
Parallel Computing 109 (2022) 102863

A
0

Contents lists available at ScienceDirect

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Reducing queuing impact in streaming applications with irregular dataflow
Stephen Timcheck ∗, Jeremy Buhler
Washington University in St. Louis, St. Louis, MO, United States of America

A R T I C L E I N F O

Keywords:
Queuing
SIMD
Irregular
Dataflow
Streaming

A B S T R A C T

Throughput-oriented streaming applications on massive data sets are a prime candidate for parallelization on
wide-SIMD platforms, especially when inputs are independent of one another. Many such applications are
represented as a pipeline of compute nodes connected by directed edges. Here, we study applications with
irregular dataflow, i.e., those where the number of outputs produced per input to a node is data-dependent
and unknown a priori. We consider how to implement such applications on wide-SIMD architectures, such as
GPUs, where different nodes of the pipeline execute cooperatively on a single processor.

To promote greater SIMD parallelism, irregular application pipelines can utilize queues to gather and
compact multiple data items between nodes. However, the decision to introduce a queue between two nodes
must trade off benefits to occupancy against costs associated with managing the queue and scheduling the
nodes at its endpoints. Moreover, once queues are introduced to an application, their relative sizes impact
the frequency with which the application switches between nodes, incurring scheduling and context-switching
overhead.

This work examines two optimization problems associated with queues. First, given a pipeline with queues
between each two nodes and a fixed total budget for queue space, we consider how to choose the relative sizes
of inter-node queues to minimize the frequency of switching between nodes. Second, we consider which pairs
of successive nodes in a pipeline should have queues between them to maximize overall application throughput.
We give an empirically useful approximation to the first problem that allows for an analytical solution
and formulate a performance model for the second that directs implementation toward higher-performing
strategies.

We implemented our analyses and resulting optimizations in applications built using Mercator, a framework
we designed to support irregular streaming applications on NVIDIA GPUs. We demonstrate that these
optimizations yield meaningful performance improvements for several benchmark Mercator applications.
1. Introduction

Streaming computations process large datasets as a sequence of
input items that are transformed by a pipeline (more generally, a
graph) of computational stages, or nodes. Such computations arise in
numerous high-impact applications, ranging from biosequence analy-
sis [1] to network packet inspection [2] to astrophysics [3]. Because
streaming computations exhibit multiple forms of parallelism, they
have been intensively studied to find efficient strategies for parallel
implementation.

A key property of a streaming computation is whether the data
volume changes in a predictable way from a node’s input to its output.
If each 𝑗 inputs to a node result in exactly 𝑘 outputs, the node’s behavior
is said to be regular. Pipelines of regular nodes can be implemented effi-
ciently using limited buffering between nodes and static scheduling [4].
But some streaming computations, including the examples cited above,

∗ Corresponding author.
E-mail address: stimcheck@wustl.edu (S. Timcheck).

exhibit irregular dataflow: the amount of output generated by a node
per input item is variable, data-dependent, and therefore unknown a
priori. This work focuses on strategies to effectively parallelize such
irregular streaming computations.

When a streaming computation performs largely independent oper-
ations on successive inputs in the stream, the computation’s throughput
can be increased by exploiting fine-grained data parallelism across its
inputs. Wide-SIMD processors such as GPUs are designed to exploit
data parallelism and hence are tempting targets for such applications.
However, irregular dataflow interferes with SIMD parallelism because
different inputs to a pipeline may require different amounts of work or
may even be filtered away entirely at different stages of the pipeline.
If data cannot be remapped from one SIMD lane to another in mid-
computation, the occupancy of the processor (that is, the fraction of
SIMD lanes doing useful work) will suffer.
vailable online 3 November 2021
167-8191/© 2021 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.parco.2021.102863
Received 28 March 2021; Received in revised form 30 August 2021; Accepted 22 O
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ctober 2021

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:stimcheck@wustl.edu
https://doi.org/10.1016/j.parco.2021.102863
https://doi.org/10.1016/j.parco.2021.102863
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2021.102863&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Parallel Computing 109 (2022) 102863S. Timcheck and J. Buhler

l
e
(
p
a
a
t
g
a

i
o
m
t
c
e
m
t
a
f
t
M

o
t
i
p
b
t
i
c
c

2

M
t
v
i
o
E
l
o
s
a
t
n
d

d
n
a
a
t
e
n
g
a
T

To improve the occupancy of irregular dataflow pipelines, one may
place intermediate queues between successive compute nodes. A queue
following a node functions as a staging area where data from the
node can be accumulated, compacted, and then redistributed across
SIMD lanes to ensure full occupancy of the next node. However, the
insertion of queues adds overhead to the application that may negate
the performance benefits of higher SIMD occupancy. In cases where
data production rates are low or the application exhibits locally almost-
regular data flow, it may not be worth improving occupancy by adding
a queue between stages.

A second challenge arises when adding queues to pipelines im-
plemented on modern GPU devices, today’s most popular wide-SIMD
architectures. The processors of a GPU typically run asynchronously,
and existing APIs offer little support for synchronization between them.
Hence, a natural application mapping to a GPU runs a separate replica
of the pipeline on each processor, rather than dividing the pipeline’s
nodes across processors. GPUs also offer limited support for preemp-
tion, so the stages of the pipeline must be cooperatively scheduled on
the single processor. Finally, the number of processors is large enough
to run hundreds of pipeline replicas at once.

Each pipeline replica on a GPU needs its own queue space. Given a
large number of replicas, it becomes important to limit the amount of
queue space allocated to each, and therefore to divide that space wisely
among the queues between different pipeline stages. As we will show,
the algorithm used to schedule execution of different pipeline stages
can interact with the differing rates of data production from each stage,
creating an opportunity to allocate queue space in a way that minimizes
the application’s overhead due to pipeline scheduling.

This work addresses two questions in the setting of irregular stream-
ing dataflow pipelines on GPUs and other wide-SIMD processors. First,
we consider the problem of dividing a limited memory budget among
queues in a pipeline. Assuming a simple, effective scheduling policy for
pipeline stages [5], we show how to divide space among queues so as
to roughly minimize the frequency with which the scheduler must be
invoked while processing a data stream. Second, we formalize a trade-
off for when to insert queues between successive pipeline stages. Using
easily-obtained performance metrics from an application’s profile, we
formulate a performance model that can aid in selecting which stages
should be merged together and which should have queues between
them.

We deploy the optimizations described in this work in the Mercator
framework for irregular streaming computation. We developed Merca-
tor to enable high-performance implementation of irregular streaming
applications in the CUDA language on NVIDIA GPUs, though its basic
approach is suitable for a variety of wide-SIMD processors. We quan-
tify the empirical utility of our optimizations for irregular streaming
applications written using Mercator, showing that the optimizations
can have a material impact on an application’s overall throughput. We
also identify limits to optimization, particularly optimal queue sizing,
imposed by the need to ensure certain minimal queue sizes for safe
execution.

The rest of the paper is organized as follows. Section 2 examines
related work. Section 3 explains our application model and associated
performance metrics, while Section 4 briefly describes our Merca-
tor system, which realizes this application model for NVIDIA GPUs.
Section 5 provides a method for partitioning space among queues
in an application so as to minimize overhead given a limited space
budget. Section 6 describes a model for estimating the performance
consequences of adding queues between compute nodes. Section 7
evaluates both of our techniques on irregular streaming applications
implemented in Mercator. Finally, Section 8 concludes and explores
2

future work. s
2. Related work

2.1. Queuing optimizations for streaming pipelines

Many application frameworks have been developed to support regu-
ar streaming dataflow applications on parallel systems. A prominent
xample, StreamIt [4], was built around the synchronous data flow
SDF) [6] model of computation. In StreamIt, the number of outputs
er input data item for each node is fixed at compile time, which
llows effective static scheduling of nodes with minimal queue space
llocation and no remapping. In contrast, the irregular problems we
arget do not have the luxury of knowing how much data will be
enerated at each stage, thus creating a need for data-driven decisions
bout queue placement and sizing.

