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The overall goal of photonics research is to understand and control light in new and richer ways to facilitate new and
richer applications. Many major developments to this end have relied on nonlinear optical techniques, such as lasing,
mode-locking, and parametric downconversion, to enable applications based on the interactions of coherent light with
matter. These processes often involve nonlinear interactions between photonic and material degrees of freedom span-
ning multiple spatiotemporal scales. While great progress has been made with relatively simple optimizations, such
as maximizing single-mode coherence or peak intensity alone, the ultimate achievement of coherent light engineering
is complete, multidimensional control of light–light and light–matter interactions through tailored construction of
complex optical fields and systems that exploit all of light’s degrees of freedom. This capability is now within sight,
due to advances in telecommunications, computing, algorithms, and modeling. Control of highly multimode optical
fields and processes also facilitates quantitative and qualitative advances in optical imaging, sensing, communication,
and information processing since these applications directly depend on our ability to detect, encode, and manipulate
information in as many optical degrees of freedom as possible. Today, these applications are increasingly being enhanced
or enabled by both multimode engineering and nonlinearity. Here, we provide a brief overview of multimode nonlinear
photonics, focusing primarily on spatiotemporal nonlinear wave propagation and, in particular, on promising future
directions and routes to applications. We conclude with an overview of emerging processes and methodologies that will
enable complex, coherent nonlinear photonic devices with many degrees of freedom. © 2022 Optica Publishing Group
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1. INTRODUCTION

Future advances enabled by nonlinear optics will probably be
increasingly due to devices whose underlying physics and design
involve many degrees of freedom (DOFs), i.e., many photonic
DOFs, such as spatial modes, frequencies, and polarizations, and
many design parameters, such as the space- and time-dependent
distributions of refractive index and loss/gain in photonic struc-
tures. This is an easy prediction to make: as photonics researchers,
we are part of a tradition that has always sought to control light in
more, and more intricate, ways. Increasingly urgent open questions
for nonlinear optical science and engineering, thus, include: When
and how can nonlinear photonic devices benefit from more modes?
What new capabilities and applications await discovery and inven-
tion in the domain of nonlinear optical physics and design with
many DOFs?

Control of light with many spatial modes, so-called structured
light, has advanced over the past decade, driving progress in optical

particle manipulation and imaging [1–3]. Manipulating light
in time and frequency domains is also mature and is the domain
in which nonlinear techniques, such as mode-locking [4–12]
and supercontinuum generation [13–17], have so far played the
most crucial role. In comparison, spatiotemporal light control
has lagged behind. Why? One reason for this is that simulation of
spatiotemporal nonlinear wave propagation is much harder than
purely spatial (2+ 1-dimensional) or purely temporal (1+ 1-
dimensional) wave propagation; simulation complexity generally
scales exponentially with the number of dimensions. A second
reason is that conceptual tools, like modes or solitons, and experi-
mental tools, like pulse/wavefront shaping, are more challenging to
apply in general spatiotemporal wave settings. Nonetheless, initial
steps ranging from extreme-intensity laser accelerators [18–21]
to sources of entangled states [22–29] show that motivation and
progress are present here too.

Here we present an overview of emerging applications and
platforms for multimode nonlinear photonics, as well as emerging
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methodologies to address the scientific and engineering challenge
of multimode nonlinear optical design. Although our scope is
multimode nonlinear photonics generally, this paper places an
emphasis on spatiotemporal physics and devices because these
represent the ultimate control over light, because they remain
immature compared to control in pure-time or pure-space
domains, and because this is the domain closest to the authors’
collective expertise. Our perspective here is meant to be primarily
an engineering-oriented one, since the physics of multimode and
spatiotemporal nonlinear optical systems have been reviewed
elsewhere [30–33], and because we believe the time is right to
begin developing applications, both by judicious engineering
based on existing laboratory platforms and by development of
new, engineering-friendly platforms for applications of multimode
nonlinear optical physics.

The era of multimode photonics has already begun.
Although the development of nonlinear photonics has been

driven by many causes, here we consider several representative
slices of the field’s history—optical telecommunications, imag-
ing, and spectroscopy, and their coupling to advanced nonlinear
photonic light sources (Fig. 1). In the past, single-mode structures
like fibers and cavities enabled light sources with unprecedented
coherence and peak intensity, facilitating new applications. Now,
the trend is toward systems that utilize richer, multimode forms of
coherent light to improve on applications of single-mode light, as
well as to facilitate qualitatively new capabilities and applications.

The terminology “mode” has a varied usage throughout pho-
tonics literature [65] and is even more challenging to specify in
nonlinear and strongly dissipative settings. For the purposes of
this article, we can loosely define “modes” as distinct dimensions
or DOF of light, usually in the form of spatial or spatiotemporal
eigenfunctions of a relevant linearized system description.

