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Abstract—Field-programmable gate arrays (FPGAs) are a
hardware accelerator option that is growing in popularity.
However, FPGAs are notoriously hard to program. To this end,
high-level synthesis (HLS) tools have been developed to allow
programmers to design hardware accelerators with FPGAs using
familiar software languages. The two largest FPGA vendors, Intel
and Xilinx, support both C/C++ and OpenCL C to construct
kernels. However, little is known about the portability of designs
between these two platforms.

In this work, we evaluate the portability and performance
of Intel and Xilinx kernels. We conduct a case study, porting
the Needleman-Wunsch application from the Rodinia benchmark
suite written in Intel OpenCL C to Xilinx platforms. We use
OpenCL C kernels optimized for Intel FPGA platforms as a
starting point and first perform a minimum effort port to a Xilinx
FPGA, also using OpenCL C. We find that simply porting one-to-
one optimizations is not enough to enable portable performance.
We then seek to improve the performance of those kernels using
Xilinx C/C++. With rewriting the kernel for burst transfer and
other optimizations, we are able to reduce the execution time
from an initial 294 s to 2.2 s.

I. INTRODUCTION

With Dennard scaling no longer effective [1] and Moore’s
Law in retreat [2], offloading computations from traditional
multicore processors to a hardware accelerator is a common
approach used in the continuing effort to scale performance
and efficiency. FPGAs are an attractive solution, because an
FPGA allows the generation of specific hardware to make use
of parallelism and specialized operations in the application.
However, classical programming of FPGAs using HDLs, such
as Verilog and VHDL, requires expertise in digital designs
and a huge amount of effort. Xilinx and Intel, the two FPGA
vendors, have tried to improve productivity by offering high-
level synthesis (HLS) which allows programmer to design
hardware accelerators with FPGAs using familiar software
languages, e.g., C/C++ and OpenCL C. Little is known about
the portability of designs between these two platforms, which
can hinder the further adoption of HLS designs.

To evaluate the portability and performance of Intel and
Xilinx kernels, here we extend our prior work [3] by port-
ing the Needleman-Wunsch application [4] from the Rodinia
benchmark suite [5] written in Intel OpenCL C [6] to a
Xilinx FPGA. We used the Intel OpenCL C kernel codes
from [6] as a starting point and first performed a minimum
effort porting to Xilinx OpenCL C. We then improved the
performance of the kernel codes in Xilinx C/C++ by taking

advantages of Xilinx C/C++ pragmas and control and by
moderately modifying the codes for burst transfer. Eventually,
the run time was able to be reduced from 294 s to 2.2 s.
This is much closer to, but not quite yet competitive with,
the performance of the initial Intel designs. This suggests that
to achieve the performance portability of HLS designs across
FPGA vendors is not a straightforward task. Our code can be
found at https://github.com/zhilixiao/rodinia-nw.git.

Similar to our previous efforts [3], this work is a detailed
case study of porting an application from the Intel platform
to the Xilinx platform, which details the porting efforts and
experiences of porting FPGA kernel optimizations from Intel
OpenCL to Xilinx HLS and evaluates the performance and
portability of the ported kernel. The factors that are distinctive
to this work are the following:

• we port an application from a different computing pattern
(dynamic programming);

• we start from Xilinx OpenCL C, expanding to Xilinx
C/C++;

• we achieve substantial performance improvement through
exploration of several optimizations; and

• we analyze the performance to study the reasons for
performance gaps that remain.

II. BACKGROUND AND RELATED WORK

The application that we use in this study is the Needleman-
Wunsch application [4], which comes from the Rodinia bench-
mark suite originally created by Che et al. [5]. The intent
of Rodinia was to provide a set of applications to evaluate
heterogeneous computing systems across accelerator interfaces
(e.g., OpenMP and OpenCL) and parallel computing commu-
nication patterns (e.g., dynamic programming, structured grid).
Zohouri et al. [6] later extended the OpenCL implementations
of a subset of the Rodinia benchmarks by designing optimized
high level synthesis (HLS) kernels for FPGAs. However,
the hardware designs from Zohouri et al. are optimized for
Intel FPGA platforms. In this work, we port the Needleman-
Wunsch OpenCL kernels from the suite to be synthesizable
and performant on Xilinx FPGAs.

