operator û(~p, ~x, t) expressed in terms of the fermion field ψ̂(~x),

û(~p, ~x, t) =
∫
dd~y ψ̂†

(
~x− ~y

2 , t
)
ψ̂

(
~x+ ~y

2 , t
)
ei~p·~y/~ (1.1)

becomes classical, i.e. its expectation value is zero or one. This is the Thomas-Fermi approx-
imation.1 For example, the ground state for some time independent hamiltonian H(~p, ~x)
is typically described by a single connected region in phase space bounded by the curve
H(~p, ~x) = E0. This simplification becomes particularly useful in one spatial dimension. In
this context, the phase space picture has been applied e.g. in the c = 1 Matrix Model [3],
and has been used [4] to understand the classical limit of collective field theory [5].2

In [10, 11] it has been shown, using the results of [12], that in free fermion field
theory the entanglement entropy of a subregion can be expressed as a sum over cumulants
of the particle number distribution. For a large number of fermions the leading term
in many systems is the lowest cumulant — dispersion of the number of fermions in the
subregion. This appears to be a good approximation for our system (see e.g. [13]), even
though the higher order cumulants are not parametrically suppressed (see also [51]).3 For
slater determinant states, the cumulants can be expressed in terms of integrals of two
point correlators of fermions [14, 15], and therefore in terms of fourier transforms of the
expectation value of the phase space density [18]. In the Thomas-Fermi approximation,
the latter can be replaced by its classical value. This approximation leads to a fermion two
point function which is reliable in the “bulk regime” and at short distances [2, 16, 17].4

Therefore, for appropriate intervals, this leads to a simple expression for the entanglement
entropy. This approximation is also relevant for excited states which are described by filled
regions of the single particle phase space [17] which can be in general disconnected.

In this paper, we will use this observation to calculate the entanglement entropy of a
system of free 2+1 dimensional fermions ψ(x1, x2, t) in Lowest Landau Level (LLL) states.
These states appear in many problems, most famously in the problem of charged particles
moving in a constant external magnetic field. In this context, the problem is that of integer
quantum Hall effect with ν = 1. Another example involves the holomorphic sector of free
2 + 1 dimensional fermions in the presence of an isotropic harmonic oscillator potential.
One interesting context where the latter system appears is in the discussion of the 1/2-BPS
sector of N = 4 Yang-Mills theory on S3. As shown in [21], and discussed extensively in the
literature (see e.g. [22–24]), these states can be mapped to singlet holomorphic states of a
complex matrix model which results from the reduction on S3. For a gauge group SU(N),

1For a review, see e.g. ref. [1].
2There are also suggestions that û(~p, ~x, t) might be useful beyond this classical limit [6–9]. In this paper,

we will deal entirely with the Thomas-Fermi approximation.
3See below for more comments on this issue.
4We thank A. Jevicki for raising a question which clarified the regime of validity of this approximation,

and S. Majumdar for bringing [2, 17], which contain discussions of the validity, to our attention.
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these can be further described by the holomorphic sector of N fermions in 2+1 dimensions
in an external isotropic harmonic oscillator potential. In addition, there are 1

2N(N − 1)
bosons which are always in their ground state. The holomorphicity condition effectively
relates the system to a one dimensional harmonic oscillator — which is the auxiliary one
dimensional system. The fermion wavefunctions are in one-to-one correspondence with
Schur polynomials of SU(N) [25]. There are extensions of this map for states with lower
supersymmetry [26, 28].

In this latter setup, our computation is that of a target space entanglement entropy of
the type discussed in [29–34] in the complex matrix model in this special sector. A key
motivation for our work is to use this connection to understand target space entanglement
in the context of AdS/CFT correspondence. There is an intimate relationship between
entanglement in the base space of quantum field theories and the emergence of smooth
gravitational duals [35–37]. It is natural to believe that there is a similar connection in-
volving target space entanglement, since parts of the gravitational background arise from
the target space of the field theory (e.g. the S5 in AdS5 × S5). For holographic correspon-
dences like the c = 1 Matrix Model/two dimensional string theory or the BFSS Matrix
Theory/M-theory dualities, the dual theory is quantum mechanics of matrices, and the
entanglement structure of the state is entirely target space entanglement. In fact, the cal-
culation of target space entanglement in the c = 1 Matrix Model performed in [38, 39], and
more recently revisited and improved in [40], clearly exhibits how the coupling constant
plays the role of a UV cutoff, as expected in a theory of gravity.

The 1/2 BPS states of N = 4 SYM are known to represent giant gravitons and their
duals [41–43] in supergravity — the fully backreacted geometries are the well-known LLM
geometries [44]. This duality has been explored from various points of view [45–50]. In
this context the Thomas-Fermi approximation is particularly relevant. Filled regions of the
phase space are in one-to-one correspondence to the classical solutions of supergravity [44]:
the connection can be understood in terms of the collective coordinate quantization of LLM
geometries [45]. In [29, 30] it was proposed that target space entanglement is related to
notions of entanglement in the bulk. The current setup may provide a useful arena for
exploring such a connection.

As we discuss below, LLL states can be described in terms of an auxiliary one dimen-
sional system. The two point function of fermions in LLL states

C(x1, x2;x′1, x′2) = 〈LLL|ψ†(x1, x2, t)ψ(x′1, x′2, t)|LLL〉 (1.2)

can be then expressed as an integral over the one dimensional phase space density 〈u(x, p, t)〉
and the results of [10]–[18] can be then used to calculate the entanglement entropy in
terms of 〈u(x, p, t)〉. As mentioned above, this becomes particularly simple in the Thomas-
Fermi limit. We will choose the auxiliary system to be a harmonic oscillator so that our
considerations directly apply to the holomorphic sector of the two dimensional isotropic
oscillator, which is relevant to the 1/2 BPS problem. We argue that the classical value of the
one dimensional phase space density provides a good approximation to the correlator (1.2)
for
√
N` � xi, x

′
i � ` where ` is the sole length scale of the problem (i.e. the magnetic

length). In this regime we show agreement with a direct calculation in 2 + 1 dimensions.
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We perform an analytic calculation of entanglement entropy of N free fermions in
a Lowest Landau Level state in this approximation. Our strategy easily yields explicit
expressions for arbitrary two dimensional subregions, and our approximation is adequate for
subregions which are much larger than the underlying length scale of the theory but much
smaller than the total area of the two dimensional plane.5 The leading term is a perimeter
law. We provide evidence that the coefficient of this perimeter law is independent of the
shape of the subregion. We find that the coefficient we obtain is in excellent agreement
with the calculations of [52, 53]. In these papers, the entanglement entropy for specific
subregions of samples of various shapes is calculated by directly evaluating the eigenvalues
of the correlation matrix. The agreement provides evidence that the leading term in the
cumulant expansion is a fairly good approximation.

However, when the entangling surface has corners, there are additional terms which
depend only on angles at the corners and the fermion density [53].6 Our leading large-N
result for a subregion with perimeter P(∂A) and ni corners with corner angle αi

SA =
√
π

6
P(∂A)
`

+
∑
i

nia(αi) (1.3)

where the length scale ` is related to the energy gap ω and the mass of the particle m by
`2 = 2/(mω) and the function a(α) is given by

a(α) = − 1
12

[
1 + 2 cosα

| sinα| tan−1
∣∣∣∣cot α2

∣∣∣∣] (1.4)

Equations (1.3) and (1.4) are among our main results. In our treatment, the origin of
these corner terms becomes transparent. The integrand involved in the expression for the
entanglement entropy can be seen to involve the extrinsic curvature and its derivatives, and
additional corner terms arise from singularities of these quantities. In fact the result (1.4)
is in exact agreement with the super-universal results for fluctuations proved in [59]. It is
interesting that this result is exact in a Thomas-Fermi approximation.

In [53] and [54] the corner contributions were deduced by directly obtaining the entan-
glement spectrum for special entangling surfaces. These results are in agreement with [59],
indicating that the truncation to the lowest non-trivial cumulant is a good approximation
for this quantity. The functional dependence of a(θ) remains unchanged if one takes into
account higher order cumulants [54].

Finally, we discuss how this entanglement is related to a target space entanglement of
the complex matrix model discussed above in specific states. Presently, we are able to make
such a connection in a gauge fixed formalism as in [29]. A gauge invariant discussion along
the lines of [30] should be possible. There could, however, be a subtlety in relating these
results in a quadratic model to a target space entanglement of the 1/2 BPS sector of N = 4
SYM theory. Such an entanglement is associated with a subalgebra of operators obtained

5In this paper we will in fact work on an infinite plane.
6Such additional contributions to the entanglement entropy are well studied for conformal field theo-

ries [55–57] both directly and holographically. Corner terms for hyperscaling violating theories have been
studied using holographic methods in [58].
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by a suitable projection: it remains to be seen if expectation values of these projected
operators can be evaluated in the quadratic theory. If such an evaluation is possible, the
one dimensional phase space density becomes really useful when one considers a class of
excited states which are described by droplets and fermi surface deformations in phase space
— these are giant gravitons or their duals, or Kaluza-Klein gravitons and the corresponding
phase space density determines the supergravity solution. We will not pursue this latter
aspect in this paper, but hope to report on results in a future communication.

In section 2 we review the results of [10–12, 14] for the evaluation of the entanglement
entropy of a region A in free fermion theory in terms of cumulants. We then express
the leading contribution to integrals of the phase space density, and evaluate these in the
Thomas-Fermi approximation for a large number of fermions in a one dimensional potential,
both in the ground state as well as in an excited state in a harmonic oscillator potential.
In section 3 we review the connection of Lowest Landau Level states of fermions in an
external magnetic field to those of an auxiliary one dimensional fermion theory. Beginning
in section 3.1 we choose the auxiliary system as a one dimensional harmonic oscillator and
derive general expressions for the fermion 2 point function. In section 4 we review the
connection of the LLL problem with those of 1/2-BPS states of N = 4 theory. In section 5
we derive the general expression for the entanglement entropy for arbitrary subregions in
the large-N limit. Section 6 contains the calculation of the entanglement entropy for smooth
entangling curves. In section 7 we summarize the calculation for entangling curves with
sharp corners. Section 8 discusses the relationship of the entanglement entropy computed
in this paper with target space entanglement. The discussion section contains some remarks
about the relevance of our calculation to gauge-gravity duality. Details of the calculations
are given in the appendices.

2 Entanglement entropy in terms of phase space density

For a system of N free non-relativistic fermions, it has been known for a while that the
entanglement entropy of a subregion A can be expressed as a sum over cumulants of the
particle number distribution [10, 11]

SA = limM→∞

M∑
m=1

α2m(M)C2m (2.1)

where the cumulant Cm is defined as

Cm = (−i∂λ)m log〈[exp(iλN̂A)]〉|λ=0 (2.2)

where N̂A is the particle number operator in the region A,

N̂A =
∫
A
dd~x ψ̂†(~x)ψ̂(~x) (2.3)

where ψ̂(~x) is the fermion field and d is the dimensionality of space. The coefficients α2m
are pure numbers given in [10, 11]. The expression (2.1) is useful when a finite number of
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terms in the infinite series contribute. Indeed for several systems it is known that in the
leading order of large-N limit the second cumulant dominates [14], including the system of
interest [13]. This leading result is

Sleading
A = π2

3
[
〈N̂2

A〉 − 〈N̂A〉2
]

(2.4)

This expression has a rather simple form for an interesting class of states. Consider the
expansion of the Schrodinger picture fermion field in terms of modes, which we assume to
be discrete and labelled by a set of integers {mi} ≡M

ψ̂(~q) =
∑
M

ĉMφM (~q) (2.5)

Let us divide the labels M into two sets, {M1} and {M2} and consider a state of the N
fermion system |Ω〉 such that

ĉ†M |Ω〉 = 0 M ∈ {M1}
ĉM |Ω〉 = 0 M ∈ {M2} (2.6)

A simple calculation then shows that (2.4) becomes [14]

Sleading
A = π2

3

[
〈Ω|N̂A|Ω〉 −

∫
A
dd~x

∫
A
dd~x′|〈Ω|ψ̂†(~x)ψ̂(~x′)|Ω〉|2

]
(2.7)

Examples of states like |Ω〉 include the ground state where the lowest N single particle
levels are filled, or Bogoliubov transformations of such a state.