Optical telecommunications has driven the development
and refinement of many optical devices—fibers, lasers, ampli-
fiers, modulators, filters, and measurement devices—that have
enabled a much wider range of research and smaller-market appli-
cations. Nonlinear fiber optics [66] and fiber lasers [67,68], as
well as their applications in imaging or manufacturing, are two
well-known examples, but nearly every experimental photonics
paper published today uses some equipment that was developed

or enhanced for optical telecommunications. Trends in optical
telecommunications, thus, foreshadow the future of nonlinear
photonic devices. Today, optical communications is increasingly
pressed against the limits of single-mode devices. State-of-the-art
research systems now overwhelmingly rely on multimode optics to
increase information capacity [34,69,70]. It is difficult to predict
exactly when and how multimode telecommunications will impact
commercial systems. Nonetheless, it is not difficult to expect
that multimode nonlinear photonic devices will benefit from
these advances, regardless of how and when multimode optical
telecommunications reaches its tipping point.

Optical imaging and spectroscopy are ancient optical appli-
cations that have expanded and refined as new light sources have
become available. Initially, both relied on incoherent light. While
incoherent versions remain important, these techniques were
enhanced by the introduction of coherent single-mode laser light,
and then further by forms of multimode coherent light, as in
mode-locked lasers. To push beyond the limits of linear imag-
ing and spectroscopy, new techniques increasingly capitalize
on high-intensity or quantum-correlated light [35,36]. Major
advances have arisen from structured coherent light in space, as in
stimulated-emission-depletion (STED) microscopy [37], struc-
tured illumination microscopy [38,39], and light-sheet imaging
[40], or in time, as in multiphoton [41] or stimulated Raman
imaging [42,43]. Whereas trends in light source development have
recently followed telecommunication developments, the trend
with imaging and spectroscopy has been more diverse. The laser
and stabilized frequency comb were developed with spectroscopic
motivations [44], and early laser workers envisioned many other
applications, such as in surgery [45]. But most techniques enabled
by nonlinear optical light sources were not anticipated by their
inventors and were instead invented by others, many years after the
requisite light source capabilities were first introduced.

If properly designed and controlled, devices and proc-
esses based on multimode optical physics offer significant
advantages over single-mode approaches.

The motivation for harnessing multimode coherent light is
now fairly obvious: In concrete situations we know of, process
or device performance is expected to grow linearly, and per-
haps superlinearly, with the number of controlled modes. In

Fig. 1. Timeline of major developments in optical imaging and spectroscopy, optical telecommunications, and nonlinear optical light sources [34–64].
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Fig. 2. Scaling of various photonic system performance metrics with
the number of controlled modes (M). Communication capacity and
laser pulse energy nominally scale linearly with modes, while the com-
putational complexity—an upper bound for the useful computational
capacity—scales more rapidly. For some metrics, research has yet to
establish large-M scaling, although encouraging signs suggest superlinear
scaling for both channel capacity and stable mode-locked laser pulse
energy.

optical telecommunications, increasing the number of spatial
modes in a fiber channel leads to a nominally linear increase in the
Kerr-nonlinearity-limited Shannon capacity of the fiber channel,
assuming the modal propagation is properly controlled [34,69,70].
Without increasing the size of the fiber cable, an improvement of
1000 or more is possible. However, once the multimode phys-
ics of the waveguide is considered, it turns out that the intrinsic
disordered mode coupling that occurs in multimode waveguides
may suppress the rate of Kerr-induced cross talk between trans-
mission channels relative to an equal number of single-mode
channels [71,72]. In effect, the scaling of capacity with the number
of modes controlled may turn out to be even greater than linear
(Fig. 2). Similar considerations apply to mode-locked fiber lasers
or amplifiers, where the Kerr nonlinearity sets a similar bound on
achievable pulse energy [73–75]. Here, it appears that different
intracavity pulse evolutions [75] and multimode mode-locking
mechanisms exist that can fundamentally tolerate greater amounts
of nonlinearity—allowing for similar superlinear scaling with
respect to number of modes controlled [73–75]. As an additional
example, linear optical computers effectively perform matrix-
vector multiplication, a computation whose complexity scales
quadratically with the number of dimensions [76,77]. In optical
computing devices that exploit nonlinear optical operations, the
computational complexity could scale cubically or quartically [78],
and in quantum information processing the scaling may even be
exponential. In general, the more modes, properly controlled, the
better.

What do we mean by “properly controlled”? In general, mul-
timode light is properly controlled if it has controlled intermodal
phases: the relative phase relationship of all modes should be fixed
or controlled over time, not varying stochastically. While inco-
herent light, which is characterized by stochastic, time-varying
intermodal phases, can be useful, e.g., for suppressing speckle
artifacts in imaging, most new applications of multimode light
require precise control of intermodal phases. Even in settings where
spatial disorder is fundamental, such as wavefront shaping through
complex media [79,80], or using strong fiber disorder to reduce
multiple-input multiple-output (MIMO) processing complexity

[81,82], stably controlling the phase relationship between modes is
a necessity.

