
Platform Agnostic Streaming Data Application
Performance Models

Clayton J. Faber
Tom Plano
Samatha Kodali
Zhili Xiao
Abhishek Dwaraki
Jeremy D. Buhler
Roger D. Chamberlain
Anthony M. Cabrera

Clayton J. Faber, Tom Plano, Samatha Kodali, Zhili Xiao, Abhishek
Dwaraki, Jeremy D. Buhler, Roger D. Chamberlain, and Anthony M.
Cabrera, “Platform Agnostic Streaming Data Application Performance
Models,” in Proc. of IEEE/ACM Workshop on Redefining Scalability for
Diversely Heterogeneous Architectures (RSDHA), November 2021.
DOI: 10.1109/RSDHA54838.2021.00008

McKelvey School of Engineering
Washington University in St. Louis

Architectures and Performance Group
Oak Ridge National Laboratory

Platform Agnostic Streaming Data Application
Performance Models

Clayton J. Faber
Tom Plano

Samatha Kodali
Zhili Xiao

Abhishek Dwaraki
Jeremy D. Buhler

Roger D. Chamberlain
Dept. of Computer Science and Engineering

Washington Univ. in St. Louis
St. Louis, MO, USA

{cfaber,planot,kodalis,xiaozhili,adwaraki,jbuhler,roger}@wustl.edu

Anthony M. Cabrera
Architectures and Performance Group

Oak Ridge National Laboratory
Oak Ridge, TN, USA
cabreraam@ornl.gov

Abstract—The mapping of computational needs onto execution
resources is, by and large, a manual task, and users are frequently
guided simply by intuition and past experiences. We present a
queueing theory based performance model for streaming data
applications that takes steps towards a better understanding
of resource mapping decisions, thereby assisting application
developers to make good mapping choices. The performance
model (and associated cost model) are agnostic to the specific
properties of the compute resource and application, simply
characterizing them by their achievable data throughput. We
illustrate the model with a pair of applications, one chosen from
the field of computational biology and the second is a classic
machine learning problem.

I. INTRODUCTION

Over the last few decades data volume has exploded at
an enormous rate, and in many cases the availability of the
data and compute resources to process the data are physically
separated. This necessitates data movement, in effect data
streaming, which can be expensive in its own right. These
kinds of applications come in a variety of different implemen-
tation flavors targeting a wide range of compute systems, from
heterogeneous systems that include computational accelerators
to massive server clusters and everything in between (i.e.,
exploiting both vertical and horizontal scaling). Recently, we
have seen the inclusion of edge computing in the mix, where
live IoT sensor data has pre-processing performed at the edge
and subsequent processing performed on servers in the cloud.

The computational resources available are often quite di-
verse. On the edge, power is often quite limited, so the com-
pute capability can be small. With the advent of computational
accelerators (e.g., GPUs, FPGAs, TPUs, etc.), different por-
tions of the application can take advantage of non-traditional
architectures. However, this adds the additional complexity of
deciding what tasks get assigned to what compute engines.

One often overlooked step in the execution of these ap-
plications is the amount of compute time spent on data pre-

processing, both in terms of data transformation and in the
movement of data from its origin to the primary computation
location. As noted by Malicevic et al. [1] there can often
be a disconnect between the primary algorithm running time
and the overall execution time. Even with improvements to
the overall algorithm, the pre-processing time can completely
dominate, effectively squandering any algorithmic improve-
ments. Malicevic et al. specifically point to graph algorithms
where pre-processing is done upfront; however, in a streaming
application data arrives as it is available to different compute
nodes, which might include both forms of horizontal and
vertical scaling. One can readily imagine a scenario where
in the middle of an execution of a streaming algorithm the
application is starved for data, resulting in wasted resources.

In this work we present a model that seeks to predict the
end-to-end performance of a given data streaming application,
especially when the data resides apart from the compute
node(s). The model is agnostic to the architecture used for
the compute engines, supporting processor cores as well as
accelerators. The model aims to help a programmer decide
where to spend resources to improve the overall running time
of a streaming application. Using a pair of example applica-
tions, we will demonstrate how a streaming data application
can be accelerated using a combination of FPGAs, GPUs,
and solutions for networking data between computational
resources. Along with this we will discuss potential future
work using the model as a guiding hand for research avenues
moving forward.

II. BACKGROUND AND RELATED WORK

A. Streaming Data Applications

Streaming data applications have been a target of study for a
considerable time, well over twenty years [2]. Examples of de-
velopment platforms for the streaming paradigm include Auto-
Pipe [3], Brook [4], Raftlib [5], StreamIt [6], and Streams-

C [7]. In addition, each of these development platforms
supports (or has been extended to support) computational
accelerators, either FPGAs or GPUs.

Figure 1 illustrates an example streaming application with
two compute nodes (labeled Stage A and Stage B). Data
outbound from Stage A is delivered, as input, to Stage B
by the run-time system. Common examples are applications
in which the input data are not in the appropriate form or
format for the computation of interest, so a pre-processing or
data integration step is inserted ahead of the computation so
as to enable the computation to proceed. In these examples,
Stage A is the data integration and Stage B is the compu-
tation of interest. In the model we make the assumption that
the asymptotic complexity stays linear for all stages of the
streaming application. We also make the assumption that the
resources are dedicated to the current task and are not being
shared with other users in the cloud or other applications. This
paradigm readily supports the two nodes being executed on
distinct execution platforms, whether they be processor cores,
FPGAs, GPUs, or some other accelerator, and the data delivery
might be via shared memory, PCIe bus, or the network.

stage A stage B
input

data
results

Fig. 1. Example streaming application.

When modeling the flow of data down the pipeline, it is
prudent to explicitly recognize that this data movement might
be the primary contributing factor to the overall performance,
and as such should be included in the model. This is readily
accomplished by inserting an additional node in the pipeline
that represents the communication task (see Figure 2). By
modeling each node as a queueing station (with ingest rate λ
and service rate µ), the resulting queueing network is shown
in Figure 3 [8]. Prior works by Choi et al. [9] and Gu and
Wu [10] make use of similar models, however, these works are
more concerned with the online scheduling of tasks whereas
our focus is on a more static analysis that a programmer may
use to reason about how an application could be distributed in
a platform agnostic way.

stage A
communication

link

input

data
resultsstage B

Fig. 2. Example streaming application flow model.