Subhlok and Vondran [7] examined a similar problem to the merg-
ng of compute stages presented in this paper. They consider a pipeline
f tasks, equivalent to compute stages in our model. Each task can be
apped to processors with data- and task-parallel mapping. However,

heir model allows for forking inputs to different replicas and re-
onverging to a single replica, which is not part of our model. They
xplore combining tasks into modules, which are collections of two or
ore tasks. These modules are then evenly assigned to processors on

he system. Our model similarly considers merging compute stages, but
single pipeline cannot be split across processors on our target plat-

orm, creating different design problems. Our work models impacts due
o wide-SIMD execution, while their work focuses on general-purpose
IMD processing.

Benoit and Robert [8] considered a similar problem, trying to
ptimize for both latency and throughput. Their work explores how
o map data-parallel pipelines on parallel platforms. In their work, as
n ours, merging compute nodes increases the computational load on a
rocessor but may decrease communication, which in our case would
e reading, writing, and managing an intermediate queue. Although
heir model does not consider communication costs between processors,
t works with a more general purpose MIMD processor. Hence, their
ommunication cost would be equivalent to the scheduler cost we
onsider in our model.

.2. The Mercator framework

An early version of our Mercator system was described in [9,10].
any techniques to combine work across distinct nodes that perform

he same computation were used in the initial version. The newer
ersion described here eschews such combining, which empirically
ncurred a very high overhead, and instead focuses on minimizing
verheads associated with queuing and scheduling as much as possible.
mpirically, the new version of Mercator reduces overheads by at
east an order of magnitude relative to its predecessor. One key aspect
f Mercator developed since the earlier version is its runtime node
cheduler [5], which provably reduces scheduling overhead to within
constant factor of the best possible, even for a clairvoyant algorithm

hat knows how many outputs will be produced for each input at each
ode. This scheduler interacts with our queue resizing optimization as
escribed in Section 5.

Irregularity on GPUs is well-documented [11], as is the need for
ynamic data-lane mapping to overcome it [12]. Domain-specific tech-
iques to address irregular dataflow have been described for, e.g., graph
lgorithms [13–16], 𝑛-body simulation [17], data-flow analysis [18],
nd graphics rendering [19]. Mercator seeks to provide abstractions
hat capture a wide variety of irregular computations in a way that
xposes data parallelism to the application developer. Because it does
ot remap work from one processor to another, Mercator preserves
uarantees of FIFO processing of inputs within one processor, which
llows for optimizations supporting, e.g., stateful computation [20].
he uniprocessor streaming model also allows analytical reasoning

upporting optimization strategies, as this work shows.



Parallel Computing 109 (2022) 102863S. Timcheck and J. Buhler

s
c
a
u
w

4

a
s
(
c
a
M
E
o
a

t
o
s
c
o
A
o

Mercator chooses to combine scheduling and all node computations
of a pipeline in a single kernel, in contrast to frameworks like Thrust
and OpenACC that implement computations as separate GPU kernels
managed by a host-side driver. Mercator’s ‘‘uberkernel’’ design [19]
minimizes the latency and synchronization associated with host-device
communication. We note, however, that the queue-related optimiza-
tions in this work apply independently of whether nodes are scheduled
by the host or by a device-side scheduler. Similarly, although Mercator
is built for devices targeted via CUDA, its design and our optimizations
are compatible with an implementation in, e.g., OpenCL to target other
classes of wide-SIMD processors.

3. Application model

In this section, we define the abstract properties of our streaming
dataflow applications, as well as the characteristics of our target wide-
SIMD architectures. As shown in Fig. 1, an application is a linear
pipeline of compute nodes 𝑛1 … 𝑛𝑚 with dataflow edges connecting each
𝑛𝑖 to the next 𝑛𝑖+1. Each time a node executes, it consumes a vector of
up to 𝑣 items from its input and produces a data-dependent number of
items, perhaps of a different size/type, on its output.

The runtime behavior of a node 𝑛𝑖 is characterized by three param-
eters: its service time 𝑡𝑖, its average gain 𝑔𝑖, and its maximum vector gain
𝑚𝑖. The service time 𝑡𝑖 is the time for a node to process a vector of
input items 𝑣; the time is the same for any number of items ≤ 𝑣. The
average gain 𝑔𝑖 is the average number of outputs produced per input
item consumed, which may be greater or less than 1. In contrast, the
maximum vector gain 𝑚𝑖 is the typical value of the maximum number of
outputs produced in any one SIMD lane from an input vector containing
a single input per lane. We note that if a node consumes a vector of
inputs and produces a vector of outputs with maximum vector gain
𝑚, the lock-step nature of wide-SIMD execution ensures that, absent
work-to-thread remapping, every SIMD lane processing this output will
take time proportional to 𝑚, as lanes with fewer inputs must wait for
the longest-running lane to complete. Hence, as discussed in Section 6,
max vector gain can be a useful predictor of computational cost in the
absence of remapping through queues.

For convenience, we also define the cumulative average gain 𝐺𝑘 =
∏𝑘

𝑖=1 𝑔𝑖 and cumulative max vector gain 𝑀𝑘 =
∏𝑘

𝑖=1 𝑚𝑖 to be the average
number of outputs per SIMD lane and the typical maximum number
of outputs in any one lane from node 𝑛𝑘 per input consumed by 𝑛1
respectively. Formally, 𝐺𝑘 accurately summarizes the behavior of a
mean-value model of the pipeline; however, 𝑀𝑘 is a more heuristic
quantity because average per-node values for 𝑚𝑖 cannot simply be com-
posed, irrespective of the detailed distribution of gains. We estimate 𝑚𝑖
as the empirical mode of 𝑛𝑖’s max vector gain, which for the unimodal
distributions we observe in practice is robust to occasional outliers,
and multiply these modes for successive nodes to estimate 𝑀𝑘. More
accurate modeling of gain distributions is left to future work. Finally,
node 𝑛𝑖 has a gain limit 𝑢𝑖 that defines the largest number of outputs
that could ever be produced for a single input; this quantity is used to
compute the minimum amount of downstream queue space needed for
a node to run safely.

Each edge between two nodes has an associated queue. Items from
an edge’s upstream node accumulate in contiguous slots of the queue
until the downstream node executes, at which point the downstream
node pulls contiguous vectors of up to 𝑣 items from the queue. We
assume that each queue has a fixed size; while this size could be
periodically adjusted during execution, doing so incurs overhead (on
the order of tens of milliseconds per adjustment on our target platform),
so we treat queue sizes as fixed within a single ‘‘epoch’’ of execution
for purposes of our analyses.

As discussed earlier, we assume that our target architecture runs
a replica of the complete pipeline on each of its processors, with
different copies sharing a global input stream and output buffer, but not
3

intermediate data structures such as queues. This design is compatible
Fig. 1. A simple pipeline application topology. Node 𝑛1 feeds into 𝑛2, and 𝑛2 feeds
into 𝑛3. Node 𝑛𝑖 has service time 𝑡𝑖, average gain 𝑔𝑖, and max vector gain 𝑚𝑖.

with modern GPUs, which offer limited support for inter-processor syn-
chronization. Each processor runs a scheduler that manages execution of
its pipeline replica’s nodes. Each time the scheduler is called, it selects
a node with items in its input queue and space in its output queue
and causes that node to fire, consuming some amount of input. The
application ends when no node has any inputs remaining.

In optimizing a pipeline’s execution, we seek to maximize its
throughput, or equivalently to minimize the total time to completely
process a large number of inputs to 𝑛1.

4. Mercator: a framework for irregular streaming computation on
NVIDIA GPUs

In this section, we describe Mercator, a development framework
that realizes our computational model for NVIDIA GPUs. Mercator both
motivates the present work, as it supports rapid development of irregu-
lar streaming dataflow applications for GPUs, and serves as our testbed
for benchmarking the optimizations described in subsequent sections.
An early version of Mercator was previously described in [9], but the
present version (2.0) has been simplified and tuned for performance.
The software is publicly available1 under an Apache license.