Overall, controlling light in increasingly more modes is perhaps
the most obvious way to fundamentally advance the capabilities
of light and light-based devices, and its relevance to enhancing
and enabling new applications is increasingly diverse. As the inter-
twined history of nonlinear optical light sources and measurements
suggests, many of the most important applications are likely to be
discovered and developed in the future. Nonetheless, among the
wide range of proposed and existing applications, we can identify
several overarching themes regarding where multimode coherent
light is desirable for nonlinear optical processes:

• Spatiotemporal wave vector matching in nonlinear inter-
actions, as in nonlinear photonics in bulk or multimode systems
[83–91] or control of the spatiotemporal characteristics of spon-
taneous nonlinear processes, as in virtually all non-classical light
generation [22,24–27,29,92–96].

• Control of light–matter interactions or light–light inter-
actions involving very different time and spatial scales, such as in
laser materials processing [97–101], the generation of THz or x
ray radiation from optical pulses [83–85,88], electronic or plasma
[18,19,21,102–110], and phononic interactions [111] or nonlin-
ear microscopy [99,112–114]. These considerations are even more
important for strong-field processes.

• Information capacity or complex functionality, as in photonic
communication [34,69,70] and information processing [76–
78,115,116], as well as for computational and/or high-throughput
measurement modalities.

We have hope for controlling multimode optical systems
now due to several key developments over the last decade.

Well-controlled multimode photonics requires photonic
designs and control systems with many DOFs, such as high-
resolution optoelectronics or other reconfigurable substrates.
These in turn usually require simulations with many-variable mod-
els, which require computing power and time. These requirements
are even more stringent for well-controlled multimode nonlinear
photonics because nonlinear systems are more costly to accurately
simulate.

Figure 3 shows why these requirements can now be met: the
growing accessibility of computing power and of high-resolution,
high-performance optoelectronic interfaces, such as cameras,
displays, and spatial light modulators (SLMs). Reconfigurable
control of many modal DOFs can be achieved with SLMs or digital
micromirror devices, which are now available with resolutions
(i.e., number of pixels) close to 107, or in fixed or reconfigurable
means within nanofabricated photonic structures, such as those
realized with the silicon photonics platform. In general, the num-
ber of design DOFs routinely available to optical scientists and
engineers now exceeds by 3 to 5 orders of magnitude the tech-
nology of decades ago. This trend is likely to continue in coming
decades. Figure 3(b) shows an important driving force for this
trend: the ongoing transition of optical telecommunications
from single- to multiple-spatial mode, space-division multiplexed
(SDM) communication systems. Although the commercialization
of such multimode photonic technologies will take years, the eco-
nomic drive to develop low-cost, high-performance reconfigurable
multimode photonics is already present.

We believe the last telling trend for the future of complex, non-
linear photonic system design is the tremendous and continuous
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Fig. 3. Progress in computing and photonics. (a) Progress in recon-
figurable photonic devices (SLM resolution, or number of pixels, data
from [117–130]). (b) State-of-the-art laboratory demonstrations in
optical telecommunications (total data rate of the optical channel, data
from [70]). (c) Cost of computing (giga-floating-point-operations per
USD, data from [131]). Our intention in (a) is to show a representa-
tive sampling of devices over time, so points include a variety of diverse
SLM types, including both liquid-crystal-based and digital micromirror
devices. SLM resolution grows by roughly a factor of 10 every 9 years,
while GFLOP-per-constant-USD grows by 10 times every 4.2 years.
The growth of telecommunications data rates has slowed, especially if
multimode demonstrations are excluded, since systems are now oper-
ating very close to the single-mode Kerr-nonlinearity-limited Shannon
capacity [34,69,70]. Since high-degree-of-freedom nonlinear photonics
has usually been directly limited by the scale of computations that can be
performed, it is poised to acutely benefit from ongoing improvements in
computing costs.

progress in the cost of computation [Fig. 3(c)]. While some intu-
itive or analytical methods are emerging for design and prediction
of highly multimode, spatiotemporal nonlinear optical systems
(see Section 3), the tasks of predicting, designing, and controlling
multimode, high-DOF nonlinear photonic systems are among the
most computationally intensive endeavors in modern photonics.
Since the availability and cost of computation has as a result often
directly limiting what is possible in this area of photonics [32], we
expect major progress in the coming years simply by leveraging new
computational resources. This trend should motivate researchers
to continue to explore and develop a wider range of computation-
ally intensive techniques for high-DOF nonlinear photonics, to

enable the understanding of new physics, to produce new designs,
and to automate complex experiments and devices [132].

For experimental control, such techniques include heuris-
tic optimization algorithms like simulated annealing or genetic
algorithms [133], data-driven neural network models and poli-
cies [134–139], and physics-informed machine learning models
[140–143]. Methods developed for linear wave systems, such as
transmission matrices [144–146], or concepts such as principal
modes [147–151] and deformation eigenmodes [142], may also
be generalizable to nonlinear systems [75,152]. For device design
(and to a lesser extent, control), gradient-based optimization
techniques, such as gradient descent using autodifferentiation
(also known as differential programming) and the adjoint method
[78,153–157], apply. These methods have proven surprisingly
effective for optical device design, often defying human intuition.
Through a combination of efficient algorithms and lowering costs
of computing, we anticipate computer-assisted design of non-
linear photonic systems with ever-more DOFs. Deep learning is,
in a nutshell, efficient gradient-based optimization of nonlinear
functions with many DOFs. The unexpectedly favorable scaling of
this paradigm with the number of adjustable DOFs has led to rev-
olutionary progress in automated algorithms over the last decade
[158]. A similar evolution appears likely for nonlinear photonics
with many DOFs.