The equation (2.7) can now be re-written in terms of the phase space density operator

3Sleading
A

π2 = 1
(2π~)d

∫
dd~p

∫
A
dd~x〈Ω|û(~p,~x)|Ω〉 (2.8)

−
∫
dd~p1d

d~p2
(2π~)2d

∫
A
dd~x1

∫
A
dd~x2 e

−i(~p2−~p1)·(~x2−~x1)/~ 〈Ω|û
(
~p1,

~x1+~x2
2

)
|Ω〉〈Ω|û

(
~p2,

~x1+~x2
2

)
|Ω〉

This form of the entanglement entropy is very useful for the following reason. In the limit

N →∞, ~→ 0 N~ = finite (2.9)

and in regions far from turning points where the local fermi momentum is a slowly varying
function, one can use a Thomas-Fermi approximation, i.e. 〈Ω|u(p, x)|Ω〉 is either zero or
unity (for a recent discussion of the validity of this approximation, see e.g. [2]). Thus, the
leading expression for the entanglement entropy becomes expressible in terms of integrals
of simple functions.

The higher order terms in the culumant expansion (2.2) can be similarly expressed in
terms of the two point function

CA(~x, ~x′) = 〈Ω|ψ†(~x)ψ(~x′)|Ω〉 (2.10)

– 6 –



J
H
E
P
0
6
(
2
0
2
2
)
0
4
6

and therefore in terms of the expectation value of the phase space density. Regarding
CA(~x, ~x′) as a matrix with ~x, ~x′ as indices, these are expressible in terms of the matrix

EA ≡ CA(1− CA) (2.11)

For example, the next non-trivial cumulant, C4 is given by

C4 = Tr
[
EA − 6E2

A

]
(2.12)

2.1 One dimensional potentials

Let us see this for the example of N fermions in a one dimensional confining potential with
the hamiltonian

H = 1
2mp̂2 + V (x) (2.13)

2.1.1 Ground state

In the semiclassical large N limit (2.9) the ground state expectation value of the phase
space density is given by

〈Ω|û(p, x)|Ω〉 = Θ
(

2µF −
p2

2m − V (x)
)

(2.14)

where µF is the fermi energy. To examine the regime in which this approximation holds,
consider the two point function of the fermion field,

〈Ω|ψ†(x1)ψ(x2)|Ω〉 =
∫

dp

2π~e
−ip(x2−x1)/~〈Ω|û

(
x1 + x2

2 , p

)
|Ω〉 (2.15)

In the Thomas-Fermi approximation, equation (2.14), this is given by

〈Ω|ψ†(x1)ψ(x2)|Ω〉 = 1
π(x2 − x1) sin

[(x2 − x1)
~

PF

(
x1 + x2

2

)]
(2.16)

where PF (x) denotes the local fermi momentum,

PF (x) =
√

2m(µF − V (x)) (2.17)

As shown in equation (14) of [16] this is the correlator in the microscopic limit |x2− x1| ∼
~/PF (x). In addition, both the points x1 and x2 must lie in the regime of validity of the
WKB approximation ∣∣∣∣ ~

(PF (x))2
dPF (x)
dx

∣∣∣∣� 1 (2.18)

The fermi energy µF is proportional to N . Note that for N � 1 there is typically a large
region of x away from the turning point over which (2.18) holds. Consider for example the
harmonic oscillator potential V (x) = 1

2mω
2x2. The fermi energy is then µF = N~ω. In

terms of the usual dimensionless coordinate

y = x

√
mω

~
(2.19)

– 7 –
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the condition (2.18) reads
y � (2N − y2)3/2 (2.20)

For N � 1 there is a fairly large regime of y over which this holds.
Consider the entanglement entropy of a small interval x0 − a < x < x0 + a which lies

in this regime. Since the fermi momentum PF (x) is slowly varying, to lowest order we can
treat this to be constant and the integrals in (2.7) can be performed analytically. This
leads to the result

S = π

3~ 2aPF (x0)− 1
3

[4PF (x0)
~

Si(4PF (x0)a/~) + Ci(4PF (x0)a/~) + cos(4PF (x0)a/~)
]

+1
3[1 + γE + log(4PF (x0)a/~)] (2.21)

where Si(x) and Ci(x) are CosIntegral and SinIntegral functions respectively.When the
interval lies in the regime

4PF (x0)a/~� 1 (2.22)

we can use the asymptotic expansions of Si(x) and Ci(x),

Si(x) ∼ π

2 −
cos(x)
x

+O(1/x2) Ci(x) ∼ sin(x)
x

+O(1/x2) (2.23)

The terms linear in a cancel, and we get the result

SEE = 1
3 [1 + γE + log (4PF (x0)a/~)] (2.24)

For a harmonic oscillator potential this should be compared with equation (1) of [16].

2.1.2 Excited states in 1d harmonic oscillator

The expression of the large N entanglement entropy in terms of the phase space density
becomes really useful for a class of excited states which are described easily in terms of filled
regions in phase space. To illustrate this, let us consider the one dimensional harmonic os-
cillator with V (x) = 1

2mx
2. In the following we will setm = 1, which can be easily restored.

Consider for example a classical phase space density

〈E|u(x, p)|E〉 = Θ
(√

p2 + ω2x2 − r1

)
Θ
(
r2 −

√
p2 + ω2x2

)
(2.25)

where |E〉 represents an excited state. The filled region in phase space has the geometry
of an annulus of inner radius r1 and width d where

d =
√
r2

1 + 2N~ω − r1 (2.26)

which comes from the fact that the area of the annulus is 2N~. Figure 1 shows the filled
region in phase space.

In terms of the states of the harmonic oscillator this excited state has fermions in a
set of contigious single particle states with energies between r2

1/2 and r2
2/2. Physically the

value of r1 describes how excited the state is.

– 8 –
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-3

Figure 1. Phase space picture of excited state described by (2.25).

Now consider a spatial interval A of size 2a centered around a point x0. When the
interval is entirely within the annulus,

A =
{
r1/ω + x0 − a ≤ x ≤ r1/ω + x0 + a

}
(2.27)

a constant x line cuts the edge of the filled annulus at values of the momenta ±P0(x),
where

P0(x) =
√
r2

2 − ω2x2 (2.28)

The fermion correlator (2.15) with r1/ω ≤ x1, x2 ≤ r2/ω in this approximation is given by
equation (2.16) with PF (x0) replaced by P0(x0) above. The result for the entanglement
entropy is exactly of the form (2.21) with PF (x0) replaced by P0(r1 + x0). This is shown
in appendix A.

When the interval lies in the region −r1/ω ≤ x ≤ r1/ω a constant x line intersects the
edges of the annulus four times, at ±P0(x),±P1(x) where

P1(x) =
√
r2

1 − ω2x2 (2.29)

In the Thomas Fermi approximation the fermion correlator is now given by

〈E|ψ†(x1)ψ(x2)|E〉= 1
π(x2−x1){sin [P0(xc)(x2−x1)/~]−sin [(P1(xc)(x2−x1)/~]} (2.30)

where xc = x1+x2
2 .

In our approximation the expression for the entanglement entropy is

SEE = 2πa
3~ [P0(x0)− P1(x0)] (2.31)

−1
3

∫ x0+a

x0−a

dx1dx2
(x2 − x1)2 {sin [P0(xc)(x2 − x1)/~]− sin [(P1(xc)(x2 − x1)/~]}2

– 9 –
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In performing these integrals P0(xc), P1(xc) can be approximated by P0(x0), P1(x0), since
our approximation is valid only when the local momentum is slowly varying. In the limit
where

aP0(x0)/~� 1
aP1(x0)/~� 1

a(P0(x0) + P1(x0))/~� 1
a(P0(x0)− P1(x0))/~� 1

(2.32)

we find

SEE = 1
3

[
2 + 2γE + log

(16a2P0(x0)P1(x0)
~2

(
P0(x0)− P1(x0)
P0(x0) + P1(x0)

)2)]
(2.33)

This result is derived in appendix A. Intriguingly, it is identical to equation (29) (and
therefore (36)) of [40] up to a factor if we replace the P0(x0), P1(x0) with the two time of
flight variables for the inverted harmonic oscillator problem. We do not know of a physical
reason behind this fact, except that the integrals involved are identical.7 In the remaining
part of the paper we will set ~ = 1.

3 Fermions in the Lowest Landau Level and auxiliary one dimensional
system

The best known example of a Lowest Landau Level problem concerns free fermions with
charge −e moving on an infinite two dimensional plane with a constant magnetic field
normal to it. This is the problem of Integer Quantum Hall Effect. The single particle
hamiltonian is given by

H = (~̂p+ e ~̂A(~̂x))2

2m (3.1)

We will work in a symmetric gauge where the components of the vector potential are

Â1 = −Bx̂2
2 Â2 = Bx̂1

2 (3.2)

and work on the infinite plane. In terms of the operators

â = 1√
2eB

[(
p̂1 −

eBx̂2
2

)
− i

(
p̂2 + eBx̂1

2

)]
â† = 1√

2eB

[(
p̂1 −

eBx̂2
2

)
+ i

(
p̂2 + eBx̂1

2

)]
(3.3)

The hamiltonian then becomes

H = ωB

[
â†â+ 1

2

]
ωB = eB

m
(3.4)

7We thank the referee for pointing it out.
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The basic length scale in the theory is given by8

` =
√

2
eB

(3.5)

In this gauge there is another set of oscillators which commute with the â, â†, defined by9

b̂ = 1√
2eB

[(
p̂2 −

eBx̂1
2

)
− i
(
p̂1 + eBx̂2

2

)]
b̂† = 1√

2eB

[(
p̂1 −

eBx̂2
2

)
+ i

(
p̂2 + eBx̂1

2

)]
(3.6)

These obey [b̂, b̂†] = 1.
Therefore the states of the system can be constructed by the action of â† and b̂† acting

on the Fock vacuum,

|m,n〉 = 1√
n!
√
m!

(â†)n(b̂†)m|0〉 â|0〉 = b̂|0〉 = 0

H|m,n〉 =
(
n+ 1

2

)
|m,n〉 (3.7)

The quantum number n labels a Landau level. The corresponding wavefunctions will be
denoted by φlm(x1, x2).

Since the energy does not depend on m, there is an infinite degeneracy. This is because
we have been working on an infinite plane. If we instead work on a plane with a finite but
large area A2, the degeneracy d(n) is given by

d(n) = α
A2
`2

(3.8)

where α is a numerical constant.
The Lowest Landau Level (LLL) states have n = 0. The normalized wavefunctions are

given by

φl,0(x1, x2) = 1
`
√
πl!

(
x1 + ix2

`

)l
exp

(
− 1

2`2 [x2
1 + x2

2]
)

(3.9)

Consider the second quantized fermion field in the two dimensional problem of section 2

χ̂(x1, x2) = ψ̂(x1, x2) + λ̂(x1, x2) (3.10)

where the first field operator is a sum over all the Lowest Landau Levels, while the second
field operator is a sum over all the remaining higher Landau levels, i.e.

ψ̂(x1, x2) =
∞∑
l=0

ĉl,0φl,0(x1, x2)

λ̂(x1, x2) =
∞∑
m=1

∞∑
l=0

ĉl,mφl,m(x1, x2) (3.11)

8Note that this differs from the standard definition of the magnetic length by a factor of
√

2.
9See e.g. ref. [20] and references therein.
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The operators ĉl,m obey the anti-commutaton relations

{ĉ†l,m, ĉl′,m′} = δmm′δll′ {ĉl,m, ĉl′,m′} = 0 (3.12)

Since the full set of modes φl,m(x1, x2) form a complete set, the fermion field χ̂(x1, x2)
satisfies the standard anticommutation relations

{χ̂†(x1, x2), χ̂(x′1, x′2)} = δ(x1 − x′1)δ(x2 − x′2) {χ̂(x1, x2), χ̂(x′1, x′2)} = 0 (3.13)

Of course, the operator ψ̂(x1, x2) do not obey the standard anticommutation relations.
Let us now define a one dimensional fermion field operator by

ξ̂(v) ≡
∞∑
l=0

ĉl,0ζl(v) (3.14)

with the condition ∫ ∞
−∞

dvξ̂†(v)ξ̂(v) = N (3.15)

Here the functions ζl(v) form any complete orthonormal set on the real line,∫ ∞
−∞

dvζ∗l (v)ζl′(v) = δll′

∞∑
l=0

ζ∗l (v)ζl(v′) = δ(v − v′) (3.16)

which ensures that

{ξ̂†(v), ξ̂(v′)} = δ(v − v′) {ξ̂(v), ξ̂(v′)} = 0 (3.17)

From the first equation in (3.11), and the expression for ĉl,0 in terms of ξ̂(v) obtained
by inverting (3.14) we get a relationship between the operator ψ̂(x1, x2) and the one di-
mensional fermion field ξ̂(v),

ψ̂(x1, x2) =
∫ ∞
−∞

dv K(x1, x2; v)ξ̂(v) (3.18)

where

K(x1, x2; v) =
∞∑
l=0

φl,0(x1, x2)ζ?l (v) (3.19)

We can regard the operator ξ̂(v) as the second quantized field for a set of N free fermions
living on the real line in the presence of a potential such that the modes ζl(v) are eigen-
functions of the corresponding hamiltonian. We will call this system a one dimensional
auxiliary system. The operator ψ̂(x1, x2) is a constrained field operator which satisfies the
Lowest Landau Level condition at the operator level. The equation (3.18) expresses this
constrained operator in terms of an unconstrained one dimensional fermion field.
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Finally the expression (3.19) can be used to relate bilocals of the constrained two
dimensional field to Wigner operators of the auxiliary one dimensional problem,

ψ̂†(x1, x2)ψ̂(x′1, x′2) =
∫
dvdv′ K?(x1, x2; v)K(x′1, x′2; v′)ξ̂†(v)ξ̂(v′) (3.20)

=
∫
dvdv′ K?(x1, x2; v)K(x′1, x′2; v′)

∫
dp

2π e−i
v′−v

2 û

(
p,

1
2(v + v′)

)
where the Wigner function of the auxiliary one dimensional problem is defined as in (1.1),

û(p, v) =
∫
dv′ ξ̂†

(
v − v′

2

)
ξ̂

(
v + v′

2

)
eipv

′ (3.21)

Note that the modes ζl(v) can be any set of complete orthonormal modes so that the po-
tential of the auxiliary one dimensional problem is arbitrary so long as the spectrum is
discrete and labelled by an integer. Different auxiliary systems will have different correla-
tors of û(p, v) as well as different kernels K(x1, x2; v) but would lead to the same correlators
of ψ(x1, x2).