Stage A comm. link Stage Bread input

�1 �2 �3

λ1 λ2 λ3 λout

Fig. 3. Example streaming application queueing network model.

In what follows, we will apply the approach above to a
pair of streaming data applications. Next, we describe the
two streaming data applications, both of which leverage data

integration tasks drawn from the Data Integration Benchmark
Suite (DIBS) [11].

1) BLAST: BLAST [12], [13], the Basic Local Alignment
Search Tool, is among the most widely used software in
bioinformatics. It scans a DNA or protein sequence, the query,
against a database of other sequences to determine which
members of the database are most similar to the query under
a biologically motivated score equivalent to a weighted string
edit distance. In this work, we focus on BLASTN, the variant
of BLAST that compares a DNA query to a database of
other DNA sequences, such as a genome, a metagenome, or
a reference such as GenBank NR.

The stages of our BLASTN implementation mirror the
stages of the NCBI BLASTN computation pipeline, shown
in Figure 4, and is built using the Mercator framework on a
GPU [14]. The DNA database to be searched, represented in
FASTA format, is first converted to two bits per DNA base.
This is a pre-processing step, fa_2bit, from DIBS that is
implemented on an FPGA [15]. In the next computational
stage, seed match, each byte-aligned 8-mer (8-base word)
of the database is checked to see whether it appears in a hash
table (stored in GPU DRAM) constructed from all 8-mers
of the query sequence. If the 8-mer at database position p
does appear in the table, a third stage, seed enumeration,
accesses the table to enumerate all positions q at which it
appears, generating one or more 8-mer matches (p, q). These
matches are passed to the fourth stage, small extension,
which attempts to extend each match to the left and right
by up to 3 bases. If a match (p, q) can be extended to a
total length of at least 11, it is passed on to the final stage,
ungapped extension, which extends the match to the
left and right, this time allowing scoring of both matches and
mismatches. Our implementation limits ungapped extension
to at most a fixed-size window (currently 128 bases) centered
on the initial seed match. Only seed matches whose highest-
scoring ungapped extension score above a specified threshold
are returned for further processing. Our implementation does
not presently perform gapped extension [13], but for BLASTN,
that stage takes negligible time compared to the rest of the
pipeline [16] and would be implemented on the host processor.

fa_2bit
seed

match

seed

enumeration

small

extension

ungapped

extension

FASTA

db

alignments

Fig. 4. BLAST application.

Most stages of BLASTN act as filters over either database
positions (seed matching) or matches (small and ungapped
extension). Their task is to eliminate inputs that should not
proceed to the next stage. Seed matching in particular is a
highly effective filter, eliminating the vast majority of input
8-mers, for query lengths much less than 216 bases. Seed
enumeration, in contrast, may produce multiple matches per
input position if the same 8-mer occurs at several places in
the query. Except for highly repetitive query sequences, this
stage produces on average 1-2 matches per input position.

All stages of BLASTN produce a variable number of
outputs per input, and most produce zero outputs for the
majority of their inputs. On a SIMD processor such as a
GPU, executing all stages of BLASTN independently in each
thread will result in many threads discarding their inputs and
becoming idle early in the computation, resulting in many
wasted cycles. The Mercator system therefore inserts queues
between each stage to collect and redistribute work among
threads before executing the next stage. These queues have
limited size, so each stage may need to be executed multiple
times; scheduling execution of stages is performed so as to
maximize GPU thread occupancy and minimize overhead [17].

2) ML: The Optidigits library is a representation of hand-
writing data available through the UC Irvine Machine Learning
Repository [18]. This well known data set has a large number
of hand written digits ranging from 0 to 9 represented in a
32×32 binary matrix. This data resides in a text file containing
all the digits in an ASCII char matrix with a corresponding
label that identifies what the handwriting raster is supposed to
represent. In the original DIBS this database is transformed
into a set of tiff images as a potential input to a machine
learning application.

In this work we make a change to this application to
help lessen the impact of data communications on the overall
application throughput. Instead of transforming the ASCII
matrices to a tiff format image we make the choice to compact
the binary values into integers (one bit per pixel), resulting in
an output size of 128 bytes instead of 1.2 kiB per image. This
transformation results in no loss of data fidelity, a 10 fold
reduction in network usage, and only requires a small pre-
processing step of adding a .png header and footer before
being fed to the downstream ML computation.

Handwritten digit recognition is a classic example of a
machine-learning application and is practically a solved prob-
lem. We utilize off-the-shelf components and models. The
model we utilize is trained on the well-known MNIST hand-
written digits dataset, that consists of 60,000 handwritten,
grayscale digits in a 32 × 32 pixel format. Section IV-B
provides more details about the model.

optidigits_1bit
digit

recognition

image

db
digits

Fig. 5. ML application – handwriting recognition.

B. Related Work

DIBS defines the domain and characteristics of data in-
tegration: multi-discipline, low data reuse, and memory de-
pendent. Although DIBS only analyzed these apps using a
single-threaded approach, work done in [15], [19], [20] make
attempts to accelerate these applications. In these works the
Intel Hardware Accelerator Research Program (HARP) system
was utilized which consists of an Intel Xeon CPU with an on
package Intel FPGA. This allows the FPGA to access the same

memory space as the host system and on top of that is last-
level cache coherent. While we find this system incredibly
interesting and a worthwhile piece of hardware for the future
of heterogeneous compute, support by the manufacture has
waned and has left the project in an indeterminate state. The
tools have not been upgraded since 2016.

A number of groups have utilized accelerators for various
data integration problems. Fang et al. [21] utilize FPGAs as
part of an enterprise ETL operation. Aggarwal [22] explores
the use of GPUs for a similar set of tasks.