2. EMERGING PLATFORMS AND APPLICATIONS

A. Multimode Frequency Conversion in Optical Fibers

From the earliest days of nonlinear fiber optics, multimode fibers
have enabled remarkable frequency conversion capabilities, par-
ticularly for processes that involve large (10–100 THz) frequency
shifts [159–162]. Large frequency differences between waves imply
disparate propagation constants and velocities, along with possible
multimode propagation of some of the participating waves.
Multimode propagation creates challenges such as temporal walk-
off for short pulses along with opportunities for phase-matching
that build on concepts that have been extensively investigated in
integrated waveguides. Frequency conversions of radiation from
the continuous-wave to femtosecond domains, and from photon
pairs to megawatt peak powers, have been demonstrated in multi-
mode fibers [30]. Intermodal four-wave mixing (FWM) processes
including the geometric parametric instability and spatiotempo-
ral dispersive wave generation provide ways to generate spectral
sidebands with large offsets [163–169] with either spatiotemporal
phase-matching (i.e., chromatic dispersion is compensated by
modal dispersion) or quasi-phase-matching through self-imaging
propagation in graded-index (GRIN) fibers [170]. The use of radi-
ally symmetric higher-order LP0n modes of step-index fiber allows
long interactions of large-area modes, with anomalous dispersion
[171] and enhanced phase-matching bandwidth for intermodal
FWM [172]. Anomalous dispersion supports formation of Raman
solitons, which underlie continuous frequency shifting over broad
ranges in the near-infrared [173–175] and mid-infrared [176],
and Raman beam-cleaning [177] may allow effective brightness-
conversion in wavelength-shifting processes [178]. The impressive
results described above are sometimes accompanied by complexity
in design and implementation, and historically these have posed
barriers to adoption of multimode techniques. Optimization of
performance (such as spectral concentration of power) for specific
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applications may increase the motivation to develop practical
versions, which in some cases will require new perspectives.

One area where multimode nonlinear processes may find
near-term application is telecommunications. FWM is the basis of
several optical signal processing functions, and intermodal proc-
esses can be exploited to realize those functions in SDM systems.
Following the observation that phase-matching of wavelengths
several THz apart can be maintained over several km of multimode
fiber [179], researchers have demonstrated selective conversion
of wavelengths corresponding to different channels [180], as well
efficient wavelength conversion with telecom-modulated signals
while avoiding excessive noise arising from nonlinearity [181].

B. Multimode Continuum Generation

Continuum generation in multimode fiber complements the
capabilities of the now-common continua from single-mode
fibers. Multimode continuum generation is extremely complex,
with contributions from the phase-matched multi-wave mixing
processes [182] mentioned in the prior section along with phase
modulations and the production of solitons and dispersive waves
in multiple transverse modes. Nevertheless, continua generated in
multimode fiber can be controlled to some extent [133,183,184],
and adequate beam quality for some applications can be achieved
over wide spectral ranges [164,182,185]. Larger mode areas and
the presence of modal dispersion in multimode fibers underlie
scaling to higher pulse energy and power [186,187], but work
remains to control the spectral coherence and temporal profile of
slices of the continuum. Non-silica multimode fibers allow exten-
sion of continua to mid-infrared wavelengths [188–190]. Further
advances in control of the spatial and temporal profiles will build
on detailed comparison of theoretical and experimental results,
as in [190], and will facilitate tailoring of continuum sources to
applications.

C. Multimode Propagation in Hollow-Core Fibers

Gas-filled hollow-core fibers (HCFs) offer major opportunities
for exploration of multimode nonlinear wave propagation and
engineering of high-performance sources of ultrashort pulses.
Whether microstructure fiber or capillary, HCFs combine low
modal dispersion with pressure-tunable chromatic dispersion and
nonlinearity [191]. Multimode propagation effects have been
invoked to explain aspects of frequency conversion ranging from
the near-infrared to the vacuum-ultraviolet [192–195], com-
pression of pulses to few-cycle duration accompanied by strong
redshifting [196,197] or blueshifting [198], and the observation
of new spatiotemporal wave packets [199]. High-harmonic gen-
eration (HHG) of ultraviolet light and x rays is an application
that can benefit from multimode propagation for phase-matching
[85,200–203] as well as from spatiotemporally localized fields [84]
that form as a result of excitation of higher-order modes by plasma
defocusing [204]. Direct driving of HHG by the wave packets
reported in [199] offers exciting potential for practical extreme
ultraviolet sources. Progress in engineering new sources across the
spectrum will build on controlled excitation of higher-order modes
of HCFs [205–207], will require better understanding of highly
multimode propagation, and will benefit from the development of
HCFs with lower losses for the higher-order modes [208].

