Parallel Computing 109 (2022) 102863

Contents lists available at ScienceDirect

SYSTEMS & APPLICATIONS

Parallel Computing

journal homepage: www.elsevier.com/locate/parco

Check for

Reducing queuing impact in streaming applications with irregular dataflow [

Stephen Timcheck *, Jeremy Buhler

Washington University in St. Louis, St. Louis, MO, United States of America

ARTICLE INFO

Keywords:
Queuing
SIMD
Irregular
Dataflow
Streaming

ABSTRACT

Throughput-oriented streaming applications on massive data sets are a prime candidate for parallelization on
wide-SIMD platforms, especially when inputs are independent of one another. Many such applications are
represented as a pipeline of compute nodes connected by directed edges. Here, we study applications with
irregular dataflow, i.e., those where the number of outputs produced per input to a node is data-dependent
and unknown a priori. We consider how to implement such applications on wide-SIMD architectures, such as
GPUs, where different nodes of the pipeline execute cooperatively on a single processor.

To promote greater SIMD parallelism, irregular application pipelines can utilize queues to gather and
compact multiple data items between nodes. However, the decision to introduce a queue between two nodes
must trade off benefits to occupancy against costs associated with managing the queue and scheduling the
nodes at its endpoints. Moreover, once queues are introduced to an application, their relative sizes impact
the frequency with which the application switches between nodes, incurring scheduling and context-switching
overhead.

This work examines two optimization problems associated with queues. First, given a pipeline with queues
between each two nodes and a fixed total budget for queue space, we consider how to choose the relative sizes
of inter-node queues to minimize the frequency of switching between nodes. Second, we consider which pairs
of successive nodes in a pipeline should have queues between them to maximize overall application throughput.
We give an empirically useful approximation to the first problem that allows for an analytical solution
and formulate a performance model for the second that directs implementation toward higher-performing

strategies.

We implemented our analyses and resulting optimizations in applications built using Mercator, a framework
we designed to support irregular streaming applications on NVIDIA GPUs. We demonstrate that these
optimizations yield meaningful performance improvements for several benchmark Mercator applications.

1. Introduction

Streaming computations process large datasets as a sequence of
input items that are transformed by a pipeline (more generally, a
graph) of computational stages, or nodes. Such computations arise in
numerous high-impact applications, ranging from biosequence analy-
sis [1] to network packet inspection [2] to astrophysics [3]. Because
streaming computations exhibit multiple forms of parallelism, they
have been intensively studied to find efficient strategies for parallel
implementation.

A key property of a streaming computation is whether the data
volume changes in a predictable way from a node’s input to its output.
If each j inputs to a node result in exactly k outputs, the node’s behavior
is said to be regular. Pipelines of regular nodes can be implemented effi-
ciently using limited buffering between nodes and static scheduling [4].
But some streaming computations, including the examples cited above,

* Corresponding author.
E-mail address: stimcheck@wustl.edu (S. Timcheck).

https://doi.org/10.1016/j.parco.2021.102863

exhibit irregular dataflow: the amount of output generated by a node
per input item is variable, data-dependent, and therefore unknown a
priori. This work focuses on strategies to effectively parallelize such
irregular streaming computations.

When a streaming computation performs largely independent oper-
ations on successive inputs in the stream, the computation’s throughput
can be increased by exploiting fine-grained data parallelism across its
inputs. Wide-SIMD processors such as GPUs are designed to exploit
data parallelism and hence are tempting targets for such applications.
However, irregular dataflow interferes with SIMD parallelism because
different inputs to a pipeline may require different amounts of work or
may even be filtered away entirely at different stages of the pipeline.
If data cannot be remapped from one SIMD lane to another in mid-
computation, the occupancy of the processor (that is, the fraction of
SIMD lanes doing useful work) will suffer.

Received 28 March 2021; Received in revised form 30 August 2021; Accepted 22 October 2021

Available online 3 November 2021

0167-8191/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/parco
http://www.elsevier.com/locate/parco
mailto:stimcheck@wustl.edu
https://doi.org/10.1016/j.parco.2021.102863
https://doi.org/10.1016/j.parco.2021.102863
http://crossmark.crossref.org/dialog/?doi=10.1016/j.parco.2021.102863&domain=pdf
http://creativecommons.org/licenses/by/4.0/

S. Timcheck and J. Buhler

To improve the occupancy of irregular dataflow pipelines, one may
place intermediate queues between successive compute nodes. A queue
following a node functions as a staging area where data from the
node can be accumulated, compacted, and then redistributed across
SIMD lanes to ensure full occupancy of the next node. However, the
insertion of queues adds overhead to the application that may negate
the performance benefits of higher SIMD occupancy. In cases where
data production rates are low or the application exhibits locally almost-
regular data flow, it may not be worth improving occupancy by adding
a queue between stages.

A second challenge arises when adding queues to pipelines im-
plemented on modern GPU devices, today’s most popular wide-SIMD
architectures. The processors of a GPU typically run asynchronously,
and existing APIs offer little support for synchronization between them.
Hence, a natural application mapping to a GPU runs a separate replica
of the pipeline on each processor, rather than dividing the pipeline’s
nodes across processors. GPUs also offer limited support for preemp-
tion, so the stages of the pipeline must be cooperatively scheduled on
the single processor. Finally, the number of processors is large enough
to run hundreds of pipeline replicas at once.

Each pipeline replica on a GPU needs its own queue space. Given a
large number of replicas, it becomes important to limit the amount of
queue space allocated to each, and therefore to divide that space wisely
among the queues between different pipeline stages. As we will show,
the algorithm used to schedule execution of different pipeline stages
can interact with the differing rates of data production from each stage,
creating an opportunity to allocate queue space in a way that minimizes
the application’s overhead due to pipeline scheduling.

This work addresses two questions in the setting of irregular stream-
ing dataflow pipelines on GPUs and other wide-SIMD processors. First,
we consider the problem of dividing a limited memory budget among
queues in a pipeline. Assuming a simple, effective scheduling policy for
pipeline stages [5], we show how to divide space among queues so as
to roughly minimize the frequency with which the scheduler must be
invoked while processing a data stream. Second, we formalize a trade-
off for when to insert queues between successive pipeline stages. Using
easily-obtained performance metrics from an application’s profile, we
formulate a performance model that can aid in selecting which stages
should be merged together and which should have queues between
them.

We deploy the optimizations described in this work in the Mercator
framework for irregular streaming computation. We developed Merca-
tor to enable high-performance implementation of irregular streaming
applications in the CUDA language on NVIDIA GPUs, though its basic
approach is suitable for a variety of wide-SIMD processors. We quan-
tify the empirical utility of our optimizations for irregular streaming
applications written using Mercator, showing that the optimizations
can have a material impact on an application’s overall throughput. We
also identify limits to optimization, particularly optimal queue sizing,
imposed by the need to ensure certain minimal queue sizes for safe
execution.

The rest of the paper is organized as follows. Section 2 examines
related work. Section 3 explains our application model and associated
performance metrics, while Section 4 briefly describes our Merca-
tor system, which realizes this application model for NVIDIA GPUs.
Section 5 provides a method for partitioning space among queues
in an application so as to minimize overhead given a limited space
budget. Section 6 describes a model for estimating the performance
consequences of adding queues between compute nodes. Section 7
evaluates both of our techniques on irregular streaming applications
implemented in Mercator. Finally, Section 8 concludes and explores
future work.