A representative subset of previous implementations
of all or portions of BLAST on accelerators include
CAAD BLAST [23], Mercury BLAST [16], [24], [25],
RC-BLAST [26], and TreeBLAST [27] on FPGAs
and cuBLASTP [28], GPU-BLAST [29], and Mercury
BLAST [17], [30] on GPUs.

Machine learning has long benefited from acceleration. The
TensorFlow framework [31] regularly utilizes GPUs. Zhang
et al. [32] describe a general approach to deploying machine
learning applications using convolutional neural networks on
FPGAs. Geng et al. [33] use a cluster of FPGAs for ML
training, and Li et al. [34] investigate how to partition in-
ference on an FPGA cluster. Liu et al. [35] combine the
use of GPUs and FPGAs on a machine learning problem,
ultimately concluding that for their problem, GPUs were best
suited for the training and FPGAs were best for inference.
Shahid and Mushtaq [36] review multiple generations of TPUs
on ML problems, comparing them to GPUs and FPGAs, and
Reuther et al. [37] survey a wide range of machine learning
accelerators.

A recent review describes applications that exploit more
than one accelerator [38].

III. MODEL DESCRIPTION

We adopt the approach of Padmanahban et al. [39], Beard
and Chamberlain [8], and Timcheck and Buhler [40] to de-
velop an analytic queueing model of each application, begin-
ning with the BLAST application. Starting from the conceptual
diagram of Figure 4, additional blocks are added that represent
potential performance bottlenecks in the flow of data through
the complete application. In our instantiation, the accelerators
(both FPGA and GPU) are connected to their host systems via
a PCIe bus. In addition, there is a network connection from the
system hosting the FPGA to the system hosting the GPU. The
addition of these blocks transforms the diagram of Figure 4
into the expanded diagram of Figure 6.

In Figure 6, the top row represents the system hosting the
FPGA, responsible for the fa_2bit data transformation. The
second row represents the network connection between the
two host systems, and the third row represents the system
hosting the GPU, responsible for remainder of the comparison
pipeline. Note the presence on each host system of the PCIe
block both before and after the computation mapped to the
respective accelerator. This represents the data transfer both to
the accelerator and from the accelerator back to host memory.

PCIe

seed

match

seed

enumeration

small

extension

ungapped

extension

fa_2bit PCIe

PCIe PCIe

network

read

db

Fig. 6. Flow graph for BLAST application.

We can directly transform the diagram of Figure 6 into
a queueing network by replacing each block (or node) of
Figure 6 with a queueing station, resulting in the queueing
network of Figure 7. Each queueing station is comprised of a
FIFO queue and its associated server. The service capacity is
modeled by a mean service rate µi, expressed in bytes/s, that
represents the maximum rate at which the server can ingest
(process or communicate) data.

Each of the nodes in Figure 6 and the corresponding
queueing station of Figure 7 consumes data from its incoming
edge(s) at mean rate λi. The nodes implementing communica-
tions links will deliver data out at the same rate (λi+1 = λi).
Computational nodes, however, will have a data volume gain
or loss denoted by γi, reflecting the notion that either the
format of the data has been transformed or (in many cases)
the computation is a filter and many input data elements do
not generate output. Therefore,

λi+1 = γiλi, i ≥ 1. (1)

With γi = 1 for all nodes representing communications, the
mean data rate into each node is shown below. If we define
the cumulative gain up to node i as

Γi =

i−1∏
k=1

γk, i > 1, (2)

then the mean data rate into each node can be expressed as

λi = Γiλ1, i > 1. (3)

The above description assumes a one-to-one transformation
of blocks in Figure 6 to queueing stations in Figure 7. How-
ever, it is difficult to separately measure (and therefore reason
about) the distinct blocks in the comparison pipeline executing
on the GPU. We will instead merge these blocks in the
queueing network model into a single server (and associated
queue), resulting in the queueing network of Figure 8. It is this
model that we will exploit for the results that are presented
below.

In a similar way, our handwriting recognition application is
transformed from the initial diagram shown in Figure 5 to the
flow graph of Figure 9, which makes explicit reference to the
PCIe bus to and from the FPGA and the PCIe bus to and from

the GPU. Figure 9 is then transformed in a straightforward way
into the queueing network model of Figure 10.

To simplify the analysis, we will make the assumption that
all of the queueing networks are separable, meaning that we
can analyze each queueing station independently and then
combine their results. This condition holds as long as the
physical queues are large enough so that they do not regularly
fill (i.e., their probability of filling is low) and/or the network
is in the class BCMP [41], both of which are often (but not
always) true in these cases.

Our initial interest is in the performance that is achievable
in this model. Fortunately, that is straightforward to determine
in queueing network models of this type. The service rate
at each queueing station establishes the flow capacity at the
input to that station (i.e., λi < µi). Note, as this model allows
for empty queues it is required that the data rate be strictly
less than the service rate at each node. With knowledge of
the service rates, µi, (which can be measured empirically in
isolation) and the data volume gains, γi, (also emprirically
determined) one expresses the ingest rate at the source, λ1,
as the solution to a flow maximization problem over the
graph with individual flow constraints given by the relevant
service rates. For arbitrary directed acyclic graph topologies,
an efficient solution to this flow maximization problem is given
by [8]. An example of a topology of this type is illustrated in
Figure 11, in which the transformed FASTA data is delivered
to multiple GPU instances for parallel execution. The queueing
network for this configuration is illustrated in Figure 12. For
the tandem topology of Figure 8, the slowest node in the graph
will establish the effective throughput limit.

Denoting the overall throughput by the ingest rate at the
first node, we have

Tput = λ1. (4)

In addition to the performance achieved, we are also in-
terested in the cost effectiveness of the deployment. Since we
are using the AWS cloud for our empirical measurements with
BLAST, this is straightforward to assess, as all of the costs
are explicitly known.

If cr is the cost per unit time for resource r, the total cost
is just the sum of utilized resources.

C =
∑
r∈R

cr (5)

PCIe

seed match seed enumeration

small

extension

ungapped

extension

fa_2bit PCIe

PCIe PCIe

network

read db

�1 �2 �3

�5 �6a �6b �6c �6d �7

�4

λ1

λ4

λ5

λ2 λ3

λ6 λ6b λ6c λ6d λ7 λout

Fig. 7. Queueing network for BLAST application.