4.1. Specifying computations in Mercator

A Mercator application is defined by its topology specification and a
set of functions, written in NVIDIA’s CUDA language, that implement
the operations at each node. The topology specification is parsed by
the Mercator compiler, which emits both a CUDA skeleton with code
tubs for the functions to be implemented at each node and supporting
ode to integrate these functions into a complete application. The
pplication developer fills in the bodies of the node functions and then
ses NVIDIA’s CUDA compiler to build the full device-side application,
hich can be invoked by code running on the host processor.

.1.1. Application topology
Fig. 2(a) illustrates the topology specification for a simple Mercator

pplication. The type of a node is given by a module signature, which
pecifies the node’s input and output data types and its gain limit
the 𝑢𝑖 of the previous section). A module may have multiple output
hannels, each with its own data type and gain limit; hence, Mercator
pplications may be structured as trees, not just as linear pipelines.
ultiple nodes in an application may share the same module type.
ach module has an associated run() function that implements its
peration; all nodes with this module type execute the same code, albeit
t different points in the application’s topology.

A topology is defined by specifying nodes, each with its module
ype, and edges that connect an output channel of one node to the input
f another with a compatible data type. A single node is designated the
ource of the application. By default, the source receives a stream of
onsecutive integers, but can be specified to instead consume a buffer
f objects in GPU memory or the output of a user-specified function.
ny output channel of a node may be connected to a sink that stores
bjects emitted on the channel in a buffer in GPU memory.

1 https://github.com/jdbuhler/Mercator

https://github.com/jdbuhler/Mercator


Parallel Computing 109 (2022) 102863S. Timcheck and J. Buhler

z
a
t

t
m
m
o
t
s

4

r
a
i
s
i
a
m

o
a
M
d
n
c

t
f
s

4

a
p
A

Fig. 2. Mercator topology specification and code sample. The first node 𝑝 reads selected sets of up to four consecutive floats from an entry in a table, stopping if it encounters a
ero. The second node 𝑡 performs a computation on each value read and emits the result if it is greater than or equal to a user-defined threshold value. The table and threshold
re specified by the host. Each node’s run() function takes a parameter 𝑛 that indicates the number of threads that receive inputs. Note that push() is always called with all
hreads but is predicated to indicate which threads actually emit outputs.
Nodes may be assigned parameters, which are set on the host prior
o invoking an application and are read-only from within it. Parameters
ay be used to alter the functions of different nodes that share the same
odule type, e.g., by providing different coefficients to different copies

f a filter. Nodes may also be assigned state variables, allowing them
o implement stateful operations such as reductions over their input
tream.

.1.2. Application skeleton
Fig. 2(b) shows a simplified view of the application skeleton cor-

esponding to the given topology. Each module’s run() function is
ssumed to be executed with all available CUDA threads. Each thread
s given its own input if one is available; the second argument to run()
pecifies the number of threads (starting from thread 0) that have valid
nputs. A future version of Mercator will offer the option to take input
s an array of values visible to all threads, so that the run() function
ay map inputs to threads arbitrarily.

A run() function emits outputs to a channel by invoking a push
peration. Push operations are always called with all threads but take
predicate to indicate which threads actually have an output to write.
ultiple push operations may be invoked in one call to run(). The

eveloper is responsible for ensuring that one call to run() does
ot push more outputs than the number of inputs received times the
hannel’s gain limit.

Other functions may be generated as part of an application’s skele-
on. For example, a node with state variables will have an init()
unction, which is called once at application startup to initialize its
tate.

.1.3. Invocation from the host
A Mercator application is compiled into a library that can be linked

gainst a CUDA host program. The host program instantiates the ap-
lication as an object, which can be configured through a host-side
4

PI to set parameters and specify buffers associated with the source
Fig. 3. Host-side API of the sample application of Fig. 2. Mercator provides a Buffer
type that serves as an input or output stream.

and sink(s). Once configured, the host calls the application object’s
run() method, which launches a CUDA kernel containing the entire
application to consume its input stream and emit any output streams.
Fig. 3 shows an example of instantiating and invoking a Mercator
application.

Mercator applications can be configured and invoked asyn-
chronously from the host and can be associated with CUDA streams.
Users requiring the highest performance may thereby use streams to
overlap a Mercator application’s computation with movement of input
and output data to and from buffers on the GPU.



Parallel Computing 109 (2022) 102863S. Timcheck and J. Buhler

m

4.2. Runtime realization of Mercator applications

A Mercator application exists on the GPU as a single kernel contain-
ing the code for all nodes along with a high-level application driver.
The entire application is replicated and runs separately in each CUDA
block. Instances of the application asynchronously claim chunks of
the shared input stream by atomically incrementing an input pointer
and similarly emit outputs asynchronously to shared output buffers.
Within one replica, items flow through the pipeline of nodes in FIFO
order; however, writes to the shared output by different replicas are un-
ordered. A future version of Mercator will add the ability to synchronize
replicas to emit outputs in the global order of the input stream.

Edges between nodes become queues, implemented as circular
buffers whose size is fixed at the time the application is instantiated.
When the application’s scheduler begins to fire a node, the node
continues running until either its input queue (the input stream, for
the source node) is exhausted or one of its output queues fills.

Mercator schedules nodes at runtime using a protocol developed in
our prior work, the AFIE (‘‘Active Full, Inactive Empty’’) scheduler [5].
Briefly, AFIE marks a node ‘‘active’’ when it has a full input queue and
‘‘inactive’’ when this queue is emptied. A node is eligible to execute
when it is active and its immediate downstream neighbors, if any,
are inactive. As with any flow control protocol involving execution
of multiple entities with finite queues between them, the scheduling
policy must ensure that a node with input must eventually be able to
make progress. We proved in [5] that AFIE is deadlock-free (that is, a
node with input eventually becomes eligible to execute), that it ensures
that nodes always execute with a full vector-width of inputs, and that
it incurs only about twice as many switches (calls into the scheduler to
choose a new node to execute) as would a clairvoyant scheduler that
knew in advance the number of outputs produced by each node for
each input.

4.2.1. Motivation for optimizations
As previously discussed, the overhead of dynamic reallocation of

queues motivates us to consider how to choose an appropriate static
size for each queue, at least for a given epoch of execution. Larger
queues allow an application’s nodes to run longer before returning to
the scheduler, which reduces overhead and therefore boosts application
throughput. However, real GPUs impose practical limits on queue
size. To fully utilize a GPU’s processors and hide latency, a Mercator
application may be instantiated in several hundred copies per device
(one per CUDA block). Even if one instance’s queues hold only a
few thousand elements apiece, that can result in tens of megabytes
devoted to queues overall. More aggressive queue sizing can consume
hundreds of megabytes or even gigabytes of GPU global memory,
which may interfere with the space needed to store the application’s
input and output streams. Hence, we are motivated to consider how
best to allocate a limited amount of queue space among the nodes of
an application so as to achieve the highest possible throughput. We
formalize and solve this problem in Section 5.

While queues are useful to ensure that nodes in an irregular applica-
tion receive an input for every SIMD lane, they incur significant costs.
These costs include not only reads and writes of queue memory but also
overhead associated with scheduling execution of the nodes at either
end of a queue. The performance gains due to improved SIMD lane
occupancy when a queue is inserted between nodes must therefore be
weighed against the overhead incurred by its presence. Section 6 seeks
to model this tradeoff and quantitatively guide where queues should be
5

placed.
5. Choosing sizes for finite inter-node queues

Consider a pipeline with nodes 𝑛1 … 𝑛ℎ, with a queue between each
successive pair of nodes. In what follows, we make two key assumptions
about how the pipeline behaves. First, we assume that once a node
starts firing, it continues consuming full vector-widths of inputs for as
long as possible, i.e., until either its input queue empties or its output
queue fills. Second, the number of elements in any single queue 𝑞𝑖
cycles between full and empty. In other words, the number of elements
in 𝑞𝑖 starts at zero, increases monotonically until 𝑞𝑖 becomes full, then
decreases monotonically back to zero before again starting to increase.
Not every possible schedule of node execution satisfies these two
conditions; for example, a schedule that optimized execution latency
might fire a node as soon as any input is available, never allowing
its queue to fill. However, the AFIE scheduler used by Mercator does
satisfy both conditions, and we have shown [5] that such behavior is
consistent with a nearly throughput-optimal schedule. In what follows,
we refer to a schedule satisfying these two conditions as efficient.