Parallel Computing 109 (2022) 102863
2. Related work
2.1. Queuing optimizations for streaming pipelines

Many application frameworks have been developed to support regu-
lar streaming dataflow applications on parallel systems. A prominent
example, StreamlIt [4], was built around the synchronous data flow
(SDF) [6] model of computation. In Streamlt, the number of outputs
per input data item for each node is fixed at compile time, which
allows effective static scheduling of nodes with minimal queue space
allocation and no remapping. In contrast, the irregular problems we
target do not have the luxury of knowing how much data will be
generated at each stage, thus creating a need for data-driven decisions
about queue placement and sizing.

Subhlok and Vondran [7] examined a similar problem to the merg-
ing of compute stages presented in this paper. They consider a pipeline
of tasks, equivalent to compute stages in our model. Each task can be
mapped to processors with data- and task-parallel mapping. However,
their model allows for forking inputs to different replicas and re-
converging to a single replica, which is not part of our model. They
explore combining tasks into modules, which are collections of two or
more tasks. These modules are then evenly assigned to processors on
the system. Our model similarly considers merging compute stages, but
a single pipeline cannot be split across processors on our target plat-
form, creating different design problems. Our work models impacts due
to wide-SIMD execution, while their work focuses on general-purpose
MIMD processing.

Benoit and Robert [8] considered a similar problem, trying to
optimize for both latency and throughput. Their work explores how
to map data-parallel pipelines on parallel platforms. In their work, as
in ours, merging compute nodes increases the computational load on a
processor but may decrease communication, which in our case would
be reading, writing, and managing an intermediate queue. Although
their model does not consider communication costs between processors,
it works with a more general purpose MIMD processor. Hence, their
communication cost would be equivalent to the scheduler cost we
consider in our model.

2.2. The Mercator framework

An early version of our Mercator system was described in [9,10].
Many techniques to combine work across distinct nodes that perform
the same computation were used in the initial version. The newer
version described here eschews such combining, which empirically
incurred a very high overhead, and instead focuses on minimizing
overheads associated with queuing and scheduling as much as possible.
Empirically, the new version of Mercator reduces overheads by at
least an order of magnitude relative to its predecessor. One key aspect
of Mercator developed since the earlier version is its runtime node
scheduler [5], which provably reduces scheduling overhead to within
a constant factor of the best possible, even for a clairvoyant algorithm
that knows how many outputs will be produced for each input at each
node. This scheduler interacts with our queue resizing optimization as
described in Section 5.

Irregularity on GPUs is well-documented [11], as is the need for
dynamic data-lane mapping to overcome it [12]. Domain-specific tech-
niques to address irregular dataflow have been described for, e.g., graph
algorithms [13-16], n-body simulation [17], data-flow analysis [18],
and graphics rendering [19]. Mercator seeks to provide abstractions
that capture a wide variety of irregular computations in a way that
exposes data parallelism to the application developer. Because it does
not remap work from one processor to another, Mercator preserves
guarantees of FIFO processing of inputs within one processor, which
allows for optimizations supporting, e.g., stateful computation [20].
The uniprocessor streaming model also allows analytical reasoning
supporting optimization strategies, as this work shows.

S. Timcheck and J. Buhler

Mercator chooses to combine scheduling and all node computations
of a pipeline in a single kernel, in contrast to frameworks like Thrust
and OpenACC that implement computations as separate GPU kernels
managed by a host-side driver. Mercator’s “uberkernel” design [19]
minimizes the latency and synchronization associated with host-device
communication. We note, however, that the queue-related optimiza-
tions in this work apply independently of whether nodes are scheduled
by the host or by a device-side scheduler. Similarly, although Mercator
is built for devices targeted via CUDA, its design and our optimizations
are compatible with an implementation in, e.g., OpenCL to target other
classes of wide-SIMD processors.

3. Application model

In this section, we define the abstract properties of our streaming
dataflow applications, as well as the characteristics of our target wide-
SIMD architectures. As shown in Fig. 1, an application is a linear
pipeline of compute nodes n, ... n,, with dataflow edges connecting each
n; to the next n; ;. Each time a node executes, it consumes a vector of
up to v items from its input and produces a data-dependent number of
items, perhaps of a different size/type, on its output.

The runtime behavior of a node »; is characterized by three param-
eters: its service time t;, its average gain g;, and its maximum vector gain
m;. The service time #; is the time for a node to process a vector of
input items v; the time is the same for any number of items < v. The
average gain g; is the average number of outputs produced per input
item consumed, which may be greater or less than 1. In contrast, the
maximum vector gain m; is the typical value of the maximum number of
outputs produced in any one SIMD lane from an input vector containing
a single input per lane. We note that if a node consumes a vector of
inputs and produces a vector of outputs with maximum vector gain
m, the lock-step nature of wide-SIMD execution ensures that, absent
work-to-thread remapping, every SIMD lane processing this output will
take time proportional to m, as lanes with fewer inputs must wait for
the longest-running lane to complete. Hence, as discussed in Section 6,
max vector gain can be a useful predictor of computational cost in the
absence of remapping through queues.

For convenience, we also define the cumulative average gain G, =
Hf.‘zl g; and cumulative max vector gain M, = Hf.‘zl m; to be the average
number of outputs per SIMD lane and the typical maximum number
of outputs in any one lane from node n, per input consumed by n,
respectively. Formally, G, accurately summarizes the behavior of a
mean-value model of the pipeline; however, M, is a more heuristic
quantity because average per-node values for m; cannot simply be com-
posed, irrespective of the detailed distribution of gains. We estimate m;
as the empirical mode of n;’s max vector gain, which for the unimodal
distributions we observe in practice is robust to occasional outliers,
and multiply these modes for successive nodes to estimate M,. More
accurate modeling of gain distributions is left to future work. Finally,
node n; has a gain limit u; that defines the largest number of outputs
that could ever be produced for a single input; this quantity is used to
compute the minimum amount of downstream queue space needed for
a node to run safely.

Each edge between two nodes has an associated queue. Items from
an edge’s upstream node accumulate in contiguous slots of the queue
until the downstream node executes, at which point the downstream
node pulls contiguous vectors of up to v items from the queue. We
assume that each queue has a fixed size; while this size could be
periodically adjusted during execution, doing so incurs overhead (on
the order of tens of milliseconds per adjustment on our target platform),
so we treat queue sizes as fixed within a single “epoch” of execution
for purposes of our analyses.

As discussed earlier, we assume that our target architecture runs
a replica of the complete pipeline on each of its processors, with
different copies sharing a global input stream and output buffer, but not
intermediate data structures such as queues. This design is compatible

Parallel Computing 109 (2022) 102863

1 163 I3
81,M) 82,1y 83,13

@

Fig. 1. A simple pipeline application topology. Node n, feeds into n,, and n, feeds
into n;. Node n; has service time #;,, average gain g;, and max vector gain m;.

N\ N\

with modern GPUs, which offer limited support for inter-processor syn-
chronization. Each processor runs a scheduler that manages execution of
its pipeline replica’s nodes. Each time the scheduler is called, it selects
a node with items in its input queue and space in its output queue
and causes that node to fire, consuming some amount of input. The
application ends when no node has any inputs remaining.

In optimizing a pipeline’s execution, we seek to maximize its
throughput, or equivalently to minimize the total time to completely
process a large number of inputs to n;.

4. Mercator: a framework for irregular streaming computation on
NVIDIA GPUs

In this section, we describe Mercator, a development framework
that realizes our computational model for NVIDIA GPUs. Mercator both
motivates the present work, as it supports rapid development of irregu-
lar streaming dataflow applications for GPUs, and serves as our testbed
for benchmarking the optimizations described in subsequent sections.
An early version of Mercator was previously described in [9], but the
present version (2.0) has been simplified and tuned for performance.
The software is publicly available' under an Apache license.