PCIe

comparison pipeline

fa_2bit PCIe

PCIe PCIe

network

read db

�1 �2 �3

�5 �6 �7

�4

�1

�4

�5

�2 �3

�6 �7 �out

Fig. 8. Modified queueing network for BLAST application.

PCIe PCIe

PCIe PCIe

memcopy

read

db
optidigits_1bit

digit

recognition

Fig. 9. Flow graph for ML application.

where R is the set of resources (i.e., AWS instances) utilized.
The cost-performance is simply the ratio of the cost to the

throughput, C/Tput. With C having units of cost/unit time
and Tput having units of bytes/unit time, the cost-performance
will have units cost/byte.

IV. IMPLEMENTATIONS AND SETUP

For our implementations of BLAST and ML we target
heterogeneous hardware for both the data transformation and
final data application. In prior work, we observed that for
many data transformations an approach using High Level
Synthesis (HLS) targeting FPGA systems has the potential
to outperform other forms of parallel programming targeting
heterogeneous compute systems [15]. For the second stage,

PCIe

digit recognition

optidigits_1bit PCIe

PCIe PCIe

memcopy

read db

�1 �2 �3

�5 �6 �7

�4

�1

�4

�5

�2 �3

�6 �7 �out

Fig. 10. Queueing network for ML application.

we utilized Mercator for BLAST and Keras and TensorFlow
for ML, taking advantage of GPU compute architectures. We
execute BLAST in the cloud and ML on dedicated hardware,
so as to illustrate the applicability of the model to both. Table I
gives parameters of the hardware used in these two scenarios.

A. BLAST

The BLAST application is run using hardware from Ama-
zon Web Services (AWS), as it best represents a real world
scenario of systems and costs available for immediate purchase
in the cloud provider space. The DNA base transformation
is run on a f1.xlarge instance which utilizes a Xilinx Virtex

network

fa_2bit

comparison

pipeline

comparison

pipeline

comparison

pipeline

...

Fig. 11. Multiple comparison pipelines for BLAST.

PCIe

comparison pipeline

fa_2bit PCIe

PCIe PCIe

network

read db

�1 �2 �3

�5a �6a �7a

�4

�1

�4

�5a

�2 �3

�6a �7a �out.a

comparison pipelinePCIe PCIe

�5b �6b �7b

�5b �6b �7b �out.b

comparison pipelinePCIe PCIe

�5c �6c �7c

�5c �6c �7c �out.c

Fig. 12. Queueing network for multiple BLAST comparison pipelines.

UltraScale+ VU9P card. The card is programmed using the
Vitis HLS tools utilizing OpenCL HLS using the dataflow
programming model. The interface to the global memory uses
separate buses for inputs and outputs working on uint16 and
char16 vector data types respectively. Block RAM buffers
are used to facilitate the movement of the data from kernels
designed to access global memory and the actual compute
pipeline.

The Mercator system is a framework designed to ease the
implementation of irregular multi-stage streaming computa-
tions on GPUs. Irregular streaming computations of this nature
do not have a simple one to one relationship between the
input and output characteristics of a node in the computation
pipeline, but rather, may exhibit expansion or filtering behavior
on their inputs.

For this work, we use the Mercator system to implement a
version of the NCBI-BLAST genomic matching algorithm. As
noted in Figure 6, this algorithm is implemented as a four node
irregular pipeline on a GPU [17]. The general computation
pattern is one where a host CPU packages up a genomic
database (or chunk of a database) in a 2 bits per base format
along with a query string. Each are copied to the GPU before

the Mercator uber-kernel is launched in asynchronous mode.
The host is then free to do other work until the Mercator kernel
returns with its results.

B. Handwriting Recognition

For the second application, we develop a convolutional neu-
ral network (CNN), consisting of multiple layers to recognize
the digits in the Optidigits library. This can be considered as
a case of transfer learning, since each image in our dataset is
evaluated by a model trained on a slightly different dataset.

The model is designed with a VGG-like architecture [42]
and has two main aspects: a feature extraction front-end
and the classifier backend. The feature extraction front-end
begins with a single convolutional layer, utilizing a small-
sized (3, 3) filter and 32 filters followed by a max-pooling
layer. To improve classification accuracy, we then add two
additional convolutional layers, each with the same filter size
as previously used, but we increase the number of filters in
each layer to 64. These layers are again followed by a max-
pooling layer. Subsequently, the filter maps are flattened to
provide features to the classifier.

Since we are dealing with a multi-class classification task,
we require an output layer with ten nodes to predict the
probability distribution of an image belonging to each of the
classes. This requires the use of a softmax activation function.
Between the front-end feature extractor and the classifier,
we add a dense layer with 100 nodes to help with feature
interpretation.

All layers use a Rectified Linear Activation Function
(ReLU) and the ’He’ weight initialization scheme, both widely
used best practices for this type of problem specifically.

For training, the stochastic gradient descent optimizer is
configured with a learning rate of 0.01 and a momentum of 0.9.
The categorical cross-entropy loss function will be optimized,
suitable for multi-class classification. Each of the images
in the Optidigits library is then fed into the model, which
subsequently gives us a multi-class probability distribution for
each of the digit classes.

C. Network and Intermediate Links

In streaming applications similar to the ones presented here
we would ideally like to have a large memory storage easily
accessible by all compute nodes as data becomes available.
However, this is easier said than done. Unfortunately the
network facilitating data transfer between multiple machines
is typically far slower than the internal memory buses for a
machine. In this work we investigate three different candidate
utilities to facilitate data movement across a network. In
Table IV, µB

4 refers to three different types of network utilities
and their throughput as measured on the AWS EC2 machines
listed in Table I and the internal virtual private cloud (VPC)
network in the US West region. Secure Shell Copy (scp)
is a ubiquitous way to move files via the terminal in Linux
systems. The measured throughput is the result of a file copy
from one system to another, however, along with being slowest
this comes with two major drawbacks. One, this writes a file

to disk requiring it to be loaded into the program space for
use, needing extra time and resources. Two, the overhead of
the secure shell protocol is substantial.