Sanaullah et al. [7] uses the Needleman-Wunsch and other
common HPC applications to explore the optimization strate-
gies and their effects on FPGAs for Intel OpenCL C. In
particular, the authors detailed their optimization strategies
and their effect on the singe-work-item (SWI) kernel of
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the Needleman-Wunsch algorithm. Most of these strategies
have been adopted by Zohouri et al.’s original code. In our
optimization exploration, we attempted to use their temporary
variables strategy to resolve iteration dependencies.

On the Xilinx side, two recent works by Brown evaluated
the performance of Xilinx’s Vitis HLS tools with the Nekbone
mini-app and the Himeno benchmark [8], [9]. In porting
the Nekbone AX kernel from Fortran to Xilinx FPGAs via
Vitis, the author studied a number of optimizations, including
revising the algorithm from von Neumann to dataflow form,
optimizing the use of memory banks, loop unrolling, and
ping-pong buffering. In porting the Himeno benchmark, he
increased the port data width using the DATA_PACK pragma
and splitting the dataflow into separate kernels to take use
of HLS stream, following the Vitis guidance. De Fine Licht
et al. [10] documented many transformation strategies to
optimize the performance when translating applications from
traditional software to Xilinx HLS. The authors categorize
these strategies and emphasize the importance of pipelining,
scaling, and memory accesses. Brown’s and de Fine Licht et
al.’s point to us a direction for future work.

To overcome vendor differences, Kenter [11] provides guid-
ance for design patterns that work well for both OpenCL
based Xilinx SDAccel and Intel FPGA SDK for OpenCL tool
flows and provides insights into the underlying philosophy
and mechanism with examples. Kenter et al. also evaluate
the portability of OpenCL based FPGA designs between
vendors by implementing an FDTD application for SDAccel
and Intel FPGA SDK [12]. By using pre-preocessor macros,
their implementation can flexibly run on FPGAs from different
families. Our major difference from this work is that we
evaluate the portability by starting from an already optimized
design for the Intel OpenCL FPGA SDK instead of starting
from scratch, trying to optimize for both vendors.

In prior work, we used Needleman-Wunsch to evaluate
the performance and portability between Intel FPGAs with
different memory architectures [13]. We built the OpenCL C
kernels that were originally targeting an Intel FPGA connected
via PCIe on the Intel HARPv2 platform, which combines a
CPU and FPGA on the same chip package. The approach in
this work is similar but with a different focus on evaluating the
performance and portability across different FPGA vendors.

We further used the work of Zohouri et al. [6] to evaluate
the performance and portability between Intel and Xilinx
platforms [3]. This work extends [3] by porting a different
class of application (dynamic programming) and utilizing
Xilinx C/C++ for kernel design in order to enable design
choices not available when using OpenCL C in Xilinx.

III. METHODS

To evaluate the portability of HLS, we leverage the Intel
OpenCL implementation of Needleman-Wunsch from the Ro-
dinia benchmark suite modified by Zohouri et al. [6] and use
the host and kernel codes as a starting point to build and run
the kernels on the Xilinx platform. We first performed one-to-
one optimization ports to Xilinx OpenCL C, and then explored

how performant the kernel can be in Xilinx C/C++. The Xilinx
platform for this work is a Xilinx Alveo U250 Data Center
accelerator card, which includes an XCU250 FPGA of the
Xilinx UltraScale+ architecture, a Gen3 x16 PCIe interface,
and 64 GB of DDR4 off-chip memory. To author designs, we
used the Vitis 2020.1 Core Development kit.

Fig. 1. Illustration of the baseline version of the Needleman-Wunsch
algorithm.

Needleman-Wunsch [4] is a dynamic programming algo-
rithm frequently used in bioinformatics. The goal of the
application is to find the global optimal alignment of two
biosequences. Figure 1 shows a pictorial representation of
the Needleman-Wunsch algorithm. Each biosequence is repre-
sented by integers which are attached to the output matrix as
an extra row and column, as indicated by the blue elements.
The score of each element depends on its top, top left, and
left neighbors as indicated by the green arrows, the score from
a reference matrix, and a penalty value for mismatch. Due to
these data dependencies, an element can only be computed
after the score of its top, top left, and left neighbors have
been determined.