4.1. Specifying computations in Mercator

A Mercator application is defined by its topology specification and a
set of functions, written in NVIDIA’s CUDA language, that implement
the operations at each node. The topology specification is parsed by
the Mercator compiler, which emits both a CUDA skeleton with code
stubs for the functions to be implemented at each node and supporting
code to integrate these functions into a complete application. The
application developer fills in the bodies of the node functions and then
uses NVIDIA’s CUDA compiler to build the full device-side application,
which can be invoked by code running on the host processor.

4.1.1. Application topology

Fig. 2(a) illustrates the topology specification for a simple Mercator
application. The type of a node is given by a module signature, which
specifies the node’s input and output data types and its gain limit
(the u; of the previous section). A module may have multiple output
channels, each with its own data type and gain limit; hence, Mercator
applications may be structured as trees, not just as linear pipelines.
Multiple nodes in an application may share the same module type.
Each module has an associated run() function that implements its
operation; all nodes with this module type execute the same code, albeit
at different points in the application’s topology.

A topology is defined by specifying nodes, each with its module
type, and edges that connect an output channel of one node to the input
of another with a compatible data type. A single node is designated the
source of the application. By default, the source receives a stream of
consecutive integers, but can be specified to instead consume a buffer
of objects in GPU memory or the output of a user-specified function.
Any output channel of a node may be connected to a sink that stores
objects emitted on the channel in a buffer in GPU memory.

1 https://github.com/jdbuhler/Mercator

https://github.com/jdbuhler/Mercator

S. Timcheck and J. Buhler

Parallel Computing 109 (2022) 102863

__device__ void
Parser::run(int i, unsigned int n) {
const float =xentry =

getParams()—>table + 4x1i;

bool stop = (threadldx.x < n);
for (int j = 0; j < 4; j++) {
float v;
Application Filter; if (!stop)
{v = entry[j]; stop = (v==0.0); }

Module Parser int —> float : 4; push(v, !stop);

}
Module Threshold float —> float; }
Node p Parser ; __device__ void
Node t Threshold; Threshold ::run(float f, unsigned int n) f{
Node s: Sink<float >; float result;

if (threadldx.x < n)
Source p buffer; result = compute(f);
Edge p —> t;
Edge t —> s; push(result ,

NodeParam Parser:: table float =x;
NodeParam Threshold :: thresh float ; }

(a) topology specification

threadldx .x < n &&
result >= getParams()—>thresh);

(b) GPU-side CUDA code

Fig. 2. Mercator topology specification and code sample. The first node p reads selected sets of up to four consecutive floats from an entry in a table, stopping if it encounters a
zero. The second node ¢ performs a computation on each value read and emits the result if it is greater than or equal to a user-defined threshold value. The table and threshold
are specified by the host. Each node’s run() function takes a parameter n that indicates the number of threads that receive inputs. Note that push() is always called with all

threads but is predicated to indicate which threads actually emit outputs.

Nodes may be assigned parameters, which are set on the host prior
to invoking an application and are read-only from within it. Parameters
may be used to alter the functions of different nodes that share the same
module type, e.g., by providing different coefficients to different copies
of a filter. Nodes may also be assigned state variables, allowing them
to implement stateful operations such as reductions over their input
stream.

4.1.2. Application skeleton

Fig. 2(b) shows a simplified view of the application skeleton cor-
responding to the given topology. Each module’s run() function is
assumed to be executed with all available CUDA threads. Each thread
is given its own input if one is available; the second argument to run ()
specifies the number of threads (starting from thread 0) that have valid
inputs. A future version of Mercator will offer the option to take input
as an array of values visible to all threads, so that the run () function
may map inputs to threads arbitrarily.

A run() function emits outputs to a channel by invoking a push
operation. Push operations are always called with all threads but take
a predicate to indicate which threads actually have an output to write.
Multiple push operations may be invoked in one call to run(). The
developer is responsible for ensuring that one call to run() does
not push more outputs than the number of inputs received times the
channel’s gain limit.

Other functions may be generated as part of an application’s skele-
ton. For example, a node with state variables will have an init ()
function, which is called once at application startup to initialize its
state.

4.1.3. Invocation from the host

A Mercator application is compiled into a library that can be linked
against a CUDA host program. The host program instantiates the ap-
plication as an object, which can be configured through a host-side
API to set parameters and specify buffers associated with the source

Filter filterApp;
Buffer<int> inputs (100000);
inputs.set (...); // set from host data

Buffer<float> outputs (400000);
app.p.table = /+ device pointer =x/;
app.t.thresh = 3.75;

app.setSource (inputs);
app.s.setSink (outputs);

app . run ();

outputs.get(...); // read back to host

Fig. 3. Host-side API of the sample application of Fig. 2. Mercator provides a Buffer
type that serves as an input or output stream.

and sink(s). Once configured, the host calls the application object’s
run () method, which launches a CUDA kernel containing the entire
application to consume its input stream and emit any output streams.
Fig. 3 shows an example of instantiating and invoking a Mercator
application.

Mercator applications can be configured and invoked asyn-
chronously from the host and can be associated with CUDA streams.
Users requiring the highest performance may thereby use streams to
overlap a Mercator application’s computation with movement of input
and output data to and from buffers on the GPU.

S. Timcheck and J. Buhler

4.2. Runtime realization of Mercator applications

A Mercator application exists on the GPU as a single kernel contain-
ing the code for all nodes along with a high-level application driver.
The entire application is replicated and runs separately in each CUDA
block. Instances of the application asynchronously claim chunks of
the shared input stream by atomically incrementing an input pointer
and similarly emit outputs asynchronously to shared output buffers.
Within one replica, items flow through the pipeline of nodes in FIFO
order; however, writes to the shared output by different replicas are un-
ordered. A future version of Mercator will add the ability to synchronize
replicas to emit outputs in the global order of the input stream.

Edges between nodes become queues, implemented as circular
buffers whose size is fixed at the time the application is instantiated.
When the application’s scheduler begins to fire a node, the node
continues running until either its input queue (the input stream, for
the source node) is exhausted or one of its output queues fills.

Mercator schedules nodes at runtime using a protocol developed in
our prior work, the AFIE (“Active Full, Inactive Empty”) scheduler [5].
Briefly, AFIE marks a node “active” when it has a full input queue and
“inactive” when this queue is emptied. A node is eligible to execute
when it is active and its immediate downstream neighbors, if any,
are inactive. As with any flow control protocol involving execution
of multiple entities with finite queues between them, the scheduling
policy must ensure that a node with input must eventually be able to
make progress. We proved in [5] that AFIE is deadlock-free (that is, a
node with input eventually becomes eligible to execute), that it ensures
that nodes always execute with a full vector-width of inputs, and that
it incurs only about twice as many switches (calls into the scheduler to
choose a new node to execute) as would a clairvoyant scheduler that
knew in advance the number of outputs produced by each node for
each input.

4.2.1. Motivation for optimizations

As previously discussed, the overhead of dynamic reallocation of
queues motivates us to consider how to choose an appropriate static
size for each queue, at least for a given epoch of execution. Larger
queues allow an application’s nodes to run longer before returning to
the scheduler, which reduces overhead and therefore boosts application
throughput. However, real GPUs impose practical limits on queue
size. To fully utilize a GPU’s processors and hide latency, a Mercator
application may be instantiated in several hundred copies per device
(one per CUDA block). Even if one instance’s queues hold only a
few thousand elements apiece, that can result in tens of megabytes
devoted to queues overall. More aggressive queue sizing can consume
hundreds of megabytes or even gigabytes of GPU global memory,
which may interfere with the space needed to store the application’s
input and output streams. Hence, we are motivated to consider how
best to allocate a limited amount of queue space among the nodes of
an application so as to achieve the highest possible throughput. We
formalize and solve this problem in Section 5.