Because an efficient scheduler does not switch away from a node
until necessary, the larger the inter-node queues, the more input vectors
a node can typically consume before control returns to the scheduler.
Hence, larger queues are desirable because they reduce the overhead
associated with scheduler invocations, or switches, whose cost can be
on the same order as node service times.

However, as discussed earlier, a good GPU implementation of the
application may require a large number of replicas of the pipeline
— at least one per processor to avoid complex inter-processor com-
munication, and usually multiple replicas per processor (via multiple
active CUDA blocks) to take advantage of GPUs’ ability to hide memory
access latency by switching among multiple computations. For this
reason, the cumulative memory cost of using arbitrarily large queues
for each pipeline can be infeasible. Moreover, the number of scheduler
invocations varies inversely with queue size, so at some point, the
reduction in scheduling overhead from increasing queue sizes reaches
a point of diminishing returns. We therefore assume that each replica
of the pipeline receives only a small, fixed amount of memory to divide
among all its queues.

We consider the following question: how does the allocation of
memory among an application’s queues impact the rate at which it
must switch between nodes? We will quantify this switching rate for
a given allocation, then show how to select an allocation that roughly
minimizes switches for a given total amount of memory.

5.1. Bounding rate of switches under efficient scheduling

Let 𝑞𝑖 be the queue between 𝑛𝑖 and 𝑛𝑖+1, and suppose this queue can
hold 𝑐𝑖 items. Define the scaled capacity 𝑑𝑖 of queue 𝑞𝑖 by 𝑑𝑖 = 𝑐𝑖∕𝐺𝑖.
Scaled capacity normalizes the size of each queue to units of ‘‘inputs to
node 𝑛1’’. For example, if 𝑛1 has gain 2, then each input to 𝑛1 results
in an average of two items inserted into 𝑞1. The results that follow are
more easily expressed in terms of scaled capacities.

Under an efficient schedule, 𝑛𝑖’s input queue empties once per 𝑐𝑖−1
items it consumes, and its output queue fills on average once per
𝑐𝑖∕𝑔𝑖 items it consumes. These two events (emptying of input or filling
of output queues) are the only reasons that execution switches away
from 𝑛𝑖, so their frequency determines the number of such switches.
However, the two events can sometimes occur concurrently — about
once per lcm(𝑐𝑖−1, 𝑐𝑖∕𝑔𝑖) inputs consumed2 — which results in only
one rather than two switches. In short, we can establish the following
lemma:

2 This result holds even for arbitrary rational 𝑔𝑖 for the least common
ultiple of two rational values 𝑎∕𝑏, 𝑐∕𝑑; defined to be the smallest rational

number that is a multiple of each; assuming both values are in lowest form,
this LCM is computed as 𝑙𝑐𝑚(𝑎, 𝑏)∕𝑔𝑐𝑑(𝑐, 𝑑).



Parallel Computing 109 (2022) 102863S. Timcheck and J. Buhler

P
o

𝑆

C
t
i

𝑅

5

t
r
∑

m

p
f

i
t
p
t
e
o
b
i
s
i
a
t

c
t

𝑅

s

Lemma 5.1. For 1 < 𝑖 < ℎ, the rate 𝑅𝑖 of switches away from 𝑛𝑖 per item
consumed by 𝑛𝑖 is given by

𝑅𝑖 =
1

𝐺𝑖−1

[

1
𝑑𝑖−1

+ 1
𝑑𝑖

− 1
lcm(𝑑𝑖−1, 𝑑𝑖)

]

.

roof. We first observe that, because each input to 𝑛𝑖 produces 𝑔𝑖
utputs, node 𝑛𝑖 needs 𝑐𝑖∕𝑔𝑖 inputs to fill its output queue. 𝑛𝑖 begins

firing for the first time with a full input queue and an empty output
queue. The number of items processed before returning to this initial
state (full input queue, empty output queue) must be a multiple of both
𝑐𝑖−1, the number of inputs needed to fill 𝑞𝑖−1, and 𝑐𝑖∕𝑔𝑖, the number of
inputs needed to fill 𝑞𝑖, so that 𝑞𝑖 fills exactly when 𝑞𝑖−1 empties (after
which the former empties and the latter fills). This event first occurs
after processing 𝑧 = lcm(𝑐𝑖−1, 𝑐𝑖∕𝑔𝑖) items. Since 𝑔𝑖 = 𝐺𝑖∕𝐺𝑖−1, we can
rewrite 𝑧 as follows:

𝑧 = lcm(𝑐𝑖−1, 𝑐𝑖∕𝑔𝑖)

= lcm(𝑐𝑖−1, 𝐺𝑖−1𝑐𝑖∕𝐺𝑖)

= 𝐺𝑖−1 lcm(𝑐𝑖−1∕𝐺𝑖−1, 𝑐𝑖∕𝐺𝑖)

= 𝐺𝑖−1 lcm(𝑑𝑖−1, 𝑑𝑖).

To compute the number of switches away from 𝑛𝑖 during one cycle
of processing these 𝑧 items, we make three observations. First, the
output queue fills 𝑧∕(𝑐𝑖∕𝑔𝑖) = 𝑧∕(𝐺𝑖−1𝑑𝑖) times, each of which incurs
a switch. Second, the input queue empties 𝑧∕𝑐𝑖−1 = 𝑧∕(𝐺𝑖−1𝑑𝑖−1) times,
each of which also incurs a switch. Third, only once (after processing
all 𝑧 items) do these two conditions coincide. Hence, the total number
of switches 𝑆𝑖 away from 𝑛𝑖 in one cycle is given by

𝑖 =
𝑧

𝐺𝑖−1𝑑𝑖−1
+ 𝑧

𝐺𝑖−1𝑑𝑖
− 1.

onclude that over one cycle from the initial state of 𝑛𝑖’s queues back
o this state, the rate of switches away from 𝑛𝑖 per item consumed by
t is given by

𝑖 = 𝑆𝑖∕𝑧

= 1
𝐺𝑖−1𝑑𝑖−1

+ 1
𝐺𝑖−1𝑑𝑖

− 1
𝑏

= 1
𝐺𝑖−1

[

1
𝑑𝑖−1

+ 1
𝑑𝑖

− 1
𝑙𝑐𝑚(𝑑𝑖−1, 𝑑𝑖)

]

.

Hence, 𝑅𝑖 is also the asymptotic switching rate observed for 𝑛𝑖 over an
unbounded number of inputs to it. □

Combining the results of Lemma 5.1 over all nodes in the pipeline
and simplifying, we obtain that

Corollary 5.1.1. The total rate 𝑅 of switches across all pipeline nodes per
input consumed by 𝑛1 is given by

𝑅 =
ℎ−1
∑

𝑖=1

2
𝑑𝑖

−
ℎ−1
∑

𝑖=2

1
lcm(𝑑𝑖−1, 𝑑𝑖)

.

.2. Allocating queue space to minimize switches

We now consider how to minimize the rate of switches 𝑅, and
therefore the scheduling overhead, incurred by an application through
manipulation of its relative queue sizes. Suppose that the items output
by node 𝑛𝑖 each have size 𝑏𝑖 bytes, and that we wish to partition a fixed
total number of bytes 𝑇 among all queues in the pipeline. How can we
divide these 𝑇 bytes among the queues 𝑞1 … 𝑞ℎ−1 so as to minimize
he switching rate 𝑅? We could attempt to optimize the switching
ate by directly minimizing the function 𝑅 subject to the constraint
𝑖 𝑏𝑖𝑐𝑖 =

∑

𝑖 𝑏𝑖𝐺𝑖𝑑𝑖 = 𝑇 . Unfortunately, the presence of LCM terms in 𝑅
akes it difficult to minimize analytically.