D. Multimode Short-Pulse Fiber Amplifiers

It will be interesting to look for nonlinear pulse evolutions in mul-
timode fiber amplifiers that yield desirable spatiotemporal profiles.
In dissipative systems, beam-cleaning processes can improve beam
quality as measured by M2 and, thus, facilitate effective scaling
of energy or power. Beam-cleaning accompanies amplification of
sub-nanosecond pulses in doped GRIN fiber [209] and continuum
generation in tapered doped GRIN fiber [210]. Wavefront shaping
should be a useful tool for mitigating adverse spatial and temporal
consequences of multimode propagation (and disorder), which
should allow scaling of amplifier performance and generation
of spatiotemporally controlled outputs [211]. Careful measure-
ments of the spatiotemporal pulse evolution along with detailed
theoretical modeling will be needed to fully exploit the potential
of multimode fibers in short-pulse amplification. Extension of
the concepts of principal modes [147] and deformation principal
modes [142] to dissipative and nonlinear systems could be valuable
for mitigation and possible exploitation of effects of mode coupling
and disorder.

E. Multimode Short-Pulse Fiber Lasers

Application of multimode engineering to fiber lasers could permit
low-cost femtosecond lasers (and regenerative amplifiers) with dra-
matically higher pulse energy and average power, or that generate
high-contrast customized spatiotemporal shapes. However, the
high-dimensional dynamics that dictate how mode-locking occurs
in these systems is challenging to predict. General insights such as
the importance of low modal dispersion (e.g., through GRIN or
multicore fiber designs) and spatial filtering to compensate modal
dispersion enabled the first observations of spatiotemporal mode-
locking (STML). [74,212–214]. Key mechanisms behind diverse
forms of STML have been identified by “dissecting” a full laser
model into nonlinear attractors [75], and numerical studies reveal
a variety of spatiotemporal soliton, breather, and vortex solutions
[215]. The practical impact of STML will likely be limited until
ways to generate high-quality or intentionally structured beams are
identified. Kerr beam-cleaning inside an STML laser can improve
beam quality [216], and simulations provide glimpses of mode-
locked states that yield high-power and near-Gaussian output
beams [75]. While the occurrence of STML even in the presence
of a significant manufacturing disorder is scientifically remarkable,
for some applications disorder will need to be mitigated via intra-
cavity wavefront shaping [217] or by novel fiber/cavity designs. On
the other hand, disorder may present scientific opportunities such
as investigation of lasing based on analogs of principal modes. A
holy grail of multimode nonlinear engineering would be a design
methodology that allows engineers to precisely control the dissipa-
tive, nonlinear self-organization that underlies STML to directly
realize pulses with prescribed spatiotemporal features.

F. Multimode Solid-State Lasers and Cavities

Major advances are occurring in engineering of multimode lasers
[218], perhaps best exemplified by the demonstration of control
of 300,000 transverse modes, allowing independent and high-
resolution manipulation of the output structure in the near and
far fields [219]. Interactions of the longitudinal and transverse
cavity modes impact the spatial coherence of the output, which
can be exploited for speckle suppression in imaging applications
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Fig. 4. Platforms and potential applications of multimode nonlinear photonics. (a) Multipass cells [234] and (b) integrated photonic structures [235]
are flexible platforms wherein nonlinear multimode waves may be controlled to produce new forms of multimode coherent light. Spatiotemporal and
multimode considerations are necessary to describe many spontaneous nonlinear processes for generating non-classical light, e.g., (c) in bulk media [92],
or to engineer (d) fiber-based [236] or integrated [93] sources of non-classical multimode light. Applications that may benefit from coherent multimode
light include the (e) intrinsically spatiotemporal interactions in laser materials processing and laser-plasma interactions [100]. Multimode nonlinear optical
dynamics can be used for information processing, such as all-optical phase-retrieval [237], or (f ) machine learning inference [115,238]. (g) Photoacoustic
[239] and other biomedical optical imaging modalities, as well as (h) integrated laser-driven particle accelerators [110], may benefit from multimode fiber
endoscope-based deployment [240–244]. Figures adapted from [92,100,110,234–236,238,245] with permission.

[220]. Modern short-pulse lasers now routinely operate in inten-
sity regimes in which spatiotemporal nonlinear processes such as
self-focusing are relevant [87,221–225]. Although self-focusing
is often mitigated simply by larger beam dimensions, it plays an
essential role in Kerr lens mode-locking [226,227], as well as bulk
continuum generation [228–233]. Similar considerations apply,
e.g., to multipass cell compressors (Fig. 4) and bulk multipass
amplifiers [246,247], where spatiotemporal and self-focusing
effects are typically avoided.