While queues are useful to ensure that nodes in an irregular applica-
tion receive an input for every SIMD lane, they incur significant costs.
These costs include not only reads and writes of queue memory but also
overhead associated with scheduling execution of the nodes at either
end of a queue. The performance gains due to improved SIMD lane
occupancy when a queue is inserted between nodes must therefore be
weighed against the overhead incurred by its presence. Section 6 seeks
to model this tradeoff and quantitatively guide where queues should be
placed.

Parallel Computing 109 (2022) 102863
5. Choosing sizes for finite inter-node queues

Consider a pipeline with nodes n, ... n;,, with a queue between each
successive pair of nodes. In what follows, we make two key assumptions
about how the pipeline behaves. First, we assume that once a node
starts firing, it continues consuming full vector-widths of inputs for as
long as possible, i.e., until either its input queue empties or its output
queue fills. Second, the number of elements in any single queue g;
cycles between full and empty. In other words, the number of elements
in g; starts at zero, increases monotonically until g; becomes full, then
decreases monotonically back to zero before again starting to increase.
Not every possible schedule of node execution satisfies these two
conditions; for example, a schedule that optimized execution latency
might fire a node as soon as any input is available, never allowing
its queue to fill. However, the AFIE scheduler used by Mercator does
satisfy both conditions, and we have shown [5] that such behavior is
consistent with a nearly throughput-optimal schedule. In what follows,
we refer to a schedule satisfying these two conditions as efficient.

Because an efficient scheduler does not switch away from a node
until necessary, the larger the inter-node queues, the more input vectors
a node can typically consume before control returns to the scheduler.
Hence, larger queues are desirable because they reduce the overhead
associated with scheduler invocations, or switches, whose cost can be
on the same order as node service times.

However, as discussed earlier, a good GPU implementation of the
application may require a large number of replicas of the pipeline
— at least one per processor to avoid complex inter-processor com-
munication, and usually multiple replicas per processor (via multiple
active CUDA blocks) to take advantage of GPUs’ ability to hide memory
access latency by switching among multiple computations. For this
reason, the cumulative memory cost of using arbitrarily large queues
for each pipeline can be infeasible. Moreover, the number of scheduler
invocations varies inversely with queue size, so at some point, the
reduction in scheduling overhead from increasing queue sizes reaches
a point of diminishing returns. We therefore assume that each replica
of the pipeline receives only a small, fixed amount of memory to divide
among all its queues.

We consider the following question: how does the allocation of
memory among an application’s queues impact the rate at which it
must switch between nodes? We will quantify this switching rate for
a given allocation, then show how to select an allocation that roughly
minimizes switches for a given total amount of memory.

5.1. Bounding rate of switches under efficient scheduling

Let ¢; be the queue between n; and n,, |, and suppose this queue can
hold ¢; items. Define the scaled capacity d; of queue ¢; by d; = ¢;/G;.
Scaled capacity normalizes the size of each queue to units of “inputs to
node n;”. For example, if n; has gain 2, then each input to n; results
in an average of two items inserted into g;. The results that follow are
more easily expressed in terms of scaled capacities.

Under an efficient schedule, n;’s input queue empties once per ¢;_;
items it consumes, and its output queue fills on average once per
c;/g; items it consumes. These two events (emptying of input or filling
of output queues) are the only reasons that execution switches away
from n;, so their frequency determines the number of such switches.
However, the two events can sometimes occur concurrently — about
once per lem(c;_;,c;/g;) inputs consumed® — which results in only
one rather than two switches. In short, we can establish the following
lemma:

2 This result holds even for arbitrary rational g; for the least common
multiple of two rational values a/b, ¢/d; defined to be the smallest rational
number that is a multiple of each; assuming both values are in lowest form,
this LCM is computed as /cm(a, b)/gcd(c, d).

S. Timcheck and J. Buhler

Lemma 5.1. For 1 <i < h, the rate R; of switches away from n; per item
consumed by n; is given by

R L[L1 1
"Gy ldin 4 lem(dy.d))]

Proof. We first observe that, because each input to n; produces g;
outputs, node n; needs ¢;/g; inputs to fill its output queue. n; begins
firing for the first time with a full input queue and an empty output
queue. The number of items processed before returning to this initial
state (full input queue, empty output queue) must be a multiple of both
¢;_1, the number of inputs needed to fill ¢;_,, and ¢;/g;, the number of
inputs needed to fill g;, so that g; fills exactly when ¢;_, empties (after
which the former empties and the latter fills). This event first occurs
after processing z = lem(c;_;,¢;/g;) items. Since g; = G,/G,_;, we can
rewrite z as follows:

z = lem(c;_y,¢;/8;)
lem(c;_1.G;_1¢;/G))

= G,y lem(ci1 /Gy ¢i/GY)
= G;_;lem(d;_y,d)).

To compute the number of switches away from n; during one cycle
of processing these z items, we make three observations. First, the
output queue fills z/(c;/g;) = z/(G;_,d;) times, each of which incurs
a switch. Second, the input queue empties z/c;_; = z/(G;_,d,_;) times,
each of which also incurs a switch. Third, only once (after processing
all z items) do these two conditions coincide. Hence, the total number
of switches .S; away from »; in one cycle is given by
Giydiny - Giad;

Conclude that over one cycle from the initial state of »;’s queues back
to this state, the rate of switches away from »; per item consumed by
it is given by

-1

S =

R, = S;/z
-1 .1 1
Gi_1di.y Gidp b
11 r
G, |d;i_y d; lem(d;_y,d;)

Hence, R; is also the asymptotic switching rate observed for n; over an
unbounded number of inputs to it. []

Combining the results of Lemma 5.1 over all nodes in the pipeline
and simplifying, we obtain that

Corollary 5.1.1. The total rate R of switches across all pipeline nodes per
input consumed by n, is given by
h-1 h-1
2
R=Y = -
32

i=1

1
& lem(d;_y,d;)’

i

5.2. Allocating queue space to minimize switches

We now consider how to minimize the rate of switches R, and
therefore the scheduling overhead, incurred by an application through
manipulation of its relative queue sizes. Suppose that the items output
by node n; each have size b; bytes, and that we wish to partition a fixed
total number of bytes T among all queues in the pipeline. How can we
divide these T bytes among the queues g, ...q;,_; so as to minimize
the switching rate R? We could attempt to optimize the switching
rate by directly minimizing the function R subject to the constraint
> bic; = Y, b;G;d; = T. Unfortunately, the presence of LCM terms in R
makes it difficult to minimize analytically.

We argue informally that the objective R can be simplified in
practice. The LCM terms arise because the number of switches away
from node n; includes a correction of —1 switch per z = lem(c;_;,¢;/g;)

Parallel Computing 109 (2022) 102863

inputs. This correction reflects the fact that, in the mean-value model,
the input queue empties and the output queue fills simultaneously once
per z items. We call such doubly-motivated switches resonant. In fact,
the actual frequency of resonant switches is likely to be lower than 1/z,
even under the best achievable set of ¢;’s, for two reasons. First, the
optimal rational-valued queue sizes for the mean-value model may not
be integer numbers of bytes. When we round these sizes to the nearest
integer, we will likely increase the LCMs between adjacent sizes and
so reduce the frequency of resonances. Second, any random variation
in the number of outputs per input produced by the node will likely
advance or retard the filling of ¢; relative to the emptying of ¢;_,,
turning one resonant switch into two ordinary ones.