Apache Kafka [43] is a protocol designed for streaming
applications using a subscription model. The protocol is de-
signed for both small, short latency messages and longer bulk
style messaging. In our tests we observed that although Kafka
performs marginally better than scp the overhead of the Kafka
system results in poor throughput. In an attempt to solve poor
performance from off-the-shelf solutions we implemented our
own multi-threaded TCP socket solution using the Boost ASIO
libraries. This solution creates a server queue to hold data as
it is ready to be sent to the following client node. When the
server has data to send, it immediately sends it to the client.
The client thread then places said data on a queue for the
eventual host program to consume when compute resources are
available. This solution far outperforms our other two explored
solutions, resulting in more than 2× the speed of scp and
more than 1.5× the speed of Kafka.

V. RESULTS

A. Model Parameters
Tables II, III, and IV show the values that are input

parameters for the model. For the most part, the data volume
gain figures are from first principles (e.g., packing 4 ASCII
characters into a single byte is a reduction in data volume
by a factor of four). The sole exception is the gain in the
BLAST comparison pipeline, γB6 , which will depend upon the
combination of query and database. In our experimental cases
(as is true for typical usage of the BLAST application [16]),
the output data volume is quite small, so the impact on
performance is negligible. The reported value is the mean over
our experimental runs.

Contrasting this, the service rates shown in Table IV are
primarily empirically measured, in isolation, without the rest
of the application pipeline executing. In this way, we can
determine the capacity of that particular pipeline stage. A few
rates have been reported in the literature, these are each noted
in the table.

B. End-to-end Performance Predictions
1) BLAST: The first BLAST execution we will consider is

the one represented in Figure 8. Here, the data integration
(fa_2bit) happens on an AWS FPGA instance and the
comparison pipeline happens on an AWS GPU instance.

When just looking at performance, we can ignore Equa-
tion (5) and focus on Equation (4). To ensure that the through-
put is achievable at each queueing station i, it is sufficient
to have λi < µi. However, we find it more convenient to
renormalize all the individual flow rates λi to the ingest rate
at stage 1, λ1. To enable this, we define a normalized service
rate, µ̂i = µi/Γi, which represent the service rate achievable
at station i in units of the ingest rate at the beginning of the
pipeline. For all downstream stations the flow constraint can
be then expressed as

λ1 < µ̂i, i > 1. (6)

With this normalization, the maximum ingest rate is simply
the minimum normalized service rate,

λ1 < min
i
µ̂i (7)

and the pipeline stage that determines that value is the bottle-
neck stage.

Table V shows the normalized service rates for the BLAST
implementation of Figure 8 (using the Boost ASIO libraries for
networking) and the maximum achievable throughput based
on Equation (7). (Note, for µ̂7, the data reduction is sufficient
such that the normalized service time will not be a limiting
factor.) For this application, the GPU-deployed comparison
pipeline is the rate-limiting stage.

For the complete application, the empirical data rate that is
achieved is 355 MB/s, a bit below the predicted 500 MB/s.
This is not surprising for a pair of reasons. First, Equation (7)
gives an upper bound on throughput, not a nominal predicted
value. Second, there are any number of additional overheads
in the execution of the complete pipeline that will have the
effect of decreasing the achievable throughput. For example,
the model assumes that the PCIe transfer is concurrent with
the GPU computation, however, in our application there is
time spent collecting data before transferring across the PCIe
bus. None the less, we are encouraged to see the level of
agreement that does exist between the model and the empirical
measurement.

From here we can derive the cost of running a streaming
computation in this way. In Table I the costs of using an on
demand EC2 instance for both the g4dn machine and the
F1 instance are listed. Utilizing Equation (5) we can now
determine what would be a cost per byte on our streaming
computation system for BLAST. Given that our BLAST ap-
plication runs at 355 MB/s and our cost is $2.176/hr, our total
cost per MB is $1.70×10−6, or $1.70 per TB of data running
through the BLAST application.

We are now in a position to consider alternatives and make
predictions about their performance. For example, if we use
Kafka for the network link instead of the Boost ASIO libraries.
In this case, µ̂B

4 is 700 MB/s, which does not impact the
predicted upper bound for throughput. This implies that one
could use either networking approach without having any
significant impact on the performance.

The model also points us towards alternatives that could
improve the performance. If we transition to the BLAST
implementation of Figure 12, the input rate at each of the
three downstream GPUs is 1/3 the previous value (e.g., λ5a =

0.33λ4). This makes µ̂B
6a = 3µ̂B

6 , and the model now shows
the network as the limiting term.

2) ML: Similar to the approach we used for BLAST, we
can normalize each of the service rates in Figure 10 to the
ingest rate. These normalized values are shown in Table VI.
Again, the GPU is the limiting factor, in this case by quite
a bit (the next lowest rate constraint is over two orders-of-
magnitude larger). Here, replicating the digit recognition stage
on multiple instances is clearly going to benefit performance.

TABLE I
AWS EC2 INSTANCES USED FOR BLAST AND ORNL AND WU MACHINES USED FOR ML.

Machine CPU Memory Accelerator Cost
AWS F1.2xlarge 8× Intel Xeon E5-2686 v4 @ 2.3 GHz 122 GiB Virtex UltraScale+ VU9P with 64 GiB $1.65/hr
AWS g4dn.xlarge 4× Intex Xeon Platinum 8259CL @ 2.5 GHz 16 GiB Nvidia Tesla T4 with 16 GiB $0.526/hr

ORNL 24× Intel Xeon Skylake @ 2.1 GHz 94 GiB UltraScale+ XCU250 with 64 GiB
Nvidia Tesla P100 with 12 GiB N/A

WU 8× AMD Ryzen7 3700X @3.6 GHz 32 GiB Nvidia GeForce RTX 2080Ti with 11 GiB N/A

TABLE II
DATA VOLUME GAIN AT EACH QUEUEING SERVER (BLAST).