A. Initial Kernel Descriptions

To examine the portability of kernel designs, we chose
the baseline kernel and the most performant kernel versions
(v1 and v5 following the numbering by Zohouri et al. [6])
for porting. Both kernel versions are singe-work-item (SWI)
kernels. The baseline version is just the SWI model itself
with no FPGA optimizations at all. The v5 version is the one
that has the highest performance and uses the least on-chip
resources among the kernel versions according to the reports
by Zohouri et al. [14] and Cabrera and Chamberlain [13]. In
what follows, we refer to this version as the “best” version.

a) The Baseline Kernel: The baseline kernel is simply
the doubly nested loop outlined in lines 3-8 of Algorithm 1,
which iterates through each location in the output matrix
and performs the computations as showed in Figure 1. As
mentioned above, the computation of the score of the current
element depends on its top, top left, and left neighbors as well
as the score from the reference matrix and the penalty value,
which is done in line 5-8. Specifically, line 5 and 6 subtract
the penalty value from the top and left neighbors, and line
7 adds the reference score at the current location to the top
left neighbor. The max in line 8 is an inline function that will
return the maximum of the three three results computed by
line 5-7.

b) The Best Kernel: Figure 2 illustrates how the best
kernel makes use of wavefront parallelism and computes
elements on one diagonal line at a time. The kernel processes
the output matrix as groups of rows, where the size of each



Algorithm 1 Baseline Needleman-Wunsch Algorithm
1: int output[dim+1][dim+1], reference[dim+1][dim+1]
2: int penalty
3: for i← 1 to N + 1 do
4: for j ← 1 to N + 1 do
5: top = output[i− 1][j] − penalty
6: left = output[i][j − 1] − penalty
7: top left = output[i− 1][j − 1] + reference[i][j]
8: output[i][j] = max(top, left, top left)

Fig. 2. Illustration of the best kernel with BSIZE=4 and PAR=3. The number
inside in grid is the order in which elements will be processed.

group is set by the parameter BSIZE. Within a single row
group, each group is further divided into chunks of columns to
fix the length of diagonal lines. The number of columns in each
chunk is defined by the parameter PAR. Once the kernel has
reached the bottom of the current chunk, it will wrap around
to the next chunk until all elements in the current group of
rows have been processed.

Another major optimization is the deployment of 2D shift
registers of size PAR by PAR to hold the computation results
from the last diagonal lines. This optimization has two advan-
tages: first, it resolves the dependencies by storing the elements
in local storage, which avoids expensive accesses to global
memory; second, the lower triangular buffers rearrange the
elements and coalesce the memory accesses such that elements
on the same row can be burst transferred when writing to
global memory, which will increase the bandwidth utilization.

The design of the best kernel introduces two design pa-
rameters, BSIZE and PAR. The hardware search space in our
experimentation is the Cartesian product of

BSIZE ∈ {256, 512, 1024, 2048, 4096}

and

PAR ∈ {8, 16, 32, 64}.

To compare with the performance on Intel FPGAs, the
sequence size we used is 23040, which is the same as Zohouri
et al. [6] and Cabrera and Chamberlain [13].

B. Minimum Modification Porting to Xilinx OpenCL C

Intel OpenCL and Xilinx OpenCL use the same host inter-
face. We followed the modern C++ conventions used in [3] to
rewrite the host code and move the mapping of the DDR banks
to the configuration file for Xilinx, instead of establishing the
connection in Intel host codes. Using the same methods as
in [3], we ported the baseline and the best kernel to Xilinx
OpenCL C with minimum changes to simply allow the codes
to be executable on the Xilinx platform. Because Xilinx has
a partition limit of 1024 for the shift register that is too large
to be completely partitioned, we choose not to partition it
and let the compiler make its best decision. Besides porting
FPGA optimizations like loop unrolling and shift registers,
additional changes not documented in [3] are the porting of
inline functions and compiler pragma ivdep, described next.

1) Inline Functions: In the baseline kernel version, the
max function is an inline function. Inlining a function will
make sure the function will not be generated as a hierarchical
submodule at the register transfer level (RTL). For Intel
OpenCL, inlining a function is the same as in C/C++,

inline void foo(){}.

For Xilinx, the equivalent OpenCL attribute needs to be placed
above the function,

__attribute__((always_inline)).

2) Ignore Vector Dependence: In the most performant
kernel version, Intel OpenCL uses the pragma ivdep on
the output matrix to forestall the false load/store dependency
assumption on the global memory buffer for the output matrix.
As mentioned in Section III-A, the dependency on the output
matrix has been resolved because of the use of 2D shift reg-
isters. For Intel, to ignore the assumed inter loop dependency,
the loop is preceded by

#pragma ivdep array(data).