If we assume that the frequency of resonant switches is negligible
compared to non-resonant switches, then we may eliminate the LCM
terms entirely, leaving the objective as

m—1
R=Y
i=1

subject to the same constraint. R’ is an upper bound on the true
switching rate R that we seek to minimize, and it can be shown to
be at most twice R. Empirically, we found that over a large number of
different combinations of gains, R’ overestimates R by only 10%-20%,
so seeking to minimize R’ rather than the actual R is still likely to be
productive as an optimization strategy.

Replacing R by R’ yields a much more tractable constrained opti-
mization problem, which can be solved analytically over the reals by
the method of Lagrange multipliers. It can thereby be shown that

NS

i

Lemma 5.2. The real-valued choice of queue sizes that minimizes R
subject to Y, bic; =T and c; > 0 is given by

c; = Gi T
i = \/ D ol —
bi ¥ \/BG;

5.3. Practical considerations: Rounding and safety

While Lemma 5.2 gives optimal real-valued queue sizes, real queues
must hold an integer number of items. We must therefore round the
obtained c; values to integers, which potentially degrades performance
relative to the optimum. Moreover, safety considerations dictate a
minimum allowable size for each queue. The queue ¢; downstream of n;
must be large enough to hold all the output produced by consuming one
vector of input, which could in the worst case be y;v items. A smaller
queue would be unsafe, as there would be nowhere to write output in
the worst case.

We may address the safety concern either by reducing the effective
vector width v for node n;, which allows a smaller queue size but
reduces available parallelism, or by raising ¢; to at least the minimum
safe size. We take the latter approach here, leaving the former for future
work. While inflating queue sizes to ensure safety is straightforward, it
can result in sizes that deviate substantially from the predicted optima.
This effect is particularly pronounced when the total available space T
for all queues is small or when the gain limit »; associated with a node
is greater than 1.

6. Determining when to use queues

We next describe a performance model and strategy to suggest
when to insert queues between nodes of an application to maximize
performance. While queuing on an edge between nodes improves SIMD
occupancy by remapping data items among SIMD lanes, such remap-
ping adds overhead through queue reads and writes and additional
work for the application scheduler. Moreover, remapping is not nec-
essary for correct execution. Given nodes »; and n,;,; of a pipeline, we
could remove the queue between them, so that n; simply calls n,; with
whatever outputs it produced in each SIMD lane without remapping.

S. Timcheck and J. Buhler

1 15} I3
81,M 82,11 83,13

N\

h h+my X1z
81, my 82 X 83,Mmy Xm3

(1) s >

Fig. 4. Topological view of merging compute nodes. Combining nodes n, and n; is
expected to incur approximately m, separate calls to n; per call to n, because inputs to
ny are no longer queued. The output gains are then estimated as the cumulative gains
of the two combined nodes.

(If n; produces g outputs in a lane, they are queued in a per-lane
array, and n,,; must then be called ¢ times to consume them all.) This
alternative design effectively merges n; and n;,. Fig. 4 illustrates the
merge operation on the last two nodes of the pipeline from Fig. 1.

Merging has the advantage of no queuing or remapping overhead
between the nodes, and nodes n; and n;,; may be scheduled as a
unit, reducing the total number of switches executed by the scheduler.
However, we lose the benefits of remapping for SIMD occupancy, so
that it may be necessary to call n;,; more often (typically, m; times
per call to n;) than if we had compacted the outputs of n; into full
vectors. The decision of whether or not to merge therefore involves
a tradeoff of occupancy against overhead. We now investigate how to
decide quantitatively which pairs of adjacent nodes in a pipeline should
have queues on their intervening edges, and which should be merged,
to maximize application throughput.

Let n, ... n, be a pipeline of nodes of common vector width v, with
n; having average output gain g;, maximum vector gain m;, and service
time #;. For convenience, we expand the definition of cumulative aver-
age gain G, and cumulative maximum vector gain M, to apply to any
contiguous subrange of nodes in the pipeline. Define the cumulative
gain G, between nodes j and k by G, , = Hf.‘: ; &- By this definition,
G, = Gy, and we define G =1 Similarly, M;, = Hf.‘z. m;.

We first estimate the service time of a merged node n;, composed of
contiguous nodes n; ... n,. When the merged node consumes one vector
of inputs, n; runs first, taking time ;. Then, node n;,,; runs enough
times to consume the maximum number of outputs produced by #; in
any SIMD lane. Similarly, node n,,, then runs often enough to consume
the maximum number of outputs from n;,; in any lane, and so on
through node n;. An accurate estimate of average service time for the
merged node requires knowing the full distributions of the gains of each
n;, so we use the maximum vector gain to estimate a typical running
time for the merged nodes. The service time 7, of n;, is estimated as

k
=00 Mj ;.
i=j

Now suppose we insert a queue between original nodes »; and n; 4,
Jj <1<k, in the merged node, creating sub-nodes n;; and n,,, ;. Because
the stream is remapped after node i, the number of times n;,; , must
execute is no longer tied to the number of executions of n;;. Rather, it
depends on the total number of outputs produced by n;;. The average
number of outputs per input vector to n;; is just G;;. We additionally
charge a fixed time overhead p; for each vector of input consumed
by n;; to account for the overhead costs associated with this node, in
particular the costs of maintaining its output queue and scheduling its
execution. Hence, the total running time of the node pair per input
vector to n; is now

Li+pi+Gjitiyy ke

We can use this performance model to compare the anticipated costs
of merged versus unmerged implementations of any part of a pipeline.

Parallel Computing 109 (2022) 102863

For example, we could consider whether to merge each adjacent pair
of nodes. More generally, we may consider merging any contiguous
subsequences of nodes; however, merging multiple nodes with gain
limits > 1 may result in a very large gain limit for the combined
node and hence may require excessive memory usage to ensure safe
execution. For pipelines with small numbers of nodes, we can efficiently
enumerate all feasible merging strategies and identify those predicted
to have the lowest cost. To accommodate the limitations of the model,
we may wish to empirically test several of the most promising strategies
and choose the one with the best empirical performance.

7. Empirical evaluation

We tested our queue sizing and queue placement optimizations on
irregular streaming applications implemented in Mercator. Applications
were benchmarked on an NVIDIA RTX 2080 GPU with 46 streaming
multiprocessors using CUDA 11.2 under Linux. With this configuration,
full utilization of the GPU (as recommended by NVIDIA’s runtime API)
entailed creating several hundred blocks, each with one replica of the
application pipeline. Limitations on the number of blocks created were
dictated by register usage, which was capped to at most 32 registers
per thread.

We measured the gain and running time behaviors of our test
applications using a representative data set for each. We obtain the
average and maximum vector gains, average compute node running time,
and average queue overhead time based on this input data set. We also
measured the cost of freeing and reallocating each application’s queues
to investigate the feasibility of dynamic resizing operations. Depending
on the number of queues, we observed costs of approximately 10—
30 ms. Hence, we anticipate that queue resizing optimizations could
feasibly be performed as often as every few hundred milliseconds in
response to changing characteristics of the data stream. For this work,
however, we computed queue sizes and merging strategies once based
on statistics gathered from the entire data stream for each application.

7.1. Benchmark applications

BLAST. Our BLAST benchmark implements the seed matching and
ungapped extension stages of NCBI BLASTN [1], a tool for searching
genomic DNA sequence databases. Its input stream is a list of positions
in a DNA database, each of which is compared to a shorter query DNA
sequence to detect approximate matches to parts of the query. Most
stages of BLAST filter their inputs, producing fewer than one output
per input; however, one stage, which enumerates locations in the query
that could potentially match a location in the database, can produce up
to 16 locations per input.