3.1 One dimensional harmonic oscillator as the auxiliary system

In this paper we will choose the auxiliary one dimensional system to be a one dimensional
harmonic oscillator so that the modes ζl(v) are the usual eigenfunctions expressible in terms
of Hermite polynomials. As mentioned above this choice makes a direct connection to the
LLL which appear as descriptions of the holomorphic sector of a two dimensional isotropic
oscillator which is relevant to the 1/2 BPS problem. This choice also makes the underlying
holomorphicity of the wave functions transparent.

We will be interested in the state where the N fermions successively fill up the Lowest
Landau Level single particle states,

|F 〉 ≡
N∏
m=0

1√
m!

(b̂†)m|0〉 (3.22)

This is the fermi ground state of the auxiliary one dimensional harmonic oscillator whose
lowering and raising operators are given by the b̂, b̂†. The modes ζl(y) in (3.14) are then
given by

ζl(v) = 1√
2ll!
√
π
e−

v2
2 Hl(v) (3.23)

Note that the coordinate v we use here is dimensionless. We can think of this as the usual
dimensionless coordinate in the standard one dimensional harmonic oscillator. However,
for us all we need are the normalization and completeness conditions (3.16). The kernel
K(x1, x2; v) can be then easily evaluated (details are in appendix B)

K(x1, x2; v) = 1
π3/4`

exp
[
− 1

2`2 (x2
1 + 2ix1x2)− v2

2 +
√

2v
`

(x1 + ix2)
]

(3.24)

This can then be used in (3.20) to obtain an explicit expression for the (two-dimensional)
fermion bilinear in terms of the one dimensional phase space density.
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Consider now states for which the 1d phase space density 〈u(p, v)〉 is a function of
(p2 + v2) only. The expression for the two point function of fermions (1.2) can now be
calculated using (3.24) in (3.20). To perform the integral we change variables to (v±v′) and
the integral over (v− v′) can be performed explicitly. Making a further change of variables

(p, v + v′)→
(
r =

√
p2 + (v + v′)2

4 , tanφ = 2p
(v + v′)

)
(3.25)

and utilizing the aforementioned symmetry of 〈u(p, v)〉 we get the expression

C(x1, x2;x′1, x′2) = 2
π`2

exp
[
−x

2
1 + x2

2
2`2 − x′21 + x′22

2`2 − 2
(
x1 − ix2√

2`

)(
x′1 + ix′2√

2`

)]

×
∫ ∞

0
rdr e−r

2〈χ|u(r2)|χ〉

× I0

(
2r
[
2
(
x1 − ix2

`

)(
x′1 + ix′2

`

)]1/2) (3.26)

where I0(x) is the Modified Bessel Function. Notice that in the regime where

1�
∣∣∣∣(x1 − ix2

`

)(
x′1 + ix′2

`

)∣∣∣∣� N (3.27)

the modified Bessel function can be replaced by its asymptotic behavior with a large ar-
gument, i.e. I0(z)→ ez√

2πz . Thus the integral over r can be calculated using the method of
steepest descent, the saddle point of which is

r∗ =
[
2
(
x1 − ix2

`

)(
x′1 + ix′2

`

)]1/2
. (3.28)

This means that the main contribution to the integral comes from the regime around[
2
(
x1−ix2

`

) (
x′1+ix′2

`

)]1/2
. This is still far away from the edge r ∼

√
2N in the regime (3.27).

Therefore, the Thomas-Fermi approximation for 〈χ|u(r2)|χ〉 is valid in this regime.
For the state with 〈u〉 given by

〈χ|u(p, v)|χ〉 = Θ
(
2N − (p2 + v2)

)
(3.29)

we get

C(x1, x2;x′1, x′2) = 1
π`2

exp
[
−x

2
1 + x2

2
2`2 − x′21 + x′22

2`2 − 2
(
x1 − ix2√

2`

)(
x′1 + ix′2√

2`

)]

×
∞∑
m=0

1
m!

[
2
(
x1 − ix2

`

)(
x′1 + ix′2

`

)]m
[1−Q(m+ 1, 2N)]

(3.30)

where
Q(s, λ) = 1− 1

Γ(s)

∫ λ

0
ts−1 e−t dt.
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The expression (3.30) has a smooth limit as N →∞. In the large-N limit we finally have

C(x1, x2;x′1, x′2) = 1
π`2

exp
[
−(x1 − x′1)2

2`2 − (x2 − x′2)2

2`2 + i
x1x

′
2 − x2x

′
1

`2

]
(3.31)

In the state under consideration, it is in fact possible to directly calculate the correla-
tion function using the LLL wavefunctions (3.9).

C(x1,x2;x′1,x′2) = 1
π`2

∞∑
l=0

1
l!

[(
x1− ix2

`

)(
x′1 + ix′2

`

)]l
exp

(
−x

2
1 +x2

2 +x′21 +x′22
2`2

)
(3.32)

− 1
π`2

∞∑
l=N

1
l!

[(
x1− ix2

`

)(
x′1 + ix′2

`

)]l
exp

(
−x

2
1 +x2

2 +x′21 +x′22
2`2

)

The first term is exactly (3.31) and the second term is exponentially suppressed in the
regime ∣∣∣∣(x1 − ix2

`

)(
x′1 + ix′2

`

)∣∣∣∣� N (3.33)

when N is large. The details of the estimates of the correction is given in appendix D.
Eq. (3.31) is the expression we will use to calculate the entanglement entropy of a

subregion in the (x1, x2) plane in the next section. This leading order correlator obeys the
property

C(x1, x2;x′1, x′2) =
∫
dx′′1dx

′′
2 C(x1, x2;x′′1, x′′2)C(x′′1, x′′2;x′1, x′2) (3.34)

While we are mainly concerned with the Thomas-Fermi approximation for the one
dimensional phase space density in this paper, the two dimensional fermion number density
is related directly to the phase space density near the edge of the filled region where the
Thomas-Fermi approximation fails. Using (3.24) and (3.20) we obtain

〈LLL|ψ†(x1, x2)ψ(x1, x2)|LLL〉 =
∫
dpdv

2π`2 〈χ|u(p, v)|χ〉N e−(v−
√

2x1
`

)2−(p+
√

2x2
`

)2 (3.35)

Here |χ〉N is the state of N fermions in the 1d oscillator which corresponds to the particular
LLL state. Suppose this state is such that the expectation value 〈χ|u(p, v)|χ〉N obeys the
scaling property

〈χ|u(p, v)|χ〉N = f

(
p√
N
,
v√
N

)
(3.36)

Then by a change of variables the integral in (3.35) becomes

〈LLL|ψ†(x1, x2)ψ(x1, x2)|LLL〉 = N

∫
dpdv

2π`2 f(p, v) e−N(v−
√

2x1
`
√
N

)2−N(p+
√

2x2
`
√
N

)2
(3.37)

In the limit of N →∞, with xi ∼ `
√
N , the gaussians become delta functions, leading to

〈LLL|ψ†(x1, x2)ψ(x1, x2)|LLL〉 → 1
2π`2 f

(
−
√

2x2

`
√
N
,

√
2x1

`
√
N

)
= 1

2π`2 〈χ|u
(
−
√

2x2
`

,

√
2x1
`

)
|χ〉N (3.38)

We will not use this relationship in what follows. However this could be useful in a treat-
ment which goes beyond the semiclassical approximation.
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4 1/2 BPS states of N = 4 Yang Mills theory

In this section we review the connection of lowest Landau Level states and the 1/2 BPS
sector of N = 4 Yang-Mills theory on S3. As shown in [21], the problem reduces to the
holomorphic sector of quantum mechanics of a single complex matrix, which can be then
expressed in terms of two dimensional fermions with holomorphic wave functions. Below
we will follow the treatment of [23].

This theory has six adjoint scalar fields φ1 · · ·φ6. Half BPS operators are of the form

O(J1···Jp) =
p∏
a=1

Tr(ZJa) (4.1)

where Z = φ1 + iφ2 is a complex N × N matrix. The correlators of these operators can
be computed in terms of the correlators of their lowest KK mode on S3, i.e. we need to
consider operators which depend only on time. Non-renormalization theorems then imply
that the correlators of such operators can be calculated in terms of correlators of the singlet
holomorphic sector of quantum mechanics of a single complex matrix with a hamiltonian

H =
N∑

i,j=1

(
− ∂2

∂Zij∂Z?ij
+ ZijZ

?
ij

)
(4.2)

The potential term comes from the conformal coupling of the scalar to the Ricci scalar of S3.
One way to reduce the theory to that of free fermions is to use a Schur decomposi-

tion [23]. The complex matrix can be now written in terms of a unitary matrix U and a
lower triangular matrix T

Z = UTU † (4.3)

and in the singlet sector the degrees of freedom are the matrix elements of T , which are N
complex numbers zi = Tii with i = 1 · · ·N and Tij , T ?ij , with i < j. The zi are the eigenval-
ues of Z. The change of variables from Z to these leads to a jacobian which is the modulus
squared of the van der Monde determinant ∆(z) =

∏
i<j(zi − zj). Using the standard pro-

cedure of absorbing this in the wavefunction we get a theory of N fermions moving in two
dimensions with coordinates (w1)i =

√
2Re(zi) and (w2)i =

√
2Im(zi) and their conjugate

momenta (q1, q2) in an isotropic harmonic oscillator potential with a hamiltonian

h = 1
2
[
q2

1 + q2
2 + w2

1 + w2
2

]
(4.4)

where [qi, wj ] = i. In addition there are 1
2N(N − 1) bosons in the same potential.

Let us introduce the oscillators

c1 = 1
2 [(w1 + iw2) + i(q1 + iq2)] c2 = 1

2 [(w1 − iw2) + i(q1 − iq2)] (4.5)

and their hermitian conjugates. The eigenstates of h can be then written in the form

|n,m〉 = (c†1)n(c†2)m|0〉 = 0 (4.6)
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The 1/2-BPS sector of the original theory is then the sector where all the bosons are in
their ground state, while the N fermions occupy single particle states with wavefunctions
of the form

χl =

√
2l
πl! z

l e−z
?z (4.7)

Holomorphic states are |n, 0〉. The operators (4.1) can be expressed in terms of the zi’s.
Since the bosons are always in their ground state, correlators of these operators can be
expressed entirely in terms of the fermionic field theory.

The operators c1, c2 are in one-to-one correspondence with the operators â, b̂ of the LLL
problem defined in (3.3) and (3.6). The coordinates x1, x2 of the particle in a magnetic
field are related to the coordinates of the isotropic harmonic oscillator problem by

xi = `wi pi = qi
`

i = 1, 2 (4.8)

which leads to
â = −ic2, â

† = ic†2 b̂ = −c1, b̂
† = −c†1 (4.9)

Note that the hamiltonian (4.4) of the 2d oscillator is not the hamiltonian (3.1) of the
particle in a magnetic field. In fact, as is well known, the latter problem can be re-written
in terms of a two dimensional harmonic oscillator deformed by a term proportional to the
angular momentum. The holomorphic states are nevertheless mapped to LLL states.