In all the systems above, the modes are perturbed modes of a
“cold” cavity. Laser cavity solitons balance diffraction and self-
focusing processes in otherwise unstable cavities [248]. Although
most work in this area is in the spatial domain, spatiotemporal
versions have been investigated [249,250]. Experiments are just
scratching the surface of this area, with numerous theoretical inves-
tigations of systems that can support self-localized cavity “light
bullets” and related wave packets [251–255]. Although multidi-
mensional nonlinear optical waves have historically been harder
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to control than their low-dimensional counterparts, experimen-
tal control of more complex DOFs that have no analog in lower
dimensions, such as angular momentum and vortex structures, are
increasingly being recognized as promising tools for reliable con-
trol of multidimensional nonlinear optical waves [31,239,256].
We think these and other innovations are worth pursuing: In
single-mode fiber lasers, exploiting rather than avoiding nonlinear
processes has boosted performance by over 3 orders of magnitude
[73]; similar success with bulk ultrafast laser systems could enable
compact, portable, and low-cost terawatt-class oscillators and
petawatt-class master-oscillator power-amplifier systems.

G. Multimode Bulk Nonlinear Photonic Devices

In high-intensity laser applications such as particle acceleration
[18,19,21,104–106,110], light–plasma or light–electron inter-
actions [107–109], and micromachining [97,100,101], careful
engineering of the spatiotemporal structure of the driving laser
pulses is required [257–259]. It is increasingly being appreciated
that more complex spatial and spatiotemporal fields can lead to
better performance or control in these processes than simple,
unstructured Gaussian pulses. This is not surprising given that
these processes typically involve a multitude of spatial and tem-
poral scales [18,19,109,258]. While this endeavor is relatively
new, we are optimistic that spatiotemporally tailored, high-
intensity light sources will facilitate genuine breakthroughs both
for enabling low-cost, compact devices with synchrotron-like
capacities, as well as for pushing extreme light–matter interactions
into qualitatively new regimes.

H. Multimode Integrated Microresonator Frequency
Combs

Microresonator frequency combs have attracted enormous interest
for the efficient generation of stable octave-spanning frequency
combs on an integrated semiconductor chip [260–263]. Broad
bandwidths can be generated through Kerr-mediated parametric
frequency generation in high quality factor microresonators with
low (<1 mW) drive powers. While many early combs featured
low coherence [264] with phase variations between the frequency
modes, the breakthrough observation of optical solitons enabled
highly coherent mode-locked frequency combs [12,63,265].
Microresonators are highly multimode [266] with mode-crossings
that complicate analysis, suppress soliton formation [267], and add
characteristic features to the spectrum [268,269]. While operation
is generally in a single mode, the existence of other modes enables
dispersion engineering [270–275], reduced surface-scattering
loss [276], thermal nonlinearity compensation [277], and single
soliton generation [278]. Researchers have also demonstrated
mutually stable solitons by use of a second polarization [279],
propagation direction [280,281], frequency [282,283], coupled
resonator [284], or spatial mode [283,285,286]. Two solitons
in distinct spatial modes can be mutually coherent with distinct
repetition rates [285], as well as synchronized in time [283,286], in
a process comparable to STML in fiber lasers. The incorporation
of gain by coupling to a fiber laser cavity allows the formation of
laser cavity solitons, which underpin microcombs with dramati-
cally reduced threshold power and dramatically enhanced mode
efficiency [287]. While a recent study examines the topological
properties of multiple coupled ring cavities [288], multiple-mode
(>2) operation of a microresonator has not yet been studied.

Operation of simultaneous multiple modes could add channels for
entanglement [289,290], telecommunications [285,291–296],
and signal processing [297–305], and could increase the power per
comb for improved signal to noise for imaging [306,307], ranging
[308,309], and spectroscopy [310–313]. In other words, inte-
grated frequency combs provide a simple platform for exploring
the coherent nonlinear interplay of multiple modes, and the effec-
tive control of these modes will directly benefit most established
applications.

I. Multimode Macroresonator Frequency Combs
(Driven-Dissipative)

Beyond integrated devices, Kerr resonators have enabled impor-
tant scientific and technological applications in macroscopic
fiber and bulk optical platforms. The first soliton-forming Kerr
resonators were demonstrated in fiber with unique benefits for
photonic processing as an optical buffer [314,315]. More recently,
fiber Kerr resonators have demonstrated the promise of comple-
menting traditional mode-locked laser sources for short-pulse
applications through their ability to generate high-performance
ultrashort pulses in a versatile passive cavity without the funda-
mental wavelength and temporal limitations imposed by an active
gain medium [316,317]. In parallel, bulk Kerr resonators have
been established for the first time as an efficient approach to cavity
enhancement, enabling record peak power enhancement for HHG
[318]. While recent work shows how solitons in different polar-
izations of fiber can couple [319], form polarization domain walls
[320], and support vectorial solitons [321], researchers have only
just begun investigating nonlinear spatial mode coupling. A 2022
study examines STML in a Kerr resonator consisting of GRIN
fiber, demonstrating high coherence and ultra-low timing jitter
[286]. Looking forward, coherent control of multimode phenom-
ena in macroscopic Kerr resonators has the potential for impressive
processing power for telecommunications, unprecedented peak
power performance, and versatility for short-pulse sources and
enhancement cavities, as well beam control, combining, and
spatiotemporal wave packet engineering.