We tested BLAST by comparing a query sequence of 30 K DNA bases
from the Salmonella genome to a database of 6.4 billion bases (com-
pressed to 1.6 GB) built from multiple copies of the human genome
(NCBI assembly HG38). Using 368 blocks at 128 CUDA threads/block,
a full comparison requires 260-800 ms on our hardware.

N-Queens. The N-Queens benchmark enumerates all valid solutions
to the problem of placing N queens on an N X N chessboard, such
that no two queens share a row, column, diagonal, or antidiagonal.
This well-studied computational problem, originally posed by Gauss,
can be solved using a branching tree search, in which the ith level
of branching places a queen at each feasible location on row i. We
implement the search as a pipeline of N nodes, where node i accepts a
partial solution containing queens on the first i—1 rows and enumerates
feasible placements for the ith row, each of which produces a new
partial solution for the next node. Node i can produce up to N —i + 1
outputs per input, though not all placements may be feasible for each
input due to diagonal and antidiagonal conflicts.

We tested N-Queens for N = 18, which produces around 108
solutions. The first four stages are computed on the host processor to

S. Timcheck and J. Buhler

generate sufficient inputs (a few tens of thousands of partial solutions)
to the next stage to keep all GPU processors occupied. Using 368 blocks
at 128 CUDA threads/block, the full computation requires around 23 s
on our hardware.

Taxi. The Taxi benchmark is a parsing application drawn from the
DIBS data-integration benchmark set [21]. Its input is a file of lines
of text, each of which contains a variable number (from 2 to 100+) of
pairs of real-valued coordinates. The application is given the starting
location of each line and must parse all lines’ coordinate pairs, tag each
pair with its source line, and emit a stream of tagged coordinate pairs,
each as a pair of single-precision floating-point numbers. We implement
this application as a pipeline in three stages: the first stage enumerates
the character positions on each line; the second identifies the locations
of coordinate pairs within the line; and the third parses the pairs and
emits them in the proper form. The application takes advantage of
Mercator’s stateful execution capabilities [20] to allow the last two
stages to run in the context of the current line, rather than tagging each
item in each intermediate queue.

We tested Taxi on a file of 2 GB containing approximately 1.3
million lines with an average of 45 coordinate pairs per line. Using
460 blocks at 96 CUDA threads/block, the full computation requires
150-250 ms on our hardware.

7.2. Queue sizing optimization

For each of our test applications, we compared its performance with
an equal distribution of memory among all queues vs. the unequal
distribution recommended by Lemma 5.2 given the average gains for
each node observed on our benchmark datasets. We measured the
number of switches between nodes and the time to complete a full
execution using CUDA’s recommended number of blocks.

For BLAST and Taxi, we allocated a total of between 32 KB and
256 KB of memory to queue space per instance of the application
pipeline. These applications have large inputs (and for Taxi, large
outputs); devoting excessive space to queues would limit the size of
the input stream that can be processed without additional host-GPU
communication. In contrast, for N-Queens, the input and output stream
sizes are comparatively small, so we devoted much more memory
to queues — an order of magnitude more than for the other two
benchmarks. We report total queue space instead of per-pipeline space
for N-Queens to simplify the axis labels in our figures.

Figs. 5, 6, and 7 show the impact of queue space redistribution
on the number of switches between nodes. The number of switches is
expected to scale inversely with the total amount of queue space used,
and this is indeed what we observed. For all applications at nearly all
sizes, redistributing the queue space as dictated by our optimization
does indeed result in fewer switches than an equal distribution, often
reducing switches by 50% or more. The effect is most pronounced when
the total memory allocated to queues is smallest, corresponding to the
highest absolute numbers of switches.

These results reflect the impact of inflating some queue sizes to the
minimum safe size for each node. For our benchmarks, we adjusted
queue sizes to ensure that, even after rounding, the total allocation of
queue space per pipeline remained the same for equal and redistributed
runs. For BLAST, allocating <80 KB per queue with an equal distribu-
tion of space among queues, or <192 KB after redistribution, incurs
inflation to ensure safety, particularly after the second pipeline stage
(which has u; = 16). For N-Queens, inflation occurs at all allocations
tested, albeit a relatively small amount (3%-10%). In contrast, Taxi
did not incur inflation. For the most part, the beneficial impact of
redistributing queue space was still manifest even after adjusting for
safety; the only exception is at the smallest allocation for BLAST.

Figs. 8, 9, and 10 show the impact of queue space redistribution
on overall execution time. Qualitatively, we see improvements at all
queue sizes after redistribution. The magnitude of improvement dimin-
ishes as total queue memory grows and the fraction of execution time

Parallel Computing 109 (2022) 102863

Table 1
Compute Node Analysis of BLAST (192 KB equal). Times are measured in GPU
cycles/input vector.

Compute Node & m; t; 2
Seed Match 0.379 1 0.23 0.01
Seed Enumeration 1.920 5 0.70 0.03
Small Extension 0.0331 1 0.24 0.1
Ungapped Extension 9x107° 1 2.47 0.01

Table 2

Predicted (cycles/input vector) vs. Empirical (ms) Results for Different Node Merging
Strategies in BLAST. Queue space allocation is 192 KB/pipeline. For each strategy, “+”
indicates that adjacent nodes were merged, while a comma indicates that a queue was
inserted after a node. Empirical timings were repeatable to within 1-3 ms.

Merging Strategy Model Result Empirical Result Model Result Empirical Result

(Equal) (Equal) (Redistributed) (Redistributed)
1,2,3,4 0.758 289 0.728 269
1,2+3,4 1.023 227 0.993 231
1+2,3+4 2.934 331 2.813 329
1+2,3,4 1.198 284 1.161 278
1,2,3+4 2.494 325 2.380 309
1+2+3,4 2.194 250 2.142 258
1,2+3+4 5.642 365 5.359 703
1+2+3+4 14.468 447 13.739 1358

attributable to scheduler overhead decreases. We note that the point
of diminishing returns is reached sooner (i.e., for smaller total memory
allocations to queues) after redistribution, which more quickly reduces
the absolute number of switches compared to the equal allocation.

7.3. Node merging optimization

We studied the impact of node merging on the BLAST and NQueens
applications. We did not test merging optimizations on Taxi because,
for correctness purposes, its design introduces internal barriers between
computations for successive lines of input. Hence, even without merg-
ing, the application is frequently forced to run with non-full vectors,
which is not yet well-modeled by our performance model. To param-
eterize our performance model, we used our benchmark computations
to measure the average gain g; and maximum vector gain m; out of
each pipeline stage as well as the time spent executing each stage,
which we divided into service time (time spent executing user code and
writing output) and overhead (time spent setting up and tearing down
execution of each node each time it is called by the scheduler, as well
as time spent in the scheduler itself selecting the next node to fire).
We computed the 7; values for the model using average service times
and computed the p; values by summing all the overhead time observed
for the application, then allocating among nodes proportionally to the
number of vectors of input processed by each node. Both 7; and p; are
in units of processor cycles per vector of input to the node.

Table 1 shows and example of the resulting parameter values using
192 KB per pipeline, distributed equally among queues. We computed
similar parameters for BLAST with queues redistributed as described in
the previous section, and for NQueens with and without redistribution.