Although the equivalent attribute was not found in the
Vitis document, the SDAccel document suggests that the
xcl_dependence attribute should be supported by Xilinx
OpenCL C. With

__attribute__((xcl_dependence(variable
="data", type="inter", direction="RAW",

dependent="false"))),

the read after write loop carried dependency can be resolved
and the compiler can lower the initiation interval [11].



1 //fully partition the SR array
2 int shift_reg[SR_SIZE]
3 __attribute__((xcl_array_partition(complete,0)));
4

5 //shift
6 __attribute__((opencl_unroll_hint(SR_SIZE - 1))
7 for (int i = 0; i < SR_SIZE - 1; ++i){
8 shift_reg[i] = shift_reg[i + 1];
9 }

10 //new input to the tail of the array
11 shift_reg[SR_SIZE - 1] = input;

Listing 1. 1D shift registers in Xilinx OpenCL C.

C. Porting to Xilinx C/C++ and Optimizing Performance

To optimize the performance of the best kernel, we explored
the use of Xilinx C/C++ for architecting kernels, since Xilinx
C/C++ affords more fine-grained control over the resulting
hardware than is possible with OpenCL C.

1) HLS INTERFACE: All kernel arguments will be im-
plemented as a port for input or output operations in the
RTL design. In Xilinx C/C++, the implementation of these
ports must be specified by the HLS INTERFACE pragma
to assign an I/O protocol . We used the default setting of
Vitis, assigning the array pointers to the m_axi interface
and scalar inputs to the s_axilite interface. In addition
to assigning the interface, we also explored the effect of the
num_read/write_outstanding option of the interface,
which specifies the maximum number of non-responding read-
/write requests can be issued before the design stalls to wait
for responses. Without specification, Xilinx will group all ports
to the same memory interface. Because the interface will only
address access request of one variable at a time, this will cause
memory port contention and increase the pipeline initiation
interval (II) even when the memories are mapped to different
DDR banks. We thus assign a different bundle to each array
input.

2) Loop Unrolling: To port the loop unrolling optimiza-
tions, Xilinx has a direct equivalence HLS pragma for loop
unrolling,

#pragma HLS unroll factor=N.

The only difference is that the pragma needs to be placed
inside the loop instead of preceding the loop.

3) Shift Registers: To port the shift registers, we treat the
1D shift registers and 2D shift registers separately. For 1D shift
registers, we use the ap_shift_reg class in the Xilinx HLS
library. To show the differences between the way we port the
1D shift registers in OpenCL C and in Xilinx C/C++, Listing 1
shows the set up 1D shift registers in Xilinx OpenCL C and
Listing 2 shows the use of ap_shift_reg for Xilinx C/C++.
One major syntax difference is the location of new inputs. It
was found that the Xilinx compiler sometimes had trouble
inferring 1D shift registers in the style of Listing 1, which
will degrade the performance. More about this is discussed in
Section IV-B.

For 2D shift registers, as in [3], we completely partitioned
the shift register arrays, and replaced the Intel OpenCL C

1 static ap_shift_reg<int,SR_SIZE> shift_reg;
2 int var1;
3 //load new input into location 0, read the oldest

value at location SR_SIZE-1
4 var1 = shift_reg.shift(input,SR_SIZE-1);
5

6 //read location 3 only
7 var1 = shift_reg.read(3);

Listing 2. 1D shift registers in Xilinx C/C++.

1 //fully partition
2 int SR[PAR][PAR];
3 #pragma HLS ARRAY_PARTITION variable=SR complete
4

5 //Shift
6 for (int i = 0; i < PAR; i++){
7 #pragma HLS unroll
8 for (int j = 0; j < PAR - 1; j++){
9 #pragma HLS unroll

10 SR[i][j] = write_SR[i][j + 1];
11 }
12 }
13

14 //load from data, the global memory buffer
15 for (int i = 0; i < PAR; i++){
16 #pragma HLS unroll
17 SR[i][i] = data[read_index];
18 }

Listing 3. 2D shift registers in Xilinx C/C++.

loop unrolling pragmas with Xilinx HLS unrolling pragmas,
as shown in Listing 3. There are several reasons for not
implementing the 2D shift registers with ap_shift_reg.
First, ap_shift_reg only supports 1D shift registers. Sec-
ond, rewriting the columns of 2D shift registers into 1D shift
registers would break down the global memory access loops
and hinder the inference for burst transfer.