Queueing station Symbol Expression Value Symbol Expression Value

PCIe to FPGA γ1 λ2/λ1 1
fa_2bit γB2 λ3/λ2 0.25 Γ2 γ1 1

PCIe from FPGA γ3 λ4/λ3 1 ΓB
3 γ1γB2 0.25

Network γ4 λ5/λ4 1 ΓB
4 γ1γB2 γ3 0.25

PCIe to GPU γ5 λ6/λ5 1 ΓB
5

∏4
i=1 γi 0.25

comparison pipeline γB6 λ7/λ6 4.9 × 10−6 ΓB
6

∏5
i=1 γi 0.25

PCIe from GPU γ7 λout/λ7 1 ΓB
7

∏6
i=1 γi 1.2 × 10−6

TABLE III
DATA VOLUME GAIN AT EACH QUEUEING SERVER (ML).

Queueing station Symbol Expression Value Symbol Expression Value

PCIe to FPGA γ1 λ2/λ1 1
optidigits_bit γM2 λ3/λ2 0.125 Γ2 γ1 1

PCIe from FPGA γ3 λ4/λ3 1 ΓM
3 γ1γM2 0.125

Memcopy γ4 λ5/λ4 1 ΓM
4 γ1γM2 γ3 0.125

PCIe to GPU γ5 λ6/λ5 1 ΓM
5

∏4
i=1 γi 0.125

digit recognition γM6 λ7/λ6 0.03125 ΓM
6

∏5
i=1 γi 0.125

PCIe from GPU γ7 λout/λ7 1 ΓM
7

∏6
i=1 γi 3.9 × 10−3

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this work we present a hardware agnostic model that
can be used to better estimate how resources are allocated
in streaming applications, especially when data resides apart
from compute nodes. The model is flexible to meet a variety
of situations where data needs to be moved and computed in a
variety of different scenarios utilizing both horizontal scaling
with specialized compute or vertical scaling with multi-node
systems. In our tests, we looked to utilize off the shelf
hardware and algorithms in an attempt to replicate real-world
scenarios that one may encounter when tackling problems of
where and how to compute data. With this model we are
able to predict what is the theoretical upper bound on total
throughput and a prediction of what would potentially be pain
points and opportunities for improvement for both BLAST
and a classic machine learning application. The model relies
on empirical measurement of the throughput of individual
components, rather than any specifics of the execution engine’s
architecture, which makes it particularly suitable for use with
computational accelerators of any form.

B. Future Work

Here, we illustrated the use of the model on a pair of appli-
cations, one using rented equipment and the other using owned
equipment. Clearly, this should be expanded to additional
applications and equipment configurations (e.g., embedded and
edge systems).

One example is the deployment of a robust feedback
mechanism for a catoptric (mirror) surface [44], [45]. Over
600 mirrors are used to redirect sunlight into interior spaces,
increasing the use of natural light for illumination. Each of
these mirrors are deployed under pan-tilt control, and without
proper feedback, if too many of them point sunlight at the
same target, it can overheat. We are designing a computational
pipeline that acquires images of the mirrors on a Raspberry
Pi edge device, uses ML techniques to ascertain the actual
position of each mirror, and uses that information to re-target
mirrors as appropriate to maintain safety. Models such as those
described here can be quite beneficial in helping assess what
computational resources need to be included in the solution, as
well as how should the image data be moved from its source
to wherever the ML computation is to be performed.

Furthermore, there are a wide variety of technologies and
even software that can be explored beyond just simple host
to device PCIe memory transfers and socket programming.

TABLE IV
CAPACITY (SERVICE RATE) OF EACH QUEUEING SERVER.

Queueing station Symbol Value

PCIe to FPGA µ1 1.1 GB/s
fa_2bit (FPGA) µB2 1.2 GB/s
fa_2bit (HARPv2) µB2 15.3 GB/s (Note 1)
fa_2bit (CPU) µB2 23.4 MB/s (Note 2)

optidigits_1bit (FPGA) µM2 250 MB/s
optidigits_1bit (CPU) µB2 133 MB/s (Note 2)

PCIe from FPGA µ3 940 MB/s
Network (scp) µB4 127 MB/s

Network (Kafka) µB4 178 MB/s
Network (Boost ASIO) µB4 277 MB/s

Memcopy µM4 1.3 GB/s
PCIe to GPU µ5 6.3 GB/s

comparison pipeline (T4) µB6 137 MB/s
digit recognition (CPU) µM6 70 kB/s
digit recognition (GPU) µM6 90 kB/s

PCIe from GPU µ7 6.6 GB/s
gapped extension µ8 48.9 KB/s (Note 3)

Notes: (1) from [15], (2) from [11], (3) from [16].

TABLE V
BLAST FIGURE 8 MODELED PERFORMANCE.

µ̂B2 µ̂3 µ̂B4 µ̂5 µ̂B6 µ̂7 λ1

GB/s GB/s GB/s GB/s GB/s GB/s GB/s

1.2 3.8 1.1 25 0.5 > 100 0.5

One popular way to harness the strengths of FPGA compute
is to utilize cards and/or chips that have DMA buses or
network interfaces that can pull and interpret data on the
fly, none of which are in the systems we tested on. New
Nvida GPUs also have a wide range of data transfer options
ranging from GPUDirect RDMA allowing transfers between
device cards, NVLink connections for incredibly fast transfers
between equipped GPUs, and Nvidia BlueField DPU cards
which combine both compute and networking capabilities. As
previously mentioned, the HARP system certainly provides a
opportunity to utilize cache coherent memory with a FPGA
and clearly warrants further study as most standard market
cards make use of I/O bus communications (e.g., PCIe bus).
From a software approach, it is often a question of what,
if any, trade-offs will there be between performance and
programmability.

Further refinement of the model is needed. In these measure-
ments we did not address the variability of the network in the
cloud. Although these are dedicated resources, the data center
could have a highly congested network depending on the time
of day. Further work would seek to measure this variability
and make use of it in the model. The dedicated resource model
can also be expanded into measurement of the variability of
shared resources which is currently not accounted for. The
model could also be expanded if one wanted to allocate
streams and potentially resources for separate applications that

TABLE VI
ML FIGURE 10 MODELED PERFORMANCE.