We used our model to assess the expected impact of merging con-
tiguous subsets of adjacent nodes in the BLAST pipeline versus leaving
all four nodes separate. For both equal and redistributed queues, the
model’s top two choices were first, to leave all nodes unmerged, and
second, to merge the middle two nodes (seed enumeration and un-
gapped extension). Other strategies are predicted to be progressively
worse. Intuitively, reviewing Table 1 suggests that of the possible
mergers of adjacent nodes, the middle merger is likely to be better than
merging the last two nodes (where the gap between average and max
vector gain is amplified by the high cost of ungapped extension), and
perhaps better than merging the first two nodes (where the gap is again
amplified by the cost of seed enumeration). Similar observations apply

S. Timcheck and J. Buhler

Parallel Computing 109 (2022) 102863

SO SN \\’f(’ \m‘g{” \w\‘ \b@(‘ \WGZ‘ \9”3(” @%‘{” @“’ m@‘e q;ﬁ(‘

,,)qj& Dﬁ"é bb“6 %Q‘& 961’ \\q/‘@ \'L%‘é \b«b“& \66‘6 \'\eé \‘)ﬂfls @Q%\L q:Lb“& l@‘é ff)els

104 Bl Equal B8 Redistributed
E
=
]
5 2
=
k]
Q
=
Q
1%}
3
g 1]
S
=
=
Z
Queue Space Per Pipeline
Fig. 5. Number of calls to scheduler for BLAST, averaged over 50 trials.
8 Equal B8 Redistributed
6,000 |
A
=
@)
5
Z 4,000 ¢
Q
=
Q
1%}
Gy
S
g 2,000 |
S
=
=
Z
Queue Space Per Pipeline
Fig. 6. Number of calls to scheduler for Taxi, averaged over 50 trials.
104 == Equal @ Redistributed
8 EY

Number of Scheduler Calls
N

\ \ \ \ \g N\ N\ N\ N\
600"\ 400‘1\ %QQ‘I\ gQ@I\ \QQQQ\ \(30‘[\ \@0‘[\ \300‘1\ \&QQ‘I\

Sum of Queue Space for all Pipelines

Fig. 7. Number of calls to scheduler for NQueens, averaged over 50 trials.

if we perform queue redistribution as well as merging, which changes
the times but not the gains.

Table 2 compares the model’s predictions to empirically measured
running times for BLAST in its various merged configurations. The
empirically optimal strategy was among the model’s top two choices,
though the model incorrectly predicted an unmerged implementation
to be faster. Similar behavior was observed for both equal and redis-
tributed queue sizes. In general, the model underestimated the benefits
of merging adjacent nodes but was able to eliminate empirically bad
strategies, in particular those involving the merger of the last two
nodes.

Table 3 shows predictions and empirical results for several merging
strategies for NQueens, this time allocating a total of 1000 MB of queue
space to all pipelines. In this case, the model again predicted that a

fully unmerged strategy was most efficient among all possibilities, but
merging of the last two nodes was empirically faster; the best empirical
solution found was again among the top two predictions. Merging
additional node pairs concurrently with (and independently of) the last
pair produced empirically worse results, suggesting that only pairs of
stages close to the end of the pipeline, which run least frequently, are
likely beneficial to merge. Moreover, the magnitude of the benefit over
the unmerged implementation is small compared to the performance
losses incurred when merging earlier pairs. While many more possible
merging strategies exist beyond those shown in the table, the large
gain limit of most stages of the pipeline(15 — i for node n;, which was
also its empirically observed max vector gain) mean that the amount
of memory needed to implement most of these strategies safely was
infeasible for our target GPU.

S. Timcheck and J. Buhler

Parallel Computing 109 (2022) 102863

= Equal B8 Redistributed

800

600

400

Execution Time (ms)

200

o5 5 b oF o 0F g8 0 oF G0 g @ b oF ¢

Queue Space Per Pipeline

Fig. 8. Total execution time for equal vs. redistributed queue space on the BLAST application, averaged over 50 trials.

B Equal B8 Redistributed

200

100

Execution Time (ms)

”9"& D‘oo‘é bb“é %Q‘ls ‘)Gls \\'7,‘1‘ \’L%‘é \b(b“& \bg‘é \’\6& \fols @Q%\L @’L&& ,LD(Q‘& ff)ezs

Queue Space Per Pipeline

Fig. 9. Total execution time for equal vs. redistributed queue space on Taxi, averaged over 50 trials.

-10*

B Equal mm Redistributed

Execution Time (ms)

\3 \3} \3} \3} \3} \3} \3 \3 \%
S o G o o o o o

Sum of Queue Space for all Pipelines

Fig. 10. Total execution time for equal vs. redistributed queue space on NQueens, averaged over 50 trials.

Overall, while our performance model was not perfectly accurate
in ordering different merging strategies according to empirical running
time, it did rank strategies with the best empirical performance highly
among its predictions. Better modeling of the costs of merging — for
example, the potential savings when two CUDA functions are merged
due to register reuse, common subexpressions, and so forth — could help
to better reorder the top candidates. However, our model already shows
promise as a tool to guide design space search among different pipeline
merging strategies.

8. Conclusions and future work

In this work, we explored how to optimize irregular streaming
dataflow applications on SIMD processors by controlling the placement

10

and sizes of inter-node queues. We first devised a technique for choos-
ing the relative sizes of queues given an overall storage budget for the
pipeline. We then developed a performance model to inform where
to insert queues in an application. Both optimizations were driven by
profile data on the output behavior of each node in the application; the
queue insertion model also utilized empirical measurements of service
times and overhead. Both techniques targeted the cost of scheduling
multiple nodes of an application on a single processor. Each provided
demonstrated benefits in selecting configurations with lower execution
time, with queue size optimization proving the more robust of the two.

Future work will examine a broader set of irregular applications
and a larger variety of representative data sets. Characterization of
these applications’ structures will aid in development decisions for
queue placement and allocation. We will consider alternative strategies

S. Timcheck and J. Buhler

Table 3

Parallel Computing 109 (2022) 102863

Predicted (cycles/input vector) vs. Empirical (ms) Results for Different Node Merging Strategies in NQueens.
Queue space allocation is 1000 MB for all pipelines. For each strategy, “+” indicates that adjacent nodes
were merged, while a comma indicates that a queue was inserted after a node. Empirical timings were

repeatable to within 90-130 ms.

Merging Strategy Model Result

Empirical Result

Model Result ~ Empirical Result

(Equal) (Equal) (Redistributed) (Redistributed)

1,2,3,4,5,6,7,8,9,10,11,12,13,14 1.707 x 10° 23774 1.616 x 10° 22851

1,2,3,4,5,6,7,8,9,10,11,12,13+14 1.777 x 10° 23108 1.684 x 10° 22082

1,2,3,4,5,6,7,8,9,10,11+12,13+14 2.746 x 10° 28895 2.606 x 10° 27682

1,2,3,4,5,6,7,8,9+10,11+12,13+14 3.694 x 10° 35394 3.511 x 10° 33456
for dealing with safety constraints on queue size that may be less References
prejudicial to performance at small queue sizes. More broadly, we
will consider whether more detailed information about output gain [1]1 S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment

. . e search tool, J. Mol. Biol. 215 (3) (1990) 403-410.
- in particular additional moments beyond the average and mode of [2] M. Roesch, Snort - lightweight intrusion detection for networks, in: Proceedings
max vector gain per node - could result in more accurate decision of the 13th USENIX Conference on System Administration, LISA ’99, USENIX
making, particularly in node merging. We will also consider whether Association, USA, 1999, pp. 229-238.
it is possible to more accurately predict the impact of merging nodes [3] E. Tyson, J. Buckley, M Franklin, R Chamberla%n, Accelerati?n of atmosphelric
. Cherenkov telescope signal processing to real-time speed with the Auto-Pipe

on their combined service time, which we suspect Is an important design system, Nucl. Instrum. Methods Phys. Res. A 595 (2008) 474-479.
phenomenon in determining throughput. [4] W. Thies, M. Karczmarek, S. Amarasinghe, StreamlIt: A language for streaming

This work provides a framework for deciding the relative queue sizes applications, in: R.N. Horspool (Ed.), Compiler Construction, Springer Berlin
of an application but does not address how much absolute queue space Heidelberg, Berlin, Heidelberg, 2002, pp. 179-196.)