Equivalently, in a coherent state representation, one could consider the matrix Z and
its canonically conjugate momentum and define the matrix operators [21]

Aij = 1
2

Zij + ∂

∂Z†ij

 Bij = 1
2

[
Z†ij −

∂

∂Zij

]
(4.10)

The 1/2 BPS sector is the reduction to the matrix hilbert space given by the A,A† oscilla-
tors. The holomorphic wavefunctions are then expressed in terms of the eigenvalues of A.

5 The entanglement entropy: leading large N expression

Consider now a subregion A of the (x1, x2) plane. The correlation matrix for this region is

CA(x1, x2;x′1, x′2) ≡ 1(x1,x2)∈A〈LLL|ψ†(x1, x2)ψ(x′1, x′2)|LLL〉1(x′1,x′2)∈A (5.1)

where 1(x1,x2)∈A is the indicator function

1(x1,x2)∈A ≡
{

1, (x1, x2) ∈ A
0, (x1, x2) /∈ A

For the successively filled LLL states the leading term in the cumulant expansion of the
entanglement entropy is given by the expression

SA = π2

3 trEA = π2

3 tr[(I − CA)CA] (5.2)
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Where the quantity CA is considered as a matrix with indices (x1, x2) and I is the identity
matrix in this space. Using (3.34) we can express CA in terms of a product of two 2-point
functions. Furthermore, using the identity

I − (1(x1,x2)∈A)2 = 1(x1,x2)∈Ac (5.3)

where Ac denotes the complement of A, we can express the matrix EA as

EA(x1,x2;x′1x′2) =
∫
dx′′1dx

′′
2 1(x1,x2)∈AC(x1,x2;x′′1,x′′2)1(x′′1 ,x′′2 )∈AcC(x′′1,x′′2;x′1,x′2)1(x′1,x′2)∈A

(5.4)
The expression for its trace is

trEA =
∫
dx1dx2dx

′
1dx
′
2 |C(x1, x2;x′1, x′2)|21(x1,x2)∈A1(x′1,x′2)∈Ac (5.5)

This is an integral of the modulus squared of the fermion correlator between a point in
A and a point in Ac. This makes it clear that the dominant result will be a perimeter
law. Using (3.31) and (5.2) the leading order expression for the entanglement entropy is
therefore

Sleading
A = 1

3

∫
A
dy1dy2

∫
Ac
dy′1dy

′
2 exp[−(y1 − y′1)2]− (y2 − y′2)2] (5.6)

where we have used dimensionless variables

y1,2 = x1,2
`

(5.7)

In the following, it will be useful to rewrite EA as

EA = 1z+ε/2∈A · 1z−ε/2∈A

∫
idηdη∗

2π2`4
1z+η∈Ac exp

[
−|ε|

2/2 + 2|η|2 − zε∗ − ε∗η + z∗ε+ εη∗

2`2

]
(5.8)

where we have defined the complex variables

z = 1
2(x1 + x′1 + ix2 + ix′2)

ε = (x1 − x′1 + ix2 − ix′2)

η = x′′1 + ix′′2 −
1
2(x1 + x′2 + ix2 + ix′2) (5.9)

To obtain the leading order entanglement entropy for the region A given by (5.2) we need
to set ε = 0 and perform the integration over η, η∗. This can be done by expanding

1z+η∈Ac =
∞∑
k=0

1
k! (−1)k (η∂z + η∗∂∗z )k 1z∈Ac (5.10)

One finally gets

trEA =
∫
d2x 1~x∈A

1
π`2

exp
(
`2

4 ∇
2
x

)
1~x∈Ac (5.11)
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6 Smooth entangling curves

In this section we will evaluate the leading large N expression for the entanglement en-
tropy (5.11) for a smooth entangling curve.

6.1 Entanglement of half space

Let us first consider the easiest case: entanglement of half space. The region A is then
defined by y1 > 0. We will consider the case where the entire sample is a rectangle with
sides (2L1, 2L2) in the (y1, y2) direction (in ` = 1 units) and finally perform the limit
L1, L2 � 1. The limits of integration are then −L1 ≤ y1 ≤ L1 and −L2 ≤ y2 ≤ L2.
Using (5.6) we have

Shalf−space = 1
3

∫ ∞
0

dy1

∫ 0

−∞
dy′1exp[−(y1 − y′1)2]

∫ ∞
−∞

dy2

∫ ∞
−∞

dy′2 exp[−(y2 − y′2)2] (6.1)

In the limit L1 →∞ straightforward integration yields the final result

Shalf−space = 2L2

√
π

6` (6.2)

The details of the calculation of the integrals is given in appendix E. As expected the result
is proportional to the perimeter of the entangling surface, which is 2L2. In (6.2) we have
restored `.

6.2 Circular entangling curve

Consider now a subregion A which is bounded by a circle,

r ≡
√
y2

1 + y2
2 = r0 (6.3)

In polar coordinates the indicator functions are simply theta functions

1~x∈A = Θ(r0 − r) 1~x∈Ac = Θ(r − r0) (6.4)

The expression (5.11) becomes, after expanding the exponential and using (6.4)

trEA =
∫ 2π

0
dθ

∫ r0

0
dr r

1
π

∞∑
l=0

1
l!22l (∇

2)l Θ(r − r0) (6.5)

This is an infinite series of terms which are individually singular. However, as we will show,
in the limit r0 � 1 (i.e. when the physical radius of the circle is much larger than the scale
`), this sum has a finite answer. The l = 0 term in (6.5) clearly does not contribute. In the
remaining terms we can bring out one factor of the laplacian and use Stokes’ theorem to get

trEA = r0
4π

∫ 2π

0
dθ
∞∑
l=0

1
(l + 1)!22l

[
∂r∇2lΘ(r − r0)

]
r=r0

(6.6)

The terms inside the square bracket is a sum of terms of the form

[
∂r∇2lΘ(r − r0)

]
r=r0

=
2l∑
n=1

an,l

r2l−n
0

[∂nr δ(r − r0)]r=r0
(6.7)
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where an,l are numerical coefficients. In the r0 →∞ limit only the n = 2l term contributes
and we can replace this by[

∂r∇2lΘ(r − r0)
]
r=r0

→
[
∂2l
r δ(r − r0)

]
r=r0

(6.8)

One way to see this concretely is to use e.g. the representation of the Dirac delta function
as a limit of a gaussian whose width σ → 0 and express the quantity [∂nr δ(r − r0)]r=r0

as
a series of terms with successive inverse powers of σ. For a given σ, terms with inverse
powers of r0 will be suppressed. This leading order term can be evaluated by using the
fourier representation of the delta function,

[
∂2m
r δ(r − r0)

]
r=r0

=
∫ ∞
−∞

dp

2π (−p2)m (6.9)

Using this in (6.8) and (6.6) we get

trEA = r0
4π

∫ 2π

0
dθ

∫ ∞
−∞

dp

2π

∞∑
l=0

1
(l+1)!

(
− p

2

4

)l
=− r0

4π

∫ 2π

0
dθ

∫ ∞
−∞

dp

2π
4
p2

[
exp(−p2/4)−1

]
= 1

2π3/2

∫ 2π

0
r0dθ (6.10)

The final integral over θ is of course trivial. However we have kept the answer in the
form (6.10) to emphasize the fact that the integral is over arc lengths comprising the circle.
The final answer for the entanglement entropy for a single circle is then

SA = π2

3 trEA = (2πr0)
√
π

6` (6.11)

where we have restored the appropriate power of `. The result is again proportional to the
perimeter (2πr0) with the coefficient which is exactly that in (6.2).

It should be emphasized that this result is to leading order in r0 � 1.

6.3 General smooth entangling curve

The results of the previous subsection can be now generalized to arbitrary entangling curves
provided that the extrinsic curvature and its derivatives at all points are small in units of
`. Consider such a smooth curve C parametrized by a parameter σ. Now approximate the
interval between σ and σ+dσ by a circular arc with a radius r(σ) = 1/K(σ) where K(σ) is
the extrinsic curvature scalar at the point σ. One might expect that as long as K(σ)� 1/`
at all points on the curve, we can calculate the contribution to trEA from this interval using
the results of the previous subsection. A more careful consideration, detailed in appendix F,
shows that K(σ)� 1/` is not enough. Rather one needs |∂σK(σ)| � |K(σ)| � 1/`.

Under these conditions the area of the subregion A enclosed by the curve will be large
compared to `2 and the leading contribution to the entanglement entropy is given by

Sleading
A = π2

3 V
(2)
A =

√
π

6
P(∂A)
`

(6.12)
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where P(∂A) is the perimeter of the curve enclosing A. This is the leading result in the limit
N → ∞ and P(∂A)

` � 1. The perimeter law is expected and has been proved rigorously
in [51].

Taking into account the fact that our definition of the length scale ` differs from the
magnetic length by a factor of

√
2, the coefficient of the perimeter law is in good agreement

with e.g. the numerical result of [52, 53], which is 0.203 which should be compared to our
result

√
π

6
√

2 = 0.208.

7 Corner contributions to entanglement entropy

The perimeter law is the only leading term when the entangling curve has an extrinsic
curvature small compared to `. When the curve has sharp corners, there are additional O(1)
corrections to the expressions of the previous section — these are the corner contributions.

In our formalism the origin of these corner terms is the following. The expression (5.11)
involves the laplacian acting on the indicator function. Consider a subregion A which is
bounded by a closed curve C : f(x1, x2)− r0 = 0. The indicator function is then

1~x∈A = Θ (r0 − f(x1, x2)) (7.1)

It then follows that

∂µ1~x∈A = −nµ(∂αf∂αf)1/2δ (r0 − f(x1, x2)) (7.2)

where nµ = (∂µf)/(∂αf∂αf)1/2 is the normal vector to the curve C. Thus

∂µ1~x∈A = nµ(nα∂α1~x∈A) (7.3)

This leads to
∇21~x∈A = K(nα∂α1~x∈A) + (nα∂α)21~x∈A (7.4)

where K = ∇µnµ10 is the scalar extrinsic curvature of C at this point. The approximation
used in subsections 6.2 and 6.3 amounts to the replacement ∇2 → (nα∂α)2 which is valid
when the extrinsic curvature K � 1 in ` = 1 units. At a sharp corner K is large and this
approximation clearly breaks down, leading to additional terms.

7.1 Corner terms from a triangular region

To isolate these corner terms, it is useful to consider a subregion which is an isosceles
triangle. To isolate the corner term for an arbitrary curve with corners we can replace the
region near the corner by such a triangle.

A : 0 ≤ y1 ≤ h, − ky1 ≤ y2 ≤ ky1 (7.5)

Here the parameter k is related to the angle at the vertex α by

k = tan α2 (7.6)

We will be interested in the case h� 1.
10Note that we are working in flat space using cartesian coordinates so that ∇µ = ∂µ.
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For this calculation it is convenient to use the form (5.2). The first term on the right
hand side of this equation is proportional the number of fermions in the subregion, NA.
The fermion density is of course constant so this leads to a contribution to the leading
entanglement entropy which is proportional to the area,

S1 = π

3h
2k (7.7)

where we used (3.34). As we will see soon, this term will be cancelled by contributions
coming from the second term in (5.2). The latter is

S2 = −1
3

∫ h

0
dy1

∫ h

0
dy′1

∫ ky1

−ky1
dy2

∫ ky′1

−ky′1
dx′2 exp

[
−(y1 − y′1)2 − (y2 − y′2)2

]
(7.8)

The integrals can be performed for h� 1. The details are given in appendix G. The final
result is

S2 = −π3h
2k +

√
π

6
(
2h(k +

√
1 + k2)

)
− π2

3

[
k

2π + 3
4π2 + cot−1(k)

4π2

(1
k
− 3k

)]
+O(e−h2) +O(e−h2k2) (7.9)

The second term in S2 is proportional to the perimeter

P(k;h) = 2h(k +
√

1 + k2) (7.10)

and the coefficient is exactly the same as in the previous cases, equa-
tions (6.2), (6.11), (6.12). Adding (7.7) and (7.10) we get

SA =
√
π

6 P(α;h)− 1
12 sinα [π + α+ 3 sinα− 2α cosα] +O(e−h2) +O(e−h2 tan2 α

2 ) (7.11)

where we have expressed the result in terms of the vertex angle α. This result is derived
in appendix G.