ˆµM2 µ̂3
ˆµM4 µ̂5

ˆµM6 µ̂7 λ1

MB/s GB/s GB/s GB/s MB/s GB/s MB/s

250 7.5 10 50 0.72 > 100 0.72

eventually coalesced at one node as some final computation
point. Further refinement could be included with how the
computation models are handled for each node, for example,
if the device and host share the same memory space versus
a traditional dedicated device memory. Supporting shared
compute resources is also of interest.

ACKNOWLEDGMENT

This research was supported in part by the following
sources: National Science Foundation (NSF) under grant
CNS-1763503, Defense Advanced Research Projects Agency
(DARPA) Microsystems Technology Office (MTO) Domain-
Specific System-on-Chip Program, and the US Department
of Energy (DOE) Advanced Scientific Computing Research
(ASCR) program.

This manuscript has been co-authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S. De-
partment of Energy. The United States Government retains
and the publisher, by accepting the article for publication, ac-
knowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, worldwide license to publish
or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The
Department of Energy will provide public access to these
results of federally sponsored research in accordance with the
DOE Public Access Plan.

REFERENCES

[1] J. Malicevic, B. Lepers, and W. Zwaenepoel, “Everything you always
wanted to know about multicore graph processing but were afraid
to ask,” in Proc. of USENIX Annual Technical Conference (ATC).
USENIX Association, Jul. 2017, pp. 631–643.

[2] R. Stephens, “A survey of stream processing,” Acta Informatica, vol. 34,
no. 7, pp. 491–541, 1997.

[3] R. D. Chamberlain, M. A. Franklin, E. J. Tyson, J. H. Buckley, J. Buhler,
G. Galloway, S. Gayen, M. Hall, B. Shands, and N. Singla, “Auto-Pipe:
A development environment for streaming applications on architecturally
diverse systems,” Computer, vol. 43, no. 3, pp. 42–49, Mar. 2010.

[4] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston,
and P. Hanrahan, “Brook for GPUs: Stream computing on graphics
hardware,” ACM Transactions on Graphics, vol. 23, no. 3, pp. 777–786,
Aug. 2004.

[5] J. C. Beard, P. Li, and R. D. Chamberlain, “Raftlib: A c++ template
library for high performance stream parallel processing,” The Interna-
tional Journal of High Performance Computing Applications, vol. 31,
no. 5, pp. 391–404, 2017.

[6] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language
for streaming applications,” in Proc. of International Conference on
Compiler Construction, Apr. 2002, pp. 179–196.

[7] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski, “Stream-oriented
FPGA computing in the Streams-C high level language,” in Proc. of
IEEE Symposium on Field-programmable Custom Computing Machines.
IEEE, 2000, pp. 49–56.

http://energy.gov/downloads/doe-public-access-plan

[8] J. C. Beard and R. D. Chamberlain, “Analysis of a simple approach to
modeling performance for streaming data applications,” in Proc. of IEEE
Int’l Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems, Aug. 2013, pp. 345–349.

[9] Y. Choi, C.-H. Li, D. D. Silva, A. Bivens, and E. Schenfeld, “Adaptive
task duplication using on-line bottleneck detection for streaming appli-
cations,” in Proc of 9th Conference on Computing Frontiers, 2012, p.
163–172.

[10] Y. Gu and Q. Wu, “Maximizing workflow throughput for streaming
applications in distributed environments,” in Proc. of 19th International
Conference on Computer Communications and Networks, 2010.

[11] A. M. Cabrera, C. J. Faber, K. Cepeda, R. Derber, C. Epstein, J. Zheng,
R. K. Cytron, and R. D. Chamberlain, “DIBS: A data integration
benchmark suite,” in Proc. of ACM/SPIE Int’l Conf. on Performance
Engineering Companion, Apr. 2018, pp. 25–28.

[12] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” Journal of Molecular Biology, vol.
215, no. 3, pp. 403–410, 1990.

[13] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped BLAST and PSI-BLAST: A
new generation of protein database search programs,” Nucleic Acids
Research, vol. 25, pp. 3389–402, 1997.

[14] S. V. Cole and J. Buhler, “MERCATOR: a GPGPU framework for
irregular streaming applications,” in Proc. of 15th Int’l Conf. on High
Performance Computing and Simulation, Jul. 2017, pp. 727–736.

[15] C. J. Faber, A. M. Cabrera, O. Booker, G. Maayan, and R. D. Chamber-
lain, “Data integration tasks on heterogeneous systems using OpenCL,”
in Proc. of 7th International Workshop on OpenCL (IWOCL), May 2019.

[16] P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin, K. Gyang,
A. Jacob, and J. Lancaster, “Biosequence similarity search on the
Mercury system,” Journal of VLSI Signal Processing Systems for Signal,
Image, and Video Technology, vol. 49, no. 1, pp. 101–121, 2007.

[17] T. Plano and J. Buhler, “Scheduling irregular dataflow pipelines on
SIMD architectures,” in Proc. of 6th Wkshp. on Programming Models
for SIMD/Vector Processing, Feb. 2020, pp. 1:1–1:9.

[18] E. Alpaydin and C. Kaynak, “Optical Recognition of Handwritten
Digits,” UCI Machine Learning Repository, 1998. [Online]. Available:
http://archive.ics.uci.edu/ml

[19] A. M. Cabrera and R. D. Chamberlain, “Designing domain specific
computing systems,” in Proc. of IEEE 28th Int’l Symposium on Field-
Programmable Custom Computing Machines (FCCM), May 2020.

[20] ——, “Design and performance evaluation of optimizations for OpenCL
FPGA kernels,” in Proc. of IEEE High-Performance Extreme Computing
Conference (HPEC), Sep. 2020.

[21] Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien, “UDP: a programmable
accelerator for extract-transform-load workloads and more,” in Proc. of
50th IEEE/ACM International Symposium on Microarchitecture. IEEE,
2017, pp. 55–68.