. B [5] T. Plano, J. Buhler, Scheduling irregular dataflow pipelines on SIMD architec-
to allocate an application. Currently, we test a broad range of absolute tures, in: Proceedings of the 2020 Sixth Workshop on Programming Models for
queue sizes, but do not have a particular method for determining SIMD/Vector Processing, WPMVP’20, Association for Computing Machinery, New
which to use. We have shown that there is a correlation between York, NY, USA, 2020, pp. 1-9.
larger absolute queue sizes and faster running times. However, these (6] ?'23'5‘8?242' Messerschmitt, Synchronous data flow, Proc. IEEE 75 (1987)
faster running times come at the cost of a larger memory footprint [7] J. Subhlok, G. Vondran, Optimal latency-throughput tradeoffs for data par-
for infrastructure and could quickly balloon out of control considering allel pipelines, in: 8th Annual ACM Symposium on Parallel Algorithms and
each block has its own set of queues, leaving little to no room for input Architectures, 1997, pp. 62-71. S
and application data. For future work, analysis of when larger absolute [8] A1 Benf)lt, Y. Robert, Complexity results for throgghp}lt and latency optimization

. . .) i of replicated and data-parallel workflows, Algorithmica 57 (4) (2010) 689-724.
queue sizes provide diminishing returns on running time, as well as [9] S.V. Cole, J. Buhler, MERCATOR: A GPGPU framework for irregular streaming
modeling the tradeoff between larger queues and the need to process applications, in: 2017 International Conference on High Performance Computing
smaller chunks of input due to GPU global memory limitations, will Simulation, HPCS, 2017, pp. 727-736.
provide guidance on how much total queue space should be given to [10] S.V. Cole, Efficiently and Transparently Maintaining High SIMD Occupancy in

o the Presence of Wavefront Irregularity (Ph.D. thesis), Dept. of Computer Science
an apphcatlon. and Engineering, Washington University in St. Louis, 2017.

Mercator supports efficient implementation of irregular streaming [11] M. Burtscher, R. Nasre, K. Pingali, A quantitative study of irregular programs on
applications like those described here, including branching searches f’flUSisi?: Proc. 2012 IEEE Intl Symp. on Workload Characterization, 2012, pp.
such as NQueens. We plan to continue eXtendmg the system to sup- [12] K. Gupta, J.A. Stuart, J.D. Owens, A study of persistent threads style GPU
port broader classes of application, such as those whose topologies programming for GPGPU workloads, in: Innovative Parallel Computing, IEEE
include DAGs and cycles. The semantics of such topologies for irregular InPar, 2012, pp. 1-14.
dataflow are not entirely clear; [22] offers one possible set of semantics [13] P. Harish, P.J. Narayanan, Accelerating large graph algorithms on the GPU using

. . . CUDA, in: Proc. 14th Int’l Conf. on High Performance Computing, 2007, pp.
that lead to nontrivial safety and efficiency challenges. 197-208

Finally, we plan to automate the process of profile gathering and [14] L. Luo, M. Wong, W.-M. Hwu, An effective GPU implementation of breadth-first
profile-guided optimization for Mercator applications. The execution search, in: Proc. 47th Design Automation Conference, 2010, pp. 52-55.
statistics supporting our optimizations are straightforward to collect. [15] D. Merrill, M. Garland, A. Grimshaw, Scalable GPU graph traversal, in: Proc. 17th

. L. . . . ACM SIGPLAN Symp. Principles and Practice of Parallel Programming, 2012, pp.
In the near term, we will offer optimization guided by execution 117-127.
profiles through recompilation of the application. In the longer term, [16] R. Nasre, M. Burtscher, K. Pingali, Morph algorithms on GPUs, in: Proc. 18th
it should be possible for a long-running application (on the order of a ACM SIGPLAN Symp. on Principles and Practice of Parallel Programming, 2013,
second or more, based on our empirical measurements of reallocation pp. 147-156. o .) .

] . ! . . . [17] M. Burtscher, K. Pingali, An efficient CUDA implementation of the tree-based
costs) to dynamlcally reconflgure its plpelme durmg execution based on Barnes Hut n-body algorithm, in: GPU Computing Gems Emerald Edition, Morgan
observed behaviors. Such automated tuning would allow an application Kaufmann, 2011, pp. 75-92.
to respond to local variations in the properties of a long input stream [18] bM l\gendez-Lojo, Mi Burtscher, K. Pin]fali, A GPU implementation of incllusionci

P : . ased points-to analysis, in: Proc. 17th ACM SIGPLAN Symp. on Principles an
and thereby optimize overall application performance. Practice of Parallel Programming, 2012, pp. 107-116.

[19] S. Tzeng, A. Patney, J.D. Owens, Task management for irregular-parallel work-

Declaration of competing interest loads on the GPU, in: Proc. 2010 Conf. on High Performance Graphics, 2010,
pp. 29-37.

[20] S. Timcheck, J. Buhler, Streaming computations with region-based state on SIMD

The authors declare that they have no known competing finan- architectures, in: 13th Int'l1 Wkshp. on Programmability and Architectures for
cial interests or personal relationships that could have appeared to Heterogeneous Multicores, 2020, p. 1.
influence the work reported in this paper. [21] A.M. Cabrera, C.J. Faber, K. Cepeda, R. Derber, C. Epstein, J. Zheng, R.K. Cytron,

R.D. Chamberlain, DIBS: A data integration benchmark suite, in: Companion of

the 2018 ACM/SPEC International Conference on Performance Engineering, ICPE

Acknowledgments ’18, Association for Computing Machinery, New York, NY, USA, 2018, pp. 25-28.
[22] P. Li, J. Beard, J. Buhler, Deadlock-free buffer configuration for stream com-

This work was supported by National Science Foundation, USA
awards CNS-1763503 and CNS-1500173.

11

puting, in: 2015 Int'l Workshop on Programming Models and Applications for
Multicores and Manycores, 2015, pp. 164-169.

http://refhub.elsevier.com/S0167-8191(21)00105-8/sb1
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb1
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb1
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb2
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb2
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb2
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb2
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb2
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb3
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb3
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb3
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb3
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb3
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb4
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb4
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb4
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb4
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb4
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb5
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb6
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb6
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb6
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb8
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb8
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb8
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb10
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb10
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb10
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb10
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb10
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb12
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb12
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb12
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb12
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb12
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb17
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb17
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb17
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb17
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb17
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21
http://refhub.elsevier.com/S0167-8191(21)00105-8/sb21

	Reducing queuing impact in streaming applications with irregular dataflow
	Introduction
	Related work
	Queuing optimizations for streaming pipelines
	The Mercator framework

	Application model
	Mercator: a framework for irregular streaming computation on NVIDIA GPUs
	Specifying computations in Mercator
	Application topology
	Application skeleton
	Invocation from the host

	Runtime realization of Mercator applications
	Motivation for optimizations

	Choosing sizes for finite inter-node queues
	Bounding rate of switches under efficient scheduling
	Allocating queue space to minimize switches
	Practical considerations: Rounding and safety

	Determining when to use queues
	Empirical evaluation
	Benchmark applications
	Queue sizing optimization
	Node merging optimization

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	References