We now compare this result with that of [53]. In this paper the corner contributions
are expressed as

γ =
p∑
i=1

a(αi)ni (7.12)

where a polygonal subregion has ni vertices with angles αi. The expression for a(α) ob-
tained by numerical calculation for various different subregions is given in equation (22)
of [53]. Figure 2 compares our result for the corner contribution for an isosceles triangle,
SA −

√
π

6 P(α;h) in equation (7.9), the red curve, with the result obtained using equa-
tion (22) of [53], the blue curve. We find a very good agreement away from α = 0 or
α = π. However for these latter values of the vertex angle, the triangle degenerates and
the approximations we have used to arrive at (7.9) break down.

– 22 –



J
H
E
P
0
6
(
2
0
2
2
)
0
4
6

Figure 2. EE for isosceles triangle: comparison between our results (in red) given by SA −√
π

6 P(α;h) in equation (7.9) and the prediction from numerical results (in blue) in [53].

7.2 A pie-slice subregion and a better evaluation of the corner term

To obtain a more general expression for the corner contribution we consider a subregion
A which is a pie-slice of the entire space. In terms of polar coordinates (r, φ) (with y1 =
r cosφ, y2 = r sinφ) this is given by

A : 0 ≤ r ≤ ∞ − α

2 ≤ φ ≤
α

2 (7.13)

We will, introduce a IR regulator which effectively provides an upper limit to the range of
r. When α = π this is the calculation in subsection 6.1. The leading order expression for
the entanglement entropy is (using polar coordinates in the expression (5.6))

S(α, ε) = 1
3

∫ α/2

−α/2
dφ1

∫ π−α/2

−π+α/2
dφ2

∫ ∞
0

dr1dr2 r1r2 exp[−(1+ε)(r2
1 +r2

2)−2r1r2 cos(φ1−φ2)]

(7.14)
Here we have introduced a small parameter ε. Since the subregion (7.13) is infinite the
integral over r would lead to a IR divergence. However this should be in fact the perimeter
piece. The parameter ε effectively cuts off this integral to rmax ∼ 1/

√
ε.

In fact, since we have already performed the integral (7.14), we will compute the
quantity

a(α) = Limε→0 [S(α, ε)− S(π, ε)] (7.15)

which is then identified with the corner contribution for a corner angle α.
The integral (7.14) is evaluated in appendix H. The final result is

S(α, ε) = − 1
24 [log 2ε− 3− 2 Li1(1)] (1 + 2 Li0(1))

− 1
12

[
1 + 2 cosα

| sinα| tan−1
∣∣∣∣cot α2

∣∣∣∣] (7.16)
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Figure 3. Plot of the corner contribution to entanglement entropy from a single corner a(α) in
equation (7.19) (in blue solid line). This is compared with the results of [54] which are red dots.

where Lis(z) denotes the Polylogarithm function,

Lis(z) =
∞∑
k=1

zk

ks
(7.17)

The first line in (7.16) is independent of α and is in fact formally divergent. The α
dependence is entirely in the second line, which is independent of ε, and vanishes at α = π,

1 + 2 cosα
| sinα| tan−1

∣∣∣∣cot α2

∣∣∣∣ = 1
3(π − α)2 +O((π − α)4) (7.18)

This means that the quantity a(α) is finite,

a(α) = − 1
12

[
1 + 2 cosα

| sinα| tan−1
∣∣∣∣cot α2

∣∣∣∣] (7.19)

This is our final result for the corner contribution. This result is in exact agreement with
the super-universal result for fluctuations derived in [59]. This agreement is an evidence
for the validity of the Thomas-Fermi approximation for the expectation value of the phase
space density.

In [53, 54] the corner contribution to the entanglement entropy has been numerically
evaluated for special classes of entangling curves without truncation to the lowest cumulant,
and expressions for a(α) have been deduced from these results. Our result is in good agree-
ment with these results, as shown in figure 3. The difference is around 2−3%, as tabulated
in appendix I. This shows that the truncation to the lowest cumulant is reasonably good.

8 LLL entanglement as target space entanglement in N = 4 SYM

As explained in section 4 the coordinates of the fermions in the Lowest Landau Level
are the eigenvalues of the complex matrix Z of the N = 4 theory. We have used the
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second quantized formalism where the entanglement entropy we computed measures the
entanglement among regions of the base space of this fermionic field theory. In this section
we comment on the meaning of this quantity in the matrix model itself.

The complex matrix model (4.2) evaluates the correlators of operators which are of the
form (4.1). In section 4 we used a gauge in which the degrees of freedom are those in the
lower triangular matrix T defined in (4.3). The diagonal elements zi = Tii = (w1 + iw2)i
are the eigenvalues of Zij . These, together with Rij ≡ Tij , i < j form the target space of
the quantum mechanical model. In this gauge the operator (4.2) is

O(J1···Jp) =
p∏
a=1

[
N∑
i=1

(zJpi )
]

(8.1)

The wavefunctions which are in one-to-one correspondence with states in the Lowest Lan-
dau level are of the form

Ψ(zi, z̄i, Rij) = det
[
z
lj
i

]
exp

−∑
i=1

(z?i zi)−
∑
i<j

R?ijRij

 (8.2)

A basis in the Hilbert space is provided by the simultaneous eigenstates |~wi, Rij〉, where
we have used the notation ~w = (w1, w2). Since all states in this sector have the same
dependence on Rij and the operators (8.1) do not involve the Rij ’s, the density matrix
associated with a state of the form (8.2) may be written as

ρ{~wi, Rij ; ~w′, R′ij} = ρ̄{~wi; ~w′i} exp

−∑
i<j

(R′ij)?R′ij

 (8.3)

The expectation value of operators O of the form (8.1) are then given by Tr(Oρ̄).
A sub-region A of the (w1, w2) space (or equivalently (z, z?) is a region of the target

space, and the entanglement entropy we calculated is the target space entanglement entropy
as discussed in [29–32]. As discussed in these papers, the Hilbert space becomes a sum
over sectors (n,N − n) where n denotes the number of eigenvalues which lie in the chosen
region of the (y1, y2) space. As discussed in [29–31], the reduced density matrix in this
sector is given by

ρ̃n{~wa; ~w′a} =
∫
Ac

∏
α

d2wα ρ̄{~wa, ~wα; ~w′a, ~wα} (8.4)

where we have split the variables (~w)i = {(~w)a, (~w)α} with a = 1 · · ·n, α = n+ 1 · · ·N and
the integral over the complement Ac of the sub-region A. The target space entanglement
entropy is then given by a sum over the sectors

S = −
N∑
n=0

ρ̃n log ρ̃n (8.5)

As shown in [29] this is the same quantity which is computed in the second quantized
formalism.

The preceding discussion is in a gauge fixed setup. In [30], a gauge invariant formalism
for target space entanglement in theories of matrices was developed in terms of suitable
projection operators. The formalism of that paper cannot be applied to the present case in
a straightforward fashion. However we hope to return to this problem in the near future.
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9 Discussion

In this paper we have used the connection of Lowest Landau Level states to those of an
auxiliary 1 + 1 dimensional system to express the entanglement entropy of an arbitrary
spatial subregion in 2 + 1 dimensions in terms of the expectation value of the phase space
density of this 1 + 1 dimensional system. We showed that for the regime of interest where
the subregion is much larger than the basic length scale of the theory and at large N (the
regime described in (3.27)) the Thomas-Fermi approximation for the one dimensional phase
space density is reliable. This allows us to express the LLL state entanglement entropy in
terms of integrals which we can perform analytically. We showed that in this leading order
the result is a sum of a perimeter term with a coefficient which is independent of the shape
of the subregion and a contribution from sharp corners. The latter is purely geometric
(i.e. it does not involve any length scale) and depends only on the corner angle. Our
results are in agreement with existing numerical results in the literature. There have been
many works on entanglement entropy of integer quantum Hall states using the connection
to noncommutative geometry and Chern-Simons theory, see e.g. [63, 64] and references
therein.11 It would be good to understand the connection of these approaches to ours,
which directly deals with the fermionic field theory.

When applied to the complex matrix model which follows from the 1/2-BPS sector of
N = 4 SYM theory this entropy is the von Neumann entropy associated with the reduced
density matrix which evaluates expectation values of a special class of operators. This
is therefore akin to the kind of target space entanglement entropy discussed in [29]–[34].
Our discussion has been in a fixed gauge: we don’t yet know what is the gauge-invariant
description along the lines of [30]. However a gauge invariant definition should be possible.
Discussions of the 2 matrix problem [26, 60] as well as using loop space ideas [67, 68] could
be useful in this regard.

A major outstanding question is to uncover the meaning of this quantity in the full
N = 4 SYM theory and its gravitational bulk. As mentioned above, it is not clear if
the results of the quadratic complex matrix model can be used to discuss a target space
entanglement in the full theory, since this involves operators obtained from the 1/2-BPS
operators by a projection. It is possible, however, that these results could give a qualitative
guide. The question of relating to the supergravity bulk also deserves thought. While the
SYM fields XI , I = 1 · · · 6, represent the directions which are transverse to the stack
of three branes which give rise to the AdS5 × S5 geometry, the space of eigenvalues of
these matrices may not be directly identified with this transverse space in the supergravity
limit (See, however [61, 62]). In the present case, the question of identifying the bulk
space with the space of eigenvalues of the matrix Z is more complicated since Z is not
diagonalized by a gauge transformation, but instead reduced to a lower triangular matrix
— this means that in this gauge neither X1 nor X2 are diagonal. Comparisons of the
chiral primary correlators obtained from the matrix model with giant graviton correlators
in supergravity [50, 69] should be useful to understand this issue. It is also important

11See also discussions of entanglement entropies for fractional quantum Hall systems using Chern-Simons
theory [65, 66].
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to understand the connection to other notions of entanglement (or entwinement) which
involve internal spaces [70–77]. These issues will be addressed in a future communication.

In this paper we have dealt only with the ground state, whose dual is pure AdS5 ×
S5. As we emphasized above, the use of phase space density is useful for excited states
which are easily described in terms of filled regions of phase space, particularly when these
regions are disconnected. 1/2-BPS states of this kind are gauge theory descriptions of
giant gravitons and dual giants whose dual geometries are LLM geometries [44]. In fact
the corresponding classical solutions are specified in terms of the classical phase space
density of the one dimensional theory. This indicates that our procedure will be useful for
such states. Extremal surfaces in such geometries have been constructed in [78] and aspects
of the entanglement structure of states of this type have been discussed in [79]. It will be
interesting to relate these discussions with the entanglement in the fermionic theory.

Finally the method of computing entanglement entropy could throw light on other
situations involving Lowest Landau Levels. One interesting example concerns rotating
fermions in a harmonic trap [81–83].
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A One dimensional harmonic oscillator

In this appendix we provide the details of derivations of several equations in section 2.1.2.
We have the following entropy expression

SEE = π2

3

( 1
2π

∫ ∞
−∞

dp

∫
A
dxu(p,x, t) (A.1)

− 1
4π2

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2

∫
A
dx1

∫
A
dx2e

−i(p2−p1)(x2−x1)/~u

(
p1,

x1 +x2
2 , t

)
u

(
p2,

x1 +x2
2 , t

))
This time we consider fermions in an excited state which corresponds to the geometry of an
annulus of inner radius r1 and outer radius r2 = r1 + d in 1D phase space. This geometry
is depicted in figure 1. As we can see there are two cases one can consider: 1) A subregion
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which is between r1 and r2 which is within the annulus and 2) a subregion which is in the
region less than r1. Our Wigner function is given by

u(p, x, t) = Θ(r − r1)Θ(r2 − r) (A.2)

where
r =

√
p2 + ω2x2 (A.3)

Computing the area of the annulus yields the relation

r2
2 = r2

1 + 2N~ω (A.4)

and
d = r2 − r1 =

√
r2

1 + 2N~ω − r1 (A.5)

A.1 Interval within region r1 < ωx < r2

We first compute the entanglement entropy for a subregion within the annulus defined by A

A =
{
r1/ω + c− a ≤ x ≤ r1/ω + c+ a

}
(A.6)

where c is the center of mass coordinate between r1 and r2 as measured from r1 and 2ωa
is the size of the interval with both quantites measured along the x axis. In order to keep
the subregion within the annulus we require that

a ≤ c ≤ d− a (A.7)

Only when r1 = 0 can we extend the range of c down to 0. We make the following
coordinate changes where a constant line cuts through the annulus at ±P0(x)

P0(x) =
√
r2

2 − ω2x2 (A.8)

We consider the regime where the potential is slowly varying and therefore replace
P0(x)→ P0(r1/ω+ c) for the first term in (A.1) and P0(xc)→ P0(r1/ω+ c) for the second
term in (A.1) where xc = x1+x2

2 . This acts as a shift in variables.