J. Multimode Quantum Nonlinear Photonic Devices

Multimode quantum light can facilitate efficient scaling of pho-
tonic quantum computing protocols, which usually require
high-dimensional quantum states for error correction [322–324],
quantum-enhanced imaging techniques [35], or other quantum-
enhanced characteristics, such as super-classical pointing stability
[325]. For large-scale photonic quantum information processing
systems especially, multiple DOF and high-dimensional encodings
are becoming increasingly attractive and even essential [326,327].
But multimode nonlinear photonics is not only useful for quan-
tum photonic devices, it is in many respects fundamental to it.
Spontaneous nonlinear processes, like parametric downconver-
sion and FWM, supply the majority of non-classical light. Since
these processes populate all available modes that are energy- and
momentum-conserving, in bulk media or multimode structures
their design requires a multimode, spatiotemporal formalism, even
with continuous-wave pumping [22,24–27,29,92–96]. While
single-mode waveguides simplify design, they inevitably increase
loss. In photonic integrated circuits, integrated multimode wave-
guides also enable efficient routes toward larger linear quantum
optical circuits including mode encodings, coherent conversion
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schemes, and qubit or qudit states [93,326,328–331]. Quantum
photonic systems based on free-space or multimode fiber [94,332–
334] may, however, especially in the short-term, facilitate control
of multimode quantum optical states with drastically lower
loss and larger scale. Overall, quantum optics is increasingly
multimode and high-dimensional both because of necessity—
non-classical light generation is by default a spatiotemporal,
multimode process—and opportunity—high-dimensional quan-
tum light can be quantitatively superior for quantum computing,
quantum sensing, and quantum manipulation.

K. Other Integrated Multimode Nonlinear Photonic
Devices

Nonlinear photonic devices with many DOFs have been pro-
posed to perform a wide range of functions. The noisy, analog
dynamics of nonlinear optical systems makes them poorly suited
to digital computations but attractive for brain-like functions,
such as heuristic optimization or deep neural network inference
[78,239,335–338]. A primary goal of optical neuromorphic com-
puters is to improve energy efficiency, so the power required for
typical nonlinear optics is a challenge. One solution is enhancing
nonlinearities through strong spatiotemporal confinement in
emerging platforms like thin-film lithium niobate [339], or in
exciton-polariton [340–342] or phonon-polariton [343,344]
light–matter quasiparticles, which permit spatiotemporal non-
linear optics with light levels approaching the single-photon scale
[342]. Integrated multimode nonlinear photonic devices may
also include systems for particle acceleration [18,19,21,104–
106,110,345] or, plausibly, miniaturized electron beam sources
[107,108]. In general, controlling in many dimensions the behav-
ior of intense laser light in tightly confined integrated settings
should facilitate low-cost, portable versions of lab-scale devices as
well as entirely new functions, such as analog computing.

3. EMERGING METHODOLOGIES

A. Arbitrary Multimode Field Generation

The development of light sources with complete control of the
spatiotemporal profile of the electromagnetic field will both enable
and benefit from emerging concepts in multimode nonlinear
photonics. Spatiotemporal light shaping [346–349] is rudimen-
tary compared to spatial [1] or temporal [350,351] versions, but
emerging techniques based on controlling spatio-spectral cor-
relations (Fig. 5) [355] or coherently combining the outputs of
multiple emitters (Fig. 5) [106,356,357] allow synthesis of a rich
variety of localized spatiotemporal structures with separable [358]
or non-separable [355] profiles. These include X -waves [359],
wave packets with controllable group velocities [89,90,355,360],
space-time toroidal vortices [361], and accelerating spatiotemporal
packets [358,362]. The combination of a SLM and multi-plane
light conversion [Figs. 5(a) and 5(b) underlie mode-based syn-
thesis of light fields completely controlled in space, time, and
polarization [363]. A major open challenge is the generation of
high-power multimode light, which will be a natural tool for
nonlinear spatiotemporal interactions [111,364]. High inten-
sities will mostly preclude “carving” desired fields after the light is
generated and place a premium on production of structured light
from the source [Fig. 5(b)]. Appropriately designed multimode
or multicore sources may exploit competition for gain in lasers

[75,218,219,365] and/or scalable coherent combining schemes
[106,357], and multimode propagation may even help mitigate
pulse-distorting nonlinear processes.