We argue informally that the objective 𝑅 can be simplified in
ractice. The LCM terms arise because the number of switches away
6

rom node 𝑛𝑖 includes a correction of −1 switch per 𝑧 = lcm(𝑐𝑖−1, 𝑐𝑖∕𝑔𝑖)
nputs. This correction reflects the fact that, in the mean-value model,
he input queue empties and the output queue fills simultaneously once
er 𝑧 items. We call such doubly-motivated switches resonant. In fact,
he actual frequency of resonant switches is likely to be lower than 1∕𝑧,
ven under the best achievable set of 𝑐𝑖’s, for two reasons. First, the
ptimal rational-valued queue sizes for the mean-value model may not
e integer numbers of bytes. When we round these sizes to the nearest
nteger, we will likely increase the LCMs between adjacent sizes and
o reduce the frequency of resonances. Second, any random variation
n the number of outputs per input produced by the node will likely
dvance or retard the filling of 𝑞𝑖 relative to the emptying of 𝑞𝑖−1,
urning one resonant switch into two ordinary ones.

If we assume that the frequency of resonant switches is negligible
ompared to non-resonant switches, then we may eliminate the LCM
erms entirely, leaving the objective as

′ =
𝑚−1
∑

𝑖=1

2
𝑑𝑖

ubject to the same constraint. 𝑅′ is an upper bound on the true
switching rate 𝑅 that we seek to minimize, and it can be shown to
be at most twice 𝑅. Empirically, we found that over a large number of
different combinations of gains, 𝑅′ overestimates 𝑅 by only 10%–20%,
so seeking to minimize 𝑅′ rather than the actual 𝑅 is still likely to be
productive as an optimization strategy.

Replacing 𝑅 by 𝑅′ yields a much more tractable constrained opti-
mization problem, which can be solved analytically over the reals by
the method of Lagrange multipliers. It can thereby be shown that

Lemma 5.2. The real-valued choice of queue sizes that minimizes 𝑅′

subject to ∑

𝑖 𝑏𝑖𝑐𝑖 = 𝑇 and 𝑐𝑖 ≥ 0 is given by

𝑐𝑖 =

√

𝐺𝑖
𝑏𝑖

⋅
𝑇

∑ℎ−1
𝑗=1

√

𝑏𝑗𝐺𝑗

.

5.3. Practical considerations: Rounding and safety

While Lemma 5.2 gives optimal real-valued queue sizes, real queues
must hold an integer number of items. We must therefore round the
obtained 𝑐𝑖 values to integers, which potentially degrades performance
relative to the optimum. Moreover, safety considerations dictate a
minimum allowable size for each queue. The queue 𝑞𝑖 downstream of 𝑛𝑖
must be large enough to hold all the output produced by consuming one
vector of input, which could in the worst case be 𝑢𝑖𝑣 items. A smaller
queue would be unsafe, as there would be nowhere to write output in
the worst case.

We may address the safety concern either by reducing the effective
vector width 𝑣 for node 𝑛𝑖, which allows a smaller queue size but
reduces available parallelism, or by raising 𝑐𝑖 to at least the minimum
safe size. We take the latter approach here, leaving the former for future
work. While inflating queue sizes to ensure safety is straightforward, it
can result in sizes that deviate substantially from the predicted optima.
This effect is particularly pronounced when the total available space 𝑇
for all queues is small or when the gain limit 𝑢𝑖 associated with a node
is greater than 1.

6. Determining when to use queues

We next describe a performance model and strategy to suggest
when to insert queues between nodes of an application to maximize
performance. While queuing on an edge between nodes improves SIMD
occupancy by remapping data items among SIMD lanes, such remap-
ping adds overhead through queue reads and writes and additional
work for the application scheduler. Moreover, remapping is not nec-
essary for correct execution. Given nodes 𝑛𝑖 and 𝑛𝑖+1 of a pipeline, we
could remove the queue between them, so that 𝑛𝑖 simply calls 𝑛𝑖+1 with
whatever outputs it produced in each SIMD lane without remapping.



Parallel Computing 109 (2022) 102863S. Timcheck and J. Buhler

e
𝑛
o

(
a
a
m

b
u
H
t
p
v
a
d
h
t

𝑛
t
a
c
g
𝐺

c
o
t
a
t
t
m
𝑛
t

𝑡

𝑗
t
e
d

p

o
i

s

Fig. 4. Topological view of merging compute nodes. Combining nodes 𝑛2 and 𝑛3 is
xpected to incur approximately 𝑚2 separate calls to 𝑛3 per call to 𝑛2 because inputs to
3 are no longer queued. The output gains are then estimated as the cumulative gains
f the two combined nodes.

If 𝑛𝑖 produces 𝑞 outputs in a lane, they are queued in a per-lane
rray, and 𝑛𝑖+1 must then be called 𝑞 times to consume them all.) This
lternative design effectively merges 𝑛𝑖 and 𝑛𝑖+1. Fig. 4 illustrates the
erge operation on the last two nodes of the pipeline from Fig. 1.

Merging has the advantage of no queuing or remapping overhead
etween the nodes, and nodes 𝑛𝑖 and 𝑛𝑖+1 may be scheduled as a
nit, reducing the total number of switches executed by the scheduler.
owever, we lose the benefits of remapping for SIMD occupancy, so

hat it may be necessary to call 𝑛𝑖+1 more often (typically, 𝑚𝑖 times
er call to 𝑛𝑖) than if we had compacted the outputs of 𝑛𝑖 into full
ectors. The decision of whether or not to merge therefore involves
tradeoff of occupancy against overhead. We now investigate how to

ecide quantitatively which pairs of adjacent nodes in a pipeline should
ave queues on their intervening edges, and which should be merged,
o maximize application throughput.

Let 𝑛1 … 𝑛ℎ be a pipeline of nodes of common vector width 𝑣, with
𝑖 having average output gain 𝑔𝑖, maximum vector gain 𝑚𝑖, and service
ime 𝑡𝑖. For convenience, we expand the definition of cumulative aver-
ge gain 𝐺𝑘 and cumulative maximum vector gain 𝑀𝑘 to apply to any
ontiguous subrange of nodes in the pipeline. Define the cumulative
ain 𝐺𝑗,𝑘 between nodes 𝑗 and 𝑘 by 𝐺𝑗,𝑘 =

∏𝑘
𝑖=𝑗 𝑔𝑖. By this definition,

𝑘 = 𝐺1,𝑘, and we define 𝐺𝑗,𝑗−1 = 1. Similarly, 𝑀𝑗,𝑘 =
∏𝑘

𝑖=𝑗 𝑚𝑖.
We first estimate the service time of a merged node 𝑛𝑗𝑘 composed of

ontiguous nodes 𝑛𝑗 … 𝑛𝑘. When the merged node consumes one vector
f inputs, 𝑛𝑗 runs first, taking time 𝑡𝑗 . Then, node 𝑛𝑗+1 runs enough
imes to consume the maximum number of outputs produced by 𝑛𝑗 in
ny SIMD lane. Similarly, node 𝑛𝑗+2 then runs often enough to consume
he maximum number of outputs from 𝑛𝑗+1 in any lane, and so on
hrough node 𝑛𝑘. An accurate estimate of average service time for the
erged node requires knowing the full distributions of the gains of each
𝑖, so we use the maximum vector gain to estimate a typical running
ime for the merged nodes. The service time 𝑡𝑗𝑘 of 𝑛𝑗𝑘 is estimated as

𝑗𝑘 =
𝑘
∑

𝑖=𝑗
𝑀𝑗,𝑖−1𝑡𝑖.