SEE = π2

3

( 1
2π~

∫ a

−a
dx

∫ P0(r1/ω+c)

−P0(r1/ω+c)
dp

− 1
4π2~2

∫ a

−a
dx1

∫ a

−a
dx2

∫ P0(r1/ω+c)

−P0(r1/ω+c)
dp1

∫ P0(r1/ω+c)

−P0(r1/ω+c)
dp2e

−i(p2−p1)(x2−x1)/~
)

= π

3~2aP0(r1/ω + c)− 1
3

∫ a

−a
dx1

∫ a

−a
dx2

sin2((x2 − x1)P0(r1/ω + c)/~)
(x2 − x1)2 (A.9)

Making the coordinate transformation

xc = x1 + x2
2 , s = x2 − x1 (A.10)

we obtain

SEE = π

3~2aP0(r1/ω + c)− 4
3

∫ 2a

0
ds

∫ a− s2

0
dxc

sin2(sP0(r1/ω + c)/~)
s2

= π

3~2aP0(r1/ω + c) + 1
3
(
1 + γE − cos(4aP0(r1/ω + c)/~)− Ci(4aP0(r1/ω + c)/~)

+ log(4aP0(r1/ω + c)/~)− (4aP0(r1/ω + c)/~)Si(4aP0(r1/ω + c)/~)
)

(A.11)

Expanding in the limit where aP0(r1/ω + c)/~� 1 gives the leading order result

SEE = 1
3(1 + γE + log(4aP0(r1/ω + c)/~)) (A.12)
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A.2 Interval in region ωx < r1

Here we derive (2.33) which is the entanglement entropy of a subregion within the region
bounded by r1. In this region constant x lines cut the boundary of the annulus in four
places, ±P0(x),±P1(x). Where P0(x) is given by (A.8) and P1(x) is given by (2.29). Our
subregion defined by

A = x0 − a ≤ x ≤ x0 + a (A.13)

We again consider the fact that the potential is slowly varying. This allows to take P0(x)→
P0(x0) and P1(x) → P1(x0) in the first term of (A.1) and P0(xc) → P0(x0) and P1(xc) →
P1(x0) in the second term of (A.1). This gives

SEE=π2

3

[ 1
2π~

∫ a

−a
dx

(∫ P0(x0)

−P0(x0)
dp−

∫ P1(x0)

−P1(x0)
dp

)
− 1

4π2~2

∫ a

−a
dx1

∫ a

−a
dx2

(∫ P0(x0)

−P0(x0)
dp1−

∫ P1(x0)

−P1(x0)
dp1

)(∫ P0(x0)

−P0(x0)
dp2−

∫ P1(x0)

−P1(x0)
dp2

)
e−i(p2−p1)s/~

]
= π

3~2a(P0(x0)−P1(x0))

−1
3

∫ a

−a
dx1

∫ a

−a
dx2

(sin((x2−x1)P0(x0)/~)−sin((x2−x1)P1(x1)/~))2

(x2−x1)2 (A.14)

Again changing coordinates we obtain

SEE = π

3~2a(P0(x0)− P1(x0))− 4
3

∫ 2a

0
ds

∫ a− s2

0
dxc

(sin(sP0(x0)/~)− sin(sP1(x0)/~))2

s2
(A.15)

Integrating the second term gives

SEE = π

3~2a(P0(x0)− P1(x0)) + 1
3

(
2 + 2γE − cos(4aP0(x0)/~)− cos(4aP1(x0)/~)

−Ci(4aP0(x0)/~)− Ci(4aP1(x0)/~) + 2Ci(2a(P0(x0) + P1(x0))/~)
−2Ci(2a(P0(x0)− P1(x0))/~) + log(4aP0(x0)/~) + log(4aP1(x0)/~)
+2 log((P0(x0)− P1(x0))/~)− 2 log((P0(x0) + P1(x0))/~)
−4 sin(2aP0(x0)/~) sin(2aP1(x0)/~)− (4aP0(x0)~)Si(4aP0(x0)/~)
−(4aP1(x0)~)Si(4aP1(x0)/~) + (4a(P0(x0) + P1(x0))/~)Si(2a(P0(x0) + P1(x0))/~)

−(4a(P0(x0)− P1(x0))/~)Si(2a(P0(x0)− P1(x0))/~)
)

(A.16)

Now we take the following limits, similar as before

aP0(x0)/~� 1
aP1(x0)/~� 1

a(P0(x0) + P1(x0))/~� 1
a(P0(x0)− P1(x0))/~� 1

(A.17)

This gives the leading order expression recorded in (2.33)

SEE = 1
3

[
2 + 2γE + log

(16a2P0(x0)P1(x0)
~2

(
P0(x0)− P1(x0)
P0(x0) + P1(x0)

)2)]
(A.18)
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B Evaluation of the kernel K

In this appendix we provide the derivation of (3.24). Using (3.9) and (3.9) and (3.23) in
the expression for the kernel (3.19) we get

K(x1, x2; v) =
∞∑
l=0

1
`
√
l!π

(
x1 + ix2

`

)l
exp

(
−x

2
1 + x2

2
2`2

)
× 1√

2l l!
√
π
e−

v2
2 ·Hl(v) (B.1)

= π−3/4`−1 exp
(
−x

2
1 + x2

2
2`2 − v2

2

) ∞∑
l=0

1
l!

(
x1 + ix2√

2`

)l
Hl(v)

= π−3/4`−1 exp
(
−x

2
1 + x2

2
2`2 − v2

2

)
exp

{
2v
(
x1 + ix2√

2`

)
−
(
x1 + ix2√

2`

)2
}

= π−3/4`−1 exp
[
−x

2
1 + x2

2
2`2 −

(
x1 + ix2√

2`

)2
]

exp
[
−v

2

2 + 2v
(
x1 + ix2√

2`

)]

which is (3.24) in the text. Here we have used the generating fn. of the Hermite Poly.

e2xt−t2 =
∞∑
n=0

Hn(x) t
n

n! (B.2)

C Asymptotic behaviour of the phase space density of 1d harmonic os-
cillator in large-N limit

In this section we determine the asymptotic form of the phase space density û(p, q, t) of
1D harmonic oscillator. Starting from (3.21), (3.14), and (3.23), we find

û(p,x,0) = 1√
π

∫ +∞

−∞
dyeipye

−
(
x2+ y2

4

)
∞∑

m,n=0

1√
2m2nm!n!

Hm

(
x+ y

2

)
Hn

(
x− y2

)
ĉ†m,0ĉn,0

(C.1)
By applying the identity∫

dxe−x
2
Hm(x+ v)Hn(x+ w) = 2n

√
πm!wn−mLn−mm (−2vw), m ≤ n (C.2)

we can find the expectation value of û(p, q, t)

u(p, x, 0) ≡ 〈F |û(p, x, t)|F 〉 = 2e−(x2+p2)
N−1∑
n=0

(−1)nLn
(
2(x2 + p2)

)
(C.3)

where Ln(x) is the Laguerre polynomial. We can learn from (C.3) that in the 1D harmonic
oscillator the expectation value of phase space density operator û is only a function of

ρ ≡ r2 ≡ x2 + p2 (C.4)

A plot of u(ρ) is given in figure 4.
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Figure 4. The phase space density u as a function of ρ in (C.4). The blue solid, red solid, and
green solid lines show the behavior of u in (C.3) when N = 10, 100, 1000, respectively.

D A direct calculation of correlation functions in large-N limit

In this section we evaluate the subleading contribution to correlation functions in (3.31) in
the large-N limit via a direct calculation in two dimensions. From (3.9) and (3.22) we find

〈LLL|ψ†(x1, x2)ψ(x′1, x′2)|LLL〉

=
∞∑

n,l=0
φ∗n,0(x1, x2)φl,0(x′1, x′2)〈LLL|ĉ†n,0ĉl,0|LLL〉 =

N−1∑
l=0

φ∗n,0(x1, x2)φl,0(x′1, x′2)

= 1
π`2

N−1∑
l=0

1
l!

[(
x1 − ix2

`

)(
x′1 + ix′2

`

)]l
exp

(
−x

2
1 + x2

2 + x′21 + x′22
2`2

)

= 1
π`2

∞∑
l=0

1
l!

[(
x1 − ix2

`

)(
x′1 + ix′2

`

)]l
exp

(
−x

2
1 + x2

2 + x′21 + x′22
2`2

)

− 1
π`2

∞∑
l=N

1
l!

[(
x1 − ix2

`

)(
x′1 + ix′2

`

)]l
exp

(
−x

2
1 + x2

2 + x′21 + x′22
2`2

)
(D.1)

The leading term of (D.1) is the Taylor series of an exponential. Thus

1
π`2

∞∑
l=0

1
l!

[(
x1 − ix2

`

)(
x′1 + ix′2

`

)]l
exp

(
−x

2
1 + x2

2 + x′21 + x′22
2`2

)

= 1
π`2

exp
(
−(x1 − x′1)2 + (x2 − x′2)2

2`2 + i
x1x

′
2 − x2x

′
1

`2

) (D.2)

It is identical to the (3.31). As for the second term of (D.1), notice that∣∣∣∣∣
∞∑
l=N

1
l!

[(
x1 − ix2

`

)(
x′1 + ix′2

`

)]l∣∣∣∣∣
≤ exp

[∣∣∣∣(x1 − ix2
`

)(
x′1 + ix′2

`

)∣∣∣∣]F (N ;
∣∣∣∣(x1 − ix2

`

)(
x′1 + ix′2

`

)∣∣∣∣)
(D.3)

– 31 –



J
H
E
P
0
6
(
2
0
2
2
)
0
4
6

where

F

(
N ;
∣∣∣∣(x1 − ix2

`

)(
x′1 + ix′2

`

)∣∣∣∣)
≡
∞∑
l=N

1
l!

∣∣∣∣(x1 − ix2
`

)(
x′1 + ix′2

`

)∣∣∣∣l exp
[
−
∣∣∣∣(x1 − ix2

`

)(
x′1 + ix′2

`

)∣∣∣∣] (D.4)

is related to the cumulative distribution function of a Poisson distribution with parameter∣∣∣(x1−ix2
`

) (
x′1+ix′2

`

)∣∣∣. Therefore a Chernoff bound argument shows that

F

(
N ;
∣∣∣∣(x1 − ix2

`

)(
x′1 + ix′2

`

)∣∣∣∣)

≤

(
e
∣∣∣(x1−ix2

`

) (
x′1+ix′2

`

)∣∣∣)N
NN

exp
[
−
∣∣∣∣(x1 − ix2

`

)(
x′1 + ix′2

`

)∣∣∣∣]
(D.5)

for ∣∣∣∣(x1 − ix2
`

)(
x′1 + ix′2

`

)∣∣∣∣ < N (D.6)

Thus, if we consider the subregion A much smaller than the complete region, we have
the points ~x ≡ (x1, x2), ~x′ ≡ (x′1, x′2) ∈ A satisfy

∣∣∣∣~x`
∣∣∣∣ ∣∣∣∣~x′`

∣∣∣∣ =
∣∣∣∣(x1 − ix2

`

)(
x′1 + ix′2

`

)∣∣∣∣� N (D.7)

Then by applying (D.5), we find

∣∣∣∣∣
∞∑
l=N

1
l!

[(
x1 − ix2

`

)(
x′1 + ix′2

`

)]l∣∣∣∣∣ ≤ eN
∣∣∣(x1−ix2

`

) (
x′1+ix′2

`

)∣∣∣N
NN

� 1 (D.8)

For example, if we take ∣∣∣∣~x`
∣∣∣∣ ∣∣∣∣~x′`

∣∣∣∣ = N

e2 < N (D.9)

we will have ∣∣∣∣∣
∞∑
l=N

1
l!

[(
x1 − ix2

`

)(
x′1 + ix′2

`

)]l∣∣∣∣∣ ∼ O (e−N)� 1 (D.10)

and therefore the second term of (D.1) is estimated to be at the order

1
π`2

∞∑
l=N

1
l!

[(
x1 − ix2

`

)(
x′1 + ix′2

`

)]l
exp

(
−x

2
1 + x2

2 + x′21 + x′22
2`2

)
∼ O

(
2−Ne−N

)
(D.11)

Indeed in most cases of (D.7), the l.h.s. is even smaller than N
e2 , thus the second term can

be neglected in the large N limit.
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E Entanglement entropy for half-space

In this appendix we evaluate the integral in (6.1). The integration over y1, y
′
1 is already

finite in the L1 →∞ limit, yielding∫ ∞
0

dy1

∫ 0

−∞
dy′1exp[−(y1 − y′1)2] =

∫ ∞
0

dy1

∫ ∞
0

dy′1exp[−(y1 + y′1)2]

=
√
π

2

∫ ∞
0

dy1[1− erf(x)] = 1
2

(E.1)

In the remaining integrals, we perform the integral over y′2 first, which is finite in the
L2 →∞ limit. Finally we perform the integeral over∫ L2

−L2
dy2

∫ ∞
−∞

dy′2 exp[−(y2 − y′2)2] = 2L2
√
π (E.2)

Using (E.1) and (E.2) in (6.1) we get the final result (6.2).