B. Beam Self-Cleaning in Multimode Light Sources

The observation of beam-cleaning in a conservative system was
quite surprising. With input power well below the critical power
for self-focusing, a speckled input beam launched into passive
multimode GRIN fiber evolves to a bell-shaped intensity profile as
it propagates. First observed with nanosecond pulses [366], exper-
iments with continuum generation [186] and femtosecond pulses
[367] exhibited beam-cleaning soon after [30]. Much excitement
for potential applications naturally ensued, and beam-cleaning
was quickly exploited to enhance photoacoustic microscopy [245]
and to produce a diffraction-limited beam from a multimode
mode-locked fiber laser [216]. Multi-octave continua with good
beam quality can be generated in multimode fiber [186], and such
a continuum was employed as a stable three-color source for multi-
photon microscopy and endoscopy [Fig. 5(d)] [354]. Applications
of beam-cleaning with greater impact than these initial demonstra-
tions will require deeper understanding and control of coherence
as well as the dramatic spatiotemporal dynamics [368,369] that
can occur in beam-cleaning processes. It is now understood that
conservative beam-cleaning based on the electronic Kerr nonline-
arity cannot improve the beam quality parameter M2 [370,371],
as expected from thermodynamic considerations. Nonetheless,
light generated by geometric parametric instability [164] or stimu-
lated Raman scattering [175,185,372] in multimode fibers may
be dominated by the fundamental mode [177], and dissipative
Kerr beam-cleaning processes may yield net benefits in fiber lasers
[74,75] or amplifiers [209,210]. The judicious combination of
beam-cleaning processes with dissipation offers exciting prospects
for engineering light sources with enhanced performance.

C. Applications of Optical Thermodynamics to Design
of Multimode Optical Systems

While emerging multimode technologies could prove to be rev-
olutionary, they pose a new set of fundamental challenges. These
stem from the extreme complexity of multimode systems, which
is generally exacerbated by nonlinearities [373,374]. Nonlinear
multi-wave mixing processes induce energy exchange through
a multitude of possible pathways [370,375–377], which can
number in the billions even in the presence of only ∼100 modes.
Modeling and harnessing the response of such complex configura-
tions will be difficult even with the advanced computing resources
and techniques described above. An equilibrium optical thermody-
namic theory can effectively describe the processes of energy/power
exchange in conservative multimode systems with weak nonlinear
interactions [378–382], and it provides intuition about multi-
mode nonlinear evolution through maximization of photonic
entropy [Fig. 5(e)]. As thermodynamic approaches are validated
by experiments [371,383–385] that include beam-cleaning, it will
be interesting to apply them to the design of multimode sources of
the kinds discussed in Section 2. Extensions to non-equilibrium
versions of optical thermodynamics are challenging conceptually,
but related work [386] suggests that such approaches may become
effective tools for analyzing the dissipative environments of lasers
and amplifiers.
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Fig. 5. Emerging methodologies relevant to multimode nonlinear photonics. (a) Schematic of a device capable of mapping an input vector spatiotempo-
ral field onto an arbitrary vector spatiotemporal output field [352]. (b) Control of light “from the source”: schematic of system for coherent spatiotemporal
beam combination, a power-scalable approach for spatiotemporal arbitrary waveform generation [106]. (c) Concept and schematic apparatus for creating
a class of spatiotemporally shaped fields, including space-time light-sheets [353]. (d) Output beam profiles and continuum generated in multimode fiber
[354]. GPI refers to geometric parametric instability, and SRS refers to stimulated Raman scattering. Adapted from [106,352–354] with permission.

D. Applications of Data-Driven and Inverse Multimode
Design

Deep learning involves computational optimization of nonlinear
networks, which can often be viewed as discrete approximations
of high-dimensional nonlinear dynamical systems [78,387–389].
The surprising efficacy of deep learning is now understood to result
from the remarkable properties of stochastic gradient descent
in high-dimensional parameter spaces [158]. These virtues of
high-dimensional gradient-based optimization, along with the
shrinking cost of computing [Fig. 3(c)], make computational
inverse design of multimode linear and nonlinear photonic devices
an increasingly feasible and exciting prospect. While so far many
applications of inverse design in photonics [153,157,390] have
been for relatively simple, few-mode devices, optimizations of

multimode [156,391] and even multimode nonlinear photonic
systems [154,238,336,338] are now appearing. To permit faster
design of multimode systems with many DOFs, one family of
strategies employs deep neural networks to either accelerate
approximate simulations, and/or to express high-dimensional
designs (often with discrete parameter spaces) in continuous
lower-dimensional latent spaces [143,392–395]. Applying these
techniques to multimode nonlinear devices will probably require
improvements in neural network emulators of multimode nonlin-
ear optical wave propagation, where early results are encouraging
[396]. These strategies, employing relatively black-box models,
may be improved on by techniques that incorporate physical
insight [143,392,393]. Overall, designing nonlinear dynamics
with many DOFs is challenging but increasingly feasible with
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computer-assisted design methodologies due to both algorithmic
advances and the steady improvements in the cost of computing.

4. CONCLUSION

Enormous progress has been made in engineering nonlinear
optical systems based on systems that access limited numbers of
modes or DOFs, and these find widespread application. Photonic
systems with enhanced or new capabilities will be possible with
control of light fields and light–matter interactions with many
DOFs. Understanding and design of highly multimode nonlinear
optical systems certainly present major technical and conceptual
challenges. However, advances in understanding of multimode
linear systems, along with development of optical components
with many DOFs and enhanced computing resources, create a
strong foundation for addressing these challenges. Armed with
these tools, we expect that future photonics engineers may design
nonlinear multimode devices and instruments in ways that are
presently challenging or impossible. Extrapolating from the his-
tory of nonlinear optical devices to date (Fig. 1), we expect that
this new class of complex nonlinear optical devices will have major
impact on optical science and will facilitate a wide range of new
applications.
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