Now suppose we insert a queue between original nodes 𝑛𝑖 and 𝑛𝑖+1,
≤ 𝑖 < 𝑘, in the merged node, creating sub-nodes 𝑛𝑗𝑖 and 𝑛𝑖+1,𝑘. Because

he stream is remapped after node 𝑖, the number of times 𝑛𝑖+1,𝑘 must
xecute is no longer tied to the number of executions of 𝑛𝑗𝑖. Rather, it
epends on the total number of outputs produced by 𝑛𝑗𝑖. The average

number of outputs per input vector to 𝑛𝑗𝑖 is just 𝐺𝑗,𝑖. We additionally
charge a fixed time overhead 𝑝𝑖 for each vector of input consumed
by 𝑛𝑗𝑖 to account for the overhead costs associated with this node, in
particular the costs of maintaining its output queue and scheduling its
execution. Hence, the total running time of the node pair per input
vector to 𝑛𝑗 is now

𝑡𝑗𝑖 + 𝑝𝑖 + 𝐺𝑗,𝑖𝑡𝑖+1,𝑘.

We can use this performance model to compare the anticipated costs
of merged versus unmerged implementations of any part of a pipeline.
7

For example, we could consider whether to merge each adjacent pair
of nodes. More generally, we may consider merging any contiguous
subsequences of nodes; however, merging multiple nodes with gain
limits > 1 may result in a very large gain limit for the combined
node and hence may require excessive memory usage to ensure safe
execution. For pipelines with small numbers of nodes, we can efficiently
enumerate all feasible merging strategies and identify those predicted
to have the lowest cost. To accommodate the limitations of the model,
we may wish to empirically test several of the most promising strategies
and choose the one with the best empirical performance.

7. Empirical evaluation

We tested our queue sizing and queue placement optimizations on
irregular streaming applications implemented in Mercator. Applications
were benchmarked on an NVIDIA RTX 2080 GPU with 46 streaming
multiprocessors using CUDA 11.2 under Linux. With this configuration,
full utilization of the GPU (as recommended by NVIDIA’s runtime API)
entailed creating several hundred blocks, each with one replica of the
application pipeline. Limitations on the number of blocks created were
dictated by register usage, which was capped to at most 32 registers
per thread.

We measured the gain and running time behaviors of our test
applications using a representative data set for each. We obtain the
average and maximum vector gains, average compute node running time,
and average queue overhead time based on this input data set. We also
measured the cost of freeing and reallocating each application’s queues
to investigate the feasibility of dynamic resizing operations. Depending
on the number of queues, we observed costs of approximately 10–
30 ms. Hence, we anticipate that queue resizing optimizations could
feasibly be performed as often as every few hundred milliseconds in
response to changing characteristics of the data stream. For this work,
however, we computed queue sizes and merging strategies once based
on statistics gathered from the entire data stream for each application.

7.1. Benchmark applications

BLAST. Our BLAST benchmark implements the seed matching and
ungapped extension stages of NCBI BLASTN [1], a tool for searching
genomic DNA sequence databases. Its input stream is a list of positions
in a DNA database, each of which is compared to a shorter query DNA
sequence to detect approximate matches to parts of the query. Most
stages of BLAST filter their inputs, producing fewer than one output
per input; however, one stage, which enumerates locations in the query
that could potentially match a location in the database, can produce up
to 16 locations per input.

We tested BLAST by comparing a query sequence of 30 K DNA bases
from the Salmonella genome to a database of 6.4 billion bases (com-
pressed to 1.6 GB) built from multiple copies of the human genome
(NCBI assembly HG38). Using 368 blocks at 128 CUDA threads/block,
a full comparison requires 260–800 ms on our hardware.

N-Queens. The N-Queens benchmark enumerates all valid solutions
to the problem of placing 𝑁 queens on an 𝑁 × 𝑁 chessboard, such
that no two queens share a row, column, diagonal, or antidiagonal.
This well-studied computational problem, originally posed by Gauss,
can be solved using a branching tree search, in which the 𝑖th level
of branching places a queen at each feasible location on row 𝑖. We
implement the search as a pipeline of 𝑁 nodes, where node 𝑖 accepts a
artial solution containing queens on the first 𝑖−1 rows and enumerates

feasible placements for the 𝑖th row, each of which produces a new
partial solution for the next node. Node 𝑖 can produce up to 𝑁 − 𝑖 + 1
utputs per input, though not all placements may be feasible for each
nput due to diagonal and antidiagonal conflicts.

We tested N-Queens for 𝑁 = 18, which produces around 108

olutions. The first four stages are computed on the host processor to



Parallel Computing 109 (2022) 102863S. Timcheck and J. Buhler

D
o
p
l
p
e
t
t
o
e
M
s
i

m
4
1

7

a
d
e
n
e

2
p
o
t
c
s
t
b
f

o
e
a
s
d
r
t
h

m
q
q
r

e
w
w
e
a
W
a
f
n
i

1
s
t

t
a
m
s
g
w
m
m
v
p

generate sufficient inputs (a few tens of thousands of partial solutions)
to the next stage to keep all GPU processors occupied. Using 368 blocks
at 128 CUDA threads/block, the full computation requires around 23 s
on our hardware.

Taxi. The Taxi benchmark is a parsing application drawn from the
IBS data-integration benchmark set [21]. Its input is a file of lines
f text, each of which contains a variable number (from 2 to 100+) of
airs of real-valued coordinates. The application is given the starting
ocation of each line and must parse all lines’ coordinate pairs, tag each
air with its source line, and emit a stream of tagged coordinate pairs,
ach as a pair of single-precision floating-point numbers. We implement
his application as a pipeline in three stages: the first stage enumerates
he character positions on each line; the second identifies the locations
f coordinate pairs within the line; and the third parses the pairs and
mits them in the proper form. The application takes advantage of
ercator’s stateful execution capabilities [20] to allow the last two

tages to run in the context of the current line, rather than tagging each
tem in each intermediate queue.

We tested Taxi on a file of 2 GB containing approximately 1.3
illion lines with an average of 45 coordinate pairs per line. Using
60 blocks at 96 CUDA threads/block, the full computation requires
50–250 ms on our hardware.

.2. Queue sizing optimization

For each of our test applications, we compared its performance with
n equal distribution of memory among all queues vs. the unequal
istribution recommended by Lemma 5.2 given the average gains for
ach node observed on our benchmark datasets. We measured the
umber of switches between nodes and the time to complete a full
xecution using CUDA’s recommended number of blocks.

For BLAST and Taxi, we allocated a total of between 32 KB and
56 KB of memory to queue space per instance of the application
ipeline. These applications have large inputs (and for Taxi, large
utputs); devoting excessive space to queues would limit the size of
he input stream that can be processed without additional host-GPU
ommunication. In contrast, for N-Queens, the input and output stream
izes are comparatively small, so we devoted much more memory
o queues — an order of magnitude more than for the other two
enchmarks. We report total queue space instead of per-pipeline space
or N-Queens to simplify the axis labels in our figures.

Figs. 5, 6, and 7 show the impact of queue space redistribution
n the number of switches between nodes. The number of switches is
xpected to scale inversely with the total amount of queue space used,
nd this is indeed what we observed. For all applications at nearly all
izes, redistributing the queue space as dictated by our optimization
oes indeed result in fewer switches than an equal distribution, often
educing switches by 50% or more. The effect is most pronounced when
he total memory allocated to queues is smallest, corresponding to the
ighest absolute numbers of switches.

These results reflect the impact of inflating some queue sizes to the
inimum safe size for each node. For our benchmarks, we adjusted

ueue sizes to ensure that, even after rounding, the total allocation of
ueue space per pipeline remained the same for equal and redistributed
uns. For BLAST, allocating <80 KB per queue with an equal distribu-

tion of space among queues, or <192 KB after redistribution, incurs
inflation to ensure safety, particularly after the second pipeline stage
(which has 𝑢𝑖 = 16). For N-Queens, inflation occurs at all allocations
tested, albeit a relatively small amount (3%–10%). In contrast, Taxi
did not incur inflation. For the most part, the beneficial impact of
redistributing queue space was still manifest even after adjusting for
safety; the only exception is at the smallest allocation for BLAST.

Figs. 8, 9, and 10 show the impact of queue space redistribution
on overall execution time. Qualitatively, we see improvements at all
queue sizes after redistribution. The magnitude of improvement dimin-
ishes as total queue memory grows and the fraction of execution time
8

a

Table 1
Compute Node Analysis of BLAST (192 KB equal). Times are measured in GPU
cycles/input vector.