[22] D. Aggarwal, “Exploring the possibility of using a gpu while imple-
menting pipelining to reduce the processing time in the etl process,”
International Journal on Recent and Innovation Trends in Computing
and Communication, vol. 5, no. 6, pp. 333–337, Jun. 2017.

[23] A. Mahram and M. C. Herbordt, “NCBI BLASTP on high-performance
reconfigurable computing systems,” ACM Trans. Reconfigurable Tech-
nol. Syst., vol. 7, no. 4, pp. 33:1–33:20, Jan. 2015.

[24] A. Jacob, J. Lancaster, J. Buhler, B. Harris, and R. D. Chamberlain,
“Mercury BLASTP: Accelerating protein sequence alignment,” ACM
Trans. Reconfigurable Technol. Syst., vol. 1, no. 2, pp. 1–44, Jun. 2008.

[25] J. Lancaster, J. Buhler, and R. D. Chamberlain, “Acceleration of un-
gapped extension in Mercury BLAST,” Journal of Microprocessors and
Microsystems, vol. 33, no. 4, pp. 281–289, Jun. 2009.

[26] K. Muriki, K. D. Underwood, and R. Sass, “RC-BLAST: towards
a portable, cost-effective open source hardware implementation,” in
Proc. of 19th IEEE International Parallel and Distributed Processing
Symposium, 2005.

[27] M. C. Herbordt, J. Model, B. Sukhwani, Y. Gu, and T. VanCourt, “Single
pass streaming BLAST on FPGAs,” Parallel Computing, vol. 33, no. 10-
11, pp. 741–756, 2007.

[28] J. Zhang, H. Wang, H. Lin, and W. Feng, “cuBLASTP: Fine-grained
parallelization of protein sequence search on a GPU,” in Proc. of IEEE
28th International Parallel and Distributed Processing Symposium,
2014, pp. 251–260.

[29] P. D. Vouzis and N. V. Sahinidis, “GPU-BLAST: using graphics proces-
sors to accelerate protein sequence alignment,” Bioinformatics, vol. 27,
no. 2, pp. 182–188, 2011.

[30] L. Ma, R. D. Chamberlain, J. D. Buhler, and M. A. Franklin, “Bloom
filter performance on graphics engines,” in Proc. of 40th International
Conference on Parallel Processing, Sep. 2011, pp. 522–531.

[31] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin et al., “TensorFlow:
Large-scale machine learning on heterogeneous distributed systems,”
arXiv:1603.04467, 2016.

[32] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Opti-
mizing FPGA-based accelerator design for deep convolutional neural
networks,” in Proc. of ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2015, pp. 161–170.

[33] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Xu, R. Patel, and M. Her-
bordt, “FPDeep: Acceleration and load balancing of CNN training on
FPGA clusters,” in Proc. of IEEE 26th International Symposium on
Field-Programmable Custom Computing Machines. IEEE, 2018, pp.
81–84.

[34] R. Li, K. Liu, X. Cai, M. Zhao, L. K. John, and Z. Jia, “Improving CNN
performance on FPGA clusters through topology exploration,” in Proc.
of 36th ACM Symposium on Applied Computing, 2021, pp. 126–134.

[35] X. Liu, H. A. Ounifi, A. Gherbi, Y. Lemieux, and W. Li, “A hybrid
GPU-FPGA-based computing platform for machine learning,” Procedia
Computer Science, vol. 141, pp. 104–111, 2018.

[36] A. Shahid and M. Mushtaq, “A survey comparing specialized hardware
and evolution in TPUs for neural networks,” in Proc. of IEEE 23rd
International Multitopic Conference (INMIC). IEEE, 2020.

[37] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
J. Kepner, “Survey and benchmarking of machine learning accelerators,”
in Proc. of IEEE High Performance Extreme Computing Conference
(HPEC). IEEE, 2019.

[38] R. D. Chamberlain, “Architecturally truly diverse systems: A review,”
Future Generation Computer Systems, vol. 110, pp. 33–44, Sep. 2020.

[39] S. Padmanabhan, Y. Chen, and R. D. Chamberlain, “Optimal design-
space exploration of streaming applications,” in Proc. of IEEE Int’l
Conf. on Application-specific Systems, Architectures and Processors,
Sep. 2011, pp. 227–230.

[40] S. Timcheck and J. Buhler, “Reducing queuing impact in irregular
data streaming applications,” in Proc. of 10th Workshop on Irregular
Applications: Architectures and Algorithms, Nov. 2020, pp. 22–30.

[41] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios, “Open,
closed, and mixed networks of queues with different classes of cus-
tomers,” Journal of the ACM, vol. 22, no. 2, pp. 248–260, 1975.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv:1409.1556, 2014.

[43] J. Kreps, N. Narkhede, and J. Rao, “Kafka: A distributed messaging
system for log processing,” in Proc. of 6th Workshop on Networking
Meets Databases (NetDB), 2011.

[44] C. Ahrens, R. D. Chamberlain, S. Mitchell, and A. Barnstorff, “Catoptric
surface,” in Proc. of 38th Conference of Association for Computer Aided
Design in Architecture (ACADIA), Oct. 2018, pp. 216–225.

[45] C. Ahrens, R. Chamberlain, S. Mitchell, A. Barnstorff, and J. Gelbard,
“Controlling daylight reflectance with cyber-physical systems,” in Proc.
of 24th International Conference on Computer-Aided Architectural De-
sign Research in Asia (CAADRIA), vol. 1, Apr. 2019, pp. 433–442.

http://archive.ics.uci.edu/ml

	a48cccba-8915-4ff5-98aa-310cea6cdc07.pdf
	Introduction
	Background and Related Work
	Streaming Data Applications
	BLAST
	ML

	Related Work

	Model Description
	Implementations and Setup
	BLAST
	Handwriting Recognition
	Network and Intermediate Links

	Results
	Model Parameters
	End-to-end Performance Predictions
	BLAST
	ML

	Conclusions and Future Work
	Conclusions
	Future Work

	References