4) Loop Carried Dependence: Similar to porting to Xilinx
OpenCL C, we first ported the ivdep pragma by plac-
ing an HLS dependence pragma inside the loop, with
direction=RAW and type=inter for loop carried de-
pendencies,

#pragma HLS dependence variable=data inter
RAW false.

We then explored the effect of resolving other kinds of
dependencies including write after read (WAR) and write after
write (WAW) dependencies on the output matrix.

5) Modifications for Burst Transfer: To enable burst trans-
fer inference, we first isolated global memory access loops
from other operations in the computation loop. We changed
i-- to i++ because one of the precondition for burst transfer
in Xilinx is continuous monotonically increasing order. As
opposed to the loop switching technique of [10] to combine
control flows into one pipeline, we applied loop unswitching
techniques to global memory access loops to move the bound-
ary conditionals outside the loop. The removal of conditionals
reduces the loop pipeline initiation interval (II) to 1 such that
the burst transfer could be inferred by Vitis [11]. Since the
burst transfer size will be no larger than PAR, the number



of columns that will be processed at the same time, we set
the max burst read/write length to 64, the largest PAR in our
design space.

6) Exploration for Optimization: Besides the porting efforts
above, we also tried to leverage the abundant options and
control that Xilinx C/C++ offers to us. To explore what options
are effective, we apply these options on the best kernel with
BSIZE = 512 and PAR = 32. We explored the effects of
binding arrays to different storage types to arrays, like FIFO
and RAM with different number of ports, different ways to
partition and partition factors of arrays, and piplining the
computation loops. Moreover, we explore the effect of binding
ports to different memory banks to avoid memory interleaving
accesses and the effect of locating the compute unit to super
logic regions (SLRs).

IV. RESULTS

A. Minimum Modification Porting Design Space Search

With one-to porting efforts as detailed in Section III-B,
the baseline version’s execution time is 315 s, and the best
execution time of the best kernel across the design space is
294 s. Figure 3 shows the run time of the best kernel across the
design space. Note that the performance varies considerably
across the design space, yet the highest performing design
achieves a speedup of only 1.07×.

On the other hand, the best kernel on Intel FPGA with PCIe
and HARP system takes only 0.260 s and 0.290 s achieving
784× and 2862× speedups relative to the baseline design,
respectively. This is in stark contrast to the 1.07× speedup
achieved by the minimum porting effort, let alone some other
configurations that have even worse performance than the
baseline kernel. Moreover, the huge variations in run time of
designs with the same PAR is different from the performance
pattern as reported in [13], where the run time of kernels with
the same PAR size but different BSIZE are similar.

It was also noted that the compiler was not able to syn-
thesize the design with PAR=64, which was also observed
in [13] for BSIZE smaller than 2048. For the Intel compiler,
the design is too congested to fit onto the board. But for Vitis,
the limitation is because of the partial write inference on the
shift registers and the complex scheduling.

Obviously, with minimum effort porting to OpenCL, the
Xilinx Vitis compiler interprets the kernel codes differently
and the best kernel cannot achieve the same performance and
speedup as it has in Intel systems. More modifications are
necessary to improve performance. To this end, we use Xilinx
C/C++ to author kernels instead of OpenCL C.

B. Ineffective Optimization Efforts

Xilinx C/C++ offers finer control and more options than
Xilinx OpenCL C. Among the options we explored, there are
some ineffective optimization efforts which do not decrease
the execution time and even harm performance in some cases.
We first try to optimize the shift register structure that cannot
be completely partitioned. Even though Xilinx asserts that it
supports the inferring of shift registers even without complete

partition [15], we found that this was not the case until we
enabled burst transfers.

To reduce cycles of operations on shift registers, we use
the BIND_STORAGE pragma to assign the shift register array
to RAM with 1 write port and multiple read ports and FIFO.
Before enabling burst transfers, binding arrays to RAM with
multiple ports has no performance improvement but consumes
more resources, because the RAM cannot satisfy the simulta-
neous store operations as with the shift registers and therefore
breaks the pipeline. Binding to FIFO eventually failed because
of the scheduler cannot find a legal memory core for the
store operation on the FIFO. After all, the shift register is not
completely the same as the FIFO. To mitigate this, we also
explored the cyclic partition on the shift registers with partition
numbers = 8, 16, or 32 combined with unrolling factor equal
to the partition number as described in [16]. We observed that
the cyclic partitioning degrades the performance of the kernel.
First, the scheduler is still unable to accommodate the store
operations on the array even with cyclic partitions. Second,
the scheduling complexity increased because the array’s size
is not a multiple of the partition factor, which degrades the
performance.