Compute Node 𝑔𝑖 𝑚𝑖 𝑡𝑖 𝑝𝑖
Seed Match 0.379 1 0.23 0.01
Seed Enumeration 1.920 5 0.70 0.03
Small Extension 0.0331 1 0.24 0.1
Ungapped Extension 9 × 10−6 1 2.47 0.01

Table 2
Predicted (cycles/input vector) vs. Empirical (ms) Results for Different Node Merging
Strategies in BLAST. Queue space allocation is 192 KB/pipeline. For each strategy, ‘‘+’’
indicates that adjacent nodes were merged, while a comma indicates that a queue was
inserted after a node. Empirical timings were repeatable to within 1–3 ms.

Merging Strategy Model Result Empirical Result Model Result Empirical Result
(Equal) (Equal) (Redistributed) (Redistributed)

1,2,3,4 0.758 289 0.728 269
1,2+3,4 1.023 227 0.993 231
1+2,3+4 2.934 331 2.813 329
1+2,3,4 1.198 284 1.161 278
1,2,3+4 2.494 325 2.380 309
1+2+3,4 2.194 250 2.142 258
1,2+3+4 5.642 365 5.359 703
1+2+3+4 14.468 447 13.739 1358

attributable to scheduler overhead decreases. We note that the point
of diminishing returns is reached sooner (i.e., for smaller total memory
allocations to queues) after redistribution, which more quickly reduces
the absolute number of switches compared to the equal allocation.

7.3. Node merging optimization

We studied the impact of node merging on the BLAST and NQueens
applications. We did not test merging optimizations on Taxi because,
for correctness purposes, its design introduces internal barriers between
computations for successive lines of input. Hence, even without merg-
ing, the application is frequently forced to run with non-full vectors,
which is not yet well-modeled by our performance model. To param-
eterize our performance model, we used our benchmark computations
to measure the average gain 𝑔𝑖 and maximum vector gain 𝑚𝑖 out of
ach pipeline stage as well as the time spent executing each stage,
hich we divided into service time (time spent executing user code and
riting output) and overhead (time spent setting up and tearing down
xecution of each node each time it is called by the scheduler, as well
s time spent in the scheduler itself selecting the next node to fire).
e computed the 𝑡𝑖 values for the model using average service times

nd computed the 𝑝𝑖 values by summing all the overhead time observed
or the application, then allocating among nodes proportionally to the
umber of vectors of input processed by each node. Both 𝑡𝑖 and 𝑝𝑖 are
n units of processor cycles per vector of input to the node.

Table 1 shows and example of the resulting parameter values using
92 KB per pipeline, distributed equally among queues. We computed
imilar parameters for BLAST with queues redistributed as described in
he previous section, and for NQueens with and without redistribution.

We used our model to assess the expected impact of merging con-
iguous subsets of adjacent nodes in the BLAST pipeline versus leaving
ll four nodes separate. For both equal and redistributed queues, the
odel’s top two choices were first, to leave all nodes unmerged, and

econd, to merge the middle two nodes (seed enumeration and un-
apped extension). Other strategies are predicted to be progressively
orse. Intuitively, reviewing Table 1 suggests that of the possible
ergers of adjacent nodes, the middle merger is likely to be better than
erging the last two nodes (where the gap between average and max

ector gain is amplified by the high cost of ungapped extension), and
erhaps better than merging the first two nodes (where the gap is again

mplified by the cost of seed enumeration). Similar observations apply



Parallel Computing 109 (2022) 102863S. Timcheck and J. Buhler
Fig. 5. Number of calls to scheduler for BLAST, averaged over 50 trials.
Fig. 6. Number of calls to scheduler for Taxi, averaged over 50 trials.
Fig. 7. Number of calls to scheduler for NQueens, averaged over 50 trials.
if we perform queue redistribution as well as merging, which changes
the times but not the gains.

Table 2 compares the model’s predictions to empirically measured
running times for BLAST in its various merged configurations. The
empirically optimal strategy was among the model’s top two choices,
though the model incorrectly predicted an unmerged implementation
to be faster. Similar behavior was observed for both equal and redis-
tributed queue sizes. In general, the model underestimated the benefits
of merging adjacent nodes but was able to eliminate empirically bad
strategies, in particular those involving the merger of the last two
nodes.

Table 3 shows predictions and empirical results for several merging
strategies for NQueens, this time allocating a total of 1000 MB of queue
space to all pipelines. In this case, the model again predicted that a
9

fully unmerged strategy was most efficient among all possibilities, but
merging of the last two nodes was empirically faster; the best empirical
solution found was again among the top two predictions. Merging
additional node pairs concurrently with (and independently of) the last
pair produced empirically worse results, suggesting that only pairs of
stages close to the end of the pipeline, which run least frequently, are
likely beneficial to merge. Moreover, the magnitude of the benefit over
the unmerged implementation is small compared to the performance
losses incurred when merging earlier pairs. While many more possible
merging strategies exist beyond those shown in the table, the large
gain limit of most stages of the pipeline(15 − 𝑖 for node 𝑛𝑖, which was
also its empirically observed max vector gain) mean that the amount
of memory needed to implement most of these strategies safely was
infeasible for our target GPU.



Parallel Computing 109 (2022) 102863S. Timcheck and J. Buhler

i
t
a
e
d
t
p
m

8

d

Fig. 8. Total execution time for equal vs. redistributed queue space on the BLAST application, averaged over 50 trials.
Fig. 9. Total execution time for equal vs. redistributed queue space on Taxi, averaged over 50 trials.
Fig. 10. Total execution time for equal vs. redistributed queue space on NQueens, averaged over 50 trials.
Overall, while our performance model was not perfectly accurate
n ordering different merging strategies according to empirical running
ime, it did rank strategies with the best empirical performance highly
mong its predictions. Better modeling of the costs of merging – for
xample, the potential savings when two CUDA functions are merged
ue to register reuse, common subexpressions, and so forth – could help
o better reorder the top candidates. However, our model already shows
romise as a tool to guide design space search among different pipeline
erging strategies.

. Conclusions and future work

In this work, we explored how to optimize irregular streaming
10

ataflow applications on SIMD processors by controlling the placement
and sizes of inter-node queues. We first devised a technique for choos-
ing the relative sizes of queues given an overall storage budget for the
pipeline. We then developed a performance model to inform where
to insert queues in an application. Both optimizations were driven by
profile data on the output behavior of each node in the application; the
queue insertion model also utilized empirical measurements of service
times and overhead. Both techniques targeted the cost of scheduling
multiple nodes of an application on a single processor. Each provided
demonstrated benefits in selecting configurations with lower execution
time, with queue size optimization proving the more robust of the two.

Future work will examine a broader set of irregular applications
and a larger variety of representative data sets. Characterization of
these applications’ structures will aid in development decisions for
queue placement and allocation. We will consider alternative strategies



Parallel Computing 109 (2022) 102863S. Timcheck and J. Buhler
Table 3
Predicted (cycles/input vector) vs. Empirical (ms) Results for Different Node Merging Strategies in NQueens.
Queue space allocation is 1000 MB for all pipelines. For each strategy, ‘‘+’’ indicates that adjacent nodes
were merged, while a comma indicates that a queue was inserted after a node. Empirical timings were
repeatable to within 90–130 ms.
Merging Strategy Model Result Empirical Result Model Result Empirical Result

(Equal) (Equal) (Redistributed) (Redistributed)

1,2,3,4,5,6,7,8,9,10,11,12,13,14 𝟏.𝟕𝟎𝟕 × 𝟏𝟎𝟔 23774 𝟏.𝟔𝟏𝟔 × 𝟏𝟎𝟔 22851
1,2,3,4,5,6,7,8,9,10,11,12,13+14 1.777 × 106 23108 1.684 × 106 22082
1,2,3,4,5,6,7,8,9,10,11+12,13+14 2.746 × 106 28895 2.606 × 106 27682
1,2,3,4,5,6,7,8,9+10,11+12,13+14 3.694 × 106 35394 3.511 × 106 33456
for dealing with safety constraints on queue size that may be less
prejudicial to performance at small queue sizes. More broadly, we
will consider whether more detailed information about output gain
– in particular additional moments beyond the average and mode of
max vector gain per node – could result in more accurate decision
making, particularly in node merging. We will also consider whether
it is possible to more accurately predict the impact of merging nodes
on their combined service time, which we suspect is an important
phenomenon in determining throughput.