F A generic smooth entangling curve

In this section we determine under which condition we can apply (6.8) to a general smooth
entangling curve ∂A. We know that for an arbitrary point on ∂A, which we denote by
P = (x1, x2), there exists an inscribed circle with radius RP = K−1

P , where KP is the
signed curvature at P . In particular, this inscribed circle can be described by an implicit
function parametrized by the position of P , ~rP , outward normal vector to ∂A at P , n̂P ,
and radius (inverse curvature at P ) RP :

|~r − (~rP −RP n̂P )| = RP ⇔ (~r − ~rP )2 + 2RP n̂P · (~r − ~rP ) = 0 (F.1)

We can choose this inscribed circle as a good approximation of real curve ∂A around P .
Then similar to (6.4), we have

~nx · ∇x1~x∈AcR
∣∣
P

= δ (r −RP ) (F.2)

where
r = |~r − (~rP −RP n̂P )| (F.3)

The same argument can be made for another point in the neighborhood of P at ∂A denoted
by P ′ = (xP1 + δx1, x

P
2 + δx2) (see figure 5), and we obtain ~nx · ∇x1~x∈AcR

∣∣
P ′
. Then we can

expand ~nx · ∇x1~x∈AcR
∣∣
P ′

around ~nx · ∇x1~x∈AcR
∣∣
P
and obtain

δ
(
r′ −RP ′

)
= δ (r −RP ) +

[
(r′ − r)− (RP ′ −RP )

]
δ′ (r −RP )

+ 1
2
[
(r′ − r)− (RP ′ −RP )

]2
δ′′ (r −RP )

(F.4)

Below we evaluate (r′ − r)− (RP ′ −RP ). Without loss of generality, we consider

∂A : f(x1, x2) = x2 − g(x1) = 0, g′(x1) = 0 (F.5)
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Figure 5. Relations among inscribed circles, vectors, and etc.

and therefore the radius takes a simple form

RP = − 1
g′′

(F.6)

Thus, via the intermediate step

|~rP ′−(~rP −RP n̂P )|2 = (~rP ′−~rP )2 +2(~rP ′−~rP ) ·RP n̂P +R2
P (F.7)

= δx2
1 +
(1

2g
′′(x1)δx2

1 +O(δx3
1)
)2

+21+g′2

−g′′
[
−g′×δx1 +1×

(
g′δx1 + 1

2g
′′δx2

1 + 1
6g
′′′δx3

1

)]
+R2

P

=R2
P −

1
3
g′′′

g′′
δx3

1 +
(

1
4g
′′2− 1

12
g(4)

g′′

)
δx4

1 +O(δx5
1)

=R2
P + 1

3∂1 logRP δx3
1−

1
12
[
(∂1 logRP )2−∂2

1 logRP
]
δx4

1 +O(δx5
1)

where g(p) denotes the p’th derivative w.r.t. r, we find

|r′ − r| = ||~r − (~rP ′ −RP ′ n̂P ‘)| − |~r − (~rP −RP n̂P )||
≤ |(~rP ′ −RP ′ n̂P ‘)− (~rP −RP n̂P )|

=
[
(~rP ′ − ~rP )2 − 2 (~rP ′ − ~rP ) · (RP ′ n̂P ′ −RP n̂P ) + (RP ′ n̂P ′ −RP n̂P )2

]1/2

=
[
− (~rP ′ − ~rP )2 + (RP ′ n̂P ′ −RP n̂P )2 +O(δx3

1)
]1/2

(F.8)

where we have applied the triangle inequality and the symmetry between P ↔ P ′.
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Furthermore, a similar calculation to (F.7) yields

n̂P · n̂P ′ = 1− 1
2k

2
P (1 + g′2)δx2

1 +O(δx3
1)

= 1− 1
2k

2
P (~rP ′ − ~rP )2

+ 1
2
∂1RP
R3
P

δx3
1 −

[
1
8

1
R4
P

+ 11
24

(∂1RP )2

R4
P

− 1
6
∂2

1RP
R3
P

]
δx4

1 +O(δx5
1)

(F.9)

Then because

(RP ′ n̂P ′ −RP n̂P )2 = (RP ′ −RP )2 + 2RPRP ′ (1− n̂P · n̂P ′) (F.10)

we have
|(~rP ′ −RP ′ n̂P ′)− (~rP −RP n̂P )|

=
[
− (~rP ′ − ~rP )2 + (RP ′ −RP )2 +RPRP ′ × kPkP ′ (~rP ′ − ~rP )2 +O(δx3

1)
]1/2

= |RP ′ −RP |+ |RP ′ −RP |−1O(δx3
1)

(F.11)

where
O(δx3

1) ∼ ∂1RP
RP

δx3
1 +O(δx4

1) (F.12)

according to (F.7) and (F.9).
Notice that

|RP ′ −RP | ∼ ∂1RP δx1 + 1
2∂

2
1RP δx

2
1 +O(δx3

1) (F.13)

Moreover, we can express δx1 in terms of δφ, which is the angular variation from P to P ′

if we choose the center of inscribed circle at P as the origin of a polar coordinate system.
In particular,

δx1 ≤ RP δφ+ |~rP ′ − (~rP −RP n̂P )| −RP = RP δφ+O
(
∂φRP δφ

3
)

(F.14)

Thus, we eventually obtain

(r′ − r)− (RP ′ −RP ) ≤ |(~rP ′ −RP ′ n̂P ‘)− (~rP −RP n̂P )|+ |RP ′ −RP |
= 2 |RP ′ −RP |+ |RP ′ −RP |−1O(δx3

1)

∼ 2∂φRP δφ+O
(
RP δφ

2, ∂2
φRP δφ

2
) (F.15)

Because the Laplace operator turns into

∇2∣∣
P

= ∂2
r + 1

RP
∂r + 1

R2
P

∂2
φ (F.16)

at P , we plug (F.15) back into (F.4) and find that

∇2
[
~nx · ∇x1~x∈AcR

] ∣∣∣∣
P

(F.17)

= ∂2
r δ (r −RP )

+O
((

∂φRP
RP

)2)
∂2
r δ (r −RP ) +O

( 1
RP

)
∂rδ (r −RP ) +O

(
∂2
φRP

R2
P

)
∂rδ (r −RP )
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This implies that (6.8) is true for a general smooth entangling curve ∂A when

max {|∂φR| , 1} � R (F.18)

In terms of curvature and the symbols in section 6.3, (F.18) is equivalent to

|∂σK(σ)| � |K(σ)| � 1 (F.19)

We need to point out here that the conclusion is true not only for ∇2
[
~nx · ∇x1~x∈AcR

]
, but

also for ∇2l
[
~nx · ∇x1~x∈AcR

]
. The argument somewhat follows the idea of mathematical

induction: above we have figured out the case when l = 1. Now if for l = k we have

∇2l
[
~nx · ∇x1~x∈AcR

]
≈ ∂2l

r δ
(
r −K−1(σ)

)
(F.20)

then for l = k+ 1, we can adjust the argument by replacing the delta functions in (F.4) by
∂2k
r δ(r−RP ) or ∂2k

r′ δ(r′−RP ′), respectively. Since (r′− r)− (RP ′ −RP ) is the same as for
l = 1, nothing else needs to be changed. Thus we see that (F.20) is true when l = k + 1
under the condition (F.19).

In conclusion, (F.19) is the condition for the validity of (6.8) in the case of a general
smooth entangling curve.

G Entanglement entropy of triangle-like subregion

In this section we derive expression (7.11) which gives the entanglement entropy of a
subregion in the shape of an isosceles triangle where the height h � 1 in units of `. An
isosceles triangular subregion can parameterized in the following way

A =
{

(x, y)
∣∣∣∣− kx ≤ y ≤ kx, 0 ≤ x ≤ h} (G.1)

To compute the entanglement entropy of such a region we use the expression (5.2) which
contains two terms. So we have

SA = S1 + S2 (G.2)

where

S1 = π2

3 trCA

S2 = −π
2

3 trC2
A (G.3)

Computing S1. Here we compute the leading order term, S1, which is proportional to
the number density of fermions. Using the expression (3.31) we obtain the following for S1

3
π2S1 = trCA

= 1
πl2B

∫
A
dxdy = 1

πl2B

∫ h

0
dx

∫ kx

−kx
dy = h2k

π`2
(G.4)
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Computing S2. For the second term, S2, we integrate y1, y2 first and obtain
3
π2S2 = − trC2

A

= − 1
π2`4

∫ h

0
dx1

∫ kx1

−kx1
dy1

∫ h

0
dx2

∫ kx2

−kx2
dy2 e

− (x1−x2)2

`2 e−
(y1−y2)2

`2

= − 1
π2

∫ h`−1

0
dx1dx2 e

−(x1−x2)2

×
{
− e−k2(x1−x2)2 + e−k

2(x1+x2)2

+
√
π [−k(x1 − x2) erf k(x1 − x2) + k(x1 + x2) erf k(x1 + x2)]

}
(G.5)

Here in the last equation we have rescaled the x’s and y’s by ` for convenience. Making
the change of variables

x± = x1 ± x2 (G.6)

gives

3
π2S2 = − 1

2π2

(∫ h`−1

0
dx−

∫ 2h`−1−x−

x−
dx+ +

∫ 0

−h`−1
dx−

∫ 2h`−1+x−

−x−
dx+

)
e−x

2
−

×
{
−e−k2x2

− + e−k
2x2

+ +
√
π [−kx− erf kx− + kx+ erf kx+]

}
= − 1

π2

∫ h`−1

0
dx−

∫ 2h`−1−x−

x−
dx+ e−x

2
−

×
{
−e−k2x2

− + e−k
2x2

+ +
√
π [−kx− erf kx− + kx+ erf kx+]

}
(G.7)

Integrating x+ first yields

3
π2S2 =− 1

π2

∫ h`−1

0
dx− e

−x2
−

×
{
−2(h`−1−x−)e−k2x2

−+ 1
2(2h`−1−x−)e−k2(2h`−1−x−)2− 1

2x−e
−k2x2

−

−2
√
πkx−(h`−1−x−)+ 1

4k
[√
π
(
1+2k2(2h`−1−x−)2

)
−
√
π
(
1+2k2x2

−

)]
+2
√
πkx−(h`−1−x−)erfckx−−

1
4k

[√
π
(
1+2k2(2h`−1−x−)2

)
erfck(2h`−1−q−)

−
√
π
(
1+2k2x2

−

)
erfckx−

]}
≡ I+K (G.8)

where

I ≡ − 1
π2

∫ h`−1

0
dx− e

−x2
−

×
{
−2(h`−1−x−)e−k2x2

−+ 1
2(2h`−1−x−)e−k2(2h`−1−x−)2− 1

2x−e
−k2x2

−

−2
√
πkx−(h`−1−x−)+ 1

4k
[√
π
(
1+2k2(2h`−1−x−)2

)
−
√
π
(
1+2k2x2

−

)]}
(G.9)

K ≡ − 1
π2

∫ h`−1

0
dx− e

−x2
−
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×
{

2
√
πkx−(h`−1−x−)erfckx−−

1
4k

[√
π
(
1+2k2(2h`−1−x−)2

)
erfck(2h`−1−q−)

−
√
π
(
1+2k2x2

−

)
erfckx−

]}
(G.10)

For convenience let h`−1 → h below. we will restore ` eventually. The term I can be
integrated straightforwardly. We get

I = − 1
π2

{
1
2(1 + 2h2)kπ erf h+ 1

4(1 + k2)
[
3− e−4k2h2 − 2e−(1+k2)h2]− 2

√
πhk

+
√
πe−h

2
hk + 1

2
√
π(1 + k2)−3/2

[
e
− 4h2k2

1+k2 h erf 2hk2
√

1 + k2
− 2h erf h

√
1 + k2

−2hk2 erf h
√

1 + k2 + e
− 4h2k2

1+k2 h erf h− hk
2

√
1 + k2

]}

= − 1
π2

{1
2(1 + 2h2)kπ + 3

4(1 + k2) − 2
√
πhk −

√
π(1 + k2)−1/2h

}
+O(e−h2)