However, the inferring of shift registers seems to succeed
after we enable burst transfers. No reports on pipeline breaking
due to the shift register arrays were found. We attribute this
finding to be a bug of Vitis 2020.1, which seems to have
been fixed by 2020.2. We also compared the performance of
using and not using the ap_shift_reg class for the 1D
shift registers after the burst transfer has been enabled. No
significant difference in resource and performance was found.

The second option we explored is the number of outstanding
read/write requests option in the INTERFACE pragma men-
tioned in Section III-C1. It specifies the number of transactions
that can be initiated before waiting for the first to complete,
which can effectively hide memory access latency. Applying
the option reduces the execution time of the best kernel
from hundreds of seconds to 44 s. However, this option is
only effective before burst transfer is enabled. It turns out
that after enabling burst transfer, the kernel has to stall for
external memory before the next burst transaction can be
issued because of the dependency. The burst transfer is more

Fig. 3. Execution times of the best kernel with one-to-one port to Xilinx
OpenCL C, sweeping across the design space of PAR and BSIZE.



effective for hiding latency between atomic memory accesses
and reduces the execution time to 14 s.

To try to reduce the pipeline II, we used the temporary
variable strategy described in [7] to store the offset variables
to resolve loop carried dependencies on reading/writing of the
global memory. But the dependency could not be resolved
by simply using temporary variables. The scheduler reports
show that the pipeline II cannot be further reduced because
the dependency is in fact caused by the contention on memory
ports, which will be discussed in Section IV-D.

Xilinx empowers users with the ability to do coarse-grained
floorplanning by specifying the placement of compute units.
Since we have mapped the kernel ports to different DDR
banks, the location of the compute unit in different SLR re-
gions can decrease or increase the routing across the boundary
and thus affect the timing and clock rate. For Avelo 250, SLR0
connects to the port of DDR bank 0, and SLR1 connects to
DDR bank 1. Mapping reference to DDR bank 0 and data
to bank 1 and explicitly placing the compute unit in SLR0
(2.54 s) or SLR1 (2.57 s) slightly degraded the performance,
increasing the run time by about 300 ms. Examination of
the implementation log files shows that without specification,
Xilinx will spread the compute unit across SLR0 and SLR1
such that the compute unit is close to both memory interfaces,
which can slightly reduce the execution time.

C. Effective Optimization Efforts

Using the run time profile of the best kernel, we found that
Xilinx failed to infer burst transfer from the original kernel
code. Therefore, only atomic transactions to/from the global
memory can be issued and more than 10000 ns of global
memory access latency could be incurred. By rewriting the
best kernel in ways described in Section III-C5, the average
global memory transaction size is increased to PAR integers
and the latency is reduced to about 300 ns.

Although the performance improvement achieved by the
memory banking is minimal, separating global arrays into
different memory interfaces with the bundle option can
effectively reduce the memory port contention and reduce the
pipeline II from 2·PAR (caused by the read of the reference
matrix and the output matrix) to PAR.

After the rewrite for burst transfers, the Vitis compiler
will only pipeline the memory access loops. We added
the PIPELINE pragma to the whole computation loop to
pipeline both burst transfers and computations. With the read
after write dependency on the output matrix resolved by
#pragma HLS dependence variable=data inter
RAW false, the execution time for the best kernel with
BSIZE=512 and PAR=32 is reduced to 6.85 s.

A closer look at the compilation log shows that besides the
RAW dependency, Xilinx also assumes WAW dependencies
on the output matrix. With #pragma HLS dependence
variable=data inter false, all loop carried depen-
dencies can be resolved and execution time is reduced to
2.63 s. Examination of the run time reports shows that re-
solving all loop carried dependencies will increase the kernel

frequency from 105 MHz to 235 MHz, which is the major
cause of the speedup.