This work provides a framework for deciding the relative queue sizes
of an application but does not address how much absolute queue space
to allocate an application. Currently, we test a broad range of absolute
queue sizes, but do not have a particular method for determining
which to use. We have shown that there is a correlation between
larger absolute queue sizes and faster running times. However, these
faster running times come at the cost of a larger memory footprint
for infrastructure and could quickly balloon out of control considering
each block has its own set of queues, leaving little to no room for input
and application data. For future work, analysis of when larger absolute
queue sizes provide diminishing returns on running time, as well as
modeling the tradeoff between larger queues and the need to process
smaller chunks of input due to GPU global memory limitations, will
provide guidance on how much total queue space should be given to
an application.

Mercator supports efficient implementation of irregular streaming
applications like those described here, including branching searches
such as NQueens. We plan to continue extending the system to sup-
port broader classes of application, such as those whose topologies
include DAGs and cycles. The semantics of such topologies for irregular
dataflow are not entirely clear; [22] offers one possible set of semantics
that lead to nontrivial safety and efficiency challenges.

Finally, we plan to automate the process of profile gathering and
profile-guided optimization for Mercator applications. The execution
statistics supporting our optimizations are straightforward to collect.
In the near term, we will offer optimization guided by execution
profiles through recompilation of the application. In the longer term,
it should be possible for a long-running application (on the order of a
second or more, based on our empirical measurements of reallocation
costs) to dynamically reconfigure its pipeline during execution based on
observed behaviors. Such automated tuning would allow an application
to respond to local variations in the properties of a long input stream
and thereby optimize overall application performance.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by National Science Foundation, USA
awards CNS-1763503 and CNS-1500173.
11
References

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment
search tool, J. Mol. Biol. 215 (3) (1990) 403–410.

[2] M. Roesch, Snort - lightweight intrusion detection for networks, in: Proceedings
of the 13th USENIX Conference on System Administration, LISA ’99, USENIX
Association, USA, 1999, pp. 229–238.

[3] E. Tyson, J. Buckley, M. Franklin, R. Chamberlain, Acceleration of atmospheric
Cherenkov telescope signal processing to real-time speed with the Auto-Pipe
design system, Nucl. Instrum. Methods Phys. Res. A 595 (2008) 474–479.

[4] W. Thies, M. Karczmarek, S. Amarasinghe, StreamIt: A language for streaming
applications, in: R.N. Horspool (Ed.), Compiler Construction, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002, pp. 179–196.

[5] T. Plano, J. Buhler, Scheduling irregular dataflow pipelines on SIMD architec-
tures, in: Proceedings of the 2020 Sixth Workshop on Programming Models for
SIMD/Vector Processing, WPMVP’20, Association for Computing Machinery, New
York, NY, USA, 2020, pp. 1–9.

[6] E. Lee, D. Messerschmitt, Synchronous data flow, Proc. IEEE 75 (1987)
1235–1245.

[7] J. Subhlok, G. Vondran, Optimal latency–throughput tradeoffs for data par-
allel pipelines, in: 8th Annual ACM Symposium on Parallel Algorithms and
Architectures, 1997, pp. 62–71.

[8] A. Benoit, Y. Robert, Complexity results for throughput and latency optimization
of replicated and data-parallel workflows, Algorithmica 57 (4) (2010) 689–724.

[9] S.V. Cole, J. Buhler, MERCATOR: A GPGPU framework for irregular streaming
applications, in: 2017 International Conference on High Performance Computing
Simulation, HPCS, 2017, pp. 727–736.

[10] S.V. Cole, Efficiently and Transparently Maintaining High SIMD Occupancy in
the Presence of Wavefront Irregularity (Ph.D. thesis), Dept. of Computer Science
and Engineering, Washington University in St. Louis, 2017.

[11] M. Burtscher, R. Nasre, K. Pingali, A quantitative study of irregular programs on
GPUs, in: Proc. 2012 IEEE Int’l Symp. on Workload Characterization, 2012, pp.
141–151.

[12] K. Gupta, J.A. Stuart, J.D. Owens, A study of persistent threads style GPU
programming for GPGPU workloads, in: Innovative Parallel Computing, IEEE
InPar, 2012, pp. 1–14.

[13] P. Harish, P.J. Narayanan, Accelerating large graph algorithms on the GPU using
CUDA, in: Proc. 14th Int’l Conf. on High Performance Computing, 2007, pp.
197–208.

[14] L. Luo, M. Wong, W.-M. Hwu, An effective GPU implementation of breadth-first
search, in: Proc. 47th Design Automation Conference, 2010, pp. 52–55.

[15] D. Merrill, M. Garland, A. Grimshaw, Scalable GPU graph traversal, in: Proc. 17th
ACM SIGPLAN Symp. Principles and Practice of Parallel Programming, 2012, pp.
117–127.

[16] R. Nasre, M. Burtscher, K. Pingali, Morph algorithms on GPUs, in: Proc. 18th
ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming, 2013,
pp. 147–156.

[17] M. Burtscher, K. Pingali, An efficient CUDA implementation of the tree-based
Barnes Hut n-body algorithm, in: GPU Computing Gems Emerald Edition, Morgan
Kaufmann, 2011, pp. 75–92.

[18] M. Mendez-Lojo, M. Burtscher, K. Pingali, A GPU implementation of inclusion-
based points-to analysis, in: Proc. 17th ACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, 2012, pp. 107–116.

[19] S. Tzeng, A. Patney, J.D. Owens, Task management for irregular-parallel work-
loads on the GPU, in: Proc. 2010 Conf. on High Performance Graphics, 2010,
pp. 29–37.

[20] S. Timcheck, J. Buhler, Streaming computations with region-based state on SIMD
architectures, in: 13th Int’l Wkshp. on Programmability and Architectures for
Heterogeneous Multicores, 2020, p. 1.

[21] A.M. Cabrera, C.J. Faber, K. Cepeda, R. Derber, C. Epstein, J. Zheng, R.K. Cytron,
R.D. Chamberlain, DIBS: A data integration benchmark suite, in: Companion of
the 2018 ACM/SPEC International Conference on Performance Engineering, ICPE
’18, Association for Computing Machinery, New York, NY, USA, 2018, pp. 25–28.

[22] P. Li, J. Beard, J. Buhler, Deadlock-free buffer configuration for stream com-
puting, in: 2015 Int’l Workshop on Programming Models and Applications for
Multicores and Manycores, 2015, pp. 164–169.

http://refhub.elsevier.com/S0167-8191(21)00105-8/sb1
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb1
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb1
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb2
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb2
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb2
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb2
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb2
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb3
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb3
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb3
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb3
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb3
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb4
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb4
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb4
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb4
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb4
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb6
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb6
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb6
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb8
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb8
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb8
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb10
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb10
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb10
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb10
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb10
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb12
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb12
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb12
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb12
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb12
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb17
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb17
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb17
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb17
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb17
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21

	Reducing queuing impact in streaming applications with irregular dataflow
	Introduction
	Related work
	Queuing optimizations for streaming pipelines
	The Mercator framework

	Application model
	Mercator: a framework for irregular streaming computation on NVIDIA GPUs
	Specifying computations in Mercator
	Application topology
	Application skeleton
	Invocation from the host

	Runtime realization of Mercator applications
	Motivation for optimizations


	Choosing sizes for finite inter-node queues
	Bounding rate of switches under efficient scheduling
	Allocating queue space to minimize switches
	Practical considerations: Rounding and safety

	Determining when to use queues
	Empirical evaluation
	Benchmark applications
	Queue sizing optimization
	Node merging optimization

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References