(G.11)

in the limit where h � 1. Now consider the term K. To evaluate K it will be helpful to
recall some useful relations.∫ ∞

0
e−(at2+2bt+c)dt = 1

2

√
π

a
e
b2−ac
a erfc b√

a
, Rea > 0 (G.12)

Taking
a = 1, c = 0, b = kx− or b = k(2h− x−) (G.13)

gives ∫ ∞
0

e−t
2−2kx−tdt = 1

2
√
πek

2x2
− erfc kx− (G.14)∫ ∞

0
e−t

2−2k(2h−x−)tdt = 1
2
√
πek

2(2h−x−)2 erfc k(2h− x−) (G.15)

Now applying these relations to K we obtain

K = − 1
π2

∫ h

0
dx− e

−x2
−

×
{

4kx−(h− x−)e−k2x2
−

∫ ∞
0

e−t
2−2kx−tdt

− 1
2k

[ (
1 + 2k2(2h− x−)2

)
e−k

2(2h−x−)2
∫ ∞

0
e−t

2−2k(2h−x−)tdt

−
(
1 + 2k2x2

−

)
e−k

2x2
−

∫ ∞
0

e−t
2−2kx−tdt

]}
= − 1

π2

∫ ∞
0

dt e−t
2 ×

∫ h

0
dx− e

−x2
−

×
{

4kx−(h− x−)e−k2x2
−e−2kx−t + 1

2k
(
1 + 2k2x2

−

)
e−k

2x2
−e−2kx−t

}
+O(e−k2h2)

(G.16)
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Given that the second term is ∼ O(e−k2h2), we have ignored it in the last line. Now
integrate x− and again simplify our result approximating higher terms, i.e. erf hk2+h+kt√

1+k2 →
1, e−h(hk2+h+2kt) → 0. Firstly integrating over x− yields

K = − 1
π2

∫ ∞
0

dt e−t
2

×
{ 1

4k (1 + k2)−5/2√π
[
−6k4t2 − 8h(1 + k2)k3t− 3k2(1 + k2) + (1 + k2)2

]
×e

k2t2
1+k2 erfc kt√

1 + k2

+ 1
4(1 + k2)2

[
8hk(1 + k2) + 6k2t

]}
(G.17)

Integrating (G.17) over the final variable t gives

K = − 1
π2

{
−
√
π

hk2
√

1 + k2
+
√
πkh+ 3k2

4(1 + k2) + 1
4

(1
k
− 3k

)
cot−1 k

}
(G.18)

Combining the results for I and K in (G.11) and (G.18) respectively yields

3
π2S2 = I + K (G.19)

= − 1
π2

{1
2(1 + 2h2)kπ + 3

4(1 + k2) − 2
√
πhk −

√
π(1 + k2)−1/2h

}
− 1
π2

{
−
√
π

hk2
√

1 + k2
+
√
πkh+ 3k2

4(1 + k2) + 1
4

(1
k
− 3k

)
cot−1 k

}
+O(e−h2

, e−k
2h2)

= − 1
π
kh2`−2 + π−3/2`−1

[
hk + h

√
1 + k2

]
−
[
k

2π + 3
4π2 + 1

4π2

(1
k
− 3k

)
cot−1 k

]
(G.20)

where in the last line we have restored `.
Combining expressions for S1 and S2 given in (G.4) and (G.19) respectively yields an

entropy of

SA = π2

3

{
(2π)−3/2

(
`√
2

)−1
·
[
2hk + 2h

√
1 + k2

]
−
[
k

2π + 3
4π2 + 1

4π2

(1
k
− 3k

)
cot−1 k

]}
(G.21)

Furthermore, since k is the slope of the edge, we can write it as

k = tan α2 (G.22)

where α is the vertex angle. As a result the corner term, which we define as γ becomes

γ ≡ −π
2

3

[ 1
2π tan α2 + 3

4π2 + 1
4π2

(
cot α2 − 3 tan α2

)(
π

2 −
α

2

)]
= − 1

12 sinα [π + α+ 3 sinα− 2α cosα] (G.23)
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The entropy becomes

SA = π2

3

{
(2π)−3/2

(
`√
2

)−1
·
[
2hk+2h

√
1+k2

]
− 1

4π2 sinα [π+α+3sinα−2αcosα]
}

=
√
π

6 P(k;h)− 1
12sinα [π+α+3sinα−2αcosα] (G.24)

where P(k;h) = P(α;h) is the perimeter term

P(k;h) = 2h(k +
√

1 + k2)

= 2h
(

tan α2 + sec α2

)
= P(α;h) (G.25)

H Entanglement entropy of pie-slice subregion

In this section we study the entanglement entropy of a pie-slice subregion of the entire space,
which leads to the general expression for the corner contribution from a corner with angle α.

We start from (5.5) where the correlator is found in (3.31). The indicator function for
a pie-slice subregion with angle α is

1~x∈A = e−εr
2Θ
((

αi
2

)2
− φ2

)
(H.1)

in polar coordinates. Here we have introduced a regulator e−εr2 with ε = 0+ to avoid
divergences at infinite radii. Thus, (5.5) in this particular case turns into

trEA = 1
π2

∫ α/2

−α/2
dφ1

∫ 2π−α/2

α/2
dφ2

∫ ∞
0

dr1dr2 r1r2

× exp
[
−(1 + ε)

(
r2

1 + r2
2

)
+ 2r1r2 cos(φ1 − φ2)

]
= 1
π2

∫ α/2

−α/2
dφ1

∫ π−α/2

−π+α/2
dφ2

∫ ∞
0

dr1dr2 r1r2

× exp
[
−(1 + ε)

(
r2

1 + r2
2

)
− 2r1r2 cos(φ1 − φ2)

]
(H.2)

We see that trEA is a function of α only. We obtain (7.1) after multiplying by the factor π2

3 .
By utilizing the Jacobi-Anger identity we can integrate out φ1 and φ2 in (H.2) first

trEA = − 8
π2

∞∑
n=1

(−i)n
sin2 αn

2
n2

∫ ∞
0

dr1 r1e
−(1+ε)r2

1

∫ ∞
0

dr2 r2e
−(1+ε)r2

2Jn (i2r1r2)

+ 1
π2α(2π − α)

∫ ∞
0

dr1 r1e
−(1+ε)r2

1

∫ ∞
0

dr2 r2e
−(1+ε)r2

2J0 (i2r1r2)
(H.3)

and then the radii r1 and r2

trEA = − 2
π2

∞∑
n=1

sin2 αn
2

n2 Γ
(
n

2 + 1
)

Γ
(
n

2 + 1
)

(1 + ε)−(2+n)

× 2F1

(
n

2 + 1, n2 + 1;n+ 1; 1
(1 + ε)2

)
+ 1

4π2α(2π − α)(1 + ε)−1
∫ ∞

0
dρe−(1+ε)ρe

ρ
1+ε

(H.4)
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Given that ε = 0+ we can expand the hypergeometric function around 1 and keep the
terms upto order 1

trEA = − 2
π2

∞∑
n=1

sin2 αn
2

n2 (1+ε)−2
(

1− 1
(1+ε)2

)−1
(1+ε)−n

+ 1
4π2α(2π−α)(1+ε)−2

(
1− 1

(1+ε)2

)−1

− 2
π2

∞∑
n=1

sin2 αn
2

n2

(
n

2

)2
(1+ε)−(2+n)

[
2ψ
(
n

2 +1
)

+log
(

1− 1
(1+ε)2

)
+2γE−1

]
+O(ε log ε)

= −ε−1 1
4π2

[
4
∞∑
n=1

sin2 αn
2

n2 + 1
2α(2π−α)

]
+ 1

4π2

∞∑
n=1

4sin2 αn
2

n

− [log2ε−1] 1
8π2

∞∑
n=1

4sin2 αn

2

− 1
4π2

∞∑
n=1

4sin2 αn

2 ×
[
ψ

(
n

2 +1
)

+γE

]
+O(ε log ε) (H.5)

where ψ(x) is the digamma function and γE is the Euler-Mascheroni constant. Their sum
can be expressed in terms of the integral

ψ (z) + γE =
∫ 1

0

1− tz−1

1− t dt (H.6)

To simplify (H.5) we introduce polylogarithms to represent the series. Then we obtain

trEA = −ε−1 1
4π2

[(
−Li2(eiα)− Li2(e−iα) + 2 Li2(1)

)
+ 1

2α(2π − α)
]

+ 1
4π2

(
−Li1(eiα)− Li1(e−iα) + 2 Li1(1)

)
−
[
log 2ε− 1 + 2

∫ 1

0

1
1− tdt

] 1
8π2

(
−Li0(eiα)− Li0(e−iα) + 2 Li0(1)

)
+ 1

4π2

∫ 1

0

dt
1− t

(
−Li0(eiα

√
t)− Li0(e−iα

√
t) + 2 Li0(

√
t)
)

+O(ε log ε)

(H.7)

Since α is real and more concretely α
2π ∈ [0, 1), we can utilize

Lin(e2πix) + (−1)n Lin(e−2πix) = −(2πi)n

n! Bn(x), (H.8)

where Bn(x) is the Bernoulli polynomial, and find

Li2(eiα) + Li2(eiα) = 1
2

[
−α(2π − α) + 2π2

3

]
(H.9)

Li0(eiα) + Li0(eiα) = −1 (H.10)

Moreover, given that Li2(1) = π2

6 , we see that the first term in (H.7) vanishes.
As for the other terms, we notice that

Li1(z) = − ln(1− z) (H.11)
Li0(z) = z

1− z (H.12)
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and integrate over t first. We find∫ 1

0

dt

1− t
(
−Li0(

√
teiα)− Li0(

√
te−iα) + 2 Li0(

√
t)
)

= −2 cosα
| sinα| tan−1

∣∣∣∣cot α2

∣∣∣∣− 2 log
(

2
∣∣∣∣sin α2

∣∣∣∣)+ 2 Li0(1)− 2 Li1(1)
(H.13)

where we have rewritten u
u−1

∣∣
u→1 and log(1−u)

∣∣
u→1 into polylogarithms Li0(1) and Li0(1),

respectively. Thus, we obtain from (H.7)

trEA = 1
4π2

(
−Li1(eiα)− Li1(eiα) + 2 Li1(1)

)
− 1

8π2 [log 2ε− 1− 2 Li1(1)] (1 + 2 Li0(1))

+ 1
4π2

[
−2 cosα
| sinα| tan−1

∣∣∣∣cot α2

∣∣∣∣− 2 log
(

2
∣∣∣∣sin α2

∣∣∣∣)+ 2 Li0(1)− 2 Li1(1)
]

= − 1
8π2 [log 2ε− 3− 2 Li1(1)] (1 + 2 Li0(1))

− 1
4π2

[
1 + 2 cosα

| sinα| tan−1
∣∣∣∣cot α2

∣∣∣∣]
(H.14)

where in the last equation we have plugged in (H.11).
In (H.14) we have separated trEA into two parts – an α-independent part and an

α-dependent part. When α = π − δ where δ → 0, we have

− 1
4π2

[
1 + 2 cosα

| sinα| tan−1
∣∣∣∣cot α2

∣∣∣∣] = − 1
4π2

[
1− 2 cot δ tan−1 tan δ2

]
= − 1

4π2

[
1− 2

(1
δ
− 1

3δ −O(δ3)
)
δ

2

]
= − 1

4π2

[1
3(π − α)2 +O((π − α)4)

] (H.15)

It implies that when α = π, only the first line in the r.h.s. of the last equation of (H.14)
remains, i.e.

trEA = − 1
8π2 [log 2ε− 3− 2 Li1(1)] (1 + 2 Li0(1)) , ε = 0+ (H.16)

On the other hand, when α = π, we obtain a halfspace subregion, the entanglement
entropy of which is given in (6.2) via a calculation in Cartesian coordinates in section 6.1.
We learn from (6.2) that there is no corner contribution. In other words, the r.h.s. of (H.16)
corresponds to the perimeter of the halfspace. Furthermore, if we compare the pie-slice
subregions with various α’s, we find that the perimeter terms corresponding to them are
identical. Thus, we can subtract the perimeter term, in particular (H.16), from trEA
corresponding to a corner with angle α to obtain the corner contribution, i.e.

a(α) = π2

3
[
trEA

∣∣
α
− trEA

∣∣
α=π

]
= − 1

12

[
1 + 2 cosα

| sinα| tan−1
∣∣∣∣cot α2

∣∣∣∣] (7.19)

For subregions with more than one corner, we can use (7.12) to determine the contri-
bution to entanglement entropy from the corners.
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