Xilinx allows users to map memories to different memory
banks to avoid interleaving global memory access through
building commands or configuration files. With no manual
mapping of memory banks, all global memories are accessed
through DDR bank 0, and the accroding design will be
crowded in SLR 0 which is closest to bank 0. This congested
design decreases the clock rate. By mapped the reference
matrix to DDR bank 0, the output matrix to DDR bank 1, and
the smaller input vector to PLRAM, the clock rate is increased
to 295 MHz, and the execution time is reduced to 2.2 s.

D. Xilinx C/C++ Performance Analysis

Table I lists the execution time, the FPGA resource con-
sumption, and the speedup relative to the baseline of Xilinx
C/C++ kernels across the design space. It’s hard to make a
direct comparison between the hardware resources for Xilinx
and Intel, as they use different logic slices. But both of them
use only a small amount of the available resource. Because
Xilinx was able to identify the shift registers of the C/C++
kernels, BRAM usage does not increase as the PAR size
increases as we observed for OpenCL kernels. Figure 4 is
a graphic illustration of the execution time of the best kernel
across the design space. We observed a similar performance
pattern as [13], where designs with the same PAR have a
similar execution time, and the performance of designs with
PAR=8 are significantly worse than others.

Fig. 4. Execution times of the best kernel in Xilinx C/C++, sweeping across
the design space of PAR and BSIZE.

The C/C++ kernels with burst transfer enabled and pipelined
are much more performant than the one-to-one optimization
port OpenCL kernels. The execution time is reduced to 2.2 s,
achieving 143× speedup relative to the baseline version. How-
ever, the Xilinx C/C++ kernels are still 10× slower than the
Intel OpenCL C kernels. To know why there continues to be a
performance gap and for potential performance improvement
in future work, we next utilize the synthesis report and the
run time report to the analyze the execution time and study
the performance bottleneck.

The synthesis report shows that the computation loop can
only be pipelined with II=PAR, because it cannot resolve the
loop carried dependency of reads on the reference matrix or



TABLE I
RESOURCE UTILIZATION AND RESULTS FOR THE BASELINE AND THE BEST VERSION WITH DIFFERENT CONFIGURATIONS IN XILINX C/C++.

Kernel
Version PAR BSIZE Time

(sec)
fmax

(MHz) LUT Register BRAM DSP Speedup

Baseline N/A N/A 314.788 300 3752 (0.22%) 5073 (0.15%) 2 (0.07%) 30 (0.24%) 1

Best
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256 8.598 300 10300 (0.6%) 12773 (0.39%) 4 (0.15%) 6 (0.05%) 37
512 9.179 300 10409 (0.6%) 12837 (0.39%) 4 (0.15%) 6 (0.05%) 34

1024 8.467 300 10746 (0.62%) 12876 (0.39%) 4 (0.15%) 6 (0.05%) 37
2048 8.542 300 12571 (0.73%) 12825 (0.39%) 4 (0.15%) 6 (0.05%) 37
4096 8.540 300 13782 (0.8%) 12817 (0.39%) 4 (0.15%) 6 (0.05%) 37

16

256 2.486 295 16564 (0.96%) 22376 (0,68%) 4 (0.15%) 6 (0.05%) 127
512 2.390 300 17617 (1.02%) 21942 (0.67%) 4 (0.15%) 6 (0.05%) 138

1024 2.375 300 19229 (1.11%) 22239 (0.68%) 4 (0.15%) 6 (0.05%) 133
2048 2.449 300 18920 (1.09%) 22499 (0.68%) 4 (0.04%) 6 (0.05%) 129
4096 2.426 300 20678 (1.2%) 22191 (0.67%) 4 (0.04%) 6 (0.05%) 130

32

256 2.599 245 33022 (1.91%) 41720 (1.27%) 4 (0.15%) 6 (0.05%) 121
512 2.200 295 33608 (1.94%) 41900 (1.27%) 4 (0.15%) 6 (0.05%) 143

1024 2.294 285 33913 (1.96%) 41920 (1.27%) 4 (0.15%) 6 (0.05%) 137
2048 2.497 270 32524 (1.88%) 41571 (1.26%) 4 (0.04%) 6 (0.05%) 126
4096 2.437 275 36061 (2.09%) 41851 (1.27%) 4 (0.04%) 6 (0.05%) 129

64

256 3.345 210 62210 (3.6%) 81196 (2.47%) 4 (0.04%) 6 (0.05%) 94
512 3.283 215 64481 (3.75%) 81218 (2.47%) 4 (0.04%) 6 (0.05%) 96

1024 3.147 225 64004 (3.7%) 81102 (2.46%) 4 (0.04%) 6 (0.05%) 100
2048 3.118 230 63711 (3.69%) 81198 (2.47%) 4 (0.04%) 6 (0.05%) 101
4096 3.056 255 67478 (3.9%) 81139 (2.46%) 4 (0.04%) 6 (0.05%) 103

Fig. 5. Execution times of the best kernel with BSIZE = 512 and different
values of PAR in terms of computation time and external memory stalls.

the output matrix. Of course, there is no real “read after read”
dependency here, and the true reason is that the interface
will only deal with one burst transaction at a time and that
each burst transaction needs PAR cycles (one cycle for each
element). Reducing the PAR of the design will reduce the
pipeline cycle, but it will also reduce the number of elements
processed per loop and potentially increase the memory access
latency. For example, reducing PAR to 8 will increase the
latency to over 1000 ns. On the other hand, further increasing
the PAR will not further decrease the memory latency, but will
make the design more congested and result in the decrease of
clock rate. Figure 5 shows the composition of the execution

time of the best kernel with BSIZE = 512 and different PAR
in terms of the external memory stalls and the rest of time,
which is the actual time spend on computation. Therefore,
if we reduce the external memory stalls as reported by the
run time report, we will find that the actual computation time
is similar for different PAR size as indicated by Figure 5.
The actual time spent on the computation on Xilinx FPGA
is around 1 second even with clock frequency at 300 MHz,
which is still 3× slower than the overall execution time on
Intel platforms. We therefore conclude that the performance
bottleneck is the coupling of the pipeline II and PAR caused by
the memory port contention. To achieve better performance,
we must decouple the II and PAR, and effectively hide or
eliminate the external memory stalls.

Aside from the performance portability, we also noticed a
significant difference in build time. As BSIZE decreases and
PAR increases, the build time increases. Examination of the
logs shows that the increase mainly comes from place and
route. But compared with the unsynthesizable Xilinx OpenCL
C version with PAR = 64, Vitis took no longer than 5 hours
to build the bitstream across the C/C++ design space.

V. CONCLUSIONS AND FUTURE WORK

This work presents our efforts to port an application kernel
that has already been optimized for Intel FPGA to the Xilinx
platform and our evaluation of its performance and portability.
We found that most FPGA optimizations including the 1D and



2D shift registers can be successfully ported with relatively
low effort. Inter loop dependency optimization can also be
easily ported as Vitis is a best effort multi-pass compiler
and will try to resolve all different kinds of loop carried
dependency itself. But in terms of performance, one-to-one
kernel optimization ports is not enough. The rigorous con-
straint on pipeline II for burst transfer inference of the Xilinx
compiler requires significant rewriting of the code that works
well on Intel FPGAs, which is also the biggest contributor
of the performance difference. By rewriting the kernel in
the style that the Xilinx compiler prefers, we enabled burst
transactions to/from the global memories and reduced the
average transaction latency to around 300 ns and the overall
execution time to 2.2 s, achieving a 143× speedup relative to
the baseline kernel and 134× speedup relative to the one-to-
one optimizations port version. But even with the rewriting for
burst transfer, there is still an order of magnitude gap in the
performance between the Xilinx kernel and the Intel kernel.

Besides the compiler options we explored in this work,
Xilinx C/C++ offers additional compiler options that can
potentially improve the performance. For example, using the
latency option in the INTERFACE pragma to issue read
and write requests in advance could reduce external memory
stall cycles. Merging sequential loops with the LOOP_MERGE
pragma can eliminate cycles between loops. However, many
of these techniques can only reduce the depth of each loop
iteration. As the performance analysis in Section IV-D shows,
the overall execution time will not be reduced to less than
1 s if the pipeline II is not reduced. We could possibly break
the performance bottleneck by rewriting the memory access
into functions and use the DATAFLOW pragma as described
in [10] and [8] and by applying the AGGREGATE pragma,
which is similar to the DATA_PACK directive that is no longer
supported in Vitis to utilize the full port width. For this
work’s purpose of evaluating portability of HLS codes, we
choose to stop and conclude that simply performing one-to-
one optimization ports and rewriting loops for burst transfer
is not enough to make the HLS design’s performance portable
between vendors. The use of DATAFLOW and AGGREGATE to
let the NW kernels also performant on Xilinx FPGAs is left
for future work.
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